WO2016114011A1 - Display device and electronic device - Google Patents

Display device and electronic device Download PDF

Info

Publication number
WO2016114011A1
WO2016114011A1 PCT/JP2015/083045 JP2015083045W WO2016114011A1 WO 2016114011 A1 WO2016114011 A1 WO 2016114011A1 JP 2015083045 W JP2015083045 W JP 2015083045W WO 2016114011 A1 WO2016114011 A1 WO 2016114011A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display device
particles
porous layer
fibrous structure
Prior art date
Application number
PCT/JP2015/083045
Other languages
French (fr)
Japanese (ja)
Inventor
綾 首藤
平井 基介
亮 加瀬川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016114011A1 publication Critical patent/WO2016114011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements

Definitions

  • the present technology relates to a display device and an electronic device using an electrophoretic element.
  • a display various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications.
  • a reflective display is advantageous for reading applications.
  • bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
  • electrophoretic displays using the electrophoretic phenomenon are expected to be promising candidates because of their low power consumption and fast response speed.
  • the display method the following two methods are mainly proposed.
  • the first method is to disperse two kinds of charged particles in an insulating liquid and move the charged particles according to the electric field.
  • the two kinds of charged particles have different optical reflection characteristics and opposite polarities.
  • an image is displayed by changing a distribution state of charged particles according to an electric field.
  • the second method is to disperse charged particles in an insulating liquid and dispose a porous layer (for example, Patent Document 1).
  • a porous layer for example, Patent Document 1
  • charged particles move through the pores of the porous layer according to the electric field.
  • the porous layer includes, for example, a fibrous structure made of a polymer material, and non-electrophoretic particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles.
  • the display is switched by the charged particles moving through the pores according to the electric field.
  • the display characteristics of the electrophoretic display can be improved by laminating many fibrous structures. This is because the white reflectance is improved by increasing the density of the porous layer. However, as the density of the porous layer increases, the pore diameter decreases. For this reason, there is a possibility that the reaction rate is lowered and the contrast is lowered.
  • a display device includes migrating particles, a porous layer, and non-migrating particles held in the porous layer in an insulating liquid, and the porous layer is different from the migrating particles. It is composed of a plurality of layers having light reflectivity and different volume fractions of non-electrophoretic particles.
  • An electronic apparatus includes the display device of the present technology.
  • the porous layer including the non-electrophoretic particles is configured by a plurality of layers having different volume fractions of the non-electrophoretic particles. It is possible to maintain the pore diameter of the pores in the porous layer while increasing the density.
  • the porous layer composed of a plurality of layers having different volume fractions of the non-electrophoretic particles is provided, the density of the porous layer The pore diameter of the pores in the porous layer is maintained while increasing the. Therefore, the white reflectance can be improved without reducing the response speed, and a display device and an electronic apparatus having high display characteristics can be provided. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • 14 is a perspective view illustrating an appearance of application example 1.
  • FIG. 4B is a perspective view illustrating another example of the electronic book illustrated in FIG. 4A.
  • 12 is a perspective view illustrating an appearance of application example 2.
  • Embodiment Example in which a porous layer comprising two layers having different volume fractions of non-electrophoretic particles is provided
  • 1-1 Configuration of electrophoretic element 1-2.
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) including an electrophoretic element (electrophoretic element 30) according to an embodiment of the present technology.
  • the electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and is used as a display body of various electronic devices such as tablets.
  • the electrophoretic element 30 includes electrophoretic particles 32 and a porous layer 33 having pores H in an insulating liquid 31.
  • the porous layer 33 is composed of a fibrous structure 34 and non-migrating particles 35 held on the fibrous structure 34 (see FIG. 2).
  • the porous layer 33 has a two-layer (first layer 33A, second layer 33B) structure, and the first layer 33A and the second layer 33B are fibrous structures relative to the volume of the display device 1.
  • the volume fractions of the non-electrophoretic particles 35 held by the nozzles 34 are different from each other.
  • FIG. 1 schematically illustrates the configuration of the display device 1 including the electrophoretic element 30 and may differ from actual dimensions and shapes.
  • the volume fraction is the volume of the display device 1 composed of a plurality of electrophoretic elements 30, specifically, the volume of the display portion A provided between the seal layer 16 and the counter electrode 22.
  • the ratio of how much volume the non-electrophoretic particles 35 occupy is the volume of the display device 1 composed of a plurality of electrophoretic elements 30, specifically, the volume of the display portion A provided between the seal layer 16 and the counter electrode 22. The ratio of how much volume the non-electrophoretic particles 35 occupy.
  • the insulating liquid 31 is made of, for example, an organic solvent such as paraffin or isoparaffin.
  • an organic solvent such as paraffin or isoparaffin.
  • one kind of organic solvent may be used, or a plurality of kinds of organic solvents may be used. It is preferable to make the viscosity and refractive index of the insulating liquid 31 as low as possible.
  • the viscosity of the insulating liquid 31 is lowered, the mobility (response speed) of the migrating particles 32 is improved. In accordance with this, the energy (power consumption) required to move the migrating particles 32 is reduced.
  • the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased.
  • a coloring agent for example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 31.
  • the migrating particles 32 dispersed in the insulating liquid 31 are one or more charged particles, and the charged migrating particles 32 move through the pores H in response to an electric field.
  • the migrating particles 32 have an arbitrary optical reflection characteristic (light reflectance), and a contrast (CR) is generated due to the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33. It has become.
  • the migrating particles 32 may be brightly displayed and the porous layer 33 may be darkly displayed, or the migrating particles 32 may be darkly displayed and the porous layer 33 may be brightly displayed.
  • the electrophoretic element 30 When the electrophoretic element 30 is viewed from the outside, when the electrophoretic particles 32 are brightly displayed, the electrophoretic particles 32 are visually recognized as white or a color close to white, and when darkly displayed, for example, black or black It is visually recognized as a color close to.
  • the color of the migrating particles 32 is not particularly limited as long as contrast can be generated.
  • the migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One of these may be used for the migrating particles 32, or two or more of them may be used.
  • the migrating particles 32 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • the particle size of the migrating particles 32 is, for example, 30 nm to 300 nm.
  • organic pigments examples include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area
  • the specific material of the migrating particles 32 is selected according to, for example, the role that the migrating particles 32 play in causing contrast.
  • a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 32.
  • the migrating particles 32 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide.
  • metal oxides such as copper-iron-chromium oxide are used.
  • Electrophoretic particles 32 made of a carbon material exhibit excellent chemical stability, mobility and light absorption.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding and mobility of the migrating particles 32 are ensured. Specifically, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are less likely to shield (conceal) the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate.
  • the migrating particles 32 are preferably easily dispersed and charged in the insulating liquid 31 for a long period of time, and are preferably not easily adsorbed to the porous layer 33. For this reason, for example, a dispersant is added to the insulating liquid 31.
  • a dispersant and a charge control agent may be used in combination.
  • This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31 and causes the migrating particles 32 to move by electrostatic repulsion. It is for dispersing.
  • a dispersant examples include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemical, or Span series manufactured by TCI America.
  • the migrating particles 32 may be subjected to a surface treatment.
  • This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • long-term dispersion stability of the migrating particles 32 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
  • a material (adsorbent material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32 is used.
  • the adsorbable functional group is determined according to the forming material of the migrating particle 32.
  • the migrating particles 32 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 32 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 32 and grafting it onto the surface (graftable material).
  • the graft material has, for example, a polymerizable functional group and a dispersing functional group.
  • the functional group for dispersion disperses the migrating particles 32 in the insulating liquid 31 and retains dispersibility due to steric hindrance.
  • the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • AIBN azobisisobutyronitrile
  • a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
  • the porous layer 33 can shield the migrating particles 32, and includes a fibrous structure 34 and non-migrating particles 35 that are modified by the surfactant and held by the fibrous structure 34.
  • FIG. 2 is an enlarged view of the porous layer 33 surrounded by the dotted line of the display device 1 shown in FIG.
  • the porous layer 33 is a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by the fibrous structure 34 as shown in FIG. 2, and has a plurality of gaps (pores H). Is provided.
  • the porous layer 33 of the present embodiment is configured by a first layer 33A and a second layer 33B having different volume fractions of the non-electrophoretic particles 35 held by the fibrous structure 34 with respect to the volume of the display device 1. Yes. Specifically, it is preferable that the volume fraction of the second layer 33B provided on the display surface S1 side is larger than that of the first layer 33A.
  • the difference in volume fraction between the first layer 33A and the second layer 33B can be controlled by changing the fiber diameter of the fibrous structure 34, for example. If the composition ratio of the first layer 33A and the second layer 33B is constant, the smaller the fiber diameter, the higher the volume fraction, and the larger the fiber diameter, the lower the volume fraction.
  • the measuring method of the volume fraction of the non-electrophoretic particle 35 with respect to the volume of the display part A is measured using the following method, for example.
  • the display device 1 is cut using an instrument such as a microtome, the cross section of the cut display portion A is observed using an SEM, and non-electrophoretic particles are mapped. Thereby, the volume fraction of the non-electrophoretic particles 35 with respect to the display part A is calculated.
  • mapping elements using SEM-EDX or FT-TR.
  • the kind and ratio of the non-electrophoretic particles and the polymer already used for production are known, they can be easily calculated from their specific gravity.
  • the fiber diameter of the fibrous structure 34 for example, there is a method of changing the polymer concentration and the composition of the non-electrophoretic particles 35 in the porous layer forming step.
  • the fiber diameter of the fibrous structure 34 can also be changed by changing the modification amount of the surfactant that modifies the surface of the non-electrophoretic particles described later, or by changing the amount of the surfactant added to the polymer solution. Can be changed. Further, the particle size of the non-electrophoretic particles 35 used when forming the first layer 33A and the second layer 33B may be changed.
  • the particle size of the non-migrating particles 35 used for the second layer 33B is larger than that of the first layer 33A. It is preferable to use a small one. Thereby, the fiber diameter of the fibrous structure 34 which comprises the 2nd layer 33B becomes small, and the volume fraction of the 2nd layer 33B becomes higher than the 1st layer 33A.
  • the volume fraction of the second layer 33B is preferably 13% or more, and more preferably 13% or more and 25% or less.
  • the volume fraction of the first layer 33A is preferably 5% or more and 10% or less, for example. Note that the volume fraction of the first layer 33A and the second layer 33B constituting the porous layer 33 may be controlled using a method other than the above method.
  • the overall thickness of the porous layer 33 in the Z-axis direction (hereinafter simply referred to as thickness) is, for example, 5 ⁇ m or more and 100 ⁇ m or less, depending on the element configuration of the electrophoretic element 30. In order to provide sufficient white reflectance, black reflectance, and response time, it is more preferably 15 ⁇ m or more and 50 ⁇ m or less. Among these, it is preferable that the thickness of the second layer 33B is 40% or less of the whole. Specifically, when the thickness of the entire porous layer is 30 ⁇ m, at least the thickness of the second layer 33B may be 12 ⁇ m or less. By setting it as such a structure, the white reflectance of the display apparatus 1 improves with the 2nd layer 33B.
  • the first layer 33A can keep the pore diameter of the pore H, which is the movement path of the migrating particles 32 in the display device 1, large. That is, the migrating particles 32 are easily moved via the pores H, the response speed is improved, and the energy required to move the migrating particles 32 is further reduced.
  • the second layer 33B having a high volume fraction is disposed on the display surface S1 side, and the first layer 33A having a low volume fraction is disposed on the opposite side, thereby pressing the display surface S1 side. The effect of dispersing the force is also exhibited, and the durability of the display device 1 is improved.
  • the fibrous structure 34 is a fibrous substance having a sufficient length with respect to the fiber diameter (diameter). For example, a plurality of fibrous structures 34 are assembled and randomly overlapped to form the porous layer 33. One fibrous structure 34 may be entangled randomly to form the porous layer 33. Or the porous layer 33 by the one fibrous structure 34 and the porous layer 33 by the some fibrous structure 34 may be mixed.
  • the fibrous structure 34 extends, for example, in a straight line.
  • the shape of the fibrous structure 34 may be any shape.
  • the fibrous structure 34 may be crimped or bent in the middle. Or the fibrous structure 34 may be branched on the way.
  • the minimum fiber diameter of the fibrous structure 34 is, for example, preferably 500 nm or less, and more preferably 300 nm or less.
  • the average fiber diameter is preferably, for example, from 50 nm to 2000 nm, but may be outside the above range.
  • the average fiber diameter of the fibrous structure 34 constituting the first layer 33A is For example, it is preferable that it is 500 nm or more and 1000 nm or less, and it is preferable that the average fiber diameter of the fibrous structure 34 which comprises the 2nd layer 33B shall be 200 nm or more and 500 nm or less, for example.
  • the fiber diameter is determined so that the fibrous structure 34 can hold the non-migrating particles 35.
  • the average fiber diameter can be measured, for example, by microscopic observation using a scanning electron microscope or the like.
  • the average length of the fibrous structure 34 is arbitrary.
  • the fibrous structure 34 is formed by, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating method. Is done. By using such a method, the fibrous structure 34 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
  • the fibrous structure 34 is preferably composed of nanofibers.
  • the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter.
  • the fibrous structure 34 made of nanofibers the proportion of the pores H in the unit volume increases, and the migrating particles 32 can easily move through the pores H. Therefore, the energy required for moving the migrating particles 32 can be reduced.
  • the fibrous structure 34 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrospinning method, the fibrous structure 34 having a small fiber diameter can be easily and stably formed.
  • a fibrous structure 34 having a light reflectance different from that of the migrating particles 32 It is preferable to use a fibrous structure 34 having a light reflectance different from that of the migrating particles 32. Thereby, a contrast due to a difference in light reflectance between the porous layer 33 and the migrating particles 32 is easily formed.
  • a fibrous structure 34 showing light transparency (colorless and transparent) in the insulating liquid 31 may be used.
  • the pore H is configured by overlapping a plurality of fibrous structures 34 or entwining one fibrous structure 34.
  • the pore H preferably has an average pore diameter as large as possible so that the migrating particles 32 can easily move through the pore H.
  • the average pore diameter of the pores H is, for example, not less than 0.1 ⁇ m and not more than 10 ⁇ m.
  • Non-electrophoretic particles 35 are one or more particles that are fixed to the fibrous structure 34 and do not undergo electrophoresis.
  • the non-migrating particles 35 may be embedded in the held fibrous structure 34 or may partially protrude from the fibrous structure 34.
  • the average particle diameter of the non-migrating particles 35 is preferably 150 nm or more and 700 nm or less, for example.
  • the average particle size of the non-migrating particles 35 included in the first layer 33A is, for example, 300 nm or more and 700 nm.
  • the average particle diameter of the non-migrating particles 35 included in the second layer 33B is preferably, for example, 150 nm or more and 300 nm or less.
  • the non-electrophoretic particles 35 those having a light reflectance different from that of the electrophoretic particles 32 are used.
  • the non-migrating particles 35 can be made of the same material as the migrating particles 32. Specifically, when the non-electrophoretic particles 35 (porous layer 33) display brightly, the material when the electrophoretic particles 32 display brightly, and when the non-electrophoretic particles 35 display darkly, the electrophoretic particles 32 darken. Each material for display can be used. When performing bright display by the porous layer 33, it is preferable that the non-migrating particles 35 are made of a metal oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity.
  • the constituent materials of the non-migrating particles 35 and the migrating particles 32 may be the same or different.
  • the color visually recognized from the outside when the non-electrophoretic particle 35 performs bright display or dark display is the same as that described for the electrophoretic particle 32.
  • the surface of the non-electrophoretic particle 35 may be modified with a surfactant.
  • Surfactants are, for example, anionic (anionic) surfactants having a carboxylic acid, sulfonic acid or phosphoric acid structure as hydrophilic groups and cationic (cationic) properties having, for example, tetraalkylammonium or alkylamine as hydrophilic groups. Surfactant is mentioned.
  • nonionic (nonionic) surfactants having a hydrophilic part as a non-electrolyte that is, a non-ionized hydrophilic part
  • amphoteric surfactants having both an anionic part and a cationic part in the molecule may be used. .
  • amphoteric surfactants examples include alkyl dimethylamine oxide and alkyl carboxybetaine.
  • metal materials such as a titanium oxide, as the non-electrophoretic particle 35
  • an anionic surfactant when using metal materials, such as a titanium oxide, it is preferable to use an anionic surfactant.
  • a surfactant having a hydrophilic group with a small molecular volume such as carboxylic acid is preferable because it easily covers the entire surface of the non-electrophoretic particle 35. Further, it is desirable that the surfactant does not ooze into the insulating liquid 31 so that the display characteristics are not deteriorated for a long time.
  • Such a porous layer 33 can be formed by the following method, for example.
  • the non-electrophoretic particles 35 for example, titanium oxide having two types of primary particle sizes (for example, 250 nm (small particles) and, for example, 450 nm (large particles)) is prepared, and these are, for example, carboxylic acid anions.
  • the organic surfactant is added to the organic solvent in which it has been dissolved and stirred. Thereby, titanium oxide (non-electrophoretic particles 35) whose surface is coated with a carboxylic acid anionic surfactant is obtained.
  • a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then, for example, small non-electrophoretic particles 35 are added to the solution. Is added and stirred sufficiently to prepare a spinning solution in which the non-electrophoretic particles 35 are dispersed. Subsequently, spinning is performed from the spinning solution by, for example, an electrostatic spinning method to fix the non-migrating particles 35 to the fibrous structure 34, thereby forming the first layer 33A.
  • a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then, for example, large non-electrophoretic particles 35 are added to the solution.
  • the second layer 33B having a higher volume fraction than the first layer 33A is formed.
  • the porous layer 33 is completed by stacking the second layer 33B on the second layer 33A.
  • the primary particle size is a minimum particle size. For example, when the particles are aggregated or bonded, the primary particle size represents the particle size of each particle.
  • the dispersibility of the non-migrating particles 35 in the spinning solution is improved by using the non-migrating particles 35 previously modified with a surfactant.
  • an electric field is easily applied to the non-migrating particles 35 during spinning, and a fibrous structure 34 with a reduced fiber diameter, that is, a fine fiber is obtained.
  • the surface of the non-electrophoretic particle 35 fixed to the fibrous structure 34 is covered with a polymer constituting the fibrous structure 34.
  • the porous layer 33 may be formed by forming holes H in the polymer film by using a laser to form a hole H, and a cloth knitted with synthetic fibers or the like on the porous layer 33, Alternatively, open-cell porous polymer may be used. In this case, the work of kneading the non-electrophoretic particles into the polymer is necessary as a pre-operation. At that time, the final volume fraction is predicted from the particle diameter and the specific gravity, and the mixing ratio of the non-electrophoretic particles is adjusted. Thereby, layers having different volume fractions can be formed.
  • the fibrous structure is preferably composed of molecules having a main skeleton (main part of the molecule) composed of, for example, carbon atoms, oxygen atoms and hydrogen atoms.
  • the main skeleton of this molecule does not contain atoms other than carbon atoms, oxygen atoms, and hydrogen atoms, and consists only of these atoms.
  • Such molecules forming the fibrous structure 34 preferably do not contain a highly polar functional group such as a hydroxyl group and a carboxylic acid group. Thereby, the absolute value of the surface potential of the fibrous structure 34 becomes small, and the response speed of the electrophoretic element 30 can be improved.
  • the main skeleton refers to a portion excluding both ends of the molecule.
  • the molecules forming the fibrous structure 34 are preferably composed of carbon atoms, oxygen atoms and hydrogen atoms up to both ends, but the ends contain atoms other than these carbon atoms, oxygen atoms and hydrogen atoms. May be.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) is used as a catalyst. Nitrogen atoms and the like are contained at both ends of the polymer synthesized in this way, but the atoms at the ends are less than 1/1000 of the whole molecule in terms of molecular weight. Therefore, this terminal atom contributes little to the properties of the molecule.
  • AIBN azobisisobutyronitrile
  • the electrophoretic element 30 can obtain high reliability.
  • the molecule forming the fibrous structure 34 is a chain polymer.
  • a chain molecule refers to a molecule that does not include a cyclic atomic arrangement structure.
  • Examples of the cyclic atomic arrangement include a monocyclic compound and a heterocyclic compound.
  • Monocyclic compounds are composed of a single element, and specifically include aromatic compounds, cycloalkenes, cycloalkanes, cycloalkynes, and the like.
  • the heterocyclic compound is composed of two or more kinds of elements, and specifically includes pyrrole, carbazole, cyclic acetal, pyran, furan and thiophene.
  • the chain molecule may be linear or branched.
  • the fibrous structure 34 is composed of chain molecules, since the steric hindrance is smaller than that of a molecule including a cyclic structure, the migrating particles 32 are easily moved, and the contrast and response speed of the electrophoretic element 30 are improved. To do.
  • the chain molecule constituting the fibrous structure 34 includes an ester group.
  • the fibrous structure 34 is preferably formed from an acrylic resin.
  • Specific examples of the chain molecule include polyalkyl methacrylate, polyalkyl acrylate, polyalkenyl methacrylate, polyalkenyl acrylate, polyalkynyl methacrylate and polyalkynyl acrylate.
  • This chain molecule does not have a functional group having a polarity higher than that of the ester group, and the absolute value of the surface potential of the fibrous structure 34 is, for example, 20 mV or less. It is more preferable to select chain molecules so that the absolute value of the surface potential of the fibrous structure 34 is 10 mV or less. That is, the ester group has a smaller polarity than the cyano group and the like, but this is sufficiently large for spinning using the electrospinning method, and the fibrous structure 34 can be easily formed by the electrospinning method. can do.
  • the chain molecule constituting the fibrous structure 34 it is preferable to use a material that is not easily decomposed by microorganisms. That is, the chain molecule is preferably resistant to biodegradation.
  • the biodegradable polymer include polylactic acid, polyvinyl alcohol, cellulose acetate, collagen, gelatin, and chitosan. Since such a polymer is easily decomposed, there is a possibility that the characteristics of the fibrous structure cannot be maintained when some kind of stimulus is applied to the electrophoretic element from the outside. In addition, many of such polymers are water-soluble and may be dissolved by moisture in the electrophoretic element, so that the shape of the fibrous structure cannot be maintained.
  • the fibrous structure 34 is formed of chain molecules having resistance to biodegradation, the stability of the fibrous structure 34 is increased. Therefore, the reliability of the electrophoretic element 30 can be improved.
  • the surface of the fibrous structure 34 may be covered with an arbitrary protective layer.
  • FIG. 1 and 3A show an example of a cross-sectional configuration of a display device (display device 1) using the electrophoretic element 30.
  • the display device 1 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information) using an electrophoretic phenomenon, and an electrophoretic element between a driving substrate 10 and a counter substrate 20. 30 is provided. The space between the driving substrate 10 and the counter substrate 20 is adjusted to a predetermined distance by the spacer 40.
  • the drive substrate 10 includes, for example, a TFT (Thin Film Transistor) 12, a protective layer 13, a pixel electrode 14, and an adhesive layer 15 in this order on one surface of the support member 11.
  • TFT Thin Film Transistor
  • the TFT 12 and the pixel electrode 14 are arranged in a matrix or a segment according to the pixel arrangement.
  • the support member 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like.
  • the inorganic materials for example, silicon (Si), silicon oxide (SiOX), such as silicon nitride (SiN X) or aluminum oxide (AlOx) may be mentioned.
  • Silicon oxide includes glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel
  • examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
  • the support member 11 may be non-light transmissive.
  • the support member 11 may be configured by a rigid substrate such as a wafer, or may be configured by a flexible thin glass or film. By using a flexible material for the support member 11, the flexible display device 1 can be realized.
  • the TFT 12 is a switching element for selecting a pixel.
  • the TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer.
  • the protective layer 13 and the adhesive layer 15 are made of, for example, an insulating resin material such as polyimide. If the surface of the protective layer 13 is sufficiently flat, the adhesive layer 15 can be omitted.
  • the pixel electrode 14 is made of a metal material such as gold (Au), silver (Ag), or copper (Cu). The pixel electrode 14 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the adhesive layer 15.
  • the counter substrate 20 includes, for example, a support member 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support member 21 (a surface facing the drive substrate 10). Similarly to the pixel electrode 14, the counter electrode 22 may be arranged in a matrix or a segment.
  • the support member 21 is made of the same material as the support member 11 except that it is light transmissive.
  • a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). (Transparent electrode material) can be used.
  • the light transmittance (transmittance) of the counter electrode 22 is preferably as high as possible. 80% or more. Further, the electrical resistance of the counter electrode 22 is preferably as low as possible, for example, 100 ⁇ / ⁇ or less.
  • the electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having a plurality of pores H in an insulating liquid 31.
  • the insulating liquid 31 is filled in the space between the driving substrate 10 and the counter substrate 20, and the porous layer 33 is supported by the spacer 40, for example.
  • the space filled with the insulating liquid 31 is divided into, for example, a retreat area R1 closer to the pixel electrode 14 and a display area R2 closer to the counter electrode 22 with the porous layer 33 as a boundary. .
  • the configurations of the insulating liquid 31, the migrating particles 32, and the porous layer 33 are the same as those described in the above embodiments and the like. In FIG. 3A and FIG. 3B described later, the pores H are omitted to simplify the illustrated contents.
  • the porous layer 33 may be adjacent to one of the pixel electrode 14 and the counter electrode 22, and the retreat area R1 and the display area R2 may not be clearly separated.
  • the migrating particles 32 move toward the pixel electrode 14 or the counter electrode 22 according to the electric field.
  • the thickness of the spacer 40 is, for example, 10 ⁇ m to 100 ⁇ m, and is preferably as thin as possible. Thereby, power consumption can be suppressed.
  • the spacer 40 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 10 and the counter substrate 20.
  • the arrangement shape of the spacer 40 is not particularly limited, but it is preferable that the spacer 40 is provided so as not to disturb the movement of the migrating particles 32 and to uniformly distribute the migrating particles 32.
  • the migrating particles 32 are arranged in the retreat area R1 (FIG. 3A). In this case, since the migrating particles 32 are shielded by the porous layer 33 in all the pixels, no contrast is generated when the electrophoretic element 30 is viewed from the counter substrate 20 side (an image is not displayed). Is in a state.
  • the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to the display area R2 via (pore H).
  • a contrast is generated. become. Thereby, an image is displayed.
  • the electrophoretic element 30 having a high response speed can display a high-quality image suitable for, for example, colorization and moving image display.
  • contrast is generated by the difference between the light reflectance of the migrating particles and the light reflectance of the porous layer.
  • the light reflectance for bright display is higher than the light reflectance for dark display.
  • the light reflectance of the non-electrophoretic particles is higher than that of the electrophoretic particles so that the porous layer displays light and the electrophoretic particles display dark.
  • the electrophoretic particles move through the pores of the porous layer within the range where the electric field is applied. Depending on the area where the migrating particles have moved or not moved, either bright display or dark display is performed, and an image is displayed.
  • the display characteristics of the electrophoretic display are not yet sufficient, and further improvement in the reflectance has been demanded.
  • the reflectance can be improved by, for example, laminating many fibrous structures or using non-electrophoretic particles having a large particle size (for example, 400 to 700 nm).
  • the density of the porous layer can be increased by laminating many fibrous structures, and the ability to shield the migrating particles can be improved. It is considered possible. Further, it is considered that the ability to shield the migrating particles can be improved by increasing the particle size of the non-migrating particles fixed to the fibrous structure and increasing the amount thereof.
  • the reflectance improves, but the reaction speed decreases because the pore diameter decreases, and for example, it becomes difficult to move the migrating particles to the display surface, resulting in a contrast. May decrease.
  • the porous layer 33 includes two layers having different volume fractions of the non-electrophoretic particles 35 with respect to the volume of the display portion A. Includes a first layer 33A in which the volume fraction of the non-electrophoretic particles 35 is lower than that of the second layer 33B, and a second layer 33B in which the volume fraction of the non-electrophoretic particles 35 is higher than that of the first layer 33A. I made it. As a result, it is possible to maintain the pore diameter in the porous layer 30 while improving the density of the porous layer 30.
  • the second layer 33B having a higher volume fraction of the non-migrating particles 35 than the first layer 33A is disposed on the display surface S1 side, thereby improving the white reflectance and migrating particles in the porous layer 33. It is possible to secure 32 moving speeds.
  • the porous layer 33 has the first layer 33A and the volume fraction of the non-electrophoretic particles 35 with respect to the volume of the display portion A is the first.
  • the second layer 33B is higher than the first layer 33A.
  • the display device 1 is applicable to electronic devices for various purposes, and the type of the electronic device is not particularly limited.
  • This display device 1 can be mounted on, for example, the following electronic devices.
  • the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as shown in FIG. 4A or may be provided on the upper surface as shown in FIG. 4B.
  • the display unit 110 is configured by the display device 1.
  • the display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 4A and 4B.
  • PDA Personal Digital Assistants
  • FIG. 5 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 1.
  • Display devices (Experimental Examples 1 to 9) were produced using black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) by the following procedure.
  • Example 1 First, a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution. Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath.
  • composite oxide fine particles copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550
  • the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation.
  • the precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a dispersing group were obtained.
  • a dispersant and a charge control agent (OLOA 1200 manufactured by Chevron-Chemicals) were dissolved in 83.3 g of insulating liquid.
  • Isoparaffin Isopar G manufactured by ExxonMobil
  • 1 g of the migrating particles was added to 9 g of this insulating liquid, and ultrasonic dispersion was performed. Subsequently, centrifugation (90 minutes at 6000 rpm) was performed, followed by decantation, and then redispersed in an insulating liquid. This washing operation was repeated three times, and an insulating liquid was added to the resulting precipitate so that the pigment component was 10% by weight.
  • the porous layer was formed as follows. First, titanium oxide with an average primary particle size of 450 nm and titanium oxide with a thickness of 200 nm are prepared as non-electrophoretic particles, and mixed to 4 wt% in tetrahydrofuran in which a carboxylic acid anionic surfactant is dissolved. Stir for 1 hour using a paint shaker. Then, it is centrifuged (5000 rpm for 10 minutes), and the solvent is removed by decantation. After washing 3 times, it was dried at 70 ° C. overnight. As a result, titanium oxide coated with a carboxylic acid anionic surfactant was obtained.
  • titanium oxide having a primary particle diameter of 450 nm is referred to as non-electrophoretic particle T-1
  • titanium oxide having a primary particle diameter of 200 nm is referred to as non-electrophoretic particle T-2.
  • polymethyl methacrylate was prepared as a constituent material of the fibrous structure.
  • 13 g of this polymethyl methacrylate was dissolved in 87 g of N, N′-dimethylformamide, 2 g of non-electrophoretic particles T-1 were added to 8 g of this solution and mixed with a bead mill.
  • a spinning solution for forming a fibrous structure was obtained.
  • a pixel electrode made of ITO having a predetermined pattern was formed on the driving substrate, spinning was performed using this spinning solution. Specifically, the spinning solution was put into a syringe, and spinning for 5.5 g / cm 2 was performed on the driving substrate.
  • the obtained fibrous structure is designated as NW-1. Spinning was performed using an electrospinning apparatus (NANON manufactured by MEC Co., Ltd.).
  • the unnecessary porous layer was removed from the driving substrate. Specifically, the porous layer where the pixel electrode is not provided was removed.
  • a counter substrate a counter electrode made of ITO was formed on a plate-like member, and a spacer was disposed on the counter substrate.
  • a photo-curing resin photosensitive resin Photorec A-400 (registered trademark) manufactured by Sekisui Chemical Co., Ltd.) containing beads (outer diameter 15 ⁇ m) is used, and this is overlapped with the driving substrate. In a position not overlapping with the porous layer. After providing the spacer on the counter substrate, this was overlapped with the driving substrate on which the porous layer was formed.
  • the porous layer was separated from the pixel electrode and the counter electrode by holding the porous layer with the spacer.
  • an insulating liquid in which the migrating particles were dispersed was injected between the driving substrate and the counter substrate.
  • the light curable resin was irradiated with ultraviolet light to complete the display device.
  • the volume fraction of titanium oxide in the display device was 14% and 7.1% from the display surface side.
  • Example 2 A display device (Experimental Example 2) was produced in the same procedure as in Experimental Example 1, except that the fibrous structure NW-1 was spun at 7 g / cm2 min. The volume fraction of the porous layer was 17% and 8.8% from the display surface side.
  • Example 3 A display device (Experimental Example 3) was produced in the same procedure as in Experimental Example 1 except that the fibrous structure NW-1 was spun at 7 g / cm2 min and the fibrous structure NW-2 was spun at 1 g / cm2 min. The volume fraction of the porous layer was 15% and 8.1% from the display surface side.
  • Example 4 A display device (Experimental Example 4) was produced in the same procedure as in Experimental Example 1, except that the fibrous structure NW-1 was spun at 8 g / cm2 min and the fibrous structure NW-2 was spun at 1 g / cm2 min. The volume fraction of the porous layer was 17% and 9.1% from the display surface side.
  • the fibrous structure NW-3 was prepared at 7 g / cm 2 min by 14 g of polymelacrylate constituting the fibrous structure, 86 g of N, N′-dimethylformamide, and 15 g of titanium oxide. Further, 11 g of polymelacrylate constituting the fibrous structure, 89 g of N, N′-dimethylformamide, and 40 g of titanium oxide were prepared to produce the fibrous structure NW-4 at 2.5 g / cm 2 min. Was overlaid on the fibrous structure NW-3. Except for this, a display device (Experimental Example 5) was produced in the same procedure as in Experimental Example 1. The volume fraction of the porous layer was 14% and 8.4% from the display surface side, the average fiber diameter of the fibrous structure NW-3 was 500 nm, and the average fiber diameter of the fibrous structure NW-4 was 700 nm. It was.
  • Example 6 A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1, except that the porous layer was composed only of the fibrous structure NW-1 spun at 7.5 g / cm2 min. The volume fraction of the porous layer was 7.8%.
  • Example 7 A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1, except that the porous layer was composed only of the fibrous structure NW-1 spun at 9 g / cm2 min. The volume fraction of the porous layer was 9.3%.
  • Example 8 A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1 except that the porous layer was composed only of the fibrous structure NW-1 spun at 11 g / cm2 min. The volume fraction of the porous layer was 11%.
  • Example 9 A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1 except that the porous layer was composed only of the fibrous structure NW-2 spun at 9 g / cm2 min. The volume fraction of the porous layer was 12%.
  • the performance of the display devices of Experimental Examples 1 to 9 includes the volume fraction (%) of non-electrophoretic particles in the fibrous structure, white reflectance (%) immediately after production, black reflectance (%), contrast (CR ) And 15 V after applying for 200 ms were examined for white reflectance (%). The results are shown in Table 1.
  • the white reflectance and the black reflectance were measured using a spectrocolorimeter (CD100 manufactured by Yokogawa Electric Corporation) after applying an alternating voltage of 15 V for 12 seconds to the display device.
  • the white reflectance after 200 ms of voltage application shows how much the white reflectance has improved after applying a reverse bias of the same time (200 ms) after applying a voltage of 15 V to the display device to display black. The higher the response speed, the higher the white reflectance value.
  • Experimental Examples 1 to 5 When comparing Experimental Examples 1 to 5 in which the porous layer is composed of two layers having different volume fractions of non-electrophoretic particles and Experimental Examples 6 to 9 in which the porous layer is configured as a single layer, Experimental Examples 1 to 5 are more in white reflectance. And the contrast tended to be high. In addition, the white reflectance when applied for a short time of 200 ms was generally higher in Experimental Examples 1 to 5. On the other hand, in Example 7, although the white reflectance was improved by increasing the amount of the fibrous structure, the contrast was lowered, and the white reflectance after the application time of 200 ms was as follows. It was lower than Experimental Examples 1 to 5 composed of two layers and was similar to the other Experimental Examples 6 and 8 composed of a single layer.
  • Insulating liquid includes electrophoretic particles, a porous layer, and non-electrophoretic particles held in the porous layer, and the porous layer has light reflectivity different from that of the electrophoretic particles.
  • a display device comprising a plurality of layers in which the volume fraction of the non-electrophoretic particles is different from each other.
  • the porous layer includes a first layer and a second layer in which the volume fraction of the non-electrophoretic particles is larger than that of the first layer, and the second layer is disposed on the display surface side.
  • the display device according to (1) The display device according to (1).
  • the light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the porous layer perform bright display.
  • the display device includes electrophoretic particles, a porous layer, and non-electrophoretic particles held in the porous layer in an insulating liquid, and the porous layer includes An electronic apparatus comprising a plurality of layers having light reflectivity different from electrophoretic particles and different volume fractions of the non-electrophoretic particles.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The display device according to the present technology includes, in an insulating liquid, migrating particles, a porous layer, and non-migrating particles held by the porous layer. The porous layer has a light reflectivity different from the migrating particles, and comprises a plurality of layers with each layer having a different volume fraction of non-migrating particles.

Description

表示装置および電子機器Display device and electronic device
 本技術は、電気泳動素子を用いた表示装置および電子機器に関する。 The present technology relates to a display device and an electronic device using an electrophoretic element.
 近年、携帯電話機または携帯情報端末等のモバイル機器の普及に伴い、低消費電力で高品位画質の表示装置(ディスプレイ)の需要が高まっている。特に最近では、電子書籍の配信事業が始まり、読書用途に適した表示品位のディスプレイが望まれている。 In recent years, with the spread of mobile devices such as mobile phones or portable information terminals, the demand for display devices (displays) with low power consumption and high quality image quality has increased. In particular, recently, the electronic book distribution business has started, and a display with a display quality suitable for reading applications is desired.
 このようなディスプレイとして、コレステリック液晶ディスプレイ,電気泳動型ディスプレイ,電気酸化還元型ディスプレイおよびツイストボール型ディスプレイ等の様々なディスプレイが提案されているが、読書用途には、反射型のディスプレイが有利である。反射型のディスプレイでは、紙と同様に、外光の反射(散乱)を利用して明表示を行うため、より紙に近い表示品位が得られる。 As such a display, various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications. . In the reflective display, bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
 反射型ディスプレイの中でも、電気泳動現象を利用した電気泳動型ディスプレイは低消費電力であると共に応答速度が速く、有力候補として期待されている。その表示方法としては、主に以下の2つの方法が提案されている。 Among the reflective displays, electrophoretic displays using the electrophoretic phenomenon are expected to be promising candidates because of their low power consumption and fast response speed. As the display method, the following two methods are mainly proposed.
 第1の方法は、絶縁性液体中に2種類の荷電粒子を分散させ、電界に応じて荷電粒子を移動させるものである。この2種類の荷電粒子は、互いに光学的反射特性が異なり、また、その極性も反対である。この方法では、電界に応じて荷電粒子の分布状態が変化して画像が表示される。 The first method is to disperse two kinds of charged particles in an insulating liquid and move the charged particles according to the electric field. The two kinds of charged particles have different optical reflection characteristics and opposite polarities. In this method, an image is displayed by changing a distribution state of charged particles according to an electric field.
 第2の方法は、絶縁性液体中に荷電粒子を分散させると共に、多孔質層を配置するものである(例えば、特許文献1)。この方法では、電界に応じて、荷電粒子が多孔質層の細孔を経て移動する。多孔質層は、例えば、高分子材料からなる繊維状構造体と、この繊維状構造体に保持されると共に、荷電粒子とは光学的反射特性が異なる非泳動粒子とを含んでいる。 The second method is to disperse charged particles in an insulating liquid and dispose a porous layer (for example, Patent Document 1). In this method, charged particles move through the pores of the porous layer according to the electric field. The porous layer includes, for example, a fibrous structure made of a polymer material, and non-electrophoretic particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles.
特開2012-22296号公報JP 2012-22296 A
 このような多孔質層が配置された電気泳動型ディスプレイでは、電界に応じて荷電粒子が細孔を経て移動することによって表示の切り替えがなされている。電気泳動型ディスプレイの表示特性は、繊維状構造体を多く積層することで向上させることができる。これは、多孔質層の密度が大きくなることで白反射率が向上するためである。しかしながら、多孔質層の密度が大きくなる分、細孔の孔径が小さくなる。このため、反応速度が低下すると共に、コントラストが低下する虞があった。 In the electrophoretic display in which such a porous layer is arranged, the display is switched by the charged particles moving through the pores according to the electric field. The display characteristics of the electrophoretic display can be improved by laminating many fibrous structures. This is because the white reflectance is improved by increasing the density of the porous layer. However, as the density of the porous layer increases, the pore diameter decreases. For this reason, there is a possibility that the reaction rate is lowered and the contrast is lowered.
 従って、応答速度を低下させることなく白反射率を向上させることが可能な表示装置および電子機器を提供することが望ましい。 Therefore, it is desirable to provide a display device and an electronic apparatus that can improve the white reflectance without reducing the response speed.
 本技術の一実施形態の表示装置は、絶縁性液体中に、泳動粒子と、多孔質層と、多孔質層に保持された非泳動粒子とを含み、多孔質層は、泳動粒子とは異なる光反射性を有すると共に、非泳動粒子の体積分率が互いに異なる複数の層からなるものである。 A display device according to an embodiment of the present technology includes migrating particles, a porous layer, and non-migrating particles held in the porous layer in an insulating liquid, and the porous layer is different from the migrating particles. It is composed of a plurality of layers having light reflectivity and different volume fractions of non-electrophoretic particles.
 本技術の一実施形態の電子機器は、上記本技術の表示装置を備えたものである。 An electronic apparatus according to an embodiment of the present technology includes the display device of the present technology.
 本技術の一実施形態の表示装置および一実施形態の電子機器では、非泳動粒子を含む多孔質層を、非泳動粒子の体積分率が互いに異なる複数の層で構成することにより、多孔質層の密度を高めつつ、多孔質層内における細孔の孔径を維持することが可能となる。 In the display device according to an embodiment of the present technology and the electronic apparatus according to the embodiment, the porous layer including the non-electrophoretic particles is configured by a plurality of layers having different volume fractions of the non-electrophoretic particles. It is possible to maintain the pore diameter of the pores in the porous layer while increasing the density.
 本技術の一実施形態の表示装置および一実施形態の電子機器によれば、非泳動粒子の体積分率が互いに異なる複数の層からなる多孔質層を設けるようにしたので、多孔質層の密度を高めつつ、多孔質層内の細孔の孔径が維持される。よって、応答速度を低下させることなく白反射率を向上させることが可能となり、高い表示特性を有する表示装置および電子機器を提供することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the display device of one embodiment of the present technology and the electronic device of the one embodiment, since the porous layer composed of a plurality of layers having different volume fractions of the non-electrophoretic particles is provided, the density of the porous layer The pore diameter of the pores in the porous layer is maintained while increasing the. Therefore, the white reflectance can be improved without reducing the response speed, and a display device and an electronic apparatus having high display characteristics can be provided. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本技術の一実施の形態に係る電気泳動素子を用いた表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus using the electrophoretic element which concerns on one embodiment of this technique. 図1に示した電気泳動素子の多孔質層を説明する拡大断面図である。It is an expanded sectional view explaining the porous layer of the electrophoretic element shown in FIG. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 適用例1の外観を表す斜視図である。14 is a perspective view illustrating an appearance of application example 1. FIG. 図4Aに示した電子ブックの他の例を表す斜視図である。FIG. 4B is a perspective view illustrating another example of the electronic book illustrated in FIG. 4A. 適用例2の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 2. FIG.
 以下、本技術の一実施形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態(非泳動粒子の体積分率が異なる2層からなる多孔質層を設けた例)
  1-1.電気泳動素子の構成
  1-2.表示装置の構成
  1-3.作用・効果
 2.適用例
 3.実施例
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (Example in which a porous layer comprising two layers having different volume fractions of non-electrophoretic particles is provided)
1-1. Configuration of electrophoretic element 1-2. Configuration of display device 1-3. Action / Effect Application example Example
<1.実施の形態>
(1-1.電気泳動素子の構成)
 図1は、本技術の一実施の形態に係る電気泳動素子(電気泳動素子30)を備えた表示装置(表示装置1)の断面構成を表したものである。この電気泳動素子30は、電気泳動現象を利用してコントラストを生じさせるものであり、例えば、タブレット等の多様な電子機器の表示体として用いられる。電気泳動素子30は、絶縁性液体31中に、泳動粒子32と細孔Hを有する多孔質層33とを含んでいる。この多孔質層33は、繊維状構造体34およびこの繊維状構造体34に保持された非泳動粒子35によって構成されている(図2参照)。本実施の形態では、多孔質層33は2層(第1層33A,第2層33B)構造を有し、第1層33Aおよび第2層33Bは、表示装置1の体積に対する繊維状構造体34に保持された非泳動粒子35の体積分率が互いに異なるように構成されている。なお、図1は電気泳動素子30を備えた表示装置1の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。また、ここで体積分率とは、複数の電気泳動素子30からなる表示装置1の体積、具体的には、シール層16と対向電極22との間に設けられた表示部Aの体積のうち、非泳動粒子35がどの程度の体積を占めるかという割合のことである。
<1. Embodiment>
(1-1. Configuration of electrophoretic element)
FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) including an electrophoretic element (electrophoretic element 30) according to an embodiment of the present technology. The electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and is used as a display body of various electronic devices such as tablets. The electrophoretic element 30 includes electrophoretic particles 32 and a porous layer 33 having pores H in an insulating liquid 31. The porous layer 33 is composed of a fibrous structure 34 and non-migrating particles 35 held on the fibrous structure 34 (see FIG. 2). In the present embodiment, the porous layer 33 has a two-layer (first layer 33A, second layer 33B) structure, and the first layer 33A and the second layer 33B are fibrous structures relative to the volume of the display device 1. The volume fractions of the non-electrophoretic particles 35 held by the nozzles 34 are different from each other. FIG. 1 schematically illustrates the configuration of the display device 1 including the electrophoretic element 30 and may differ from actual dimensions and shapes. Here, the volume fraction is the volume of the display device 1 composed of a plurality of electrophoretic elements 30, specifically, the volume of the display portion A provided between the seal layer 16 and the counter electrode 22. The ratio of how much volume the non-electrophoretic particles 35 occupy.
 絶縁性液体31は、例えば、パラフィンまたはイソパラフィン等の有機溶媒により構成されている。絶縁性液体31には、1種類の有機溶媒を用いてもよく、あるいは複数種類の有機溶媒を用いるようにしてもよい。絶縁性液体31の粘度および屈折率は、できるだけ低くすることが好ましい。絶縁性液体31の粘度を低くすると泳動粒子32の移動性(応答速度)が向上する。また、これに応じて泳動粒子32の移動に必要なエネルギー(消費電力)は低くなる。絶縁性液体31の屈折率を低くすると、絶縁性液体31と多孔質層33との屈折率の差が大きくなり、多孔質層33の反射率が高くなる。 The insulating liquid 31 is made of, for example, an organic solvent such as paraffin or isoparaffin. As the insulating liquid 31, one kind of organic solvent may be used, or a plurality of kinds of organic solvents may be used. It is preferable to make the viscosity and refractive index of the insulating liquid 31 as low as possible. When the viscosity of the insulating liquid 31 is lowered, the mobility (response speed) of the migrating particles 32 is improved. In accordance with this, the energy (power consumption) required to move the migrating particles 32 is reduced. When the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased.
 絶縁性液体31には、例えば、着色剤,電荷調整剤,分散安定剤,粘度調整剤,界面活性剤または樹脂等を添加するようにしてもよい。 For example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 31.
 絶縁性液体31中に分散された泳動粒子32は、1または2以上の荷電粒子であり、このような帯電した泳動粒子32が電界に応じ細孔Hを介して移動する。泳動粒子32は、任意の光学的反射特性(光反射率)を有しており、泳動粒子32の光反射率と多孔質層33の光反射率との違いによりコントラスト(CR)が生じるようになっている。例えば、泳動粒子32が明表示し、多孔質層33が暗表示するようにしてもよく、泳動粒子32が暗表示し、多孔質層33が明表示するようにしてもよい。 The migrating particles 32 dispersed in the insulating liquid 31 are one or more charged particles, and the charged migrating particles 32 move through the pores H in response to an electric field. The migrating particles 32 have an arbitrary optical reflection characteristic (light reflectance), and a contrast (CR) is generated due to the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33. It has become. For example, the migrating particles 32 may be brightly displayed and the porous layer 33 may be darkly displayed, or the migrating particles 32 may be darkly displayed and the porous layer 33 may be brightly displayed.
 外部から電気泳動素子30を見ると、泳動粒子32が明表示する場合には、泳動粒子32は、例えば、白色または白色に近い色に視認され、暗表示する場合には、例えば、黒色または黒色に近い色に視認される。このような泳動粒子32の色は、コントラストを生じさせることができれば特に限定されない。 When the electrophoretic element 30 is viewed from the outside, when the electrophoretic particles 32 are brightly displayed, the electrophoretic particles 32 are visually recognized as white or a color close to white, and when darkly displayed, for example, black or black It is visually recognized as a color close to. The color of the migrating particles 32 is not particularly limited as long as contrast can be generated.
 泳動粒子32は、例えば、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料(樹脂)等の粒子(粉末)により構成されている。泳動粒子32に、これらのうちの1種類を用いてもよく、または2種類以上を用いてもよい。泳動粒子32を、上記粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等により構成することも可能である。なお、上記炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料に該当する材料は、有機顔料,無機顔料または染料に該当する材料から除く。泳動粒子32の粒径は例えば、30nm~300nmである。 The migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One of these may be used for the migrating particles 32, or two or more of them may be used. The migrating particles 32 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. The particle size of the migrating particles 32 is, for example, 30 nm to 300 nm.
 上記の有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Examples of the organic pigments include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments. Perinone pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area | region in visible region, the kind will not be specifically limited.
 泳動粒子32の具体的な材料は、例えば、泳動粒子32がコントラストを生じさせるために担う役割に応じて選択される。泳動粒子32が明表示する場合、泳動粒子32には例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物等が用いられる。泳動粒子32が暗表示する場合、泳動粒子32には例えば、カーボンブラック等の炭素材料または銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物および銅-鉄-クロム酸化物等の金属酸化物等が用いられる。中でも、泳動粒子32には炭素材料を用いることが好ましい。炭素材料からなる泳動粒子32は、優れた化学的安定性、移動性および光吸収性を示す。 The specific material of the migrating particles 32 is selected according to, for example, the role that the migrating particles 32 play in causing contrast. When the migrating particles 32 display brightly, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 32. When the migrating particles 32 display in the dark, the migrating particles 32 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide. In addition, metal oxides such as copper-iron-chromium oxide are used. Among these, it is preferable to use a carbon material for the migrating particles 32. Electrophoretic particles 32 made of a carbon material exhibit excellent chemical stability, mobility and light absorption.
 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。この濃度範囲では、泳動粒子32の遮蔽性および移動性が確保される。詳細には、泳動粒子32の含有量が0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽(隠蔽)しにくくなり、十分にコントラストを生じさせることができない可能性がある。一方、泳動粒子32の含有量が10重量%よりも多いと、泳動粒子32の分散性が低下するため、その泳動粒子32が泳動しにくくなり、凝集する虞がある。 The content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding and mobility of the migrating particles 32 are ensured. Specifically, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are less likely to shield (conceal) the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate.
 泳動粒子32は、絶縁性液体31中で長期間に渡って分散および帯電しやすく、また、多孔質層33に吸着しにくいことが好ましい。このため、例えば、絶縁性液体31中に分散剤が添加される。分散剤と電荷調整剤とを併用するようにしてもよい。 The migrating particles 32 are preferably easily dispersed and charged in the insulating liquid 31 for a long period of time, and are preferably not easily adsorbed to the porous layer 33. For this reason, for example, a dispersant is added to the insulating liquid 31. A dispersant and a charge control agent may be used in combination.
 この分散剤または電荷調整剤は、例えば、正、負のどちらか一方、または両方の電荷を有しており、絶縁性液体31中の帯電量を増加させると共に、静電反発により泳動粒子32を分散させるためのものである。このような分散剤として、例えば、Lubrizol社製のSolsperceシリーズ、BYK-Chemic社製のBYKシリーズまたはAnti-Terraシリーズ、あるいはTCI America社製Spanシリーズ等が挙げられる。 This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31 and causes the migrating particles 32 to move by electrostatic repulsion. It is for dispersing. Examples of such a dispersant include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemical, or Span series manufactured by TCI America.
 泳動粒子32の分散性を向上させるため、泳動粒子32に表面処理を施すようにしてもよい。この表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。特に、グラフト重合処理、マイクロカプセル化処理またはこれらを組み合わせて処理を行うことにより、泳動粒子32の長期間の分散安定性を維持することができる。 In order to improve the dispersibility of the migrating particles 32, the migrating particles 32 may be subjected to a surface treatment. This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. In particular, long-term dispersion stability of the migrating particles 32 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
 このような表面処理には、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着性材料)等が用いられる。吸着可能な官能基は、泳動粒子32の形成材料に応じて決定する。例えば、泳動粒子32がカーボンブラック等の炭素材料により構成されている場合には、4-ビニルアニリン等のアニリン誘導体、泳動粒子32が金属酸化物により構成されている場合には、メタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体をそれぞれ吸着することができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 For such surface treatment, for example, a material (adsorbent material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32 is used. The adsorbable functional group is determined according to the forming material of the migrating particle 32. For example, when the migrating particles 32 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 32 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 泳動粒子32の表面に重合性官能基を導入し、これにグラフトさせて表面処理を行うようにしてもよい(グラフト性材料)。グラフト性材料は、例えば、重合性官能基と分散用官能基とを有している。分散用官能基は、絶縁性液体31中に泳動粒子32を分散させ、その立体障害により分散性を保持するものである。絶縁性液体31が例えば、パラフィンである場合、分散用官能基として分岐状のアルキル基等を用いることができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。グラフト性材料を重合およびグラフトさせるためには、例えば、アゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。この他、泳動粒子32の表面に吸着可能な官能基と分散性を付与するためのアルキル鎖を有する材料を用いることができる。このような材料としては、例えば、チタネート系カップリング剤(例えば、味の素ファインテクノ株式会社製KR-TTS)およびアルミネート系カップリング剤が挙げられる。 A surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 32 and grafting it onto the surface (graftable material). The graft material has, for example, a polymerizable functional group and a dispersing functional group. The functional group for dispersion disperses the migrating particles 32 in the insulating liquid 31 and retains dispersibility due to steric hindrance. For example, when the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used. In addition, a material having a functional group capable of being adsorbed on the surface of the migrating particle 32 and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate coupling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate coupling agents.
 上記泳動粒子32を絶縁性液体31中に分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For details of the method for dispersing the migrating particles 32 in the insulating liquid 31, see “Dispersion Technology of Ultrafine Particles and its Evaluation: Surface Treatment / Fine Grinding and Dispersion Stabilization in Air / Liquid / Polymer— Science & Technology)).
 多孔質層33は泳動粒子32を遮蔽可能なものであり、繊維状構造体34と、界面活性剤によって修飾されると共に、繊維状構造体34に保持された非泳動粒子35とを有している。図2は、図1に示した表示装置1の点線に囲まれた多孔質層33を拡大して表したものである。多孔質層33は、図2に示したように繊維状構造体34により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)であり、複数の隙間(細孔H)が設けられている。繊維状構造体34により、多孔質層33の3次元立体構造を構成することで、光(外光)が乱反射(多重散乱)し、多孔質層33の反射率が高くなる。従って、多孔質層33の厚みが小さい場合であっても高反射率を得ることができ、電気泳動素子30のコントラストを向上させると共に泳動粒子32の移動に必要なエネルギーを小さくすることができる。 The porous layer 33 can shield the migrating particles 32, and includes a fibrous structure 34 and non-migrating particles 35 that are modified by the surfactant and held by the fibrous structure 34. Yes. FIG. 2 is an enlarged view of the porous layer 33 surrounded by the dotted line of the display device 1 shown in FIG. The porous layer 33 is a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by the fibrous structure 34 as shown in FIG. 2, and has a plurality of gaps (pores H). Is provided. By forming the three-dimensional structure of the porous layer 33 by the fibrous structure 34, light (external light) is irregularly reflected (multiple scattering), and the reflectance of the porous layer 33 is increased. Therefore, even when the thickness of the porous layer 33 is small, a high reflectance can be obtained, the contrast of the electrophoretic element 30 can be improved, and the energy required for the movement of the electrophoretic particles 32 can be reduced.
 本実施の形態の多孔質層33は、表示装置1の体積に対する繊維状構造体34に保持される非泳動粒子35の体積分率が互いに異なる第1層33Aおよび第2層33Bにより構成されている。具体的には、表示面S1側に設けられた第2層33Bの体積分率が、第1層33Aよりも大きいことが好ましい。第1層33Aおよび第2層33Bの体積分率の違いは、例えば、繊維状構造体34の繊維径を変えることによって制御できる。第1層33Aおよび第2層33Bの組成比が一定であれば、繊維径が細いほど高体積分率に、繊維径が太いほど低体積分率になりやすい。なお、表示部Aの体積に対する非泳動粒子35の体積分率の測定方法は、例えば、以下の方法を用いて測定される。まず、表示装置1をマイクロトームなどの器具を使用して切断し、切断された表示部Aの断面を、SEMを用いて観察し、非泳動粒子をマッピングする。これによって、表示部Aに対する非泳動粒子35の体積分率が算出される。非泳動粒子の区別が難しい場合には、SEM-EDXやFT-TRを用いて元素をマッピングすることにより区別することができる。あるいは、すでに作製に使用した非泳動粒子やポリマーの種類や割合がわかっている場合には、それらの比重から容易に計算することができる。 The porous layer 33 of the present embodiment is configured by a first layer 33A and a second layer 33B having different volume fractions of the non-electrophoretic particles 35 held by the fibrous structure 34 with respect to the volume of the display device 1. Yes. Specifically, it is preferable that the volume fraction of the second layer 33B provided on the display surface S1 side is larger than that of the first layer 33A. The difference in volume fraction between the first layer 33A and the second layer 33B can be controlled by changing the fiber diameter of the fibrous structure 34, for example. If the composition ratio of the first layer 33A and the second layer 33B is constant, the smaller the fiber diameter, the higher the volume fraction, and the larger the fiber diameter, the lower the volume fraction. In addition, the measuring method of the volume fraction of the non-electrophoretic particle 35 with respect to the volume of the display part A is measured using the following method, for example. First, the display device 1 is cut using an instrument such as a microtome, the cross section of the cut display portion A is observed using an SEM, and non-electrophoretic particles are mapped. Thereby, the volume fraction of the non-electrophoretic particles 35 with respect to the display part A is calculated. When it is difficult to distinguish non-electrophoretic particles, they can be distinguished by mapping elements using SEM-EDX or FT-TR. Or when the kind and ratio of the non-electrophoretic particles and the polymer already used for production are known, they can be easily calculated from their specific gravity.
 繊維状構造体34の繊維径を変える方法としては、例えば、多孔質層の形成工程においてポリマー濃度と非泳動粒子35の配合とを変える方法がある。この他、後述する非泳動粒子の表面を修飾する界面活性剤の修飾量を変えたり、あるいは、ポリマー溶液内に添加する界面活性剤の量を変更することによっても繊維状構造体34の繊維径を変えることができる。また、第1層33Aおよび第2層33Bを形成する際に用いる非泳動粒子35の粒径を変えてもよい。 As a method of changing the fiber diameter of the fibrous structure 34, for example, there is a method of changing the polymer concentration and the composition of the non-electrophoretic particles 35 in the porous layer forming step. In addition, the fiber diameter of the fibrous structure 34 can also be changed by changing the modification amount of the surfactant that modifies the surface of the non-electrophoretic particles described later, or by changing the amount of the surfactant added to the polymer solution. Can be changed. Further, the particle size of the non-electrophoretic particles 35 used when forming the first layer 33A and the second layer 33B may be changed.
 非泳動粒子35の粒径を変えて第1層33Aおよび第2層33Bの体積分率を変える場合には、第2層33Bに用いる非泳動粒子35の粒径は、第1層33Aよりも小さいものを用いることが好ましい。これにより、第2層33Bを構成する繊維状構造体34の繊維径が小さくなり、第2層33Bの体積分率が第1層33Aよりも高くなる。第2層33Bの体積分率は、例えば、13%以上であることが好ましく、より好ましくは、13%以上25%以下である。第1層33Aの体積分率は、例えば、5%以上10%以下であることが好ましい。なお、多孔質層33を構成する第1層33Aおよび第2層33Bの体積分率の制御は、上記方法以外の方法を用いて作製してもかまわない。 When changing the volume fraction of the first layer 33A and the second layer 33B by changing the particle size of the non-migrating particles 35, the particle size of the non-migrating particles 35 used for the second layer 33B is larger than that of the first layer 33A. It is preferable to use a small one. Thereby, the fiber diameter of the fibrous structure 34 which comprises the 2nd layer 33B becomes small, and the volume fraction of the 2nd layer 33B becomes higher than the 1st layer 33A. For example, the volume fraction of the second layer 33B is preferably 13% or more, and more preferably 13% or more and 25% or less. The volume fraction of the first layer 33A is preferably 5% or more and 10% or less, for example. Note that the volume fraction of the first layer 33A and the second layer 33B constituting the porous layer 33 may be controlled using a method other than the above method.
 多孔質層33の全体のZ軸方向の膜厚(以下、単に厚みという)は、電気泳動素子30の素子構成にもよるが、例えば、5μm以上100μm以下である。十分な白反射率、黒反射率、応答時間を付与するためには、より好ましくは15μm以上50μm以下である。この中で、第2層33Bの厚みが全体の40%以下となるようにすることが好ましい。具体的には、多孔質層全体の厚みが30μmのとき、少なくとも第2層33Bの厚みが12μm以下であればよい。このような構成とすることにより、第2層33Bによって表示装置1の白反射率が向上する。また、第1層33Aによって表示装置1内における泳動粒子32の移動経路である細孔Hの孔径を大きく保つことができる。即ち、泳動粒子32が細孔Hを経由して移動し易くなり、応答速度が向上すると共に、泳動粒子32を移動させるために必要なエネルギーがより小さくなる。また、表示面S1側に、体積分率の高い第2層33Bを配設し、逆側に体積分率の低い第1層33Aを配設置することにより、表示面S1側から押圧した際の力を分散させる効果も発揮され、表示装置1の耐久性が向上する。 The overall thickness of the porous layer 33 in the Z-axis direction (hereinafter simply referred to as thickness) is, for example, 5 μm or more and 100 μm or less, depending on the element configuration of the electrophoretic element 30. In order to provide sufficient white reflectance, black reflectance, and response time, it is more preferably 15 μm or more and 50 μm or less. Among these, it is preferable that the thickness of the second layer 33B is 40% or less of the whole. Specifically, when the thickness of the entire porous layer is 30 μm, at least the thickness of the second layer 33B may be 12 μm or less. By setting it as such a structure, the white reflectance of the display apparatus 1 improves with the 2nd layer 33B. In addition, the first layer 33A can keep the pore diameter of the pore H, which is the movement path of the migrating particles 32 in the display device 1, large. That is, the migrating particles 32 are easily moved via the pores H, the response speed is improved, and the energy required to move the migrating particles 32 is further reduced. In addition, the second layer 33B having a high volume fraction is disposed on the display surface S1 side, and the first layer 33A having a low volume fraction is disposed on the opposite side, thereby pressing the display surface S1 side. The effect of dispersing the force is also exhibited, and the durability of the display device 1 is improved.
 繊維状構造体34は、繊維径(直径)に対して十分な長さを有する繊維状物質である。例えば、複数の繊維状構造体34が集合し、ランダムに重なって多孔質層33を構成する。1つの繊維状構造体34がランダムに絡みあって多孔質層33を構成していてもよい。あるいは、1つの繊維状構造体34による多孔質層33と複数の繊維状構造体34による多孔質層33とが混在していてもよい。 The fibrous structure 34 is a fibrous substance having a sufficient length with respect to the fiber diameter (diameter). For example, a plurality of fibrous structures 34 are assembled and randomly overlapped to form the porous layer 33. One fibrous structure 34 may be entangled randomly to form the porous layer 33. Or the porous layer 33 by the one fibrous structure 34 and the porous layer 33 by the some fibrous structure 34 may be mixed.
 繊維状構造体34は、例えば、直線状に延在している。繊維状構造体34の形状は、どのようなものであってもよく、例えば、縮れていたり、途中で折れ曲がったりしていてもよい。あるいは、繊維状構造体34は途中で分岐していてもよい。 The fibrous structure 34 extends, for example, in a straight line. The shape of the fibrous structure 34 may be any shape. For example, the fibrous structure 34 may be crimped or bent in the middle. Or the fibrous structure 34 may be branched on the way.
 繊維状構造体34の最小繊維径は、例えば、500nm以下であることが好ましく、より好ましくは300nm以下である。平均繊維径は、例えば、50nm以上2000nm以下であることが好ましいが、上記範囲外であってもよい。第1層33Aおよび第2層33Bの非泳動粒子の体積分率を繊維状構造体34の繊維径によって調整する場合には、第1層33Aを構成する繊維状構造体34の平均繊維径は、例えば、500nm以上1000nm以下であることが好ましく、第2層33Bを構成する繊維状構造体34の平均繊維径は、例えば、200nm以上500nm以下とすることが好ましい。平均繊維径を小さくすることにより、光が乱反射し易くなり、また、細孔Hの孔径が大きくなる。繊維状構造体34が非泳動粒子35を保持できるよう、その繊維径を決定する。平均繊維径は、例えば、走査型電子顕微鏡等を用いた顕微鏡観察により測定することができる。繊維状構造体34の平均長さは任意である。繊維状構造体34は、例えば、相分離法,相反転法,静電(電界)紡糸法,溶融紡糸法,湿式紡糸法,乾式紡糸法,ゲル紡糸法,ゾルゲル法またはスプレー塗布法等により形成される。このような方法を用いることにより、繊維径に対して十分な長さを有する繊維状構造体34を容易に、かつ安定して形成することができる。 The minimum fiber diameter of the fibrous structure 34 is, for example, preferably 500 nm or less, and more preferably 300 nm or less. The average fiber diameter is preferably, for example, from 50 nm to 2000 nm, but may be outside the above range. When the volume fraction of the non-electrophoretic particles of the first layer 33A and the second layer 33B is adjusted by the fiber diameter of the fibrous structure 34, the average fiber diameter of the fibrous structure 34 constituting the first layer 33A is For example, it is preferable that it is 500 nm or more and 1000 nm or less, and it is preferable that the average fiber diameter of the fibrous structure 34 which comprises the 2nd layer 33B shall be 200 nm or more and 500 nm or less, for example. By reducing the average fiber diameter, light is easily diffusely reflected, and the pore diameter of the pores H is increased. The fiber diameter is determined so that the fibrous structure 34 can hold the non-migrating particles 35. The average fiber diameter can be measured, for example, by microscopic observation using a scanning electron microscope or the like. The average length of the fibrous structure 34 is arbitrary. The fibrous structure 34 is formed by, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating method. Is done. By using such a method, the fibrous structure 34 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体34は、ナノファイバーにより構成することが好ましい。ここでナノファイバーとは、繊維径が1nm~1000nmであり、長さが繊維径の100倍以上である繊維状物質である。このようなナノファイバーを繊維状構造体34として用いることにより、光が乱反射し易くなり、多孔質層33の反射率をより向上させることができる。即ち、電気泳動素子30のコントラストを向上させることが可能となる。また、ナノファイバーからなる繊維状構造体34では、単位体積中に占める細孔Hの割合が大きくなり、細孔Hを経由して泳動粒子32が移動し易くなる。従って、泳動粒子32の移動に必要なエネルギーを小さくすることができる。ナノファイバーからなる繊維状構造体34は、静電紡糸法により形成することが好ましい。静電紡糸法を用いることにより繊維径が小さい繊維状構造体34を容易に、かつ安定して形成することができる。 The fibrous structure 34 is preferably composed of nanofibers. Here, the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter. By using such nanofibers as the fibrous structure 34, light is easily diffusely reflected, and the reflectance of the porous layer 33 can be further improved. That is, the contrast of the electrophoretic element 30 can be improved. Further, in the fibrous structure 34 made of nanofibers, the proportion of the pores H in the unit volume increases, and the migrating particles 32 can easily move through the pores H. Therefore, the energy required for moving the migrating particles 32 can be reduced. The fibrous structure 34 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrospinning method, the fibrous structure 34 having a small fiber diameter can be easily and stably formed.
 繊維状構造体34には、その光反射率が泳動粒子32の光反射率と異なるものを用いることが好ましい。これにより、多孔質層33と泳動粒子32との光反射率の差によるコントラストが形成され易くなる。絶縁性液体31中で光透過性(無色透明)を示す繊維状構造体34を用いるようにしてもよい。 It is preferable to use a fibrous structure 34 having a light reflectance different from that of the migrating particles 32. Thereby, a contrast due to a difference in light reflectance between the porous layer 33 and the migrating particles 32 is easily formed. A fibrous structure 34 showing light transparency (colorless and transparent) in the insulating liquid 31 may be used.
 細孔Hは、複数の繊維状構造体34が重なり合い、または1つの繊維状構造体34が絡まりあうことにより構成されている。この細孔Hは、泳動粒子32が細孔Hを経て移動し易いよう、できるだけ大きな平均孔径を有していることが好ましい。細孔Hの平均孔径は、例えば、0.1μm以上10μm以下である。 The pore H is configured by overlapping a plurality of fibrous structures 34 or entwining one fibrous structure 34. The pore H preferably has an average pore diameter as large as possible so that the migrating particles 32 can easily move through the pore H. The average pore diameter of the pores H is, for example, not less than 0.1 μm and not more than 10 μm.
 非泳動粒子35は、繊維状構造体34に固定されており、電気泳動を行わない1または2以上の粒子である。非泳動粒子35は、保持されている繊維状構造体34の内部に埋設されていてもよく、あるいは、繊維状構造体34から部分的に突出していてもよい。 Non-electrophoretic particles 35 are one or more particles that are fixed to the fibrous structure 34 and do not undergo electrophoresis. The non-migrating particles 35 may be embedded in the held fibrous structure 34 or may partially protrude from the fibrous structure 34.
 非泳動粒子35の平均粒径は、例えば、150nm以上700nm以下であることが好ましい。第1層33Aおよび第2層33Bの体積分率を非泳動粒子35の粒径によって調整する場合には、第1層33Aに含まれる非泳動粒子35の平均粒径は、例えば、300nm以上700nm以下を用いることが好ましく、第2層33Bに含まれる非泳動粒子35の平均粒径は、例えば、150nm以上300nm以下を用いることが好ましい。 The average particle diameter of the non-migrating particles 35 is preferably 150 nm or more and 700 nm or less, for example. When the volume fraction of the first layer 33A and the second layer 33B is adjusted by the particle size of the non-migrating particles 35, the average particle size of the non-migrating particles 35 included in the first layer 33A is, for example, 300 nm or more and 700 nm. The average particle diameter of the non-migrating particles 35 included in the second layer 33B is preferably, for example, 150 nm or more and 300 nm or less.
 非泳動粒子35には、その光反射率が泳動粒子32の光反射率と異なるものを用いる。非泳動粒子35は、上記泳動粒子32と同様の材料により構成することが可能である。詳細には、非泳動粒子35(多孔質層33)が明表示する場合には上記泳動粒子32が明表示する場合の材料、非泳動粒子35が暗表示する場合には上記泳動粒子32が暗表示する場合の材料をそれぞれ用いることができる。多孔質層33により明表示を行うとき、非泳動粒子35を金属酸化物により構成することが好ましい。これにより、優れた化学的安定性、定着性および光反射性を得ることができる。非泳動粒子35、泳動粒子32それぞれの構成材料は同じであってもよく、異なっていてもよい。非泳動粒子35が明表示または暗表示を行うときに外部から視認される色は、上記泳動粒子32について説明したものと同様である。 As the non-electrophoretic particles 35, those having a light reflectance different from that of the electrophoretic particles 32 are used. The non-migrating particles 35 can be made of the same material as the migrating particles 32. Specifically, when the non-electrophoretic particles 35 (porous layer 33) display brightly, the material when the electrophoretic particles 32 display brightly, and when the non-electrophoretic particles 35 display darkly, the electrophoretic particles 32 darken. Each material for display can be used. When performing bright display by the porous layer 33, it is preferable that the non-migrating particles 35 are made of a metal oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity. The constituent materials of the non-migrating particles 35 and the migrating particles 32 may be the same or different. The color visually recognized from the outside when the non-electrophoretic particle 35 performs bright display or dark display is the same as that described for the electrophoretic particle 32.
 また、非泳動粒子35はその表面が界面活性剤によって修飾されていてもよい。界面活性剤は、親水基として例えば、カルボン酸、スルホン酸あるいはリン酸構造を有する陰イオン(アニオン)性界面活性剤および親水基として例えば、テトラアルキルアンモニウムあるいはアルキルアミンを有する陽イオン(カチオン)性界面活性剤が挙げられる。この他、親水部が非電解質、即ちイオン化しない親水性部分を有する非イオン(ノニオン)性界面活性剤および分子内にアニオン性部位およびカチオン性部位の両方を有する両性界面活性剤を用いてもよい。両性界面活性剤としては、例えば、アルキルジメチルアミンオキシドあるいはアルキルカルボキシベタインが挙げられる。なお、非泳動粒子35として酸化チタン等の金属材料を用いる場合にはアニオン性界面活性剤を用いることが好ましい。特に、カルボン酸のような分子の嵩の小さな親水基を有する界面活性剤は非泳動粒子35の表面全体を被覆しやすく好ましい。また、界面活性剤は、表示特性を長期的に劣化させることのないように、絶縁性液体31中に染み出してこないものが望ましい。 Further, the surface of the non-electrophoretic particle 35 may be modified with a surfactant. Surfactants are, for example, anionic (anionic) surfactants having a carboxylic acid, sulfonic acid or phosphoric acid structure as hydrophilic groups and cationic (cationic) properties having, for example, tetraalkylammonium or alkylamine as hydrophilic groups. Surfactant is mentioned. In addition, nonionic (nonionic) surfactants having a hydrophilic part as a non-electrolyte, that is, a non-ionized hydrophilic part, and amphoteric surfactants having both an anionic part and a cationic part in the molecule may be used. . Examples of amphoteric surfactants include alkyl dimethylamine oxide and alkyl carboxybetaine. In addition, when using metal materials, such as a titanium oxide, as the non-electrophoretic particle 35, it is preferable to use an anionic surfactant. In particular, a surfactant having a hydrophilic group with a small molecular volume such as carboxylic acid is preferable because it easily covers the entire surface of the non-electrophoretic particle 35. Further, it is desirable that the surfactant does not ooze into the insulating liquid 31 so that the display characteristics are not deteriorated for a long time.
 このような多孔質層33は、例えば、以下の方法により形成することができる。まず、非泳動粒子35として、例えば、2種類の一次粒径(例えば、250nm(小粒子)および例えば、450nm(大粒子))を有する酸化チタンを用意し、これらを例えば、カルボン酸系陰イオン性界面活性剤が溶解した有機溶剤に添加して攪拌する。これにより表面がカルボン酸系陰イオン界面活性剤によって被覆された酸化チタン(非泳動粒子35)が得られる。次に、例えば、有機溶剤に、例えば、高分子材料(ポリマー)等の繊維状構造体34の構成材料を溶解させ、溶液を調製したのち、この溶液に、例えば、小粒子の非泳動粒子35を加えて十分に攪拌し、非泳動粒子35を分散させる紡糸溶液を調製する。続いて、この紡糸溶液から例えば、静電紡糸法により紡糸を行って非泳動粒子35を繊維状構造体34に固定することによって第1層33Aが形成される。次に、例えば、有機溶剤に、例えば、高分子材料(ポリマー)等の繊維状構造体34の構成材料を溶解させ、溶液を調製したのち、この溶液に、例えば、大粒子の非泳動粒子35を加えて第1層33Aと同様の方法を用いることにより、第1層33Aよりも体積分率の高い第2層33Bが形成される。この第2層33Bを第2層33A上に重ねることで多孔質層33が完成する。なお、ここで一次粒径とは、最小限の粒径であり、例えば、粒子同士が凝集あるいは結合している場合には個々の粒子の粒径を表す。 Such a porous layer 33 can be formed by the following method, for example. First, as the non-electrophoretic particles 35, for example, titanium oxide having two types of primary particle sizes (for example, 250 nm (small particles) and, for example, 450 nm (large particles)) is prepared, and these are, for example, carboxylic acid anions. The organic surfactant is added to the organic solvent in which it has been dissolved and stirred. Thereby, titanium oxide (non-electrophoretic particles 35) whose surface is coated with a carboxylic acid anionic surfactant is obtained. Next, for example, a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then, for example, small non-electrophoretic particles 35 are added to the solution. Is added and stirred sufficiently to prepare a spinning solution in which the non-electrophoretic particles 35 are dispersed. Subsequently, spinning is performed from the spinning solution by, for example, an electrostatic spinning method to fix the non-migrating particles 35 to the fibrous structure 34, thereby forming the first layer 33A. Next, for example, a constituent material of the fibrous structure 34 such as a polymer material (polymer) is dissolved in an organic solvent to prepare a solution, and then, for example, large non-electrophoretic particles 35 are added to the solution. And using the same method as that for the first layer 33A, the second layer 33B having a higher volume fraction than the first layer 33A is formed. The porous layer 33 is completed by stacking the second layer 33B on the second layer 33A. Here, the primary particle size is a minimum particle size. For example, when the particles are aggregated or bonded, the primary particle size represents the particle size of each particle.
 このように、あらかじめ界面活性剤で修飾された非泳動粒子35を用いることによって紡糸溶液中の非泳動粒子35の分散性が向上する。これにより、紡糸時において非泳動粒子35に電界が印加されやすくなり、繊維径が抑えられた、即ち細繊維化された繊維状構造体34が得られる。なお、繊維状構造体34に固定された非泳動粒子35の表面は、繊維状構造体34を構成するポリマーによって覆われている。 Thus, the dispersibility of the non-migrating particles 35 in the spinning solution is improved by using the non-migrating particles 35 previously modified with a surfactant. As a result, an electric field is easily applied to the non-migrating particles 35 during spinning, and a fibrous structure 34 with a reduced fiber diameter, that is, a fine fiber is obtained. Note that the surface of the non-electrophoretic particle 35 fixed to the fibrous structure 34 is covered with a polymer constituting the fibrous structure 34.
 また、多孔質層33は、高分子フィルムに、レーザを使用して穴開け加工を施して細孔Hを形成するようにしてもよく、多孔質層33に合成繊維等により編まれた布、または連泡多孔性高分子等を用いるようにしてもよい。この場合、高分子に非泳動粒子を練りこむ作業が前作業として必要になるが、その際に粒径と比重から最終的な体積分率を予測し、非泳動粒子の混合割合を調整する。これにより、体積分率の異なる層を構成することができる。 Further, the porous layer 33 may be formed by forming holes H in the polymer film by using a laser to form a hole H, and a cloth knitted with synthetic fibers or the like on the porous layer 33, Alternatively, open-cell porous polymer may be used. In this case, the work of kneading the non-electrophoretic particles into the polymer is necessary as a pre-operation. At that time, the final volume fraction is predicted from the particle diameter and the specific gravity, and the mixing ratio of the non-electrophoretic particles is adjusted. Thereby, layers having different volume fractions can be formed.
 なお、繊維状構造体は、例えば、炭素原子、酸素原子および水素原子で構成されている主骨格(分子の主部)を有する分子によって構成されることが好ましい。換言すれば、この分子の主骨格は炭素原子、酸素原子および水素原子以外の原子を含まず、これらの原子のみからなっている。繊維状構造体34を形成するこのような分子は、水酸基およびカルボン酸基等の極性の高い官能基を含んでいないことが好ましい。これにより、繊維状構造体34の表面電位の絶対値が小さくなり、電気泳動素子30の応答速度を向上させることができる。ここで、主骨格とは分子の両末端を除いた部分を指す。繊維状構造体34を形成する分子は、両末端まで炭素原子、酸素原子および水素原子で構成されていることが好ましいが、末端にこれら炭素原子、酸素原子および水素原子以外の原子が含まれていてもよい。例えば、高分子をラジカル重合により合成する場合には、触媒にアゾビスイソブチロニトリル(AIBN)等の重合開始剤が用いられる。このように合成された高分子の両末端には窒素原子等が含まれることになるが、この末端の原子は分子量で換算して分子全体の1000分の1にも満たない。従って、この末端の原子は分子の特性にはほとんど寄与しない。AIBN以外の重合開始剤についても同様である。このように、炭素原子、酸素原子および水素原子のみで構成された繊維状構造体34の反応性は低いので、繊維状構造体34が絶縁性液体31中に安定して存在する。従って、電気泳動素子30では高い信頼性が得られる。 The fibrous structure is preferably composed of molecules having a main skeleton (main part of the molecule) composed of, for example, carbon atoms, oxygen atoms and hydrogen atoms. In other words, the main skeleton of this molecule does not contain atoms other than carbon atoms, oxygen atoms, and hydrogen atoms, and consists only of these atoms. Such molecules forming the fibrous structure 34 preferably do not contain a highly polar functional group such as a hydroxyl group and a carboxylic acid group. Thereby, the absolute value of the surface potential of the fibrous structure 34 becomes small, and the response speed of the electrophoretic element 30 can be improved. Here, the main skeleton refers to a portion excluding both ends of the molecule. The molecules forming the fibrous structure 34 are preferably composed of carbon atoms, oxygen atoms and hydrogen atoms up to both ends, but the ends contain atoms other than these carbon atoms, oxygen atoms and hydrogen atoms. May be. For example, when a polymer is synthesized by radical polymerization, a polymerization initiator such as azobisisobutyronitrile (AIBN) is used as a catalyst. Nitrogen atoms and the like are contained at both ends of the polymer synthesized in this way, but the atoms at the ends are less than 1/1000 of the whole molecule in terms of molecular weight. Therefore, this terminal atom contributes little to the properties of the molecule. The same applies to polymerization initiators other than AIBN. Thus, the reactivity of the fibrous structure 34 composed of only carbon atoms, oxygen atoms, and hydrogen atoms is low, so that the fibrous structure 34 exists stably in the insulating liquid 31. Therefore, the electrophoretic element 30 can obtain high reliability.
 繊維状構造体34を形成する分子は鎖状の高分子である。ここで、鎖状の分子(鎖状分子)とは環状の原子配列の構造を含まない分子をいう。環状の原子配列の例として、例えば、単素環式化合物および複素環式化合物が挙げられる。単素環式化合物は、単一元素によって構成されており、具体的には、芳香族化合物,シクロアルケン,シクロアルカンおよびシクロアルキン等である。複素環式化合物は2種類以上の元素によって構成されており、具体的には、ピロール,カルバゾール,環状アセタール,ピラン,フランおよびチオフェン等である。鎖状分子は直鎖状であってもよく、あるいは分岐していてもよい。繊維状構造体34は鎖状分子により構成することにより、環状構造を含む分子に比べて、立体障害が小さいため、泳動粒子32が移動し易くなり、電気泳動素子30のコントラストおよび応答速度が向上する。 The molecule forming the fibrous structure 34 is a chain polymer. Here, a chain molecule (chain molecule) refers to a molecule that does not include a cyclic atomic arrangement structure. Examples of the cyclic atomic arrangement include a monocyclic compound and a heterocyclic compound. Monocyclic compounds are composed of a single element, and specifically include aromatic compounds, cycloalkenes, cycloalkanes, cycloalkynes, and the like. The heterocyclic compound is composed of two or more kinds of elements, and specifically includes pyrrole, carbazole, cyclic acetal, pyran, furan and thiophene. The chain molecule may be linear or branched. When the fibrous structure 34 is composed of chain molecules, since the steric hindrance is smaller than that of a molecule including a cyclic structure, the migrating particles 32 are easily moved, and the contrast and response speed of the electrophoretic element 30 are improved. To do.
 この繊維状構造体34を構成する鎖状分子には、エステル基が含まれている。例えば、アクリル樹脂により繊維状構造体34を形成することが好ましい。具体的な鎖状分子として、例えば、ポリアルキルメタクリレート、ポリアルキルアクリレート、ポリアルケニルメタクリレート、ポリアルケニルアクリレート、ポリアルキニルメタクリレートおよびポリアルキニルアクリレート等が挙げられる。この鎖状分子は、エステル基よりも高い極性の官能基を有しておらず、繊維状構造体34の表面電位の絶対値は、例えば、20mV以下となる。繊維状構造体34の表面電位の絶対値が10mV以下となるように、鎖状分子を選択することがより好ましい。即ち、上記のシアノ基等に比べてエステル基がもつ極性は小さいが、これは、電界紡糸法を用いた紡糸に十分な大きさであり、電界紡糸法により繊維状構造体34を容易に形成することができる。 The chain molecule constituting the fibrous structure 34 includes an ester group. For example, the fibrous structure 34 is preferably formed from an acrylic resin. Specific examples of the chain molecule include polyalkyl methacrylate, polyalkyl acrylate, polyalkenyl methacrylate, polyalkenyl acrylate, polyalkynyl methacrylate and polyalkynyl acrylate. This chain molecule does not have a functional group having a polarity higher than that of the ester group, and the absolute value of the surface potential of the fibrous structure 34 is, for example, 20 mV or less. It is more preferable to select chain molecules so that the absolute value of the surface potential of the fibrous structure 34 is 10 mV or less. That is, the ester group has a smaller polarity than the cyano group and the like, but this is sufficiently large for spinning using the electrospinning method, and the fibrous structure 34 can be easily formed by the electrospinning method. can do.
 繊維状構造体34を構成する鎖状分子には、微生物により分解されにくい材料を用いることが好ましい。即ち、鎖状分子は生分解に対して耐性を有することが好ましい。生分解性を有する高分子として、例えば、ポリ乳酸,ポリビニルアルコール,セルロースアセテート,コラーゲン,ゼラチンおよびキトサン等が挙げられる。このような高分子は分解され易いので、外部から電気泳動素子に何らかの刺激が加わった際に繊維状構造体の特性を維持できない虞がある。また、このような高分子は水溶性のものが多く、電気泳動素子内の水分により溶解して、繊維状構造体の形状を維持できない虞がある。これに対し、生分解に対して耐性を有する鎖状分子により繊維状構造体34を形成すると、繊維状構造体34の安定性が増す。従って、電気泳動素子30の信頼性を向上させることが可能となる。繊維状構造体34の表面を任意の保護層で被覆するようにしてもよい。 For the chain molecule constituting the fibrous structure 34, it is preferable to use a material that is not easily decomposed by microorganisms. That is, the chain molecule is preferably resistant to biodegradation. Examples of the biodegradable polymer include polylactic acid, polyvinyl alcohol, cellulose acetate, collagen, gelatin, and chitosan. Since such a polymer is easily decomposed, there is a possibility that the characteristics of the fibrous structure cannot be maintained when some kind of stimulus is applied to the electrophoretic element from the outside. In addition, many of such polymers are water-soluble and may be dissolved by moisture in the electrophoretic element, so that the shape of the fibrous structure cannot be maintained. On the other hand, when the fibrous structure 34 is formed of chain molecules having resistance to biodegradation, the stability of the fibrous structure 34 is increased. Therefore, the reliability of the electrophoretic element 30 can be improved. The surface of the fibrous structure 34 may be covered with an arbitrary protective layer.
(1-2.表示装置の構成)
 次に、表示装置1の全体構成と、動作原理について説明する。
(1-2. Configuration of display device)
Next, the overall configuration and operation principle of the display device 1 will be described.
 図1および図3Aは、電気泳動素子30を用いた表示装置(表示装置1)の断面構成の一例を表したものである。表示装置1は、電気泳動現象を利用して画像(例えば、文字情報等)を表示する電気泳動型ディスプレイ(いわゆる電子ペーパーディスプレイ)であり、駆動基板10と対向基板20との間に電気泳動素子30が設けられている。駆動基板10と対向基板20との間は、スペーサ40により所定の間隔に調整されている。 1 and 3A show an example of a cross-sectional configuration of a display device (display device 1) using the electrophoretic element 30. FIG. The display device 1 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information) using an electrophoretic phenomenon, and an electrophoretic element between a driving substrate 10 and a counter substrate 20. 30 is provided. The space between the driving substrate 10 and the counter substrate 20 is adjusted to a predetermined distance by the spacer 40.
 駆動基板10は、支持部材11の一方の面に例えば、TFT(Thin Film Transistor)12、保護層13、画素電極14および接着層15をこの順に有している。TFT12および画素電極14は、例えば、画素配置に応じてマトリクス状またはセグメント状に配置されている。 The drive substrate 10 includes, for example, a TFT (Thin Film Transistor) 12, a protective layer 13, a pixel electrode 14, and an adhesive layer 15 in this order on one surface of the support member 11. For example, the TFT 12 and the pixel electrode 14 are arranged in a matrix or a segment according to the pixel arrangement.
 支持部材11は、例えば、無機材料,金属材料またはプラスチック材料等により構成されている。無機材料としては、例えば、ケイ素(Si),酸化ケイ素(SiOX),窒化ケイ素(SiN)または酸化アルミニウム(AlOx)等が挙げられる。酸化ケイ素には、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料としては、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等が挙げられ、プラスチック材料としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)等が挙げられる。 The support member 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like. As the inorganic materials, for example, silicon (Si), silicon oxide (SiOX), such as silicon nitride (SiN X) or aluminum oxide (AlOx) may be mentioned. Silicon oxide includes glass or spin-on-glass (SOG). Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel, and examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
 表示装置1では、対向基板20側に画像が表示されるため、支持部材11は非光透過性であってもよい。支持部材11を、ウェハ等の剛性を有する基板により構成してもよく、あるいは可撓性を有する薄層ガラスまたはフィルム等により構成してもよい。支持部材11に可撓性材料を用いることにより、フレキシブル(折り曲げ可能)な表示装置1を実現できる。 Since the display device 1 displays an image on the counter substrate 20 side, the support member 11 may be non-light transmissive. The support member 11 may be configured by a rigid substrate such as a wafer, or may be configured by a flexible thin glass or film. By using a flexible material for the support member 11, the flexible display device 1 can be realized.
 TFT12は、画素を選択するためのスイッチング用素子である。TFT12は、チャネル層として無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。保護層13および接着層15は、例えば、ポリイミド等の絶縁性樹脂材料により構成されている。保護層13の表面が十分に平坦であれば、接着層15を省略することも可能である。画素電極14は、例えば、金(Au)、銀(Ag)または銅(Cu)等の金属材料により形成されている。画素電極14は、保護層13および接着層15に設けられたコンタクトホール(図示せず)を通じてTFT12に接続されている。 TFT 12 is a switching element for selecting a pixel. The TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer. The protective layer 13 and the adhesive layer 15 are made of, for example, an insulating resin material such as polyimide. If the surface of the protective layer 13 is sufficiently flat, the adhesive layer 15 can be omitted. The pixel electrode 14 is made of a metal material such as gold (Au), silver (Ag), or copper (Cu). The pixel electrode 14 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the adhesive layer 15.
 対向基板20は、例えば、支持部材21および対向電極22を有しており、支持部材21の全面(駆動基板10との対向面)に対向電極22が設けられている。対向電極22を、画素電極14と同様に、マトリクス状またはセグメント状に配置するようにしてもよい。 The counter substrate 20 includes, for example, a support member 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support member 21 (a surface facing the drive substrate 10). Similarly to the pixel electrode 14, the counter electrode 22 may be arranged in a matrix or a segment.
 支持部材21は、光透過性であることを除き、支持部材11と同様の材料により構成されている。対向電極22には、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等の光透光性導電性材料(透明電極材料)を用いることができる。 The support member 21 is made of the same material as the support member 11 except that it is light transmissive. For the counter electrode 22, for example, a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). (Transparent electrode material) can be used.
 対向基板20側に画像を表示する場合には、対向電極22を介して電気泳動素子30を見ることになるため、対向電極22の光透過性(透過率)は、できるだけ高いことが好ましく、例えば、80%以上である。また、対向電極22の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□以下である。 When displaying an image on the counter substrate 20 side, since the electrophoretic element 30 is viewed through the counter electrode 22, the light transmittance (transmittance) of the counter electrode 22 is preferably as high as possible. 80% or more. Further, the electrical resistance of the counter electrode 22 is preferably as low as possible, for example, 100Ω / □ or less.
 電気泳動素子30は、絶縁性液体31中に、泳動粒子32と、複数の細孔Hを有する多孔質層33とを含んでいる。絶縁性液体31は、駆動基板10と対向基板20との間の空間に充填されており、多孔質層33は、例えば、スペーサ40により支持されている。絶縁性液体31が充填されている空間は、例えば、多孔質層33を境界として、画素電極14に近い側の待避領域R1と、対向電極22に近い側の表示領域R2とに区分けされている。絶縁性液体31、泳動粒子32および多孔質層33の構成は、上記実施の形態等で説明したものと同様である。なお、図3Aおよび後述の図3Bでは、図示内容を簡略化するために、細孔Hは省略している。 The electrophoretic element 30 includes an electrophoretic particle 32 and a porous layer 33 having a plurality of pores H in an insulating liquid 31. The insulating liquid 31 is filled in the space between the driving substrate 10 and the counter substrate 20, and the porous layer 33 is supported by the spacer 40, for example. The space filled with the insulating liquid 31 is divided into, for example, a retreat area R1 closer to the pixel electrode 14 and a display area R2 closer to the counter electrode 22 with the porous layer 33 as a boundary. . The configurations of the insulating liquid 31, the migrating particles 32, and the porous layer 33 are the same as those described in the above embodiments and the like. In FIG. 3A and FIG. 3B described later, the pores H are omitted to simplify the illustrated contents.
 多孔質層33は、画素電極14および対向電極22のうちのどちらか一方に隣接していてもよく、待避領域R1と表示領域R2とが明確に区切られていなくてもよい。泳動粒子32は、電界に応じて画素電極14または対向電極22に向かって移動する。 The porous layer 33 may be adjacent to one of the pixel electrode 14 and the counter electrode 22, and the retreat area R1 and the display area R2 may not be clearly separated. The migrating particles 32 move toward the pixel electrode 14 or the counter electrode 22 according to the electric field.
 スペーサ40の厚みは、例えば、10μm~100μmであり、できるだけ薄くすることが好ましい。これにより、消費電力を抑えることができる。スペーサ40は、例えば、高分子材料等の絶縁性材料により構成され、駆動基板10と対向基板20との間に例えば、格子状に設けられている。スペーサ40の配置形状は、特に限定されないが、泳動粒子32の移動を妨げず、かつ、泳動粒子32を均一分布させるように設けることが好ましい。 The thickness of the spacer 40 is, for example, 10 μm to 100 μm, and is preferably as thin as possible. Thereby, power consumption can be suppressed. The spacer 40 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 10 and the counter substrate 20. The arrangement shape of the spacer 40 is not particularly limited, but it is preferable that the spacer 40 is provided so as not to disturb the movement of the migrating particles 32 and to uniformly distribute the migrating particles 32.
 初期状態の表示装置1では、泳動粒子32が待避領域R1に配置されている(図3A)。この場合には、全ての画素で泳動粒子32が多孔質層33により遮蔽されているため、対向基板20側から電気泳動素子30を見ると、コントラストが生じていない(画像が表示されていない)状態にある。 In the display device 1 in the initial state, the migrating particles 32 are arranged in the retreat area R1 (FIG. 3A). In this case, since the migrating particles 32 are shielded by the porous layer 33 in all the pixels, no contrast is generated when the electrophoretic element 30 is viewed from the counter substrate 20 side (an image is not displayed). Is in a state.
 一方、TFT12により画素が選択され、画素電極14と対向電極22との間に電界が印加されると、図3Bに示したように、画素毎に泳動粒子32が待避領域R1から多孔質層33(細孔H)を経由して表示領域R2に移動する。この場合には、泳動粒子32が多孔質層33により遮蔽されている画素と遮蔽されていない画素とが併存するため、対向基板20側から電気泳動素子30を見ると、コントラストが生じている状態になる。これにより、画像が表示される。 On the other hand, when a pixel is selected by the TFT 12 and an electric field is applied between the pixel electrode 14 and the counter electrode 22, as shown in FIG. 3B, the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to the display area R2 via (pore H). In this case, since the pixels in which the migrating particles 32 are shielded by the porous layer 33 and the pixels that are not shielded coexist, when the electrophoretic element 30 is viewed from the counter substrate 20 side, a contrast is generated. become. Thereby, an image is displayed.
 なお、この表示装置1によれば、高い応答速度を有する電気泳動素子30により、例えば、カラー化や動画表示にも適した高品位な画像を表示できる。 In addition, according to the display device 1, the electrophoretic element 30 having a high response speed can display a high-quality image suitable for, for example, colorization and moving image display.
 一般的な電気泳動型ディスプレイは、上記のように、泳動粒子の光反射率と多孔質層の光反射率との差によりコントラストを生じさせるものである。具体的には、泳動粒子および多孔質層のうち、明表示する方の光反射率が暗表示する方の光反射率よりも高くなっている。非泳動粒子の光反射率を、泳動粒子よりも高くして、多孔質層で明表示し、泳動粒子で暗表示することが好ましい。このような表示を行うことにより、明表示がなされる際の光反射率が、多孔質層(3次元立体構造物)による光の乱反射を利用して著しく高くなる。従って、これに応じ、コントラストも著しく向上する。 In general electrophoretic displays, as described above, contrast is generated by the difference between the light reflectance of the migrating particles and the light reflectance of the porous layer. Specifically, among the migrating particles and the porous layer, the light reflectance for bright display is higher than the light reflectance for dark display. It is preferable that the light reflectance of the non-electrophoretic particles is higher than that of the electrophoretic particles so that the porous layer displays light and the electrophoretic particles display dark. By performing such a display, the light reflectance at the time of bright display is remarkably increased by utilizing the irregular reflection of light by the porous layer (three-dimensional structure). Accordingly, the contrast is remarkably improved accordingly.
 電気泳動素子では、電界が印加された範囲内で泳動粒子が多孔質層の細孔を経て移動する。泳動粒子の移動した領域、移動しない領域に応じて、明表示および暗表示のうちのどちらか一方がなされ、画像が表示される。 In the electrophoretic element, the electrophoretic particles move through the pores of the porous layer within the range where the electric field is applied. Depending on the area where the migrating particles have moved or not moved, either bright display or dark display is performed, and an image is displayed.
 電気泳動型ディスプレイの表示特性は未だ十分とはいえず、特に反射率の更なる向上が求められていた。反射率は、例えば、繊維状構造体を多く積層したり、大粒径(例えば、400~700nm)の非泳動粒子を用いることで向上させることができる。例えば、泳動粒子が暗表示、多孔質層が明表示するような表示装置では、繊維状構造体を多く積層することで多孔質層の密度が増し、泳動粒子を遮蔽する能力が向上させることができると考えられる。また、繊維状構造体に固定される非泳動粒子の粒径を大きくすると共に、その量を増やすことでも泳動粒子を遮蔽する能力が向上させることができると考えられている。しかしながら、多孔質層の密度が大きくなると、反射率は向上するものの、細孔の孔径が小さくなるため反応速度が低下すると共に、例えば、表示面への泳動粒子の移動が困難になってコントラストが低下する虞がある。 The display characteristics of the electrophoretic display are not yet sufficient, and further improvement in the reflectance has been demanded. The reflectance can be improved by, for example, laminating many fibrous structures or using non-electrophoretic particles having a large particle size (for example, 400 to 700 nm). For example, in a display device in which migrating particles are darkly displayed and the porous layer is brightly displayed, the density of the porous layer can be increased by laminating many fibrous structures, and the ability to shield the migrating particles can be improved. It is considered possible. Further, it is considered that the ability to shield the migrating particles can be improved by increasing the particle size of the non-migrating particles fixed to the fibrous structure and increasing the amount thereof. However, as the density of the porous layer increases, the reflectance improves, but the reaction speed decreases because the pore diameter decreases, and for example, it becomes difficult to move the migrating particles to the display surface, resulting in a contrast. May decrease.
 これに対して、本実施の形態の電気泳動素子30を備えた表示装置1では、多孔質層33を、表示部Aの体積に対する非泳動粒子35の体積分率が互いに異なる2層、具体的には、非泳動粒子35の体積分率が第2層33Bよりも低い第1層33Aと、第1層33Aよりも非泳動粒子35の体積分率が高い第2層33Bとから構成するようにした。これにより、多孔質層30の密度を向上しつつ、多孔質層30内における細孔の孔径を維持することが可能となる。 On the other hand, in the display device 1 including the electrophoretic element 30 according to the present embodiment, the porous layer 33 includes two layers having different volume fractions of the non-electrophoretic particles 35 with respect to the volume of the display portion A. Includes a first layer 33A in which the volume fraction of the non-electrophoretic particles 35 is lower than that of the second layer 33B, and a second layer 33B in which the volume fraction of the non-electrophoretic particles 35 is higher than that of the first layer 33A. I made it. As a result, it is possible to maintain the pore diameter in the porous layer 30 while improving the density of the porous layer 30.
 特に、第1層33Aよりも非泳動粒子35の体積分率の高い第2層33Bを表示面S1側に配設することにより、白反射率を向上させつつ、多孔質層33内における泳動粒子32の移動速度を担保することが可能となる。 In particular, the second layer 33B having a higher volume fraction of the non-migrating particles 35 than the first layer 33A is disposed on the display surface S1 side, thereby improving the white reflectance and migrating particles in the porous layer 33. It is possible to secure 32 moving speeds.
 以上のように、本実施の形態の電気泳動素子30を備えた表示装置1では、多孔質層33を、第1層33Aと、表示部Aの体積に対する非泳動粒子35の体積分率が第1層33Aよりも高い第2層33Bとから構成するようにした。これにより、多孔質層30の密度を向上され、白反射率が向上する。また、多孔質層30内における細孔の孔径が確保されるため、泳動粒子32の移動速度が維持され、応答速度を保つことが可能となる。即ち、応答速度を維持すると共に、高い白反射率が向上した高い表示特性を有する表示装置および電子機器を提供することが可能となる。 As described above, in the display device 1 including the electrophoretic element 30 according to the present embodiment, the porous layer 33 has the first layer 33A and the volume fraction of the non-electrophoretic particles 35 with respect to the volume of the display portion A is the first. The second layer 33B is higher than the first layer 33A. Thereby, the density of the porous layer 30 is improved and the white reflectance is improved. Moreover, since the pore diameter of the pores in the porous layer 30 is ensured, the moving speed of the migrating particles 32 is maintained, and the response speed can be maintained. That is, it is possible to provide a display device and an electronic device that maintain high response speed and have high display characteristics with improved white reflectance.
<2.適用例>
 次に、上記表示装置1の適用例について説明する。
<2. Application example>
Next, an application example of the display device 1 will be described.
 本技術の一実施形態の表示装置1は、各種用途の電子機器に適用可能であり、その電子機器の種類は特に限定されない。この表示装置1は、例えば、以下の電子機器に搭載可能である。ただし、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。 The display device 1 according to an embodiment of the present technology is applicable to electronic devices for various purposes, and the type of the electronic device is not particularly limited. This display device 1 can be mounted on, for example, the following electronic devices. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
(適用例1)
 図4A,4Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図4Aに示したように非表示部120の前面に設けられていてもよいし、図4Bに示したように上面に設けられていてもよい。表示部110が表示装置1により構成される。なお、表示装置1は、図4A,4Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。
(Application example 1)
4A and 4B show the external configuration of the electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. Note that the operation unit 130 may be provided on the front surface of the non-display unit 120 as shown in FIG. 4A or may be provided on the upper surface as shown in FIG. 4B. The display unit 110 is configured by the display device 1. The display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 4A and 4B.
(適用例2)
 図5は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部310および筐体320を有しており、タッチパネル部310が上記表示装置1により構成されている。
(Application example 2)
FIG. 5 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 1.
<3.実施例>
 次に、本技術の実施例について詳細に説明する。
<3. Example>
Next, embodiments of the present technology will be described in detail.
 以下の手順により、黒色(暗表示)の泳動粒子および白色(明表示)の多孔質層(粒子含有繊維状構造体)を用いて、表示装置(実験例1~9)を作製した。 Display devices (Experimental Examples 1 to 9) were produced using black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure) by the following procedure.
(実験例1)
 まず、テトラヒドロフラン400mlとメタノール400mlとの混合溶液を調製した後、この溶液に複合酸化物微粒子(銅-鉄-マンガンの酸化物:大日精化工業株式会社製ダイピロキサイドカラーTM9550)50gを加え、超音波浴槽にて超音波攪拌(25℃~35℃で30分間)を行った。次いで、この複合酸化物微粒子の分散液に28%アンモニア水40mlを30分間かけて滴下したのち、テトラヒドロフラン80mlにプレンアクト KR-TTS(味の素ファインテクノ株式会社製)10gを溶解させた溶液を30分間かけて滴下した。続いて、超音波浴槽を60℃まで昇温させ3時間保持したのちこれを室温まで冷却して遠心分離(6000rpmで10分間)およびデカンテーションを行った。続いて、このデカンテーション後の沈殿物をテトラヒドロフランとメタノールとの混合溶媒(体積比1:1)に再分散させ、遠心分離(6000rpmで10分間)およびデカンテーションを行った。この洗浄作業を3回繰り返して得られた沈殿物を70℃の真空オーブンで一晩乾燥させた。これにより、分散基で被覆された黒色の泳動粒子が得られた。
(Experimental example 1)
First, a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution. Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath. Next, 40 ml of 28% ammonia water was added dropwise to the dispersion of the composite oxide fine particles over 30 minutes, and then a solution in which 10 g of preneact KR-TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.) was dissolved in 80 ml of tetrahydrofuran was added over 30 minutes. And dripped. Subsequently, the ultrasonic bath was heated to 60 ° C. and held for 3 hours, and then cooled to room temperature, followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. Subsequently, the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. The precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a dispersing group were obtained.
 泳動粒子を調製した後、分散剤および電荷調整剤(Chevron Chemicals製OLOA1200)16.7gを絶縁性液体83.3gに溶解させた。絶縁性液体はイソパラフィン(エクソンモービル社製IsoparG)を用いた。この絶縁性液体9gに上記泳動粒子1gを添加し、超音波分散を行った。続いて、遠心分離(6000rpmで90分間)を行い、デカンテーションを行った後、さらに絶縁性液体に再分散させた。この洗浄作業を3回繰り返し、得られた沈殿物を顔料成分が10重量%になるように絶縁性液体を加えた。続いて、この絶縁性液体76.7gに、OLOA1200 3.34gおよび上記泳動粒子分散液20g加えて撹拌することにより、添加剤および黒色顔料を含有した絶縁性液体を得た。 After preparing the migrating particles, 16.7 g of a dispersant and a charge control agent (OLOA 1200 manufactured by Chevron-Chemicals) were dissolved in 83.3 g of insulating liquid. Isoparaffin (Isopar G manufactured by ExxonMobil) was used as the insulating liquid. 1 g of the migrating particles was added to 9 g of this insulating liquid, and ultrasonic dispersion was performed. Subsequently, centrifugation (90 minutes at 6000 rpm) was performed, followed by decantation, and then redispersed in an insulating liquid. This washing operation was repeated three times, and an insulating liquid was added to the resulting precipitate so that the pigment component was 10% by weight. Subsequently, 3.34 g of OLOA 1200 顔料 and 20 g of the electrophoretic particle dispersion were added to 76.7 g of this insulating liquid and stirred to obtain an insulating liquid containing an additive and a black pigment.
 一方、多孔質層は以下のようにして形成した。まず、非泳動粒子として平均一次粒径450nmの酸化チタンと200nmの酸化チタンをそれぞれ用意し、カルボン酸系陰イオン性界面活性剤を溶解させたテトラヒドロフラン中に4重量%になるように混合し、ペイントシェイカーを用いて1時間攪拌した。その後、遠心分離(5000rpmで10分)にかけ、デカンテーションにより溶媒を取り除き。3回洗浄した後、70℃で一晩乾燥させた。これにより、カルボン酸系陰イオン性界面活性剤でコーティングされた酸化チタンが得られた。ここで、一次粒径450nmの酸化チタンを非泳動粒子T-1、200nmの酸化チタンを非泳動粒子T-2とする。 On the other hand, the porous layer was formed as follows. First, titanium oxide with an average primary particle size of 450 nm and titanium oxide with a thickness of 200 nm are prepared as non-electrophoretic particles, and mixed to 4 wt% in tetrahydrofuran in which a carboxylic acid anionic surfactant is dissolved. Stir for 1 hour using a paint shaker. Then, it is centrifuged (5000 rpm for 10 minutes), and the solvent is removed by decantation. After washing 3 times, it was dried at 70 ° C. overnight. As a result, titanium oxide coated with a carboxylic acid anionic surfactant was obtained. Here, titanium oxide having a primary particle diameter of 450 nm is referred to as non-electrophoretic particle T-1, and titanium oxide having a primary particle diameter of 200 nm is referred to as non-electrophoretic particle T-2.
 次いで、繊維状構造体の構成材料としてポリメチルメタクリレートを準備した。このポリメチルメタクリレート13gをN,N’-ジメチルホルムアミド87gに溶解させた後、この溶液8gに、非泳動粒子T-1を2g加えてビーズミルで混合した。これにより繊維状構造体を形成するための紡糸溶液が得られた。駆動基板に、所定パターンのITOからなる画素電極を形成した後、この紡糸溶液を用いて紡糸を行った。具体的には、紡糸溶液をシリンジに入れ、駆動基板上で5.5g/cm2分の紡糸を行った。得られた繊維状構造体をNW-1とする。紡糸は、電界紡糸装置(株式会社メック製NANON)を用いて行った。 Next, polymethyl methacrylate was prepared as a constituent material of the fibrous structure. After 13 g of this polymethyl methacrylate was dissolved in 87 g of N, N′-dimethylformamide, 2 g of non-electrophoretic particles T-1 were added to 8 g of this solution and mixed with a bead mill. As a result, a spinning solution for forming a fibrous structure was obtained. After a pixel electrode made of ITO having a predetermined pattern was formed on the driving substrate, spinning was performed using this spinning solution. Specifically, the spinning solution was put into a syringe, and spinning for 5.5 g / cm 2 was performed on the driving substrate. The obtained fibrous structure is designated as NW-1. Spinning was performed using an electrospinning apparatus (NANON manufactured by MEC Co., Ltd.).
 続いて、ポリメチルメタクリレート10gをN,N’-ジメチルホルムアミド87gに溶解させた後、この溶液8gに、非泳動粒子T-2を2g加えてビーズミルで混合した。これにより繊維状構造体を形成するための紡糸溶液が得られた。この紡糸溶液を用いて紡糸を行った。具体的には、紡糸溶液をシリンジに入れ、駆動基板上で2g/cm2分の紡糸を行った。得られた繊維状構造体をNW-2とする。この繊維状構造体NW-2を、先に形成した繊維状構造体NW-1上に重ね、駆動基板上に多孔質層(非泳動粒子を保持した繊維状構造体)を形成した。なお、繊維状構造体NW-1の平均繊維径は500nm、繊維状構造体NW-2の平均繊維径は400nmであった。 Subsequently, 10 g of polymethyl methacrylate was dissolved in 87 g of N, N′-dimethylformamide, 2 g of non-electrophoretic particles T-2 were added to 8 g of this solution, and mixed by a bead mill. As a result, a spinning solution for forming a fibrous structure was obtained. Spinning was performed using this spinning solution. Specifically, the spinning solution was put in a syringe, and spinning for 2 g / cm 2 was performed on the driving substrate. The obtained fibrous structure is designated as NW-2. This fibrous structure NW-2 was overlaid on the previously formed fibrous structure NW-1, and a porous layer (a fibrous structure holding non-electrophoretic particles) was formed on the drive substrate. The average fiber diameter of the fibrous structure NW-1 was 500 nm, and the average fiber diameter of the fibrous structure NW-2 was 400 nm.
 駆動基板上に多孔質層を形成した後、駆動基板から不要な多孔質層を除去した。具体的には、画素電極が設けられていない部分の多孔質層を除去した。対向基板として、板状部材にITOからなる対向電極を形成し、この対向基板上にスペーサを配置した。スペーサには、ビーズ(外径15μm)を含む光硬化性樹脂(積水化学工業株式会社製感光樹脂フォトレックA-400(登録商標))を描画したものを用い、これを駆動基板と重ねた際に多孔質層と重ならない位置に設けた。対向基板にスペーサを設けた後、これを多孔質層が形成された駆動基板と重ねた。このとき、スペーサにより、多孔質層を保持するようにして、画素電極および対向電極から多孔質層を離間させた。次いで、駆動基板と対向基板との間に、上記泳動粒子が分散した絶縁性液体を注入した。最後に、紫外線光を光硬化性樹脂に照射して、表示装置を完成させた。なお、表示装置内における酸化チタンの体積分率は、表示面側から14%,7.1%であった。 After forming the porous layer on the driving substrate, the unnecessary porous layer was removed from the driving substrate. Specifically, the porous layer where the pixel electrode is not provided was removed. As a counter substrate, a counter electrode made of ITO was formed on a plate-like member, and a spacer was disposed on the counter substrate. As the spacer, a photo-curing resin (photosensitive resin Photorec A-400 (registered trademark) manufactured by Sekisui Chemical Co., Ltd.) containing beads (outer diameter 15 μm) is used, and this is overlapped with the driving substrate. In a position not overlapping with the porous layer. After providing the spacer on the counter substrate, this was overlapped with the driving substrate on which the porous layer was formed. At this time, the porous layer was separated from the pixel electrode and the counter electrode by holding the porous layer with the spacer. Next, an insulating liquid in which the migrating particles were dispersed was injected between the driving substrate and the counter substrate. Finally, the light curable resin was irradiated with ultraviolet light to complete the display device. The volume fraction of titanium oxide in the display device was 14% and 7.1% from the display surface side.
(実験例2)
 繊維状構造体NW-1を7g/cm2分で紡糸した以外は、実験例1と同様の手順で表示装置(実験例2)を作製した。多孔質層の体積分率は、表示面側から17%,8.8%であった。
(Experimental example 2)
A display device (Experimental Example 2) was produced in the same procedure as in Experimental Example 1, except that the fibrous structure NW-1 was spun at 7 g / cm2 min. The volume fraction of the porous layer was 17% and 8.8% from the display surface side.
(実験例3)
 繊維状構造体NW-1を7g/cm2分、繊維状構造体NW-2を1g/cm2分で紡糸した以外は、実験例1と同様の手順で表示装置(実験例3)を作製した。多孔質層の体積分率は、表示面側から15%,8.1%であった。
(Experimental example 3)
A display device (Experimental Example 3) was produced in the same procedure as in Experimental Example 1 except that the fibrous structure NW-1 was spun at 7 g / cm2 min and the fibrous structure NW-2 was spun at 1 g / cm2 min. The volume fraction of the porous layer was 15% and 8.1% from the display surface side.
(実験例4)
 繊維状構造体NW-1を8g/cm2分、繊維状構造体NW-2を1g/cm2分で紡糸した以外は、実験例1と同様の手順で表示装置(実験例4)を作製した。多孔質層の体積分率は、表示面側から17%,9.1%であった。
(Experimental example 4)
A display device (Experimental Example 4) was produced in the same procedure as in Experimental Example 1, except that the fibrous structure NW-1 was spun at 8 g / cm2 min and the fibrous structure NW-2 was spun at 1 g / cm2 min. The volume fraction of the porous layer was 17% and 9.1% from the display surface side.
(実験例5)
 繊維状構造体を構成するポリメラクリレートを14g、N,N’-ジメチルホルムアミドを86g、酸化チタンを15gとして繊維状構造体NW-3を7g/cm2分で作製した。更に、繊維状構造体を構成するポリメラクリレートを11g、N,N’-ジメチルホルムアミドを89g、酸化チタンを40gとして繊維状構造体NW-4を2.5g/cm2分で作製し、これを繊維状構造体NW-3上に重ねた。これ以外は、実験例1と同様の手順で表示装置(実験例5)を作製した。多孔質層の体積分率は、表示面側から14%,8.4%、繊維状構造体NW-3の平均繊維径は500nm、繊維状構造体NW-4の平均繊維径は700nmであった。
(Experimental example 5)
The fibrous structure NW-3 was prepared at 7 g / cm 2 min by 14 g of polymelacrylate constituting the fibrous structure, 86 g of N, N′-dimethylformamide, and 15 g of titanium oxide. Further, 11 g of polymelacrylate constituting the fibrous structure, 89 g of N, N′-dimethylformamide, and 40 g of titanium oxide were prepared to produce the fibrous structure NW-4 at 2.5 g / cm 2 min. Was overlaid on the fibrous structure NW-3. Except for this, a display device (Experimental Example 5) was produced in the same procedure as in Experimental Example 1. The volume fraction of the porous layer was 14% and 8.4% from the display surface side, the average fiber diameter of the fibrous structure NW-3 was 500 nm, and the average fiber diameter of the fibrous structure NW-4 was 700 nm. It was.
(実験例6)
 7.5g/cm2分で紡糸した繊維状構造体NW-1のみから多孔質層を構成した以外は、実験例1と同様の手順で表示装置(実験例6)を作製した。多孔質層の体積分率は7.8%であった。
(Experimental example 6)
A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1, except that the porous layer was composed only of the fibrous structure NW-1 spun at 7.5 g / cm2 min. The volume fraction of the porous layer was 7.8%.
(実験例7)
 9g/cm2分で紡糸した繊維状構造体NW-1のみから多孔質層を構成した以外は、実験例1と同様の手順で表示装置(実験例6)を作製した。多孔質層の体積分率は9.3%であった。
(Experimental example 7)
A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1, except that the porous layer was composed only of the fibrous structure NW-1 spun at 9 g / cm2 min. The volume fraction of the porous layer was 9.3%.
(実験例8)
 11g/cm2分で紡糸した繊維状構造体NW-1のみから多孔質層を構成した以外は、実験例1と同様の手順で表示装置(実験例6)を作製した。多孔質層の体積分率は11%であった。
(Experimental example 8)
A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1 except that the porous layer was composed only of the fibrous structure NW-1 spun at 11 g / cm2 min. The volume fraction of the porous layer was 11%.
(実験例9)
 9g/cm2分で紡糸した繊維状構造体NW-2のみから多孔質層を構成した以外は、実験例1と同様の手順で表示装置(実験例6)を作製した。多孔質層の体積分率は12%であった。
(Experimental example 9)
A display device (Experimental Example 6) was produced in the same procedure as in Experimental Example 1 except that the porous layer was composed only of the fibrous structure NW-2 spun at 9 g / cm2 min. The volume fraction of the porous layer was 12%.
 これら実験例1~9の表示装置の性能として、繊維状構造体中における非泳動粒子の体積分率(%)、作製直後の白反射率(%)、黒反射率(%)、コントラスト(CR)および15Vを200ms印加後における白反射率(%)を調べた。この結果を表1に示した。 The performance of the display devices of Experimental Examples 1 to 9 includes the volume fraction (%) of non-electrophoretic particles in the fibrous structure, white reflectance (%) immediately after production, black reflectance (%), contrast (CR ) And 15 V after applying for 200 ms were examined for white reflectance (%). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 白反射率および黒反射率は、表示装置に交流電圧を15Vずつ12秒印加したのち、分光測色計(横河電機製CD100)を用い測定した。コントラスト(CR)は、白反射率および黒反射率からCR=白反射率(%)/黒反射率(%)として算出した。電圧印加200ms後における白反射率は、表示装置に15Vの電圧を印加して黒表示とした後、逆のバイアスを同一時間(200ms)印加した後に白反射率がどの程度向上したかを表したものであり、応答速度が高いほど白反射率の値が高くなる。 The white reflectance and the black reflectance were measured using a spectrocolorimeter (CD100 manufactured by Yokogawa Electric Corporation) after applying an alternating voltage of 15 V for 12 seconds to the display device. The contrast (CR) was calculated from the white reflectance and the black reflectance as CR = white reflectance (%) / black reflectance (%). The white reflectance after 200 ms of voltage application shows how much the white reflectance has improved after applying a reverse bias of the same time (200 ms) after applying a voltage of 15 V to the display device to display black. The higher the response speed, the higher the white reflectance value.
 多孔質層を、非泳動粒子の体積分率の異なる2層によって構成した実験例1~5および単層で構成した実験例6~9を比較すると、実験例1~5の方が白反射率およびコントラストが高い傾向にあった。また、200msという短時間印加での白反射率は、実験例1~5の方が総じて高かった。これに対して、実験例7は、繊維状構造体の量を多くしたことで白反射率は向上したものの、コントラストは低下しており、印加時間200ms後の白反射率は、多孔質層を2層から構成した実験例1~5よりも低く、単層で構成した他の実験例6,8と同程度であった。また、繊維状構造体の量をさらに増やした実験例8では、封止ができない状態となってしまった。更に、非泳動粒子である酸化チタンの粒径を変更して体積分率を高めた実験例9では、白反射率や印加時間200ms後の白反射率は低下した。 When comparing Experimental Examples 1 to 5 in which the porous layer is composed of two layers having different volume fractions of non-electrophoretic particles and Experimental Examples 6 to 9 in which the porous layer is configured as a single layer, Experimental Examples 1 to 5 are more in white reflectance. And the contrast tended to be high. In addition, the white reflectance when applied for a short time of 200 ms was generally higher in Experimental Examples 1 to 5. On the other hand, in Example 7, although the white reflectance was improved by increasing the amount of the fibrous structure, the contrast was lowered, and the white reflectance after the application time of 200 ms was as follows. It was lower than Experimental Examples 1 to 5 composed of two layers and was similar to the other Experimental Examples 6 and 8 composed of a single layer. Moreover, in Experimental Example 8 in which the amount of the fibrous structure was further increased, sealing was not possible. Furthermore, in Experimental Example 9 in which the volume fraction was increased by changing the particle size of titanium oxide, which is a non-electrophoretic particle, the white reflectance and the white reflectance after 200 ms of application time decreased.
 以上、実施の形態および実施例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。 Although the present technology has been described with reference to the embodiments and examples, the present technology is not limited to the above-described embodiments and the like, and various modifications are possible.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本技術は以下のような構成も取ることができる。
(1)絶縁性液体中に、泳動粒子と、多孔質層と、前記多孔質層に保持された非泳動粒子とを含み、前記多孔質層は、前記泳動粒子とは異なる光反射性を有すると共に、前記非泳動粒子の体積分率が互いに異なる複数の層からなる表示装置。
(2)前記多孔質層は、第1層および前記第1層よりも前記非泳動粒子の体積分率が大きな第2層を有し、前記第2層は表示面側に配設されている、前記(1)に記載の表示装置。
(3)前記第2層における前記非泳動粒子の体積分率は13%以上である、前記(2)に記載の表示装置。
(4)前記第1層および前記第2層に含まれる前記非泳動粒子の平均一次粒径は互いに異なる、前記(2)または(3)に記載の表示装置。
(5)前記第1層の厚みは前記第2層よりも大きい、前記(2)乃至(4)のうちいずれか1つに記載の表示装置。
(6)前記多孔質層は繊維状構造体によって構成され、前記第1層および前記第2層を構成する前記繊維状構造体の繊維径は互いに異なる、前記(2)乃至(5)のうちいずれか1つに記載の表示装置。
(7)前記第2層に含まれる前記泳動粒子の平均一次粒径は、前記第1層よりも小さい、前記(5)または(6)のうちいずれか1つに記載の表示装置。
(8)前記第2層を構成する前記繊維状構造体の繊維径は、前記第1層よりも細い、前記(6)または(7)に記載の表示装置。
(9)前記繊維状構造体はナノファイバーによって構成されている、前記(1)乃至(8)のうちいずれか1つに記載の表示装置。
(10)前記繊維状構造体は静電防止法により形成された、前記(1)乃至(9)のうちいずれか1つに記載の表示装置。
(11)前記非泳動粒子の光反射率は前記泳動粒子の光反射率よりも高く、前記泳動粒子が暗表示、前記非泳動粒子および前記多孔質層が明表示を行う、前記(1)乃至(10)のうちいずれか1つに記載の表示装置。
(12)表示装置を備え、前記表示装置は、絶縁性液体中に、泳動粒子と、多孔質層と、前記多孔質層に保持された非泳動粒子とを含み、前記多孔質層は、前記泳動粒子とは異なる光反射性を有すると共に、前記非泳動粒子の体積分率が異なる複数の層からなる電子機器。
In addition, this technique can also take the following structures.
(1) Insulating liquid includes electrophoretic particles, a porous layer, and non-electrophoretic particles held in the porous layer, and the porous layer has light reflectivity different from that of the electrophoretic particles. A display device comprising a plurality of layers in which the volume fraction of the non-electrophoretic particles is different from each other.
(2) The porous layer includes a first layer and a second layer in which the volume fraction of the non-electrophoretic particles is larger than that of the first layer, and the second layer is disposed on the display surface side. The display device according to (1).
(3) The display device according to (2), wherein a volume fraction of the non-electrophoretic particles in the second layer is 13% or more.
(4) The display device according to (2) or (3), wherein the non-electrophoretic particles included in the first layer and the second layer have different average primary particle sizes.
(5) The display device according to any one of (2) to (4), wherein a thickness of the first layer is larger than that of the second layer.
(6) The porous layer is constituted by a fibrous structure, and the fiber diameters of the fibrous structures constituting the first layer and the second layer are different from each other, among (2) to (5) The display device according to any one of the above.
(7) The display device according to any one of (5) and (6), wherein an average primary particle size of the migrating particles included in the second layer is smaller than that of the first layer.
(8) The display device according to (6) or (7), wherein a fiber diameter of the fibrous structure constituting the second layer is smaller than that of the first layer.
(9) The display device according to any one of (1) to (8), wherein the fibrous structure is configured by nanofibers.
(10) The display device according to any one of (1) to (9), wherein the fibrous structure is formed by an antistatic method.
(11) The light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the porous layer perform bright display. The display device according to any one of (10).
(12) It is provided with a display device, and the display device includes electrophoretic particles, a porous layer, and non-electrophoretic particles held in the porous layer in an insulating liquid, and the porous layer includes An electronic apparatus comprising a plurality of layers having light reflectivity different from electrophoretic particles and different volume fractions of the non-electrophoretic particles.
 本出願は、日本国特許庁において2015年1月14日に出願された日本特許出願番号2015-005048号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-005048 filed on January 14, 2015 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (12)

  1.  絶縁性液体中に、泳動粒子と、多孔質層と、前記多孔質層に保持された非泳動粒子とを含み、
     前記多孔質層は、前記泳動粒子とは異なる光反射性を有すると共に、前記非泳動粒子の体積分率が互いに異なる複数の層からなる
     表示装置。
    In the insulating liquid, including migrating particles, a porous layer, and non-migrating particles held in the porous layer,
    The porous layer includes a plurality of layers having light reflectivity different from that of the migrating particles and different volume fractions of the non-migrating particles.
  2.  前記多孔質層は、第1層および前記第1層よりも前記非泳動粒子の体積分率が大きな第2層を有し、
     前記第2層は表示面側に配設されている、請求項1に記載の表示装置。
    The porous layer has a first layer and a second layer having a larger volume fraction of the non-electrophoretic particles than the first layer,
    The display device according to claim 1, wherein the second layer is disposed on a display surface side.
  3.  前記第2層における前記非泳動粒子の体積分率は13%以上である、請求項2に記載の表示装置。 The display device according to claim 2, wherein a volume fraction of the non-electrophoretic particles in the second layer is 13% or more.
  4.  前記第1層および前記第2層に含まれる前記非泳動粒子の平均一次粒径は互いに異なる、請求項2に記載の表示装置。 The display device according to claim 2, wherein the non-electrophoretic particles contained in the first layer and the second layer have different average primary particle sizes.
  5.  前記第1層の厚みは前記第2層よりも大きい、請求項2に記載の表示装置。 The display device according to claim 2, wherein the thickness of the first layer is larger than that of the second layer.
  6.  前記多孔質層は繊維状構造体によって構成され、
     前記第1層および前記第2層を構成する前記繊維状構造体の繊維径は互いに異なる、請求項2に記載の表示装置。
    The porous layer is composed of a fibrous structure,
    The display device according to claim 2, wherein fiber diameters of the fibrous structures constituting the first layer and the second layer are different from each other.
  7.  前記第2層に含まれる前記泳動粒子の平均一次粒径は、前記第1層よりも小さい、請求項4に記載の表示装置。 The display device according to claim 4, wherein an average primary particle size of the migrating particles contained in the second layer is smaller than that of the first layer.
  8.  前記第2層を構成する前記繊維状構造体の繊維径は、前記第1層よりも細い、請求項6に記載の表示装置。 The display device according to claim 6, wherein a fiber diameter of the fibrous structure constituting the second layer is smaller than that of the first layer.
  9.  前記繊維状構造体はナノファイバーによって構成されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the fibrous structure is composed of nanofibers.
  10.  前記繊維状構造体は静電防止法により形成された、請求項1に記載の表示装置。 The display device according to claim 1, wherein the fibrous structure is formed by an antistatic method.
  11.  前記非泳動粒子の光反射率は前記泳動粒子の光反射率よりも高く、前記泳動粒子が暗表示、前記非泳動粒子および前記多孔質層が明表示を行う、請求項1に記載の表示装置。 The display device according to claim 1, wherein the light reflectance of the non-migrating particles is higher than the light reflectance of the migrating particles, the migrating particles perform dark display, and the non-migrating particles and the porous layer perform bright display. .
  12.  表示装置を備え、
     前記表示装置は、
     絶縁性液体中に、泳動粒子と、多孔質層と、前記多孔質層に保持された非泳動粒子とを含み、
     前記多孔質層は、前記泳動粒子とは異なる光反射性を有すると共に、前記非泳動粒子の体積分率が異なる複数の層からなる
     電子機器。
    A display device,
    The display device
    In the insulating liquid, including migrating particles, a porous layer, and non-migrating particles held in the porous layer,
    The said porous layer is an electronic device which consists of a several layer from which the volume fraction of the said non-electrophoretic particle differs while having light reflectivity different from the said electrophoretic particle.
PCT/JP2015/083045 2015-01-14 2015-11-25 Display device and electronic device WO2016114011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-005048 2015-01-14
JP2015005048A JP2016130794A (en) 2015-01-14 2015-01-14 Display device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2016114011A1 true WO2016114011A1 (en) 2016-07-21

Family

ID=56405568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083045 WO2016114011A1 (en) 2015-01-14 2015-11-25 Display device and electronic device

Country Status (2)

Country Link
JP (1) JP2016130794A (en)
WO (1) WO2016114011A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109222A (en) * 2011-11-22 2013-06-06 Sony Corp Electrophoretic element, method of manufacturing the same, and display device
JP2014106332A (en) * 2012-11-27 2014-06-09 Sony Corp Electrophoretic element and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109222A (en) * 2011-11-22 2013-06-06 Sony Corp Electrophoretic element, method of manufacturing the same, and display device
JP2014106332A (en) * 2012-11-27 2014-06-09 Sony Corp Electrophoretic element and display device

Also Published As

Publication number Publication date
JP2016130794A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP5884659B2 (en) Electrophoretic element and display device
JP5741829B2 (en) Electrophoretic element, display device and electronic device
JP5609700B2 (en) Electrophoretic element and display device
JP6176252B2 (en) Electrophoretic element, display device and electronic apparatus
JP5942394B2 (en) Electrophoretic element and display device
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP5880295B2 (en) Method for manufacturing electrophoretic element
JP5900179B2 (en) Electrophoretic element and display device
WO2017159075A1 (en) Reflective display device and electronic device
JP6127924B2 (en) Display device and electronic device
JP5673269B2 (en) Electrophoretic element, display device and electronic device
JP5966885B2 (en) Electrophoretic element and display device
JP5942776B2 (en) Electrophoretic element and display device
JP2015191037A (en) display device and electronic equipment
JP5817464B2 (en) Electrophoretic element and display device
WO2016114011A1 (en) Display device and electronic device
JP2015004914A (en) Display unit and electronic apparatus
WO2015141303A1 (en) Display device, method for manufacturing display device and electronic device
WO2017073169A1 (en) Electrophoresis element, display device, and electronic equipment
WO2017141608A1 (en) Display device, display device manufacturing method, and electronic apparatus
JP2012173602A (en) Electrophoretic element and display device
WO2016129435A1 (en) Electrophoretic element and method for manufacturing same, and display device
JP2015197491A (en) Display unit and electronic apparatus
WO2016194504A1 (en) Display device and electronic component
JP2014209159A (en) Display unit and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877963

Country of ref document: EP

Kind code of ref document: A1