WO2016190136A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2016190136A1
WO2016190136A1 PCT/JP2016/064327 JP2016064327W WO2016190136A1 WO 2016190136 A1 WO2016190136 A1 WO 2016190136A1 JP 2016064327 W JP2016064327 W JP 2016064327W WO 2016190136 A1 WO2016190136 A1 WO 2016190136A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display
gate electrode
display element
semiconductor layer
Prior art date
Application number
PCT/JP2016/064327
Other languages
French (fr)
Japanese (ja)
Inventor
湯本 昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016190136A1 publication Critical patent/WO2016190136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16755Substrates

Definitions

  • the present disclosure relates to a display device including a display element whose display state is controlled by a voltage such as an electrophoretic display (EPD).
  • a display element whose display state is controlled by a voltage such as an electrophoretic display (EPD).
  • EPD electrophoretic display
  • a display device using a twisting ball method, an electrophoresis method, a magnetophoresis method or the like has been developed as a reflective image display medium capable of handwritten input.
  • a position input with a pen is detected by a sensor, and calculation processing is performed by the system based on the position information, and a locus of pen input is displayed on a display.
  • Patent Document 1 discloses an image forming apparatus in which a pressure-sensitive conductive layer is provided on the display surface side.
  • an electric field is partially generated by applying pressure to the pressure-sensitive conductive layer with a pen or the like, and handwriting input and display thereof are possible without using a sensor.
  • an AC signal supply circuit and a signal receiving circuit are provided for one indicator detection sensor, and an indicator detection for detecting a position pressed by the indicator based on a change in capacitance.
  • An apparatus is disclosed.
  • the pressure-sensitive conductive layer is relatively expensive, and the display body is also relatively expensive. There was a problem in terms of cost effectiveness in commercialization.
  • the pressure-sensitive conductive layer is disposed between the display substrate and the display element, the pressure-sensitive conductive layer is required to be transparent and have excellent optical characteristics.
  • the pointer detection apparatus of Patent Document 2 also has a problem in terms of cost effectiveness.
  • a first display device includes a first gate electrode, a display element that changes a display state according to a change in applied voltage, and a plurality of lower electrodes that apply a voltage to the display element.
  • a drive substrate provided with a thin film transistor having a semiconductor layer, a pair of source and drain electrodes, a display substrate and a display substrate having an upper electrode, and a drive substrate, An elastic member having an insulating property is provided between the first gate electrode and the semiconductor layer.
  • a second display device includes a plurality of gate lines and a plurality of signal lines, a display element whose display state changes according to a change in applied voltage, and a plurality of voltages that apply a voltage to the display element.
  • a driving substrate having a lower electrode, a first gate electrode, a second gate electrode, a semiconductor layer, a pair of source and drain electrodes provided on each of the plurality of lower electrodes and a supporting member, and a voltage applied to the display element
  • the thin film transistor includes a support member and a display element.
  • a semiconductor layer, a pair of source and drain electrodes, and a second gate electrode are provided in this order from the support member side, and a first gate electrode is provided on the surface of the support member opposite to the display element, The first gate electrode has an insulating elastic member between the support member and the second gate electrode is electrically connected to the gate line.
  • a third display device includes a plurality of gate lines and a plurality of signal lines, a display element that changes a display state in accordance with a change in applied voltage, and a plurality of voltages that apply a voltage to the display element.
  • the first gate electrode is provided on the surface of the support member opposite to the display element, and the support member and the display element.
  • a first semiconductor layer, a pair of first source electrode and drain electrode are provided in this order, and an insulating elastic member is disposed between the first gate electrode and the semiconductor layer,
  • a second gate electrode, a second semiconductor layer, a pair of second source electrode and drain electrode are provided in this order from the support member side between the support member and the display element, and the second gate electrode
  • the drain electrode is electrically connected to the signal line to the gate line.
  • a thin film transistor having a first gate electrode, a semiconductor layer, a pair of source electrodes and a drain electrode is provided on each of a plurality of lower electrodes provided on the drive substrate side.
  • each of the plurality of lower electrodes provided on the drive substrate side includes the first gate electrode, the semiconductor layer, the pair of source electrodes, and the drain electrode.
  • an elastic member having an insulating property is provided between the first gate electrode and the semiconductor layer.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a display device according to a first embodiment of the present disclosure.
  • FIG. It is a plane schematic diagram of the electrophoretic element used for the display apparatus shown in FIG. It is a schematic diagram explaining operation
  • FIG. 6 is a circuit diagram illustrating an example of a pixel drive circuit of the display device illustrated in FIG. 5. It is sectional drawing showing the structure of the display apparatus which concerns on 3rd Embodiment of this indication.
  • FIG. 8 is a circuit diagram illustrating an example of a pixel drive circuit of the display device illustrated in FIG. 7.
  • FIG. 8 is a circuit diagram illustrating another example of the pixel drive circuit of the display device illustrated in FIG. 7.
  • FIG. 10 is a cross-sectional view illustrating a configuration of a display device according to a modified example of the present disclosure. It is a perspective view showing the external appearance of the tablet personal computer using the display apparatus of this indication.
  • First Embodiment Example in which an elastic member is provided between a first gate electrode (common electrode) of a TFT electrically connected to each pixel electrode and a semiconductor layer
  • Configuration of display device 1-2 Manufacturing method of display device 1-3.
  • Preferred operation method of display device 1-4 Action / Effect Second Embodiment (Example in which a second gate electrode is provided on a semiconductor layer of a TFT electrically connected to each pixel electrode (top gate type)) 3.
  • Third Embodiment Example in which a second gate electrode is provided below a semiconductor layer of a TFT electrically connected to each pixel electrode (bottom gate type)) 4).
  • Modification 5 Application example (electronic equipment)
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to a first embodiment of the present disclosure.
  • the display device 1 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display, for example.
  • This display device 1 includes, for example, an electrophoretic element 30 having a memory property as a display element between a drive substrate 10 and a display substrate 20 which are arranged to face each other via a spacer (not shown). is there.
  • the display device 1 is electrically connected to the pixel electrode 17 and the pixel electrode 17 that are formed separately on the drive substrate 10 side, for example, for each pixel, and is common between the pixels.
  • a thin film transistor 15 (TFT) having an electrode (common electrode 12) as a gate electrode is provided, and an elastic member 13 is provided between the common electrode 12 and the semiconductor layer 151.
  • TFT thin film transistor 15
  • the TFT 15 and the pixel electrode 17 are stacked in this order on one surface (display surface S 1 side) of the support member 14, and the elastic member 13 is interposed on the other surface (back surface S 2 side) of the support member 14.
  • the common electrode 12 and the support substrate 11 are stacked in this order.
  • the support substrate 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like.
  • the inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like.
  • silicon oxide include glass or spin-on-glass (SOG). Etc. are included.
  • metal material include aluminum (Al), nickel (Ni), and stainless steel.
  • plastic material examples include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEEK polyethyl ether ketone
  • COP cycloolefin polymer
  • PI polyimide
  • PES polyether sulfone
  • the support substrate 11 may be light transmissive or non-light transmissive. Further, the support substrate 11 may be a rigid substrate such as a wafer, or may be a flexible thin layer glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material.
  • the common electrode 12 is a gate electrode of the TFT 15 and is formed on one surface of the support substrate 11, for example, the entire displayable region.
  • the common electrode 12 is, for example, any one of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C (carbon), gold (Au), silver (Ag), and copper (Cu). Or two or more types are included.
  • the common electrode 12 may be divided and formed in a matrix by adding a configuration for supplying power to each electrode.
  • the elastic member 13 is provided on the common electrode 12 and has an insulating property and a property (elasticity) that returns to the original shape after unloading although it is deformed by pressing. Moreover, it is preferable that the elastic member 13 has a high dielectric constant, and specifically, it is preferable that it is comprised with the elastomer.
  • elastomers include, for example, nitrile rubber, hydrogenated nitrile rubber, fluorine rubber, acrylic rubber, silicone rubber, urethane rubber, ethylene prohydrene rubber, chloroprene rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, natural rubber, isoprene rubber , Styrene butadiene rubber, butadiene rubber, polysulfide rubber, norbornene rubber, and various thermoplastic elastomers. These may be mixed or post-treatment such as foaming or filler kneading. Among these, it is particularly preferable to use a polyurethane resin classified as a thermoplastic elastomer.
  • the support member 14 may be light transmissive or non-light transmissive similarly to the support substrate 11. Although details will be described later, the support member 14 is preferably a flexible thin-layer glass or film that can apply the pressure from the display surface S1 to the elastic member 13.
  • the TFT 15 is for switching the display state of the pressed position.
  • the TFT 15 includes a semiconductor layer 151 and a pair of source electrode 152A and drain electrode 152B provided on the elastic member 13 (more precisely, on the support member 14) using the common electrode 12 as a gate electrode.
  • the semiconductor layer 151 may be an inorganic TFT using an inorganic semiconductor layer or an organic TFT using an organic semiconductor layer.
  • the first potential is applied to the source electrode 152 ⁇ / b> A, and the drain electrode 152 ⁇ / b> B is electrically connected to the pixel electrode 17.
  • the display surface S1 When the display surface S1 is pressed with a pen or the like, the thickness of the elastic member 13 in this portion is reduced, the common electrode 12 acts as a gate electrode, and the TFT 15 in the vicinity of the pressed position becomes conductive. As a result, a negative potential is supplied to the pixel electrode 17 and the display state of the pressed position is switched.
  • the insulating layer 16 is made of, for example, an insulating resin material such as polyimide.
  • the pixel electrode 17 is formed on the insulating layer 16 so as to be divided into a plurality of matrixes, for example.
  • the pixel electrode 17 includes, for example, one or more of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C, Au, Ag, and Cu.
  • the pixel electrode 17 is connected to the TFT 15 (specifically, the drain electrode 152B) through a contact hole 16A provided in the insulating layer 16.
  • the display substrate 20 is provided with a counter electrode 22 on one surface of the support member 21.
  • the support member 21 has flexibility and is made of, for example, PET, TAC, PEN, PC, acrylic, glass, or the like.
  • a material similar to that of the support member 14 may be used except that it is light transmissive. This is because an image is displayed on the upper surface side of the display substrate 20, and thus the support member 21 needs to be light transmissive.
  • the thickness of the support member 21 is, for example, 10 ⁇ m to 250 ⁇ m.
  • the counter electrode 22 includes, for example, one or more of translucent conductive materials (transparent conductive materials). Examples of such a conductive material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • the thickness of the counter electrode 22 is, for example, 0.001 ⁇ m to 1 ⁇ m.
  • the counter electrode 22 is formed, for example, on one surface of the support member 21, for example, the entire displayable region, as with the common electrode 12, but a configuration for supplying power to each electrode is added.
  • the pixel electrode 12 may be divided into a plurality of parts in a matrix.
  • the light transmittance of the counter electrode 22 is preferably as high as possible, for example, 80% or more. It is.
  • the electric resistance of the counter electrode 22 is preferably as low as possible, for example, 100 ⁇ / ⁇ (square) or less.
  • an electrophoretic element 30 that is voltage-controlled is provided as a display element between the drive substrate 10 and the display substrate 20.
  • the electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and the electrophoretic particles 32 move between a pair of electrodes (the pixel electrode 17 and the counter electrode 22) according to a voltage.
  • the display is switched.
  • the electrophoretic element 30 is responsible for black display and white display by the electrophoretic particles 32 colored in black and the porous layer 33 colored in white, and in the electrophoretic element (specifically, disposed oppositely). This is a so-called microcup type electrophoretic element in which columns (spacers) having a high elastic modulus are provided between the electrodes).
  • the electrophoretic element 30 includes, for example, a porous layer 33 together with the electrophoretic particles 32 in the insulating liquid 31.
  • the porous layer 33 is a three-dimensional structure formed by the fibrous structure 331 including the non-migrating particles 332, and for the migrating particles 32 to pass through the portion where the fibrous structure 331 does not exist.
  • a plurality of gaps (pores 333) are provided. Note that FIG. 2 schematically shows the configuration of the electrophoretic element 30 and may differ from the actual size and shape.
  • the insulating liquid 31 is, for example, one type or two or more types of non-aqueous solvents such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 be as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
  • the insulating liquid 31 may contain various materials as necessary. This material is, for example, a colorant, a charge control agent, a dispersion stabilizer, a viscosity modifier, a surfactant or a resin.
  • the electrophoretic particles 32 are one or more charged particles that are electrically movable, and are dispersed in the insulating liquid 31.
  • the migrating particles 32 can move between the pixel electrode 17 and the counter electrode 22 in the insulating liquid 31.
  • the migrating particles 32 also have arbitrary optical reflection characteristics (light reflectivity).
  • the light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • the migrating particles 32 are, for example, one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). .
  • the migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles.
  • Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
  • the specific forming material of the migrating particles 32 is selected according to the role of the migrating particles 32 in order to cause contrast, for example.
  • the material in which white display is performed by the migrating particles 32 is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, and among these, titanium oxide is preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • the material in the case where black display is performed by the migrating particles 32 is, for example, a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may be aggregated in some cases.
  • the average particle diameter of the migrating particles 32 is preferably in the range of 0.1 ⁇ m to 10 ⁇ m, for example.
  • the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 over a long period of time and are not easily adsorbed by the porous layer 33.
  • a dispersant or a charge adjusting agent
  • the electrophoretic particles 32 may be subjected to a surface treatment, or both may be used in combination.
  • the dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK® series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
  • the surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
  • the surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32.
  • the type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32.
  • carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced.
  • the graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance.
  • the kind of polymerizable functional group is the same as that described for the adsorptive material.
  • the dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • the porous layer 33 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG.
  • the porous layer 33 has a plurality of gaps (pores 333) through which the migrating particles 32 pass in places where the fibrous structure 331 does not exist.
  • FIG. 1 the illustration of the porous layer 33 is simplified.
  • the fibrous structure 331 includes one or more non-migrating particles 332, and the non-migrating particles 332 are held by the fibrous structure 331.
  • the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. However, both may be mixed.
  • each fibrous structure 331 preferably holds one or more non-migrating particles 332.
  • FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.
  • the porous layer 33 is a three-dimensional structure
  • the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 33 increases and the high light
  • the porous layer 33 can be thin in order to obtain the reflectance.
  • the contrast increases and the energy required to move the migrating particles 32 decreases.
  • the migrating particles 32 can easily pass through the pores 333. As a result, the time required to move the migrating particles 32 is shortened, and the energy required to move the migrating particles 32 is also reduced.
  • the reason why the non-migrating particles 332 are included in the fibrous structure 331 is that the light reflectance of the porous layer 33 is higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
  • the shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous material having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • the average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 333 increases. For this reason, it is preferable that the average fiber diameter of the fibrous structure 331 is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
  • the average pore diameter of the pores 333 is not particularly limited, but is preferably as large as possible. This is because the migrating particles 32 easily pass through the pores 333. Therefore, the average pore diameter of the pores 333 is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the thickness of the porous layer 33 is not particularly limited, but is, for example, 5 ⁇ m to 100 ⁇ m. This is because the shielding property of the porous layer 33 is enhanced and the migrating particles 32 easily pass through the pores 333.
  • the fibrous structure 33 for example, one or two or more of polymer materials or inorganic materials are included, and other materials may be included.
  • the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
  • the fibrous structure 331 is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is likely to be diffusely reflected, the light reflectance of the porous layer 33 is further increased, and the volume ratio of the pores 333 to the unit volume of the porous layer 33 is increased. This is because the migrating particles 32 can easily pass through the pores 333. Thereby, the contrast becomes higher and the energy required to move the migrating particles 32 becomes lower.
  • Nanofiber is a fibrous substance having a fiber diameter of 0.001 ⁇ m to 0.1 ⁇ m and a length that is 100 times or more of the fiber diameter.
  • the fibrous structure 331 that is a nanofiber is preferably formed by an electrospinning method using a polymer material. This is because the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
  • This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32.
  • the light reflectance of the fibrous structure 331 is not particularly limited, but is preferably set so that at least the porous layer 33 can shield the migrating particles 32 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • Non-electrophoretic particles 332 are particles that are fixed to the fibrous structure 331 and do not migrate electrically. As long as the non-migrating particles 332 are held by the fibrous structure 331, the non-migrating particles 332 may be partially exposed from the fibrous structure 331 or embedded therein.
  • the specific forming material of the non-migrating particles 332 is selected according to the role played by the non-migrating particles 332 in order to generate contrast, for example. Specifically, a metal oxide is preferable and titanium oxide is more preferable. This is because it is excellent in electrochemical stability and fixability, and high reflectance can be obtained. As long as a contrast can be generated, the material for forming the non-migrating particles 332 may be the same material as the material for forming the migrating particles 32 or may be a different material.
  • the spacer is for keeping the drive substrate 10 and the display substrate 20 between, and for example, preventing the bias of the migrating particles 32 in the plane of the display device 1.
  • the spacer is made of, for example, an insulating material such as a polymer material, a seal material mixed with fine particles, and the like.
  • the shape of the spacer is not particularly limited, but is preferably a shape that does not hinder the movement of the migrating particles 32 between the pixel electrode 17 and the counter electrode 22 and can uniformly distribute it, for example, a lattice shape. . Further, in view of the manufacturing process described later, for example, it is preferable that the shape is an inversely tapered shape from the drive substrate 10 side to the display substrate 20 side.
  • the thickness of the spacer is not particularly limited, but in particular, it is preferably as thin as possible in order to reduce power consumption, for example, 10 ⁇ m to 100 ⁇ m.
  • the spacer may be formed at an appropriate position in the display layer.
  • the display device 1 of the present embodiment can be formed by, for example, the following method.
  • the counter electrode 22 is provided on one surface of the support member 21 by using an existing method such as various film forming methods, and the display substrate 20 is formed.
  • a spacer is formed on the counter electrode 22.
  • the spacer can be formed by, for example, the following imprint method. First, a solution containing a spacer constituent material (for example, a photosensitive resin material) is applied onto the counter electrode 22. Next, a mold having a recess on the coated surface is pressed and exposed to light, and then the mold is removed. Thereby, a columnar spacer is formed. At this time, the spacer preferably has a so-called reverse taper in which the width gradually decreases from the display substrate 20 side to the drive substrate 10 side. Thereby, a type
  • a fibrous structure 331 is disposed between adjacent spacers.
  • polyacrylonitrile as a fibrous structure 331 is dispersed or dissolved in N, N′-dimethylformamide, and, for example, titanium oxide is added as non-electrophoretic particles 332 and sufficiently stirred to obtain a polymer solution (spinning). Solution).
  • the spinning solution is used to spin on another substrate by, for example, an electrostatic spinning method.
  • the fibrous structure 331 is formed by a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like instead of the electrostatic spinning method. May be.
  • the fibrous structure 331 is divided into appropriate sizes and placed between the spacers (cells). Specifically, by pressing the fibrous structure 331 from above (the direction opposite to the support member 21), the fibrous structure 331 is scraped off by the spacer. The cut fibrous structure 331 is accommodated between the spacers. In this way, the porous layer 33 in which the non-electrophoretic particles 332 are held on the fibrous structure 331 is formed.
  • the drive substrate 10 is prepared. First, after forming the TFT 15 and the insulating layer 16 on the support member 14, a contact hole 16 ⁇ / b> A is provided in the insulating layer 16. Next, after forming a metal film on the insulating layer 16, the pixel electrode 17 is formed by patterning. Subsequently, the support member 14 is bonded to the elastic member 13 of the support substrate 11 in which the common electrode 12 and the elastic member 13 are stacked in this order, and the drive substrate 10 is formed.
  • the sealing layer via a sealing agent (not shown), for example.
  • the peeling member (not shown) provided with (not shown) is made to oppose.
  • the driving substrate 10 in which the common electrode 12, the elastic member, the TFT 15 and the pixel electrode 17 are provided on the support substrate 11 via an adhesive layer (not shown) on the seal layer. To fix.
  • the display device 1 is completed through the above steps.
  • the counter electrode 22 is normally connected to, for example, the ground (GND), and a first potential (here, a negative potential) is applied to the source electrode 152A, for example. .
  • a positive or negative potential is applied to the common electrode 12 depending on the dopant added to the semiconductor material constituting the semiconductor layer 151.
  • the common electrode 12 and the semiconductor layer 151 are electrically insulated from each other by the elastic member 13, and thus are applied to the source electrode 151A.
  • the negative potential is not applied to the pixel electrode 17.
  • the migrating particles 32 responsible for the display do not move and are arranged, for example, on the pixel electrode 17 side.
  • the migrating particles 32 are black particles that are negatively charged.
  • the display device 1 when the display device 1 is pressed (pressed) at an arbitrary position with the input pen 50, the thickness of the elastic member 13 in the pressed portion is reduced, and the common electrode 12 and the semiconductor layer The distance to 151 decreases and the common electrode 12 acts as a gate electrode. That is, charges are induced in the semiconductor layer 151, and the TFT 15 near the pen tip of the input pen 50 becomes conductive. As a result, a negative potential is supplied to the pixel electrode 17, and the negatively charged migrating particles 32 receive a product force and move toward the counter electrode 22, thereby drawing a black line on the display surface S ⁇ b> 1.
  • the input pen 50 does not have to be a pen dedicated to the display device 1 of the present embodiment, and the shape and structure thereof are not particularly limited as long as the display surface S1 can be pressurized.
  • an image forming apparatus provided with a pressure-sensitive conductive layer on the display surface side has been considered.
  • an electric field is partially generated by applying pressure to the pressure-sensitive conductive layer with a pen or the like, and a locus input by handwriting is displayed without using a sensor. For this reason, the delay from input to display is eliminated.
  • the pressure-sensitive conductive layer is relatively expensive and the display body is also relatively expensive, there is a problem in terms of cost-effectiveness for commercialization of a device to which a handwriting input function is added. It was.
  • the pressure-sensitive conductive layer is transparent and has excellent optical characteristics. Therefore, it has been difficult to realize an image forming apparatus capable of handwriting input having such a configuration. Further, even if it is developed, there is a problem in that luminance and resolution are lowered because an image is visually recognized through the pressure-sensitive conductive layer. Furthermore, since there is a pressure-sensitive conductive layer above the display element, there is a problem that parallax occurs due to the separation of the thickness of the pressure-sensitive conductive layer from the distance between the input surface and the image display surface (display element).
  • an indicator detection device in which an AC signal supply circuit and a signal reception circuit are provided for one indicator detection sensor, and a position pressed by the indicator is detected based on a change in capacitance.
  • this indicator detection device also has a problem in terms of cost effectiveness.
  • the TFT 15 is provided in each of the plurality of pixel electrodes 17 provided on the drive substrate 10 side, and the gate electrode constituting the TFT 15 is used as the common electrode 12 in common.
  • An elastic member 13 having insulating properties is provided between the electrode 12 and the semiconductor layer 151.
  • the pixel electrode 17 that is divided and formed on the drive substrate 10 and the pixel
  • the TFT 15 electrically connected to the electrode 17 is provided, and the insulating elastic member 13 is provided between the gate electrode (common electrode 12) of the TFT 15 and the semiconductor layer 151.
  • the TFT 15 in the pressed portion is turned on and applied to the source electrode 152A on the pixel electrode 17 in the pressing portion. A potential is supplied.
  • the distance between the input surface and the image display surface (display element) is only the thickness of the support member 21 and the counter electrode 22, display at a position close to the input surface is possible. That is, it is possible to provide the display device 1 with less parallax.
  • FIG. 4 illustrates a cross-sectional configuration of a display device (display device 2) according to the second embodiment of the present disclosure.
  • the display device 2 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display.
  • the display device 2 is a display element, for example, electrophoresis between a drive substrate 10 and a display substrate 20 that are arranged to face each other via a spacer (not shown).
  • An element 30 is provided.
  • the display device 2 includes, for example, a pixel electrode 17 formed separately for each pixel and a TFT 25 electrically connected to the pixel electrode 17 on the drive substrate 10 side.
  • the common electrode 12 is provided below the semiconductor layer 251 (on the support substrate 11 side) via the elastic member 13, and the gate electrode 253 (on the display element 30 side) is also provided above the semiconductor layer 251.
  • the second embodiment differs from the first embodiment in that a second gate electrode) is provided.
  • the common electrode 12 and the gate electrode 253 share the semiconductor layer 251 and the pair of source electrode 252A and drain electrode 252B, respectively, so that the common electrode 12 similar to that in the first embodiment is used as the gate electrode.
  • FIG. 5 shows the configuration of the display device 2.
  • the display device 2 includes a signal line driving circuit 120 and a gate line driving circuit 130 which are active matrix driving drivers around the display area.
  • a pixel driving circuit 140 is provided in the display area.
  • FIG. 6 illustrates an example of the pixel driving circuit 140.
  • the pixel driving circuit 140 is an active pixel driving circuit provided with one transistor (Tr1) and one capacitor (holding capacity; Cs) used in a general liquid crystal display or an electrophoresis apparatus.
  • the transistor Tr1 may have, for example, an inverted stagger structure (so-called bottom gate type) or a stagger structure (top gate type), and is not particularly limited.
  • the so-called top gate type TFT 25 in which the gate electrode 253 is provided over the semiconductor layer 251 illustrated in FIG. 5 corresponds to the transistor Tr1.
  • a plurality of signal lines 120A are arranged in the column direction, and a plurality of gate lines 130A are arranged in the row direction. An intersection between each signal line 120A and each gate line 130A corresponds to one pixel.
  • Each signal line 120A is connected to the signal line drive circuit 120, and each gate line 130A is connected to the gate line drive circuit 130.
  • Each signal line 120A is connected to a gate electrode 253 provided in the corresponding pixel, and each signal line 120A is connected to a source electrode 252A.
  • the drain electrode 252B is electrically connected to the pixel electrode 17.
  • One of the capacitors Cs is connected to the Cs line 150 ⁇ / b> A, and the other is connected to the counter electrode 22.
  • the gate lines 130A are sequentially selected one by one, the TFTs 25 on the selected gate lines 130A are turned on, and the voltage applied to the signal line 120A at the moment of conduction is stored in the capacitor Cs in the pixel. . Thereafter, even when the gate line 130A is not selected, the voltage is held in the capacitor Cs, and thus the display element (electrophoretic element 30) is continuously driven. Note that the capacitor Cs may be omitted when the TFT 25 itself or the display element functions as a storage capacitor.
  • the gate electrode 253 has a function as a potential shield from the pixel electrode 17 in addition to a function as a gate electrode of a video display TFT.
  • the common electrode 12 and the gate electrode 253 sharing the semiconductor layer 251 and the pair of source electrode 252A and drain electrode 252B are provided above the semiconductor layer 251. It is possible to provide a display device capable of active matrix driving together with handwriting input.
  • the display device 2 of the present embodiment can move the migrating particles 32 that have moved to the counter electrode 22 side by handwriting input to the pixel electrode 17 side by using an active matrix driving TFT. That is, the black line drawn on the display surface S1 of the display device 2 can be erased (white display). As a result, the display device 2 can be used repeatedly, for example, as an ordinary electronic book terminal or an electronic notebook capable of handwriting input.
  • FIG. 7 illustrates a cross-sectional configuration of a display device (display device 3) according to the third embodiment of the present disclosure.
  • the display device 3 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display.
  • the display device 3 is, for example, an electrophoresis device as a display element between a drive substrate 10 and a display substrate 20 that are arranged to face each other via a spacer (not shown).
  • An element 30 is provided.
  • the TFT 35 connected to the pixel electrode 17 is configured separately as a handwriting input TFT 35A and an active matrix driving TFT 35B. Different from form.
  • the gate electrode 351 is provided on the support member 14, and the gate electrode 351, the gate insulating layer 352, the semiconductor layer 353B, the pair of the source electrode 354C, and the drain electrode 354B are arranged in this order.
  • This is a so-called bottom gate type TFT provided.
  • the TFT 35A for handwriting input has the same configuration as the TFT 15 in the first embodiment.
  • the TFTs 35A and 35B share a drain electrode 354B, and the drain electrode 354B is electrically connected to the pixel electrode 17.
  • the display device 3 includes a signal line driving circuit 120 and a gate line driving circuit 130 that are drivers for driving an active matrix around the display area. Is provided with a pixel driving circuit 140.
  • FIG. 8 illustrates an example of the pixel drive circuit 140 of the display device 3.
  • the pixel drive circuit 140 of the display device 3 is an active pixel drive circuit provided with one transistor (Tr1) and one capacitor (holding capacity; Cs). In the present embodiment, this is provided with a transistor Tr2 for handwriting input.
  • the drain electrode of the transistor Tr2 is connected to the pixel electrode 17 together with the transistor Tr1 as described above, and the source electrode is connected to the signal line 120A. It is connected to the.
  • the signal line 120A is drawn by applying a potential corresponding to black display (for example, a negative potential when the migrating particles 32 are negatively charged). It becomes possible.
  • the TFT for handwriting input functions. It becomes difficult to realize a handwriting function by pressing. This is because the gate electrode as the active matrix driving TFT provided on the support member 14 shields the electric field from the common electrode 12 which is the gate electrode of the handwriting input TFT.
  • the bottom gate type TFT 35B for active matrix driving that shares the drain electrode 354B of the TFT 35A for handwriting input is provided.
  • This makes it possible to use amorphous silicon, which is excellent in cost, as the semiconductor layer 353B of the bottom gate type TFT 35B for active matrix driving. Therefore, in addition to the effects in the first and second embodiments, it is possible to provide a display device that is more cost-effective.
  • the present invention is not limited to this.
  • a dedicated line 160A for applying a first potential to the source electrode of the transistor Tr2 for handwriting input may be provided and connected thereto.
  • FIG. 10 illustrates a cross-sectional configuration of a display device (display device 4) according to a modified example of the present disclosure.
  • the display device 4 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display, for example.
  • the display device 4 includes, for example, electrophoresis as a display element between the drive substrate 10 and the display substrate 20 that are arranged to face each other via a spacer (not shown).
  • An element 30 is provided.
  • the display device 4 of this modification is a combination of the display device 2 of the second embodiment and the display device 3 of the third embodiment, and is electrically connected to each pixel electrode 17.
  • the TFT 45 includes a bottom gate type active matrix driving TFT 45B and a handwriting input TFT 45A in which the common electrode 12 is a gate electrode and the gate electrode 455 is provided on the semiconductor layer 453A.
  • the TFT 45 in this modification is composed of a TFT 45A for handwriting input and a TFT 45B for active matrix driving.
  • the TFT 45A includes a common electrode 12 provided with an elastic member 13 below the support member 14 (on the back surface S2 side) as a gate electrode, and a semiconductor layer 453A provided on the support member 14 via a gate insulating film 452. And a pair of source electrode 454A, drain electrode 454B, and gate electrode 455 provided with insulating layer 16 on semiconductor layer 453A.
  • the TFT 45B includes a gate electrode 451 provided on the support member 14, a semiconductor layer 453B provided on the gate electrode 451 through a gate insulating film 452, and a pair of source electrode 454C and drain electrode 454B. Yes.
  • the drain electrode 454B is shared by the TFT 45A and the TFT 45B, and is electrically connected to the pixel electrode 17.
  • the gate electrode 455 of the TFT 45A in this modification is for reducing the influence of the potential applied to the pixel electrode 17 on the semiconductor layer 453A of the TFT 45A.
  • the threshold value of the TFT 45A can be adjusted by applying an appropriate voltage to the gate electrode 455. Specifically, for example, in the case where the semiconductor layer 453A is made of amorphous silicon, the threshold value is increased by applying a negative potential to the gate electrode 455, and the pressure required for drawing is relatively increased. Further, by applying a positive potential to the gate electrode 455, the threshold value is lowered, and the pressure required for drawing is relatively lowered. In this way, it is possible to arbitrarily adjust the pressure required for drawing when inputting by handwriting.
  • the threshold value of the TFT 45A can be adjusted by providing the gate electrode 455 on the semiconductor layer 453A of the TFT 45A for handwriting input and applying an appropriate voltage thereto. Accordingly, it is possible to arbitrarily adjust the pressure required for drawing when inputting by handwriting, and it is possible to reflect the pressure (writing pressure) of the pressing in an analog manner in the drawing by handwriting input.
  • the pressing required for drawing when inputting by hand can also be adjusted by adjusting the voltage applied to the common electrode 12. Further, the pressing required for drawing can be adjusted by adjusting the off-side voltage of the gate electrode 253 of the TFT 25 in the second embodiment.
  • FIG. 11 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a display unit 610 and a housing 620, and the display unit 610 is configured by the display device 1 (or any one of the display devices 2 to 4).
  • the display devices 1 to 4 of the first to third embodiments and the modifications may be applied to an electronic bulletin board or the like.
  • a microcup type electrophoretic element is used as the electrophoretic element 30, but for example, a so-called multi-capsule in which white and black colored electrophoretic particles are enclosed is provided.
  • a microcapsule electrophoretic element may be used.
  • the display element used for this indication is not limited to an electrophoretic element, if it has memory property.
  • the configuration including the insulating liquid 31, the migrating particles 32, and the porous layer 33 is illustrated as the electrophoretic element 30, but the configuration of the electrophoretic element 30 (display layer) is as follows.
  • the present invention is not limited to the one using the porous layer 33 as long as the contrast can be formed by light reflection for each pixel using the electrophoresis phenomenon.
  • a capsule type or a type without a fibrous structure (colored liquid itself) may be used.
  • this indication can also take the following structures.
  • a thin film transistor having a first gate electrode, a semiconductor layer, a pair of source electrodes and a drain electrode on each of a display element whose display state changes in accordance with a change in applied voltage and a plurality of lower electrodes for applying a voltage to the display element And a display substrate having an upper electrode disposed between the display element and the display element, the drive substrate including the first gate electrode, the semiconductor layer, and the semiconductor layer.
  • a display device having an insulating elastic member between the two.
  • the thin film transistor has the semiconductor layer and the pair of source / drain electrodes on a surface of the support member on the display element side, and the elastic member on the surface of the support member opposite to the display element.
  • the thin film transistor includes a second gate electrode on the display element side of the support member.
  • the second gate electrode is provided between the semiconductor layer and the support member.
  • the display element has a memory property.
  • the display element is an electrophoretic element including electrophoretic particles and a porous layer formed of a fibrous structure in an insulating liquid. apparatus.
  • the fibrous structure includes non-electrophoretic particles having light reflectivity different from the electrophoretic particles.
  • a plurality of gate lines and a plurality of signal lines, a display element whose display state changes according to a change in applied voltage, a plurality of lower electrodes for applying voltage to the display element, and a plurality of lower electrodes A first gate electrode, a second gate electrode, a semiconductor layer, a thin film transistor comprising a pair of source and drain electrodes, a drive substrate having a support member, and a plurality of lower electrodes for applying a voltage to the display element;
  • a display substrate having an upper electrode, and in the thin film transistor, the support portion is provided between the support member and the display element.
  • the semiconductor layer, the pair of source and drain electrodes, and the second gate electrode are provided in this order from the side, and the first gate electrode is provided on the surface of the support member opposite to the display element.
  • the first gate electrode includes an elastic member having insulation between the first gate electrode and the support member, and the second gate electrode is electrically connected to the gate line.
  • a plurality of gate lines and a plurality of signal lines, a display element whose display state changes according to a change in applied voltage, a plurality of lower electrodes for applying voltage to the display element, and a plurality of lower electrodes A first gate electrode, a first semiconductor layer, a first thin film transistor comprising a pair of first source electrode and drain electrode, a second gate electrode, a second semiconductor layer, and a pair of first transistors sharing the drain electrode of the first thin film transistor.

Abstract

This display device is provided with: a display element (30) having a display state that changes depending on changes in the applied voltage; a drive substrate (10) in which a thin film transistor (15) having a first gate electrode (12), a semiconductor layer (151), an electrode pair consisting of a source electrode (152A) and a drain electrode (152B) is present on each of multiple lower electrodes (17) which apply a voltage to the display element (30); and a display substrate (20) which is arranged opposite of the drive substrate (10) with the display element (30) arranged therebetween and which has an upper electrode (22), wherein the drive substrate (10) comprises a first gate electrode (12) and an insulated, elastic member (13) disposed between said first gate electrode (12) and the semiconductor layer (151).

Description

表示装置Display device
 本開示は、例えば、電気泳動表示装置 (Electrophoretic Display;EPD)等の電圧によって表示状態が制御される表示素子を備えた表示装置に関する。 The present disclosure relates to a display device including a display element whose display state is controlled by a voltage such as an electrophoretic display (EPD).
 近年、手書き入力が可能な反射型の画像表示媒体として、ツイストボール方式、電気泳動方式、磁気泳動方式等を用いた表示デバイスが開発されている。このようなデバイスでは、ペンで入力した位置がセンサによって検知され、その位置情報を元にシステムで演算処理が行われ、ペン入力の軌跡がディスプレイに表示される。このような情報処理フローを有する表示デバイスでは、ペン入力と表示までの間に位置情報の検知(センシング)および演算理の時間が必要となるため、人間の目にはペン入力から軌跡の表示までに遅延が感じられる。 Recently, a display device using a twisting ball method, an electrophoresis method, a magnetophoresis method or the like has been developed as a reflective image display medium capable of handwritten input. In such a device, a position input with a pen is detected by a sensor, and calculation processing is performed by the system based on the position information, and a locus of pen input is displayed on a display. In a display device having such an information processing flow, it takes time to detect position information (sensing) and arithmetic operation between pen input and display, and therefore, from the pen input to the display of the trajectory to the human eye. There is a delay.
 この遅延を改善することを目的として、例えば、特許文献1では、表示面側に感圧導電層を配設した画像形成装置が開示されている。この画像形成装置では、感圧導電層にペン等によって圧力を加えることで部分的に電界を発生させ、センサを介さずに手書き入力およびその表示が可能となっている。また、例えば、特許文献2では、1個の指示体検出センサに対して交流信号供給回路および信号受信回路を設け、指示体が押圧した位置を静電容量の変化に基づいて検出する指示体検出装置が開示されている。 For the purpose of improving this delay, for example, Patent Document 1 discloses an image forming apparatus in which a pressure-sensitive conductive layer is provided on the display surface side. In this image forming apparatus, an electric field is partially generated by applying pressure to the pressure-sensitive conductive layer with a pen or the like, and handwriting input and display thereof are possible without using a sensor. Further, for example, in Patent Document 2, an AC signal supply circuit and a signal receiving circuit are provided for one indicator detection sensor, and an indicator detection for detecting a position pressed by the indicator based on a change in capacitance. An apparatus is disclosed.
特開2002-14380号公報Japanese Patent Laid-Open No. 2002-14380 特開2015-57742号公報Japanese Patent Laid-Open No. 2015-57742
 特許文献1の画像形成装置では、遅延については改善されるものの、感圧導電層は比較的高価であり、加えて表示体も比較的高価であるため、手書き入力機能が付加された装置としては、製品化する上で費用対効果という点で問題があった。加えて、この画像形成装置では、感圧導電層が表示基板と表示素子との間に配置されているため、感圧導電層には、透明、且つ、優れた光学特性が求められる。しかしながら、実際には、十分な透明性および優れた光学特性を有する感圧導電層はなく、現実的にこのような構成の手書き入力が可能な画像形成装置を実現することは困難であった。また、特許文献2の指示体検出装置も費用対効果という点で問題があった。 In the image forming apparatus of Patent Document 1, although the delay is improved, the pressure-sensitive conductive layer is relatively expensive, and the display body is also relatively expensive. There was a problem in terms of cost effectiveness in commercialization. In addition, in this image forming apparatus, since the pressure-sensitive conductive layer is disposed between the display substrate and the display element, the pressure-sensitive conductive layer is required to be transparent and have excellent optical characteristics. However, in reality, there is no pressure-sensitive conductive layer having sufficient transparency and excellent optical characteristics, and it has been difficult to realize an image forming apparatus capable of handwriting input having such a configuration. Further, the pointer detection apparatus of Patent Document 2 also has a problem in terms of cost effectiveness.
 従って、費用対効果が高く、遅延の少ない手書き入力が可能な表示装置を提供することが望ましい。 Therefore, it is desirable to provide a display device that is cost-effective and capable of handwritten input with little delay.
 本開示の一実施形態の第1の表示装置は、印加電圧の変化に応じて表示状態が変化する表示素子と、表示素子に電圧を印加する複数の下部電極のそれぞれに、第1ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタが設けられた駆動基板と、表示素子を間に駆動基板と対向配置されると共に、上部電極を有する表示基板とを備えると共に、駆動基板は、第1ゲート電極と、半導体層との間に絶縁性を有する弾性部材を有する。 A first display device according to an embodiment of the present disclosure includes a first gate electrode, a display element that changes a display state according to a change in applied voltage, and a plurality of lower electrodes that apply a voltage to the display element. A drive substrate provided with a thin film transistor having a semiconductor layer, a pair of source and drain electrodes, a display substrate and a display substrate having an upper electrode, and a drive substrate, An elastic member having an insulating property is provided between the first gate electrode and the semiconductor layer.
 本開示の一実施形態の第2の表示装置は、複数のゲート線および複数の信号線と、印加電圧の変化に応じて表示状態が変化する表示素子と、表示素子に電圧を印加する複数の下部電極、複数の下部電極のそれぞれに設けられた第1ゲート電極,第2ゲート電極,半導体層,一対のソース電極およびドレイン電極からなる薄膜トランジスタならびに支持部材を有する駆動基板と、表示素子に電圧を印加する複数の下部電極のそれぞれに、支持部材を間に第1ゲート電極および第2ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタが設けられた駆動基板と、表示素子を間に駆動基板と対向配置されると共に、上部電極を有する表示基板とを備えると共に、薄膜トランジスタでは、支持部材と表示素子との間に、支持部材側から半導体層,一対のソース電極およびドレイン電極,第2ゲート電極がこの順に設けられると共に、支持部材の表示素子とは反対側の面に第1ゲート電極が設けられており、第1ゲート電極は、支持部材との間に絶縁性を有する弾性部材を有し、第2ゲート電極は、ゲート線に電気的に接続されている。 A second display device according to an embodiment of the present disclosure includes a plurality of gate lines and a plurality of signal lines, a display element whose display state changes according to a change in applied voltage, and a plurality of voltages that apply a voltage to the display element. A driving substrate having a lower electrode, a first gate electrode, a second gate electrode, a semiconductor layer, a pair of source and drain electrodes provided on each of the plurality of lower electrodes and a supporting member, and a voltage applied to the display element A driving substrate provided with a thin film transistor having a first gate electrode and a second gate electrode, a semiconductor layer, a pair of source electrodes and a drain electrode, and a display element between each of the plurality of lower electrodes to be applied. In addition, the thin film transistor includes a support member and a display element. In addition, a semiconductor layer, a pair of source and drain electrodes, and a second gate electrode are provided in this order from the support member side, and a first gate electrode is provided on the surface of the support member opposite to the display element, The first gate electrode has an insulating elastic member between the support member and the second gate electrode is electrically connected to the gate line.
 本開示の一実施形態の第3の表示装置は、複数のゲート線および複数の信号線と、印加電圧の変化に応じて表示状態が変化する表示素子と、表示素子に電圧を印加する複数の下部電極、複数の下部電極のそれぞれに設けられた第1ゲート電極,第1半導体層,一対の第1ソース電極およびドレイン電極からなる第1薄膜トランジスタおよび第2ゲート電極,第2半導体層,第1薄膜トランジスタのドレイン電極を共有する一対の第2ソース電極およびドレイン電極からなる第2薄膜トランジスタならびに支持部材を有する駆動基板と、表示素子を間に駆動基板と対向配置されると共に、上部電極を有する表示基板とを備えると共に、第1薄膜トランジスタでは、支持部材の表示素子とは反対側の面に第1ゲート電極を、支持部材と表示素子との間に、第1半導体層,一対の第1ソース電極およびドレイン電極がこの順に設けられると共に、第1ゲート電極と、半導体層との間に絶縁性を有する弾性部材が配設されており、第2薄膜トランジスタでは、支持部材と表示素子との間に、支持部材側から第2ゲート電極,第2半導体層,一対の第2ソース電極およびドレイン電極がこの順に設けられると共に、第2ゲート電極がゲート線に、ドレイン電極が信号線に電気的に接続されている。 A third display device according to an embodiment of the present disclosure includes a plurality of gate lines and a plurality of signal lines, a display element that changes a display state in accordance with a change in applied voltage, and a plurality of voltages that apply a voltage to the display element. A first thin film transistor and a second gate electrode, a second semiconductor layer, a first gate electrode, a first gate electrode provided on each of the plurality of lower electrodes, a first semiconductor layer, a pair of first source electrode and drain electrode A driving substrate having a pair of second source electrode and drain electrode sharing a drain electrode of the thin film transistor, a driving substrate having a support member, and a display substrate having a display element disposed between the driving substrate and an upper electrode In the first thin film transistor, the first gate electrode is provided on the surface of the support member opposite to the display element, and the support member and the display element. A first semiconductor layer, a pair of first source electrode and drain electrode are provided in this order, and an insulating elastic member is disposed between the first gate electrode and the semiconductor layer, In the second thin film transistor, a second gate electrode, a second semiconductor layer, a pair of second source electrode and drain electrode are provided in this order from the support member side between the support member and the display element, and the second gate electrode The drain electrode is electrically connected to the signal line to the gate line.
 本開示の一実施形態の第1~第3の表示装置では、駆動基板側に複数設けられた下部電極のそれぞれに、第1ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタを設けると共に、第1ゲート電極と半導体層との間に、絶縁性を有する弾性部材を設けることにより、コストの高い部材およびを用いることなく押圧位置の表示状態の切り替え、即ち、手書き入力が可能となる。また、入力(押圧)から表示までに、入力情報の検知システムや演算処理システムを用いることなく表示の切り替えが可能となる。 In the first to third display devices according to an embodiment of the present disclosure, a thin film transistor having a first gate electrode, a semiconductor layer, a pair of source electrodes and a drain electrode is provided on each of a plurality of lower electrodes provided on the drive substrate side. By providing an elastic member having insulation between the first gate electrode and the semiconductor layer, switching of the display state of the pressed position, that is, handwriting input is possible without using an expensive member. Become. In addition, display can be switched from input (pressing) to display without using an input information detection system or arithmetic processing system.
 本開示の一実施形態の第1~第3の表示装置によれば、駆動基板側に複数設けられた下部電極のそれぞれに、第1ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタを設けると共に、第1ゲート電極と半導体層との間に、絶縁性を有する弾性部材を設けるようにした。これにより、コストの高い部材を用いることなく押圧位置の表示状態の切り替えが可能となる。更に、入力(押圧)から表示までに、入力位置等の情報の検知および演算処理等を行うことなく表示の切り替えが可能となる。よって、費用対効果が高く、遅延の少ない手書き入力が可能な表示装置を提供することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the first to third display devices of an embodiment of the present disclosure, each of the plurality of lower electrodes provided on the drive substrate side includes the first gate electrode, the semiconductor layer, the pair of source electrodes, and the drain electrode. In addition to providing the thin film transistor, an elastic member having an insulating property is provided between the first gate electrode and the semiconductor layer. Thereby, the display state of the pressed position can be switched without using a costly member. Furthermore, display can be switched from input (pressing) to display without detecting information such as the input position and performing arithmetic processing. Therefore, it is possible to provide a display device that is cost-effective and capable of handwritten input with little delay. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本開示の第1の実施の形態に係る表示装置の構成を表す断面図である。3 is a cross-sectional view illustrating a configuration of a display device according to a first embodiment of the present disclosure. FIG. 図1に示した表示装置に用いられる電気泳動素子の平面模式図である。It is a plane schematic diagram of the electrophoretic element used for the display apparatus shown in FIG. 図1に示した表示装置の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the display apparatus shown in FIG. 本開示の第2の実施の形態に係る表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus which concerns on 2nd Embodiment of this indication. 図4に示した表示装置の全体構成を表す平面図である。It is a top view showing the whole structure of the display apparatus shown in FIG. 図5に示した表示装置の画素駆動回路の一例を表す回路図である。FIG. 6 is a circuit diagram illustrating an example of a pixel drive circuit of the display device illustrated in FIG. 5. 本開示の第3の実施の形態に係る表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus which concerns on 3rd Embodiment of this indication. 図7に示した表示装置の画素駆動回路の一例を表す回路図である。FIG. 8 is a circuit diagram illustrating an example of a pixel drive circuit of the display device illustrated in FIG. 7. 図7に示した表示装置の画素駆動回路の他の例を表す回路図である。FIG. 8 is a circuit diagram illustrating another example of the pixel drive circuit of the display device illustrated in FIG. 7. 本開示の変形例に係る表示装置の構成を表す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a display device according to a modified example of the present disclosure. 本開示の表示装置を用いたタブレットパーソナルコンピュータの外観を表す斜視図である。It is a perspective view showing the external appearance of the tablet personal computer using the display apparatus of this indication.
 以下、本開示における一実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.第1の実施の形態(各画素電極に電気的に接続されるTFTの第1のゲート電極(共通電極)と半導体層との間に弾性部材を設けた例)
 1-1.表示装置の構成
 1-2.表示装置の製造方法
 1-3.表示装置の好ましい動作方法
 1-4.作用・効果
2.第2の実施の形態(各画素電極に電気的に接続されたTFTの半導体層上に第2のゲート電極を設けた例(トップゲート型))
3.第3の実施の形態(各画素電極に電気的に接続されたTFTの半導体層下に第2のゲート電極を設けた例(ボトムゲート型))
4.変形例
5.適用例(電子機器)
Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the drawings. The order of explanation is as follows.
1. First Embodiment (Example in which an elastic member is provided between a first gate electrode (common electrode) of a TFT electrically connected to each pixel electrode and a semiconductor layer)
1-1. Configuration of display device 1-2. Manufacturing method of display device 1-3. Preferred operation method of display device 1-4. Action / Effect Second Embodiment (Example in which a second gate electrode is provided on a semiconductor layer of a TFT electrically connected to each pixel electrode (top gate type))
3. Third Embodiment (Example in which a second gate electrode is provided below a semiconductor layer of a TFT electrically connected to each pixel electrode (bottom gate type))
4). Modification 5 Application example (electronic equipment)
<1.第1の実施の形態>
 図1は、本開示の第1の実施の形態の表示装置(表示装置1)の断面構成を表したものである。表示装置1は、手書き入力が可能な表示装置であり、例えば、電子ペーパーディスプレイ等の多様な電子機器に適されるものである。この表示装置1は、スペーサ(図示せず)を介して対向配置された駆動基板10と表示基板20との間に、表示素子として、例えば、メモリ性を有する電気泳動素子30を備えたものである。本実施の形態では、表示装置1は、駆動基板10側に、例えば、画素毎に分離して形成された画素電極17と、画素電極17に電気的に接続されると共に、画素間で共通の電極(共通電極12)をゲート電極とする薄膜トランジスタ15(Thin Film Transistor;TFT)とを有し、共通電極12と半導体層151との間には弾性部材13が設けられた構成を有する。
<1. First Embodiment>
FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to a first embodiment of the present disclosure. The display device 1 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display, for example. This display device 1 includes, for example, an electrophoretic element 30 having a memory property as a display element between a drive substrate 10 and a display substrate 20 which are arranged to face each other via a spacer (not shown). is there. In the present embodiment, the display device 1 is electrically connected to the pixel electrode 17 and the pixel electrode 17 that are formed separately on the drive substrate 10 side, for example, for each pixel, and is common between the pixels. A thin film transistor 15 (TFT) having an electrode (common electrode 12) as a gate electrode is provided, and an elastic member 13 is provided between the common electrode 12 and the semiconductor layer 151.
(1-1.表示装置の構成)
 駆動基板10は、例えば、支持部材14の一面(表示面S1側)にTFT15および画素電極17がこの順に積層されると共に、支持部材14の他の面(背面S2側)に弾性部材13を介して共通電極12および支持基板11がこの順に積層された構成を有する。
(1-1. Configuration of display device)
In the drive substrate 10, for example, the TFT 15 and the pixel electrode 17 are stacked in this order on one surface (display surface S 1 side) of the support member 14, and the elastic member 13 is interposed on the other surface (back surface S 2 side) of the support member 14. The common electrode 12 and the support substrate 11 are stacked in this order.
 支持基板11は、例えば、無機材料、金属材料またはプラスチック材料等のいずれか1種類または2種類以上により形成されている。無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiO)、窒化ケイ素(SiN)または酸化アルミニウム(AlO)等であり、その酸化ケイ素には、例えば、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料は、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等である。プラスチック材料は、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン(PEEK)、シクロオレフィンポリマー(COP)、ポリイミド(PI)またはポリエーテルサルフォン(PES)等である。 The support substrate 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like. The inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like. Examples of the silicon oxide include glass or spin-on-glass (SOG). Etc. are included. Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel. Examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
 この支持基板11は、光透過性であってもよいし、非光透過性であってもよい。また、支持基板11は、ウェハ等の剛性を有する基板であってもよいし、可撓性を有する薄層ガラスまたはフィルム等であってもよい。但し、フレキシブル(折り曲げ可能)な電子ペーパーディスプレイを実現できることから、可撓性を有する材料からなることが望ましい。 The support substrate 11 may be light transmissive or non-light transmissive. Further, the support substrate 11 may be a rigid substrate such as a wafer, or may be a flexible thin layer glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material.
 共通電極12は、TFT15のゲート電極であり、支持基板11の一面の例えば、表示可能な領域の全面に形成されている。共通電極12は、例えば、Al,Mo,ITO,Ni,Ti,Cr,Zn,C(炭素),金(Au)、銀(Ag)または銅(Cu)等の導電性材料のいずれか1種類または2種類以上を含んでいる。なお、共通電極12は、各電極に電力を供給する構成を追加することにより、マトリクス状に複数に分割形成されていてもよい。 The common electrode 12 is a gate electrode of the TFT 15 and is formed on one surface of the support substrate 11, for example, the entire displayable region. The common electrode 12 is, for example, any one of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C (carbon), gold (Au), silver (Ag), and copper (Cu). Or two or more types are included. The common electrode 12 may be divided and formed in a matrix by adding a configuration for supplying power to each electrode.
 弾性部材13は、共通電極12上に設けられたものであり、絶縁性を有すると共に、押圧によって変形するが、除荷後に元の形状に戻る性質(弾性)を有するものである。また、弾性部材13は、高い誘電率を有することが好ましく、具体的には、エラストマーによって構成されていることが好ましい。エラストマーの例としては、例えば、ニトリルゴム,水素化ニトリルゴム,フッ素ゴム,アクリルゴム,シリコーンゴム,ウレタンゴム,エチレンプロヒレンゴム,クロロプレンゴム,クロロスルフォン化ポリエチレンゴム,エピクロルヒドリンゴム,天然ゴム,イソプレンゴム,スチレンブタジエンゴム,ブタジエンゴム,多硫化ゴム,ノルボルネンゴムの他、各種熱可塑性エラストマー等が挙げられる。これらは、混合してもよいし、発泡やフィラー混錬等の後処理を行ってもよい。これらの中でも、特に熱可塑性エラストマーに分類されるポリウレタン樹脂を用いることが好ましい。 The elastic member 13 is provided on the common electrode 12 and has an insulating property and a property (elasticity) that returns to the original shape after unloading although it is deformed by pressing. Moreover, it is preferable that the elastic member 13 has a high dielectric constant, and specifically, it is preferable that it is comprised with the elastomer. Examples of elastomers include, for example, nitrile rubber, hydrogenated nitrile rubber, fluorine rubber, acrylic rubber, silicone rubber, urethane rubber, ethylene prohydrene rubber, chloroprene rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, natural rubber, isoprene rubber , Styrene butadiene rubber, butadiene rubber, polysulfide rubber, norbornene rubber, and various thermoplastic elastomers. These may be mixed or post-treatment such as foaming or filler kneading. Among these, it is particularly preferable to use a polyurethane resin classified as a thermoplastic elastomer.
 支持部材14は、支持基板11と同様に、光透過性であってもよいし、非光透過性であってもよい。支持部材14は、詳細は後述するが、表示面S1からの押圧を弾性部材13に印加可能な可撓性を有する薄層ガラスまたはフィルム等であることが好ましい。 The support member 14 may be light transmissive or non-light transmissive similarly to the support substrate 11. Although details will be described later, the support member 14 is preferably a flexible thin-layer glass or film that can apply the pressure from the display surface S1 to the elastic member 13.
 TFT15は、押圧位置の表示状態を切り替えるためのものである。TFT15は、共通電極12をゲート電極として、弾性部材13上(正確には、支持部材14上)に設けられた、半導体層151と、一対のソース電極152Aおよびドレイン電極152Bとから構成されている。半導体層151は、無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。TFT15は、ソース電極152Aには第1の電位が印加され、ドレイン電極152Bが画素電極17に電気的に接続されている。表示面S1をペン等によって押圧すると、この部分の弾性部材13の厚みが薄くなり、共通電極12がゲート電極として作用して押圧位置付近のTFT15が導通状態となる。これによって、画素電極17には負の電位が供給され、押圧位置の表示状態が切り替わる。 TFT 15 is for switching the display state of the pressed position. The TFT 15 includes a semiconductor layer 151 and a pair of source electrode 152A and drain electrode 152B provided on the elastic member 13 (more precisely, on the support member 14) using the common electrode 12 as a gate electrode. . The semiconductor layer 151 may be an inorganic TFT using an inorganic semiconductor layer or an organic TFT using an organic semiconductor layer. In the TFT 15, the first potential is applied to the source electrode 152 </ b> A, and the drain electrode 152 </ b> B is electrically connected to the pixel electrode 17. When the display surface S1 is pressed with a pen or the like, the thickness of the elastic member 13 in this portion is reduced, the common electrode 12 acts as a gate electrode, and the TFT 15 in the vicinity of the pressed position becomes conductive. As a result, a negative potential is supplied to the pixel electrode 17 and the display state of the pressed position is switched.
 絶縁層16は、例えば、ポリイミド等の絶縁性樹脂材料により構成されている。 The insulating layer 16 is made of, for example, an insulating resin material such as polyimide.
 画素電極17は、絶縁層16上に、例えば、マトリクス状に複数に分割形成されている。画素電極17は、例えば、Al,Mo,ITO,Ni,Ti,Cr,Zn,C,Au,AgまたはCu等の導電性材料のいずれか1種類または2種類以上を含んでいる。画素電極17は、絶縁層16に設けられたコンタクトホール16Aを通じてTFT15(具体的には、ドレイン電極152B)に接続されている。 The pixel electrode 17 is formed on the insulating layer 16 so as to be divided into a plurality of matrixes, for example. The pixel electrode 17 includes, for example, one or more of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C, Au, Ag, and Cu. The pixel electrode 17 is connected to the TFT 15 (specifically, the drain electrode 152B) through a contact hole 16A provided in the insulating layer 16.
 表示基板20は、支持部材21の一面に対向電極22が設けられたものである。 The display substrate 20 is provided with a counter electrode 22 on one surface of the support member 21.
 支持部材21は、可撓性を有し、例えば、PET,TAC,PEN,PC,アクリル,ガラス等により構成されている。この他、光透過性であることを除き、支持部材14と同様の材料を用いてもよい。表示基板20の上面側に画像が表示されるため、支持部材21は光透過性である必要があるからである。この支持部材21の厚みは、例えば、10μmm~250μmである。 The support member 21 has flexibility and is made of, for example, PET, TAC, PEN, PC, acrylic, glass, or the like. In addition, a material similar to that of the support member 14 may be used except that it is light transmissive. This is because an image is displayed on the upper surface side of the display substrate 20, and thus the support member 21 needs to be light transmissive. The thickness of the support member 21 is, for example, 10 μm to 250 μm.
 対向電極22は、例えば、透光性を有する導電性材料(透明導電材料)のいずれか1種類または2種類以上を含んでいる。このような導電性材料としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等が挙げられる。この対向電極22の厚みは、例えば0.001μm~1μmである。なお、対向電極22は、共通電極12と同様に、例えば、支持部材21の一面の、例えば、表示可能な領域の全面に形成されているが、各電極に電力を供給する構成を追加することにより、画素電極12と同様に、例えば、マトリクス状に複数に分割形成されていてもよい。 The counter electrode 22 includes, for example, one or more of translucent conductive materials (transparent conductive materials). Examples of such a conductive material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). The thickness of the counter electrode 22 is, for example, 0.001 μm to 1 μm. The counter electrode 22 is formed, for example, on one surface of the support member 21, for example, the entire displayable region, as with the common electrode 12, but a configuration for supplying power to each electrode is added. Thus, similarly to the pixel electrode 12, for example, the pixel electrode 12 may be divided into a plurality of parts in a matrix.
 表示基板20側に画像を表示する場合には、対向電極22を介して電気泳動素子30を見ることになるため、その対向電極22の光透過率はできるだけ高いことが好ましく、例えば、80%以上である。また、対向電極22の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□(スクエア)以下である。 When displaying an image on the display substrate 20 side, since the electrophoretic element 30 is viewed through the counter electrode 22, the light transmittance of the counter electrode 22 is preferably as high as possible, for example, 80% or more. It is. The electric resistance of the counter electrode 22 is preferably as low as possible, for example, 100Ω / □ (square) or less.
 駆動基板10と表示基板20との間には表示素子として、例えば、電圧制御される電気泳動素子30が設けられている。この電気泳動素子30は、電気泳動現象を利用してコントラストを生じさせるものであり、電圧に応じて一対の電極(画素電極17と対向電極22と)の間を泳動粒子32が移動することによって表示の切り替えが行われる。電気泳動素子30は、例えば、黒色に着色された泳動粒子32および白色に着色された多孔質層33によって黒表示および白表示を担うと共に、電気泳動素子内(具体的には、対向配置された電極間)に弾性率の高い支柱(スペーサ)が設けられた、いわゆるマイクロカップ方式の電気泳動素子である。 For example, an electrophoretic element 30 that is voltage-controlled is provided as a display element between the drive substrate 10 and the display substrate 20. The electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and the electrophoretic particles 32 move between a pair of electrodes (the pixel electrode 17 and the counter electrode 22) according to a voltage. The display is switched. For example, the electrophoretic element 30 is responsible for black display and white display by the electrophoretic particles 32 colored in black and the porous layer 33 colored in white, and in the electrophoretic element (specifically, disposed oppositely). This is a so-called microcup type electrophoretic element in which columns (spacers) having a high elastic modulus are provided between the electrodes).
 以下に、本実施の形態の電気泳動素子30の構成を説明する。電気泳動素子30は、図2に示したように、例えば、絶縁性液体31中に泳動粒子32と共に、多孔質層33を含んでいる。多孔質層33は、非泳動粒子332を含む繊維状構造体331により形成された3次元立体構造物であり、繊維状構造体331が存在していない箇所に、泳動粒子32が通過するための複数の隙間(細孔333)が設けられている。なお、図2は電気泳動素子30の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。 Hereinafter, the configuration of the electrophoretic element 30 of the present embodiment will be described. As shown in FIG. 2, the electrophoretic element 30 includes, for example, a porous layer 33 together with the electrophoretic particles 32 in the insulating liquid 31. The porous layer 33 is a three-dimensional structure formed by the fibrous structure 331 including the non-migrating particles 332, and for the migrating particles 32 to pass through the portion where the fibrous structure 331 does not exist. A plurality of gaps (pores 333) are provided. Note that FIG. 2 schematically shows the configuration of the electrophoretic element 30 and may differ from the actual size and shape.
 絶縁性液体31は、例えば、有機溶媒等の非水溶媒のいずれか1種類または2種類以上であり、具体的には、パラフィンまたはイソパラフィン等を含んで構成されている。この絶縁性液体31の粘度および屈折率は、出来るだけ低いことが好ましい。泳動粒子32の移動性(応答速度)が向上すると共に、それに応じて泳動粒子32の移動に要するエネルギー(消費電力)が低くなるからである。また、絶縁性液体31の屈折率と多孔質層33の屈折率との差が大きくなるため、その多孔質層33の光反射率が高くなるからである。なお、絶縁性液体31の代わりに、微弱導電性液体を用いてもよい。 The insulating liquid 31 is, for example, one type or two or more types of non-aqueous solvents such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 be as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
 なお、絶縁性液体31は、必要に応じて各種材料を含んでいてもよい。この材料は、例えば、着色剤、電荷制御剤、分散安定剤、粘度調整剤、界面活性剤または樹脂等である。 The insulating liquid 31 may contain various materials as necessary. This material is, for example, a colorant, a charge control agent, a dispersion stabilizer, a viscosity modifier, a surfactant or a resin.
 泳動粒子32は、電気的に移動可能な1または2以上の荷電粒子であり、絶縁性液体31中に分散されている。この泳動粒子32は、絶縁性液体31中で画素電極17と対向電極22との間を移動可能になっている。泳動粒子32は、また、任意の光学的反射特性(光反射率)を有している。泳動粒子32の光反射率は、特に限定されないが、少なくとも泳動粒子32が多孔質層33を遮蔽可能となるように設定されることが好ましい。泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。 The electrophoretic particles 32 are one or more charged particles that are electrically movable, and are dispersed in the insulating liquid 31. The migrating particles 32 can move between the pixel electrode 17 and the counter electrode 22 in the insulating liquid 31. The migrating particles 32 also have arbitrary optical reflection characteristics (light reflectivity). The light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
 泳動粒子32は、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)等のいずれか1種類または2種類以上の粒子(粉末)である。なお、泳動粒子32は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等でもよい。 The migrating particles 32 are, for example, one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). . The migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles.
 有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、カーボンブラック、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。このように可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
 泳動粒子32の具体的な形成材料は、例えば、コントラストを生じさせるために泳動粒子32が担う役割に応じて選択される。例えば、泳動粒子32によって白表示がなされる場合の材料は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性等に優れていると共に、高い反射率が得られるからである。一方、泳動粒子32により黒表示がなされる場合の材料は、例えば、炭素材料または金属酸化物等である。炭素材料は、例えば、カーボンブラック等であり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。 The specific forming material of the migrating particles 32 is selected according to the role of the migrating particles 32 in order to cause contrast, for example. For example, the material in which white display is performed by the migrating particles 32 is, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, and among these, titanium oxide is preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance. On the other hand, the material in the case where black display is performed by the migrating particles 32 is, for example, a carbon material or a metal oxide. The carbon material is, for example, carbon black, and the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like. Among these, a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。泳動粒子32の遮蔽(隠蔽)性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽しにくくなる可能性がある。一方、10重量%よりも多いと、泳動粒子32の分散性が低下するため、泳動粒子32が泳動しにくくなり、場合によっては凝集する可能性がある。 The content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may be aggregated in some cases.
 泳動粒子32の平均粒径は、例えば、0.1μm以上10μm以下の範囲であることが好ましい。 The average particle diameter of the migrating particles 32 is preferably in the range of 0.1 μm to 10 μm, for example.
 なお、泳動粒子32は、絶縁性液体31中で長期間に渡って分散および帯電しやすいと共に、多孔質層33に吸着されにくいことが好ましい。このため、静電反発により泳動粒子32を分散させるために分散剤(または電荷調整剤)を用いたり、泳動粒子32に表面処理を施してもよく、両者を併用してもよい。 In addition, it is preferable that the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 over a long period of time and are not easily adsorbed by the porous layer 33. For this reason, in order to disperse the electrophoretic particles 32 by electrostatic repulsion, a dispersant (or a charge adjusting agent) may be used, or the electrophoretic particles 32 may be subjected to a surface treatment, or both may be used in combination.
 分散剤は、例えばLubrizol社製のSolsperseシリーズ、BYK-Chemie社製のBYK シリーズまたはAnti-Terra シリーズ、あるいはICI Americas 社製Spanシリーズ等である。 The dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK® series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
 表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。中でも、グラフト重合処理、マイクロカプセル化処理またはそれらの組み合わせが好ましい。長期間の分散安定性等が得られるからである。 The surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. Among these, graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
 表面処理用の材料は、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着材料)等である。吸着可能な官能基の種類は、泳動粒子32の形成材料に応じて決定される。一例を挙げると、カーボンブラック等の炭素材料に対しては4-ビニルアニリン等のアニリン誘導体であり、金属酸化物に対してはメタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体である。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 The surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32. The type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32. For example, carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate. . Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 また、表面処理用の材料は、例えば、重合性官能基が導入された泳動粒子32の表面にグラフト可能な材料(グラフト性材料)である。このグラフト性材料は、重合性官能基と、絶縁性液体31中に分散可能であると共に、立体障害により分散性を保持可能な分散用官能基とを有していることが好ましい。重合性官能基の種類は、吸着性材料について説明した場合と同様である。分散用官能基は、例えば、絶縁性液体31がパラフィンである場合には分岐状のアルキル基等である。グラフト性材料を重合およびグラフトさせるためには、例えばアゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。 Further, the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced. The graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance. The kind of polymerizable functional group is the same as that described for the adsorptive material. The dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
 参考までに、上記したように絶縁性液体31中に泳動粒子32を分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For reference, the details of the method for dispersing the migrating particles 32 in the insulating liquid 31 as described above are described in “Dispersion Technology of Ultrafine Particles and Its Evaluation—Surface Treatment / Fine Grinding and Air / Liquid / Polymer”. It is published in books such as “Dispersion Stabilization ~ (Science & Technology)”.
 多孔質層33は、例えば、図2に示したように、繊維状構造体331により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)である。この多孔質層33は、繊維状構造体331が存在していない箇所に、泳動粒子32が通過するための複数の隙間(細孔333)を有している。なお、図1では、多孔質層33の図示を簡略化している。 The porous layer 33 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG. The porous layer 33 has a plurality of gaps (pores 333) through which the migrating particles 32 pass in places where the fibrous structure 331 does not exist. In FIG. 1, the illustration of the porous layer 33 is simplified.
 繊維状構造体331には、1または2以上の非泳動粒子332が含まれており、その非泳動粒子332は、繊維状構造体331により保持されている。3次元立体構造物である多孔質層33では、1本の繊維状構造体331がランダムに絡み合っていてもよいし、複数本の繊維状構造体331が集合してランダムに重なっていてもよいし、両者が混在していてもよい。繊維状構造体331が複数本である場合、各繊維状構造体331は、1または2以上の非泳動粒子332を保持していることが好ましい。なお、図2では、複数本の繊維状構造体331により多孔質層33が形成されている場合を示している。 The fibrous structure 331 includes one or more non-migrating particles 332, and the non-migrating particles 332 are held by the fibrous structure 331. In the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. However, both may be mixed. When there are a plurality of fibrous structures 331, each fibrous structure 331 preferably holds one or more non-migrating particles 332. FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.
 多孔質層33が3次元立体構造物であるのは、その不規則な立体構造により外光が乱反射(多重散乱)されやすいため、多孔質層33の光反射率が高くなると共に、その高い光反射率を得るために多孔質層33が薄くて済むからである。これにより、コントラストが高くなると共に、泳動粒子32を移動させるために必要なエネルギーが低くなる。また、細孔333の平均孔径が大きくなると共に、その数が多くなるため、泳動粒子32が細孔333を通過しやすくなるからである。これにより、泳動粒子32の移動に要する時間が短くなると共に、その泳動粒子32の移動に要するエネルギーも低くなる。 The reason why the porous layer 33 is a three-dimensional structure is that the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 33 increases and the high light This is because the porous layer 33 can be thin in order to obtain the reflectance. As a result, the contrast increases and the energy required to move the migrating particles 32 decreases. In addition, since the average pore diameter of the pores 333 is increased and the number thereof is increased, the migrating particles 32 can easily pass through the pores 333. As a result, the time required to move the migrating particles 32 is shortened, and the energy required to move the migrating particles 32 is also reduced.
 繊維状構造体331に非泳動粒子332が含まれているのは、外光がより乱反射しやすくなるため、多孔質層33の光反射率がより高くなるからである。これにより、コントラストがより高くなる。 The reason why the non-migrating particles 332 are included in the fibrous structure 331 is that the light reflectance of the porous layer 33 is higher because external light is more easily diffusely reflected. Thereby, contrast becomes higher.
 繊維状構造体331の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体331の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法等であることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易且つ安定に形成しやすいからである。 The shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction. The formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous material having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体331の平均繊維径は、特に限定されないが、できるだけ小さいことが好ましい。光が乱反射しやすくなると共に、細孔333の平均孔径が大きくなるからである。このため、繊維状構造体331の平均繊維径は、10μm以下であることが好ましい。なお、平均繊維径の下限は、特に限定されないが、例えば、0.1μmであり、それ以下でもよい。この平均繊維径は、例えば、走査型電子顕微鏡(SEM)等を用いた顕微鏡観察により測定される。なお、繊維状構造体331の平均長さは、任意でよい。 The average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 333 increases. For this reason, it is preferable that the average fiber diameter of the fibrous structure 331 is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
 細孔333の平均孔径は、特に限定されないが、中でも、できるだけ大きいことが好ましい。泳動粒子32が細孔333を通過しやすくなるからである。このため、細孔333の平均孔径は、0.1μm~10μmであることが好ましい。 The average pore diameter of the pores 333 is not particularly limited, but is preferably as large as possible. This is because the migrating particles 32 easily pass through the pores 333. Therefore, the average pore diameter of the pores 333 is preferably 0.1 μm to 10 μm.
 多孔質層33の厚さは、特に限定されないが、例えば、5μm~100μmである。多孔質層33の遮蔽性が高くなると共に、泳動粒子32が細孔333を通過しやすくなるからである。 The thickness of the porous layer 33 is not particularly limited, but is, for example, 5 μm to 100 μm. This is because the shielding property of the porous layer 33 is enhanced and the migrating particles 32 easily pass through the pores 333.
 繊維状構造体331を構成する材料としては、例えば、高分子材料または無機材料等のいずれか1種類または2種類以上を含んでおり、他の材料を含んでいてもよい。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマー等である。無機材料は、例えば、酸化チタン等である。中でも、繊維状構造体331の形成材料としては、高分子材料が好ましい。反応性(光反応性等)が低い(化学的に安定である)ため、繊維状構造体331の意図しない分解反応が抑制されるからである。なお、繊維状構造体331が高反応性の材料により形成されている場合には、その繊維状構造体331の表面は任意の保護層により被覆されていることが好ましい。 As a material constituting the fibrous structure 331, for example, one or two or more of polymer materials or inorganic materials are included, and other materials may be included. Examples of the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof. The inorganic material is, for example, titanium oxide. Among these, a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
 特に、繊維状構造体331は、ナノファイバーであることが好ましい。立体構造が複雑化して外光が乱反射しやすくなるため、多孔質層33の光反射率がより高くなると共に、多孔質層33の単位体積中に占める細孔333の体積の割合が大きくなるため、泳動粒子32が細孔333を通過しやすくなるからである。これにより、コントラストがより高くなると共に、泳動粒子32の移動に要するエネルギーがより低くなる。ナノファイバーとは、繊維径が0.001μm~0.1μmであると共に、長さが繊維径の100倍以上である繊維状物質である。ナノファイバーである繊維状構造体331は、高分子材料を用いて静電紡糸法により形成されていることが好ましい。繊維径が小さい繊維状構造体331を容易且つ安定に形成しやすいからである。 In particular, the fibrous structure 331 is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is likely to be diffusely reflected, the light reflectance of the porous layer 33 is further increased, and the volume ratio of the pores 333 to the unit volume of the porous layer 33 is increased. This is because the migrating particles 32 can easily pass through the pores 333. Thereby, the contrast becomes higher and the energy required to move the migrating particles 32 becomes lower. Nanofiber is a fibrous substance having a fiber diameter of 0.001 μm to 0.1 μm and a length that is 100 times or more of the fiber diameter. The fibrous structure 331 that is a nanofiber is preferably formed by an electrospinning method using a polymer material. This is because the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
 この繊維状構造体331は、泳動粒子32とは異なる光学的反射特性を有していることが好ましい。具体的には、繊維状構造体331の光反射率は、特に限定されないが、少なくとも多孔質層33が全体として泳動粒子32を遮蔽可能となるように設定されることが好ましい。上記したように、泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。 This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32. Specifically, the light reflectance of the fibrous structure 331 is not particularly limited, but is preferably set so that at least the porous layer 33 can shield the migrating particles 32 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
 非泳動粒子332は、繊維状構造体331に固定されており、電気的に泳動しない粒子である。非泳動粒子332は、繊維状構造体331により保持されていれば、繊維状構造体331から部分的に露出していてもよいし、その内部に埋設されていてもよい。 Non-electrophoretic particles 332 are particles that are fixed to the fibrous structure 331 and do not migrate electrically. As long as the non-migrating particles 332 are held by the fibrous structure 331, the non-migrating particles 332 may be partially exposed from the fibrous structure 331 or embedded therein.
 非泳動粒子332の具体的な形成材料は、例えば、コントラストを生じさせるために非泳動粒子332が担う役割に応じて選択される。具体的には、金属酸化物が好ましく、酸化チタンがより好ましい。電気化学的安定性おび定着性等に優れていると共に、高い反射率が得られるからである。コントラストを生じさせることができれば、非泳動粒子332の形成材料は、泳動粒子32の形成材料と同じ材料でもよいし、違う材料でもよい。 The specific forming material of the non-migrating particles 332 is selected according to the role played by the non-migrating particles 332 in order to generate contrast, for example. Specifically, a metal oxide is preferable and titanium oxide is more preferable. This is because it is excellent in electrochemical stability and fixability, and high reflectance can be obtained. As long as a contrast can be generated, the material for forming the non-migrating particles 332 may be the same material as the material for forming the migrating particles 32 or may be a different material.
 スペーサは、ここでは示していないが、駆動基板10と表示基板20との間を保つと共に、例えば、表示装置1の面内における泳動粒子32の偏りを防ぐためのものである。スペーサは、例えば、高分子材料等の絶縁性材料や、微粒子が混入されたシール材等によって構成されている。スペーサの形状は、特に限定されないが、泳動粒子32の画素電極17および対向電極22間の移動を妨げないと共に、それを均一分布させることができる形状であることが好ましく、例えば、格子状である。また、後述する製造工程の関係から、例えば、駆動基板10側から表示基板20側にかけて逆テーパ形状であることが好ましい。スペーサの厚みは、特に限定されないが、中でも、消費電力を低くするためにできるだけ薄いことが好ましく、例えば、10μm~100μmである。スペーサの形成位置は、表示層内において適当な位置に設ければよい。 Although not shown here, the spacer is for keeping the drive substrate 10 and the display substrate 20 between, and for example, preventing the bias of the migrating particles 32 in the plane of the display device 1. The spacer is made of, for example, an insulating material such as a polymer material, a seal material mixed with fine particles, and the like. The shape of the spacer is not particularly limited, but is preferably a shape that does not hinder the movement of the migrating particles 32 between the pixel electrode 17 and the counter electrode 22 and can uniformly distribute it, for example, a lattice shape. . Further, in view of the manufacturing process described later, for example, it is preferable that the shape is an inversely tapered shape from the drive substrate 10 side to the display substrate 20 side. The thickness of the spacer is not particularly limited, but in particular, it is preferably as thin as possible in order to reduce power consumption, for example, 10 μm to 100 μm. The spacer may be formed at an appropriate position in the display layer.
(1-2.表示装置の製造方法)
 本実施の形態の表示装置1は、例えば、以下の方法により形成することができる。支持部材21の一面に対向電極22を、各種成膜法等の既存の方法を用いて設け、表示基板20を形成する。次に、対向電極22上にスペーサを形成する。スペーサは、例えば、以下のようなインプリント法により形成することができる。まず、スペーサの構成材料(例えば、感光性樹脂材料)を含む溶液を対向電極22上に塗布する。次いで、塗布面に凹部を有する型を押し当て、感光させた後、型を外す。これにより、柱状のスペーサが形成される。このとき、スペーサは、幅が表示基板20側から駆動基板10側に徐々に狭くなる、いわゆる逆テーパとすることが好ましい。これにより、スペーサから型を容易に外すことができる。
(1-2. Manufacturing method of display device)
The display device 1 of the present embodiment can be formed by, for example, the following method. The counter electrode 22 is provided on one surface of the support member 21 by using an existing method such as various film forming methods, and the display substrate 20 is formed. Next, a spacer is formed on the counter electrode 22. The spacer can be formed by, for example, the following imprint method. First, a solution containing a spacer constituent material (for example, a photosensitive resin material) is applied onto the counter electrode 22. Next, a mold having a recess on the coated surface is pressed and exposed to light, and then the mold is removed. Thereby, a columnar spacer is formed. At this time, the spacer preferably has a so-called reverse taper in which the width gradually decreases from the display substrate 20 side to the drive substrate 10 side. Thereby, a type | mold can be easily removed from a spacer.
 続いて、隣り合うスペーサの間に繊維状構造体331を配設する。まず、例えば、N,N’-ジメチルホルムアミドに繊維状構造体331としてポリアクリロニトリルを分散または溶解させると共に、非泳動粒子332として、例えば、酸化チタンを加えて十分に攪拌し、高分子溶液(紡糸溶液)を調整する。続いて、この紡糸溶液を用いて、例えば、静電紡糸法によって、別の基板上で紡糸する。なお、繊維状構造体331は、静電紡糸法に代えて、相分離法、相反転法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法およびスプレー塗布法等によって形成してもよい。 Subsequently, a fibrous structure 331 is disposed between adjacent spacers. First, for example, polyacrylonitrile as a fibrous structure 331 is dispersed or dissolved in N, N′-dimethylformamide, and, for example, titanium oxide is added as non-electrophoretic particles 332 and sufficiently stirred to obtain a polymer solution (spinning). Solution). Subsequently, the spinning solution is used to spin on another substrate by, for example, an electrostatic spinning method. The fibrous structure 331 is formed by a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like instead of the electrostatic spinning method. May be.
 また、繊維状構造体331の形成方法としては、高分子フィルムにレーザ加工を用いて孔開けを行い、繊維状構造体を形成する方法も提案されているが(特開2005-107146号公報参照)、この方法では孔径50μm程度の大きな孔しか形成できず、繊維状構造体により泳動粒子を完全に遮蔽することができない虞がある。 As a method for forming the fibrous structure 331, a method of forming a fibrous structure by perforating a polymer film using laser processing has been proposed (see Japanese Patent Application Laid-Open No. 2005-107146). ), Only large pores having a pore diameter of about 50 μm can be formed by this method, and the migrating particles may not be completely shielded by the fibrous structure.
 次いで、繊維状構造体331を適当な大きさに分断してスペーサの間(セル)に載置する。具体的には、繊維状構造体331を上(支持部材21と反対の方向)から押圧することによって、スペーサにより繊維状構造体331は摺り切られる。この切断された繊維状構造体331をスペーサ間に収容する。このようにして、繊維状構造体331に非泳動粒子332が保持された多孔質層33ができる。 Next, the fibrous structure 331 is divided into appropriate sizes and placed between the spacers (cells). Specifically, by pressing the fibrous structure 331 from above (the direction opposite to the support member 21), the fibrous structure 331 is scraped off by the spacer. The cut fibrous structure 331 is accommodated between the spacers. In this way, the porous layer 33 in which the non-electrophoretic particles 332 are held on the fibrous structure 331 is formed.
 続いて、駆動基板10を準備する。まず、支持部材14上に、TFT15および絶縁層16を形成したのち、絶縁層16にコンタクトホール16Aを設ける。次に、絶縁層16上に、金属膜を形成したのちパターニングして画素電極17を形成する。続いて、共通電極12および弾性部材13をこの順に積層された支持基板11の弾性部材13に支持部材14を貼り合わせ、駆動基板10を形成する。 Subsequently, the drive substrate 10 is prepared. First, after forming the TFT 15 and the insulating layer 16 on the support member 14, a contact hole 16 </ b> A is provided in the insulating layer 16. Next, after forming a metal film on the insulating layer 16, the pixel electrode 17 is formed by patterning. Subsequently, the support member 14 is bonded to the elastic member 13 of the support substrate 11 in which the common electrode 12 and the elastic member 13 are stacked in this order, and the drive substrate 10 is formed.
 次に、多孔質層33が配置された表示基板20に、泳動粒子32を分散させた絶縁性液体31を塗布したのち、これを、例えば、封止剤(図示せず)を介してシール層(図示せず)が配設された剥離部材(図示せず)を対向させる。最後に、剥離部材を剥がしたのち、シール層上に粘着層(図示せず)を介して、支持基板11上に、共通電極12,弾性部材,TFT15および画素電極17が設けられた駆動基板10を固定する。以上の工程により、表示装置1が完成する。 Next, after applying the insulating liquid 31 in which the migrating particles 32 are dispersed to the display substrate 20 on which the porous layer 33 is disposed, this is applied to the sealing layer via a sealing agent (not shown), for example. The peeling member (not shown) provided with (not shown) is made to oppose. Finally, after the peeling member is peeled off, the driving substrate 10 in which the common electrode 12, the elastic member, the TFT 15 and the pixel electrode 17 are provided on the support substrate 11 via an adhesive layer (not shown) on the seal layer. To fix. The display device 1 is completed through the above steps.
(1-3.表示装置の好ましい動作方法)
 本実施の形態の表示装置1は、通常、対向電極22は、例えばグランド(GND)に接続され、ソース電極152Aには、例えば第1の電位(ここでは、負の電位)が印加されている。共通電極12は、半導体層151を構成する半導体材料に添加されたドーパントに応じて正または負の電位が印加されている。表示面S1に圧力が印加されていない(押圧されていない)状態では、共通電極12と半導体層151との間は弾性部材13によって電気的に絶縁されているため、ソース電極151Aに印加されている負の電位は画素電極17に印加されない。このため、表示を担う泳動粒子32は動かず、例えば画素電極17側に配置されている。なお、泳動粒子32は、マイナス(負)に帯電した黒色粒子とする。
(1-3. Preferred Operating Method of Display Device)
In the display device 1 of the present embodiment, the counter electrode 22 is normally connected to, for example, the ground (GND), and a first potential (here, a negative potential) is applied to the source electrode 152A, for example. . A positive or negative potential is applied to the common electrode 12 depending on the dopant added to the semiconductor material constituting the semiconductor layer 151. In a state in which no pressure is applied (not pressed) to the display surface S1, the common electrode 12 and the semiconductor layer 151 are electrically insulated from each other by the elastic member 13, and thus are applied to the source electrode 151A. The negative potential is not applied to the pixel electrode 17. For this reason, the migrating particles 32 responsible for the display do not move and are arranged, for example, on the pixel electrode 17 side. The migrating particles 32 are black particles that are negatively charged.
 この表示装置1を、図3に示したように、任意の位置を入力ペン50で押圧(加圧)すると、加圧された部分の弾性部材13の厚みが薄くなり、共通電極12と半導体層151との距離が縮まって共通電極12がゲート電極として作用する。即ち、半導体層151に電荷が誘導され、入力ペン50のペン先付近のTFT15が導通状態となる。これにより、画素電極17には負の電位が供給され、負に帯電している泳動粒子32は積力を受けて対向電極22側に移動し、表示面S1に黒い線が描画される。 As shown in FIG. 3, when the display device 1 is pressed (pressed) at an arbitrary position with the input pen 50, the thickness of the elastic member 13 in the pressed portion is reduced, and the common electrode 12 and the semiconductor layer The distance to 151 decreases and the common electrode 12 acts as a gate electrode. That is, charges are induced in the semiconductor layer 151, and the TFT 15 near the pen tip of the input pen 50 becomes conductive. As a result, a negative potential is supplied to the pixel electrode 17, and the negatively charged migrating particles 32 receive a product force and move toward the counter electrode 22, thereby drawing a black line on the display surface S <b> 1.
 なお、入力ペン50は、本実施の形態の表示装置1専用のペンである必要はなく、表示面S1が加圧できれば、その形状や構造は特に問わない。 Note that the input pen 50 does not have to be a pen dedicated to the display device 1 of the present embodiment, and the shape and structure thereof are not particularly limited as long as the display surface S1 can be pressurized.
(1-4.作用・効果)
 一般的な手書き入力が可能な反射型の画像表示デバイスでは、手書き入力からディスプレイへの表示までに、入力位置のセンサによる検出や、検出された位置情報の演算処理等、入力から表示までの間に位置情報等のセンシングおよび演算処理の工程があるため、人間の目には入力から表示までの遅延が感じられる。
(1-4. Action and effect)
In a reflective image display device that allows general handwriting input, from input to display, such as detection by the input position sensor and calculation processing of the detected position information from handwriting input to display on the display Since there is a process of sensing position information and calculation processing, the human eye feels a delay from input to display.
 この遅延を改善する画像表示デバイスとして、前述したように、表示面側に感圧導電層を設けた画像形成装置が考察されている。この画像形成装置では、ペン等によって感圧導電層に圧力を加えることによって部分的に電界を発生させ、センサを介さずに手書き入力した軌跡を表示する。このため、入力から表示までの遅延は解消される。しかしながら、感圧導電層は比較的高価であり、加えて表示体も比較的高価であるため、手書き入力機能が付加された装置としては、製品化する上で費用対効果という点で問題があった。 As an image display device for improving this delay, as described above, an image forming apparatus provided with a pressure-sensitive conductive layer on the display surface side has been considered. In this image forming apparatus, an electric field is partially generated by applying pressure to the pressure-sensitive conductive layer with a pen or the like, and a locus input by handwriting is displayed without using a sensor. For this reason, the delay from input to display is eliminated. However, since the pressure-sensitive conductive layer is relatively expensive and the display body is also relatively expensive, there is a problem in terms of cost-effectiveness for commercialization of a device to which a handwriting input function is added. It was.
 また、このような画像形成装置を実現するためには、感圧導電層が透明、且つ、優れた光学特性を有していることが求められるが、現在のところこのような材料はなく、現実的にこのような構成の手書き入力が可能な画像形成装置を実現することは困難であった。更に、開発されたとしても、感圧導電層を介して画像を視認するため、輝度や解像度が低下するという問題があった。更にまた、表示素子の上部に感圧導電層があるため、入力面と画像表示面(表示素子)との距離が感圧導電層の厚み分離れることにより視差が生じるという問題があった。 Further, in order to realize such an image forming apparatus, it is required that the pressure-sensitive conductive layer is transparent and has excellent optical characteristics. Therefore, it has been difficult to realize an image forming apparatus capable of handwriting input having such a configuration. Further, even if it is developed, there is a problem in that luminance and resolution are lowered because an image is visually recognized through the pressure-sensitive conductive layer. Furthermore, since there is a pressure-sensitive conductive layer above the display element, there is a problem that parallax occurs due to the separation of the thickness of the pressure-sensitive conductive layer from the distance between the input surface and the image display surface (display element).
 この他、例えば、1個の指示体検出センサに対して交流信号供給回路および信号受信回路を設け、指示体が押圧した位置を静電容量の変化に基づいて検出する指示体検出装置が開示されているが、この指示体検出装置もまた、費用対効果という点で問題があった。 In addition, for example, an indicator detection device is disclosed in which an AC signal supply circuit and a signal reception circuit are provided for one indicator detection sensor, and a position pressed by the indicator is detected based on a change in capacitance. However, this indicator detection device also has a problem in terms of cost effectiveness.
 これに対して、本実施の形態の表示装置1では、駆動基板10側に複数設けられた画素電極17のそれぞれに、TFT15を設けると共に、このTFT15を構成するゲート電極を共通電極12として、共通電極12と半導体層151との間に、絶縁性を有する弾性部材13を設けるようにした。これにより、任意の位置を入力ペン50等で押圧(加圧)すると、加圧された部分の弾性部材13の厚みが薄くなり、共通電極12がゲート電極として作用し、半導体層151に電荷が誘導され、入力ペン50のペン先付近のTFT15が導通状態となって表示状態が切り換えられる。即ち、コストの高い部材およびを用いることなく、また、入力(押圧)から表示までに、入力情報の検知システムや演算処理システムを用いることなく手書き入力が可能となる。 On the other hand, in the display device 1 of the present embodiment, the TFT 15 is provided in each of the plurality of pixel electrodes 17 provided on the drive substrate 10 side, and the gate electrode constituting the TFT 15 is used as the common electrode 12 in common. An elastic member 13 having insulating properties is provided between the electrode 12 and the semiconductor layer 151. Thereby, when an arbitrary position is pressed (pressed) with the input pen 50 or the like, the thickness of the elastic member 13 in the pressed portion is reduced, the common electrode 12 acts as a gate electrode, and the semiconductor layer 151 is charged. As a result, the TFT 15 near the pen tip of the input pen 50 becomes conductive and the display state is switched. That is, handwritten input can be performed without using expensive members and without using an input information detection system or arithmetic processing system from input (pressing) to display.
 以上のように、本実施の形態では、電気泳動素子30を間に対向配置された駆動基板10と表示基板20のうち、駆動基板10に、複数に分割形成された画素電極17と、この画素電極17に電気的に接続されたTFT15とを設けると共に、TFT15のゲート電極(共通電極12)と半導体層151との間に、絶縁性を有する弾性部材13を設けるようにした。これにより、任意の位置を入力ペン50等で押圧(加圧)することにより、加圧された部分のTFT15がオン状態となって押圧部の画素電極17にはソース電極152Aに印加されている電位が供給される。このとき、画素電極に供給される電位と泳動粒子32の電荷が同じであれば、積力によって移動、即ち、表示状態が切り替わる。よって、コストの高い部材およびを用いることなく、また、入力(押圧)から表示までに、入力情報の検知および演算処理等を行うことなく表示の切り替えが可能となり、費用対効果が高く、遅延の少ない手書き入力が可能な表示装置を提供することが可能となる。 As described above, in the present embodiment, among the drive substrate 10 and the display substrate 20 that are disposed so as to face each other with the electrophoretic element 30 therebetween, the pixel electrode 17 that is divided and formed on the drive substrate 10 and the pixel The TFT 15 electrically connected to the electrode 17 is provided, and the insulating elastic member 13 is provided between the gate electrode (common electrode 12) of the TFT 15 and the semiconductor layer 151. Thus, by pressing (pressing) an arbitrary position with the input pen 50 or the like, the TFT 15 in the pressed portion is turned on and applied to the source electrode 152A on the pixel electrode 17 in the pressing portion. A potential is supplied. At this time, if the potential supplied to the pixel electrode and the charge of the migrating particles 32 are the same, the movement, that is, the display state is switched by the product force. Therefore, it is possible to switch the display without using expensive members and without performing input information detection and calculation processing from input (pressing) to display, which is cost-effective and delay-free. It is possible to provide a display device capable of inputting a small amount of handwriting.
 また、入力面と画像表示面(表示素子)との距離が支持部材21および対向電極22の厚みのみとなるため、入力面に近い位置での表示が可能となる。即ち、視差の少ない表示装置1を提供することが可能となる。 Further, since the distance between the input surface and the image display surface (display element) is only the thickness of the support member 21 and the counter electrode 22, display at a position close to the input surface is possible. That is, it is possible to provide the display device 1 with less parallax.
 以下に第2,第3の実施の形態および変形例について説明するが、以降の説明において上記第1の実施の形態と同一構成部分については同一符号を付してその説明は適宜省略する。 Hereinafter, the second and third embodiments and modifications will be described. In the following description, the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
<2.第2の実施の形態>
 図4は、本開示の第2の実施の形態の表示装置(表示装置2)の断面構成を表したものである。表示装置2は、手書き入力が可能な表示装置であり、例えば、電子ペーパーディスプレイ等の多様な電子機器に適されるものである。この表示装置2は、上記第1の実施の形態と同様に、スペーサ(図示せず)を介して対向配置された駆動基板10と表示基板20との間に、表示素子として、例えば、電気泳動素子30を備えたものである。本実施の形態では、表示装置2は、駆動基板10側に、例えば、画素毎に分離して形成された画素電極17と、画素電極17に電気的に接続されたTFT25とを有し、このTFT25を構成するゲート電極として、半導体層251の下部(支持基板11側)に弾性部材13を介して共通電極12を設けると共に、半導体層251の上部(表示素子30側)にもゲート電極253(第2ゲート電極)を設けた点が上記第1の実施の形態とは異なる。このTFT25は、共通電極12とゲート電極253とが、それぞれ半導体層251,一対のソース電極252Aおよびドレイン電極252Bを共有することで、上記第1の実施の形態と同様の共通電極12をゲート電極とした手書き入力用のTFTと、ゲート電極としてゲート電極253を用いたアクティブマトリクス駆動用のTFTを構成している。
<2. Second Embodiment>
FIG. 4 illustrates a cross-sectional configuration of a display device (display device 2) according to the second embodiment of the present disclosure. The display device 2 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display. As in the first embodiment, the display device 2 is a display element, for example, electrophoresis between a drive substrate 10 and a display substrate 20 that are arranged to face each other via a spacer (not shown). An element 30 is provided. In the present embodiment, the display device 2 includes, for example, a pixel electrode 17 formed separately for each pixel and a TFT 25 electrically connected to the pixel electrode 17 on the drive substrate 10 side. As a gate electrode constituting the TFT 25, the common electrode 12 is provided below the semiconductor layer 251 (on the support substrate 11 side) via the elastic member 13, and the gate electrode 253 (on the display element 30 side) is also provided above the semiconductor layer 251. The second embodiment differs from the first embodiment in that a second gate electrode) is provided. In the TFT 25, the common electrode 12 and the gate electrode 253 share the semiconductor layer 251 and the pair of source electrode 252A and drain electrode 252B, respectively, so that the common electrode 12 similar to that in the first embodiment is used as the gate electrode. And the active matrix driving TFT using the gate electrode 253 as the gate electrode.
 図5は、表示装置2の構成を表したものである。この表示装置2は、表示領域の周辺に、アクティブマトリクス駆動用のドライバである信号線駆動回路120およびゲート線駆動回路130を有している。表示領域内には画素駆動回路140が設けられている。図6は、画素駆動回路140の一例を表したものである。画素駆動回路140は、一般的な液晶ディスプレイや電気泳動装置等に用いられている1トランジスタ(Tr1)1キャパシタ(保持容量;Cs)が設けられたアクティブ型の画素駆動回路である。トランジスタTr1は、例えば、逆スタガ構造(いわゆるボトムゲート型)でもよいしスタガ構造(トップゲート型)でもよく特に限定されない。本実施の形態では、図5に示した、半導体層251の上部にゲート電極253が設けられた、いわゆるトップゲート型のTFT25がトランジスタTr1に相当する。 FIG. 5 shows the configuration of the display device 2. The display device 2 includes a signal line driving circuit 120 and a gate line driving circuit 130 which are active matrix driving drivers around the display area. A pixel driving circuit 140 is provided in the display area. FIG. 6 illustrates an example of the pixel driving circuit 140. The pixel driving circuit 140 is an active pixel driving circuit provided with one transistor (Tr1) and one capacitor (holding capacity; Cs) used in a general liquid crystal display or an electrophoresis apparatus. The transistor Tr1 may have, for example, an inverted stagger structure (so-called bottom gate type) or a stagger structure (top gate type), and is not particularly limited. In this embodiment mode, the so-called top gate type TFT 25 in which the gate electrode 253 is provided over the semiconductor layer 251 illustrated in FIG. 5 corresponds to the transistor Tr1.
 画素駆動回路140において、列方向には信号線120Aが複数配置され、行方向にはゲート線130Aが複数配置されている。各信号線120Aと各ゲート線130Aとの交差点が、1つの画素に対応している。各信号線120Aは、信号線駆動回路120に接続され、各ゲート線130Aはゲート線駆動回路130に接続されている。各信号線120Aには、対応する画素に設けられたゲート電極253が接続され、各信号線120Aには、ソース電極252Aが接続されている。ドレイン電極252Bは、画素電極17に電気的に接続されている。キャパシタCsは、一方が、Cs線150Aに接続されると共に、他方は、対向電極22に接続されている。 In the pixel driving circuit 140, a plurality of signal lines 120A are arranged in the column direction, and a plurality of gate lines 130A are arranged in the row direction. An intersection between each signal line 120A and each gate line 130A corresponds to one pixel. Each signal line 120A is connected to the signal line drive circuit 120, and each gate line 130A is connected to the gate line drive circuit 130. Each signal line 120A is connected to a gate electrode 253 provided in the corresponding pixel, and each signal line 120A is connected to a source electrode 252A. The drain electrode 252B is electrically connected to the pixel electrode 17. One of the capacitors Cs is connected to the Cs line 150 </ b> A, and the other is connected to the counter electrode 22.
 表示装置2では、ゲート線130Aは1本ずつ順次選択され、選択されたゲート線130A上のTFT25が導通し、導通した瞬間に信号線120Aに印加された電圧が画素内のキャパシタCsに蓄えられる。その後、そのゲート線130Aが非選択となっても、キャパシタCsに電圧が保持されるため、表示素子(電気泳動素子30)は、継続して駆動される。なお、TFT25自身や表示素子が保持容量の働きをする場合には、キャパシタCsを省略してもよい。 In the display device 2, the gate lines 130A are sequentially selected one by one, the TFTs 25 on the selected gate lines 130A are turned on, and the voltage applied to the signal line 120A at the moment of conduction is stored in the capacitor Cs in the pixel. . Thereafter, even when the gate line 130A is not selected, the voltage is held in the capacitor Cs, and thus the display element (electrophoretic element 30) is continuously driven. Note that the capacitor Cs may be omitted when the TFT 25 itself or the display element functions as a storage capacitor.
 ゲート電極253は、映像表示用のTFTのゲート電極としての機能のほかに、画素電極17からの電位シールドとしての機能を有する。 The gate electrode 253 has a function as a potential shield from the pixel electrode 17 in addition to a function as a gate electrode of a video display TFT.
 以上のように、本実施の形態の表示装置2では、共通電極12と共に、半導体層251,一対のソース電極252Aおよびドレイン電極252Bを共有するゲート電極253を半導体層251の上部に設けることで、手書き入力と共に、アクティブマトリクス駆動が可能な表示装置を提供することが可能となる。 As described above, in the display device 2 of the present embodiment, the common electrode 12 and the gate electrode 253 sharing the semiconductor layer 251 and the pair of source electrode 252A and drain electrode 252B are provided above the semiconductor layer 251. It is possible to provide a display device capable of active matrix driving together with handwriting input.
 なお、本実施の形態の表示装置2は、アクティブマトリクス駆動用のTFTを利用することによって、手書き入力によって対向電極22側に移動した泳動粒子32を画素電極17側に移動させることができる。即ち、表示装置2の表示面S1に描画された黒い線を消去(白表示に)することができる。これにより、表示装置2は繰り返し書き込みが可能な、例えば、通常の電子書籍端末としても、手書き入力可能な電子ノートブックとしても使用することが可能となる。 Note that the display device 2 of the present embodiment can move the migrating particles 32 that have moved to the counter electrode 22 side by handwriting input to the pixel electrode 17 side by using an active matrix driving TFT. That is, the black line drawn on the display surface S1 of the display device 2 can be erased (white display). As a result, the display device 2 can be used repeatedly, for example, as an ordinary electronic book terminal or an electronic notebook capable of handwriting input.
<3.第3の実施の形態>
 図7は、本開示の第3の実施の形態の表示装置(表示装置3)の断面構成を表したものである。表示装置3は、手書き入力が可能な表示装置であり、例えば、電子ペーパーディスプレイ等の多様な電子機器に適されるものである。この表示装置3は、上記第1の実施の形態と同様に、スペーサ(図示せず)を介して対向配置された駆動基板10と表示基板20との間に、表示素子として、例えば、電気泳動素子30を備えたものである。本実施の形態の表示装置3では、画素電極17に接続されるTFT35が、手書き入力用のTFT35Aと、アクティブマトリクス駆動用のTFT35Bとに別々に構成されている点が、上記第2の実施の形態とは異なる。
<3. Third Embodiment>
FIG. 7 illustrates a cross-sectional configuration of a display device (display device 3) according to the third embodiment of the present disclosure. The display device 3 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display. As in the first embodiment, the display device 3 is, for example, an electrophoresis device as a display element between a drive substrate 10 and a display substrate 20 that are arranged to face each other via a spacer (not shown). An element 30 is provided. In the display device 3 of the present embodiment, the TFT 35 connected to the pixel electrode 17 is configured separately as a handwriting input TFT 35A and an active matrix driving TFT 35B. Different from form.
 本実施の形態におけるアクティブマトリクス駆動用のTFT35Bは、ゲート電極351が支持部材14上に設けられ、ゲート電極351,ゲート絶縁層352,半導体層353Bおよび一対のソース電極354C,ドレイン電極354Bがこの順に設けられた、いわゆるボトムゲート型のTFTである。手書き入力用のTFT35Aは、上記第1の実施の形態におけるTFT15と同様の構成を有する。なお、TFT35AおよびTFT35Bは、それぞれドレイン電極354Bを共有し、このドレイン電極354Bが、画素電極17と電気的に接続されている。 In the active matrix driving TFT 35B in this embodiment, the gate electrode 351 is provided on the support member 14, and the gate electrode 351, the gate insulating layer 352, the semiconductor layer 353B, the pair of the source electrode 354C, and the drain electrode 354B are arranged in this order. This is a so-called bottom gate type TFT provided. The TFT 35A for handwriting input has the same configuration as the TFT 15 in the first embodiment. The TFTs 35A and 35B share a drain electrode 354B, and the drain electrode 354B is electrically connected to the pixel electrode 17.
 表示装置3は、上記第2の実施の形態と同様に、表示領域の周辺に、アクティブマトリクス駆動用のドライバである信号線駆動回路120およびゲート線駆動回路130を有しし、表示領域内には画素駆動回路140が設けられている。図8は、表示装置3の画素駆動回路140の一例を表したものである。表示装置3の画素駆動回路140は、表示装置2と同様に1トランジスタ(Tr1)1キャパシタ(保持容量;Cs)が設けられたアクティブ型の画素駆動回路である。本実施の形態では、これに、手書き入力用のトランジスタTr2が設けられており、このトランジスタTr2のドレイン電極は、上記のようにトランジスタTr1と共に画素電極17に接続され、ソース電極は、信号線120Aに接続されている。手書き入力によって黒い線を描画する場合には、信号線120Aを黒表示に相当する電位(例えば、泳動粒子32が負に帯電している場合には、負の電位)を印加することによって描画が可能になる。 Similar to the second embodiment, the display device 3 includes a signal line driving circuit 120 and a gate line driving circuit 130 that are drivers for driving an active matrix around the display area. Is provided with a pixel driving circuit 140. FIG. 8 illustrates an example of the pixel drive circuit 140 of the display device 3. Similar to the display device 2, the pixel drive circuit 140 of the display device 3 is an active pixel drive circuit provided with one transistor (Tr1) and one capacitor (holding capacity; Cs). In the present embodiment, this is provided with a transistor Tr2 for handwriting input. The drain electrode of the transistor Tr2 is connected to the pixel electrode 17 together with the transistor Tr1 as described above, and the source electrode is connected to the signal line 120A. It is connected to the. When a black line is drawn by handwriting input, the signal line 120A is drawn by applying a potential corresponding to black display (for example, a negative potential when the migrating particles 32 are negatively charged). It becomes possible.
 第2の実施の形態と同様に、アクティブマトリクス駆動用のボトムゲート型のTFTを手書き入力用のTFTと一体で形成すると、第2の実施の形態とは異なり、手書き入力用のTFTが機能しなくなり、押圧による手書き機能を実現することが困難になる。これは、支持部材14上に設けられるアクティブマトリクス駆動用のTFTとしてのゲート電極が、手書き入力用のTFTのゲート電極である共通電極12からの電界をシールドしてしまうことによる。 Similar to the second embodiment, when the bottom gate type TFT for driving the active matrix is formed integrally with the TFT for handwriting input, unlike the second embodiment, the TFT for handwriting input functions. It becomes difficult to realize a handwriting function by pressing. This is because the gate electrode as the active matrix driving TFT provided on the support member 14 shields the electric field from the common electrode 12 which is the gate electrode of the handwriting input TFT.
 このため、上記のように本実施の形態の表示装置3では、手書き入力用のTFT35Aのドレイン電極354Bを共有するアクティブマトリクス駆動用のボトムゲート型のTFT35Bを設けるようにした。これにより、アクティブマトリクス駆動用のボトムゲート型のTFT35Bの半導体層353Bとしてコストの面で優れたアモルファスシリコンを用いることが可能となる。よって上記第1および第2の実施の形態における効果に加えて、より費用対効果が高い表示装置を提供することが可能となる。 Therefore, as described above, in the display device 3 of the present embodiment, the bottom gate type TFT 35B for active matrix driving that shares the drain electrode 354B of the TFT 35A for handwriting input is provided. This makes it possible to use amorphous silicon, which is excellent in cost, as the semiconductor layer 353B of the bottom gate type TFT 35B for active matrix driving. Therefore, in addition to the effects in the first and second embodiments, it is possible to provide a display device that is more cost-effective.
 なお、図8に示した画素駆動回路では、手書き入力用のトランジスタTr2のソース電極が、信号線120Aに接続されている例を示したが、これに限らない。例えば、図9に示したように、手書き入力用のトランジスタTr2のソース電極に第1の電位を印加する専用線160Aを設け、これに接続するようにしてもよい。これにより、配線は増加するが、信号線120Aの制御が簡素になるという効果を奏する。 In the pixel driving circuit shown in FIG. 8, the example in which the source electrode of the transistor Tr2 for handwriting input is connected to the signal line 120A is shown, but the present invention is not limited to this. For example, as shown in FIG. 9, a dedicated line 160A for applying a first potential to the source electrode of the transistor Tr2 for handwriting input may be provided and connected thereto. As a result, although the number of wirings is increased, the control of the signal line 120A is simplified.
<4.変形例>
 図10は、本開示の変形例の表示装置(表示装置4)の断面構成を表したものである。表示装置4は、手書き入力が可能な表示装置であり、例えば、電子ペーパーディスプレイ等の多様な電子機器に適されるものである。この表示装置4は、上記第1の実施の形態と同様に、スペーサ(図示せず)を介して対向配置された駆動基板10と表示基板20との間に、表示素子として、例えば、電気泳動素子30を備えたものである。本変形例の表示装置4は、上記第2の実施の形態の表示装置2と第3の実施の形態の表示装置3とを組み合わせたものであり、各画素電極17に電気的に接続されるTFT45は、ボトムゲート型のアクティブマトリクス駆動用のTFT45Bと、共通電極12をゲート電極とすると共に、半導体層453A上にゲート電極455が設けられた手書き入力用のTFT45Aとから構成されている。
<4. Modification>
FIG. 10 illustrates a cross-sectional configuration of a display device (display device 4) according to a modified example of the present disclosure. The display device 4 is a display device capable of handwritten input, and is suitable for various electronic devices such as an electronic paper display, for example. As in the first embodiment, the display device 4 includes, for example, electrophoresis as a display element between the drive substrate 10 and the display substrate 20 that are arranged to face each other via a spacer (not shown). An element 30 is provided. The display device 4 of this modification is a combination of the display device 2 of the second embodiment and the display device 3 of the third embodiment, and is electrically connected to each pixel electrode 17. The TFT 45 includes a bottom gate type active matrix driving TFT 45B and a handwriting input TFT 45A in which the common electrode 12 is a gate electrode and the gate electrode 455 is provided on the semiconductor layer 453A.
 本変形例におけるTFT45は、手書き入力用のTFT45Aと、アクティブマトリクス駆動用のTFT45Bとから構成されている。TFT45Aは、ゲート電極として、支持部材14の下部(背面S2側)に弾性部材13を間に設けられた共通電極12と、支持部材14上にゲート絶縁膜452を介して設けられた半導体層453Aと、一対のソース電極454A,ドレイン電極454Bと、半導体層453A上に絶縁層16を間に設けられたゲート電極455とから構成されている。TFT45Bは、支持部材14上に設けられたゲート電極451と、ゲート絶縁膜452を介してゲート電極451上に設けられた半導体層453Bと、一対のソース電極454C,ドレイン電極454Bとから構成されている。ドレイン電極454Bは、TFT45AとTFT45Bとによって共有されており、画素電極17に電気的に接続されている。 The TFT 45 in this modification is composed of a TFT 45A for handwriting input and a TFT 45B for active matrix driving. The TFT 45A includes a common electrode 12 provided with an elastic member 13 below the support member 14 (on the back surface S2 side) as a gate electrode, and a semiconductor layer 453A provided on the support member 14 via a gate insulating film 452. And a pair of source electrode 454A, drain electrode 454B, and gate electrode 455 provided with insulating layer 16 on semiconductor layer 453A. The TFT 45B includes a gate electrode 451 provided on the support member 14, a semiconductor layer 453B provided on the gate electrode 451 through a gate insulating film 452, and a pair of source electrode 454C and drain electrode 454B. Yes. The drain electrode 454B is shared by the TFT 45A and the TFT 45B, and is electrically connected to the pixel electrode 17.
 本変形例におけるTFT45Aのゲート電極455は、画素電極17に印加された電位によるTFT45Aの半導体層453Aへの影響を低減するためのものである。また、このゲート電極455に適当な電圧を印加することによってTFT45Aの閾値を調整することができる。具体的には、例えば、半導体層453Aがアモルファスシリコンによって構成されている場合には、ゲート電極455に負の電位を印加することによって閾値が上昇し、描画に要する圧力は相対的に上昇する。また、ゲート電極455に正の電位を印加することによって閾値が低下し、描画に要する圧力は相対的に低下する。このように、手書き入力する際に描画に要する押圧を任意で調整することが可能となる。 The gate electrode 455 of the TFT 45A in this modification is for reducing the influence of the potential applied to the pixel electrode 17 on the semiconductor layer 453A of the TFT 45A. Further, the threshold value of the TFT 45A can be adjusted by applying an appropriate voltage to the gate electrode 455. Specifically, for example, in the case where the semiconductor layer 453A is made of amorphous silicon, the threshold value is increased by applying a negative potential to the gate electrode 455, and the pressure required for drawing is relatively increased. Further, by applying a positive potential to the gate electrode 455, the threshold value is lowered, and the pressure required for drawing is relatively lowered. In this way, it is possible to arbitrarily adjust the pressure required for drawing when inputting by handwriting.
 以上のように、本変形例では、手書き入力用のTFT45Aの半導体層453A上にゲート電極455を設け、これに適当な電圧を印加することによって、TFT45Aの閾値を調整することができる。よって、手書き入力する際に描画に要する押圧を任意で調整することが可能となり、手書き入力による描画に、押圧の強さ(筆圧)をアナログ的に反映することが可能となる。 As described above, in this modification, the threshold value of the TFT 45A can be adjusted by providing the gate electrode 455 on the semiconductor layer 453A of the TFT 45A for handwriting input and applying an appropriate voltage thereto. Accordingly, it is possible to arbitrarily adjust the pressure required for drawing when inputting by handwriting, and it is possible to reflect the pressure (writing pressure) of the pressing in an analog manner in the drawing by handwriting input.
 なお、手書き入力する際に描画に要する押圧の調整は、共通電極12に印加される電圧を調整することでも可能である。また、描画に要する押圧の調整は、第2の実施の形態におけるTFT25のゲート電極253のオフ側電圧を調整することでもできる。 It should be noted that the pressing required for drawing when inputting by hand can also be adjusted by adjusting the voltage applied to the common electrode 12. Further, the pressing required for drawing can be adjusted by adjusting the off-side voltage of the gate electrode 253 of the TFT 25 in the second embodiment.
<5.適用例>
 次に、上記第1~第3の実施の形態および変形例の表示装置1~4の適用例について説明する。但し、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。
<5. Application example>
Next, application examples of the display devices 1 to 4 of the first to third embodiments and the modified examples will be described. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
 図11は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、表示部610および筐体620を有しており、表示部610が上記表示装置1(あるいは、表示装置2~4のいずれか)により構成されている。 FIG. 11 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a display unit 610 and a housing 620, and the display unit 610 is configured by the display device 1 (or any one of the display devices 2 to 4).
 また、上記第1~第3の実施の形態および変形例の表示装置1~4は、電子掲示板等に適用してもよい。 Further, the display devices 1 to 4 of the first to third embodiments and the modifications may be applied to an electronic bulletin board or the like.
 以上、第1~第3の実施形態および変形例を挙げて説明したが、本開示内容は上記実施形態等で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態等では、電気泳動素子30として、マイクロカップ方式の電気泳動素子を用いたが、例えば、白色および黒色に着色された泳動粒子が封入された複数のカプセルを備えた、いわゆるマイクロカプセル方式の電気泳動素子を用いてもよい。また、本開示に用いられる表示素子は、メモリ性を有するものであれば、電気泳動素子に限定されない。 The first to third embodiments and modifications have been described above, but the present disclosure is not limited to the aspects described in the above embodiments and the like, and various modifications are possible. For example, in the above-described embodiment and the like, a microcup type electrophoretic element is used as the electrophoretic element 30, but for example, a so-called multi-capsule in which white and black colored electrophoretic particles are enclosed is provided. A microcapsule electrophoretic element may be used. Moreover, the display element used for this indication is not limited to an electrophoretic element, if it has memory property.
 また、上記第1の実施の形態では、電気泳動素子30として、絶縁性液体31、泳動粒子32および多孔質層33を備えた構成を例示したが、電気泳動素子30(表示層)の構成は、このような多孔質層33を用いたものに限定されず、電気泳動現象を利用して画素ごとに光反射によるコントラスト形成が可能なものであればよい。例えば、カプセルタイプのものや、繊維状構造体の無いタイプ(液体そのものを着色したもの)を用いてもかまわない。 In the first embodiment, the configuration including the insulating liquid 31, the migrating particles 32, and the porous layer 33 is illustrated as the electrophoretic element 30, but the configuration of the electrophoretic element 30 (display layer) is as follows. However, the present invention is not limited to the one using the porous layer 33 as long as the contrast can be formed by light reflection for each pixel using the electrophoresis phenomenon. For example, a capsule type or a type without a fibrous structure (colored liquid itself) may be used.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本開示は以下のような構成を取ることも可能である。
(1)
 印加電圧の変化に応じて表示状態が変化する表示素子と、前記表示素子に電圧を印加する複数の下部電極のそれぞれに、第1ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタが設けられた駆動基板と、前記表示素子を間に前記駆動基板と対向配置されると共に、上部電極を有する表示基板とを備え、前記駆動基板は、前記第1ゲート電極と、前記半導体層との間に絶縁性を有する弾性部材を有する表示装置。
(2)
 前記第1ゲート電極は、前記複数の下部電極に対する共通電極である、前記(1)に記載の表示装置。
(3)
 前記薄膜トランジスタは、支持部材の前記表示素子側の面に前記半導体層および前記一対のソース・ドレイン電極を有し、前記支持部材の前記表示素子とは反対側の面に、前記弾性部材を介して前記第1ゲート電極を有する、前記(1)または(2)に記載の表示装置。
(4)
 前記一対のソース電極およびドレイン電極の一方と、前記下部電極とは電気的に接続されている、前記(1)乃至(3)のいずれかに記載の表示装置。
(5)
 前記上部電極はグランドに接続され、前記一対のソース電極およびドレイン電極の他方は、第1の電位が印加されている、前記(4)に記載の表示装置。
(6)
 前記薄膜トランジスタは、前記支持部材の前記表示素子側に第2ゲート電極を有する、前記(3)乃至(5)のいずれかに記載の表示装置。
(7)
 前記第2ゲート電極は、前記半導体層と前記下部電極との間に設けられている、前記(6)に記載の表示装置。
(8)
 前記第2ゲート電極は、前記半導体層と前記支持部材との間に設けられている、前記(6)に記載の表示装置。
(9)
 前記表示素子はメモリ性を有する、前記(1)乃至(8)のいずれかに記載の表示装置。
(10)
 前記表示素子は、絶縁性液体中に、泳動粒子と、繊維状構造体により形成された多孔質層とを含む電気泳動素子である、前記(1)乃至(9)のいずれかに記載の表示装置。
(11)
 前記繊維状構造体は、前記泳動粒子とは異なる光反射性を有する非泳動粒子を含む、前記(10)に記載の表示装置。
(12)
 複数のゲート線および複数の信号線と、印加電圧の変化に応じて表示状態が変化する表示素子と、前記表示素子に電圧を印加する複数の下部電極、前記複数の下部電極のそれぞれに設けられた第1ゲート電極,第2ゲート電極,半導体層,一対のソース電極およびドレイン電極からなる薄膜トランジスタならびに支持部材を有する駆動基板と、前記表示素子に電圧を印加する複数の下部電極のそれぞれに、支持部材を間に第1ゲート電極および第2ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタが設けられた駆動基板と、前記表示素子を間に前記駆動基板と対向配置されると共に、上部電極を有する表示基板とを備え、前記薄膜トランジスタでは、前記支持部材と前記表示素子との間に、前記支持部材側から前記半導体層,前記一対のソース電極およびドレイン電極,前記第2ゲート電極がこの順に設けられると共に、前記支持部材の前記表示素子とは反対側の面に前記第1ゲート電極が設けられており、前記第1ゲート電極は、前記支持部材との間に絶縁性を有する弾性部材を有し、前記第2ゲート電極は、前記ゲート線に電気的に接続されている表示装置。
(13)
 複数のゲート線および複数の信号線と、印加電圧の変化に応じて表示状態が変化する表示素子と、前記表示素子に電圧を印加する複数の下部電極、前記複数の下部電極のそれぞれに設けられた第1ゲート電極,第1半導体層,一対の第1ソース電極およびドレイン電極からなる第1薄膜トランジスタおよび第2ゲート電極,第2半導体層,前記第1薄膜トランジスタの前記ドレイン電極を共有する一対の第2ソース電極およびドレイン電極からなる第2薄膜トランジスタならびに支持部材を有する駆動基板と、前記表示素子を間に前記駆動基板と対向配置されると共に、上部電極を有する表示基板とを備え、前記第1薄膜トランジスタでは、前記支持部材の前記表示素子とは反対側の面に第1ゲート電極を、前記支持部材と前記表示素子との間に、前記第1半導体層,一対の前記第1ソース電極およびドレイン電極がこの順に設けられると共に、前記第1ゲート電極と、前記第1半導体層との間に絶縁性を有する弾性部材が配設されており、前記第2薄膜トランジスタでは、前記支持部材と前記表示素子との間に、前記支持部材側から第2ゲート電極,第2半導体層,一対の前記第2ソース電極およびドレイン電極がこの順に設けられると共に、前記第2ゲート電極が前記ゲート線に、前記ドレイン電極が前記信号線に電気的に接続されている表示装置。
In addition, this indication can also take the following structures.
(1)
A thin film transistor having a first gate electrode, a semiconductor layer, a pair of source electrodes and a drain electrode on each of a display element whose display state changes in accordance with a change in applied voltage and a plurality of lower electrodes for applying a voltage to the display element And a display substrate having an upper electrode disposed between the display element and the display element, the drive substrate including the first gate electrode, the semiconductor layer, and the semiconductor layer. A display device having an insulating elastic member between the two.
(2)
The display device according to (1), wherein the first gate electrode is a common electrode for the plurality of lower electrodes.
(3)
The thin film transistor has the semiconductor layer and the pair of source / drain electrodes on a surface of the support member on the display element side, and the elastic member on the surface of the support member opposite to the display element. The display device according to (1) or (2), including the first gate electrode.
(4)
The display device according to any one of (1) to (3), wherein one of the pair of source and drain electrodes and the lower electrode are electrically connected.
(5)
The display device according to (4), wherein the upper electrode is connected to a ground, and a first potential is applied to the other of the pair of source electrode and drain electrode.
(6)
The display device according to any one of (3) to (5), wherein the thin film transistor includes a second gate electrode on the display element side of the support member.
(7)
The display device according to (6), wherein the second gate electrode is provided between the semiconductor layer and the lower electrode.
(8)
The display device according to (6), wherein the second gate electrode is provided between the semiconductor layer and the support member.
(9)
The display device according to any one of (1) to (8), wherein the display element has a memory property.
(10)
The display according to any one of (1) to (9), wherein the display element is an electrophoretic element including electrophoretic particles and a porous layer formed of a fibrous structure in an insulating liquid. apparatus.
(11)
The display device according to (10), wherein the fibrous structure includes non-electrophoretic particles having light reflectivity different from the electrophoretic particles.
(12)
A plurality of gate lines and a plurality of signal lines, a display element whose display state changes according to a change in applied voltage, a plurality of lower electrodes for applying voltage to the display element, and a plurality of lower electrodes A first gate electrode, a second gate electrode, a semiconductor layer, a thin film transistor comprising a pair of source and drain electrodes, a drive substrate having a support member, and a plurality of lower electrodes for applying a voltage to the display element; A driving substrate provided with a thin film transistor having a first gate electrode and a second gate electrode, a semiconductor layer, a pair of source electrodes and a drain electrode between members, and a display element disposed between the driving substrate and the driving substrate. A display substrate having an upper electrode, and in the thin film transistor, the support portion is provided between the support member and the display element. The semiconductor layer, the pair of source and drain electrodes, and the second gate electrode are provided in this order from the side, and the first gate electrode is provided on the surface of the support member opposite to the display element. The first gate electrode includes an elastic member having insulation between the first gate electrode and the support member, and the second gate electrode is electrically connected to the gate line.
(13)
A plurality of gate lines and a plurality of signal lines, a display element whose display state changes according to a change in applied voltage, a plurality of lower electrodes for applying voltage to the display element, and a plurality of lower electrodes A first gate electrode, a first semiconductor layer, a first thin film transistor comprising a pair of first source electrode and drain electrode, a second gate electrode, a second semiconductor layer, and a pair of first transistors sharing the drain electrode of the first thin film transistor. A first driving transistor having a second thin film transistor composed of two source electrodes and a drain electrode and a driving substrate having a support member; a display substrate having the display element disposed between the driving substrate and an upper electrode; Then, the first gate electrode is provided on the surface of the support member opposite to the display element, and the support member and the display element In addition, the first semiconductor layer, the pair of the first source electrode and the drain electrode are provided in this order, and an insulating elastic member is disposed between the first gate electrode and the first semiconductor layer. In the second thin film transistor, the second gate electrode, the second semiconductor layer, the pair of the second source electrode and the drain electrode are arranged in this order from the support member side between the support member and the display element. A display device provided, wherein the second gate electrode is electrically connected to the gate line, and the drain electrode is electrically connected to the signal line.
 本出願は、日本国特許庁において2015年5月26日に出願された日本特許出願番号2015-106812号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-106812 filed on May 26, 2015 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (13)

  1.  印加電圧の変化に応じて表示状態が変化する表示素子と、
     前記表示素子に電圧を印加する複数の下部電極のそれぞれに、第1ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタが設けられた駆動基板と、
     前記表示素子を間に前記駆動基板と対向配置されると共に、上部電極を有する表示基板とを備え、
     前記駆動基板は、前記第1ゲート電極と、前記半導体層との間に絶縁性を有する弾性部材を有する
     表示装置。
    A display element whose display state changes according to a change in applied voltage;
    A driving substrate in which a thin film transistor having a first gate electrode, a semiconductor layer, a pair of source and drain electrodes is provided on each of the plurality of lower electrodes for applying a voltage to the display element;
    The display element is disposed opposite to the drive substrate between the display elements, and includes a display substrate having an upper electrode,
    The drive substrate includes an elastic member having insulation between the first gate electrode and the semiconductor layer.
  2.  前記第1ゲート電極は、前記複数の下部電極に対する共通電極である、請求項1に記載の表示装置。 The display device according to claim 1, wherein the first gate electrode is a common electrode for the plurality of lower electrodes.
  3.  前記薄膜トランジスタは、支持部材の前記表示素子側の面に前記半導体層および前記一対のソース・ドレイン電極を有し、前記支持部材の前記表示素子とは反対側の面に、前記弾性部材を介して前記第1ゲート電極を有する、請求項1に記載の表示装置。 The thin film transistor has the semiconductor layer and the pair of source / drain electrodes on a surface of the support member on the display element side, and the elastic member on the surface of the support member opposite to the display element. The display device according to claim 1, comprising the first gate electrode.
  4.  前記一対のソース電極およびドレイン電極の一方と、前記下部電極とは電気的に接続されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein one of the pair of source and drain electrodes and the lower electrode are electrically connected.
  5.  前記上部電極はグランドに接続され、前記一対のソース電極およびドレイン電極の他方は、第1の電位が印加されている、請求項4に記載の表示装置。 The display device according to claim 4, wherein the upper electrode is connected to a ground, and the other of the pair of source electrode and drain electrode is applied with a first potential.
  6.  前記薄膜トランジスタは、前記支持部材の前記表示素子側に第2ゲート電極を有する、請求項3に記載の表示装置。 4. The display device according to claim 3, wherein the thin film transistor has a second gate electrode on the display element side of the support member.
  7.  前記第2ゲート電極は、前記半導体層と前記下部電極との間に設けられている、請求項6に記載の表示装置。 The display device according to claim 6, wherein the second gate electrode is provided between the semiconductor layer and the lower electrode.
  8.  前記第2ゲート電極は、前記半導体層と前記支持部材との間に設けられている、請求項6に記載の表示装置。 The display device according to claim 6, wherein the second gate electrode is provided between the semiconductor layer and the support member.
  9.  前記表示素子はメモリ性を有する、請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the display element has a memory property.
  10.  前記表示素子は、絶縁性液体中に、泳動粒子と、繊維状構造体により形成された多孔質層とを含む電気泳動素子である、請求項1に記載の表示装置。 The display device according to claim 1, wherein the display element is an electrophoretic element including an electrophoretic particle and a porous layer formed of a fibrous structure in an insulating liquid.
  11.  前記繊維状構造体は、前記泳動粒子とは異なる光反射性を有する非泳動粒子を含む、請求項10に記載の表示装置。 The display device according to claim 10, wherein the fibrous structure includes non-migrating particles having light reflectivity different from the migrating particles.
  12.  複数のゲート線および複数の信号線と、
     印加電圧の変化に応じて表示状態が変化する表示素子と、
     前記表示素子に電圧を印加する複数の下部電極、前記複数の下部電極のそれぞれに設けられた第1ゲート電極,第2ゲート電極,半導体層,一対のソース電極およびドレイン電極からなる薄膜トランジスタならびに支持部材を有する駆動基板と、
     前記表示素子に電圧を印加する複数の下部電極のそれぞれに、支持部材を間に第1ゲート電極および第2ゲート電極,半導体層,一対のソース電極およびドレイン電極を有する薄膜トランジスタが設けられた駆動基板と、
     前記表示素子を間に前記駆動基板と対向配置されると共に、上部電極を有する表示基板とを備え、
     前記薄膜トランジスタでは、前記支持部材と前記表示素子との間に、前記支持部材側から前記半導体層,前記一対のソース電極およびドレイン電極,前記第2ゲート電極がこの順に設けられると共に、前記支持部材の前記表示素子とは反対側の面に前記第1ゲート電極が設けられており、
     前記第1ゲート電極は、前記支持部材との間に絶縁性を有する弾性部材を有し、
     前記第2ゲート電極は、前記ゲート線に電気的に接続されている
     表示装置。
    Multiple gate lines and multiple signal lines;
    A display element whose display state changes according to a change in applied voltage;
    A plurality of lower electrodes for applying a voltage to the display element, a first gate electrode, a second gate electrode, a semiconductor layer provided on each of the plurality of lower electrodes, a thin film transistor comprising a pair of source and drain electrodes, and a support member A drive board having
    A driving substrate provided with a thin film transistor having a first gate electrode and a second gate electrode, a semiconductor layer, a pair of a source electrode and a drain electrode, with a supporting member interposed between each of the plurality of lower electrodes for applying a voltage to the display element When,
    The display element is disposed opposite to the drive substrate between the display elements, and includes a display substrate having an upper electrode,
    In the thin film transistor, the semiconductor layer, the pair of source and drain electrodes, and the second gate electrode are provided in this order from the support member side between the support member and the display element. The first gate electrode is provided on a surface opposite to the display element;
    The first gate electrode has an insulating elastic member between the support member and
    The display device, wherein the second gate electrode is electrically connected to the gate line.
  13.  複数のゲート線および複数の信号線と、
     印加電圧の変化に応じて表示状態が変化する表示素子と、
     前記表示素子に電圧を印加する複数の下部電極、前記複数の下部電極のそれぞれに設けられた第1ゲート電極,第1半導体層,一対の第1ソース電極およびドレイン電極からなる第1薄膜トランジスタおよび第2ゲート電極,第2半導体層,前記第1薄膜トランジスタの前記ドレイン電極を共有する一対の第2ソース電極およびドレイン電極からなる第2薄膜トランジスタならびに支持部材を有する駆動基板と、
     前記表示素子を間に前記駆動基板と対向配置されると共に、上部電極を有する表示基板とを備え、
     前記第1薄膜トランジスタでは、前記支持部材の前記表示素子とは反対側の面に第1ゲート電極を、前記支持部材と前記表示素子との間に、前記第1半導体層,一対の前記第1ソース電極およびドレイン電極がこの順に設けられると共に、前記第1ゲート電極と、前記第1半導体層との間に絶縁性を有する弾性部材が配設されており、
     前記第2薄膜トランジスタでは、前記支持部材と前記表示素子との間に、前記支持部材側から第2ゲート電極,第2半導体層,一対の前記第2ソース電極およびドレイン電極がこの順に設けられると共に、前記第2ゲート電極が前記ゲート線に、前記ドレイン電極が前記信号線に電気的に接続されている
     表示装置。
    Multiple gate lines and multiple signal lines;
    A display element whose display state changes according to a change in applied voltage;
    A plurality of lower electrodes for applying a voltage to the display element; a first gate electrode provided on each of the plurality of lower electrodes; a first semiconductor layer; a first thin film transistor comprising a pair of first source and drain electrodes; A driving substrate having a two-gate electrode, a second semiconductor layer, a second thin film transistor comprising a pair of second source electrode and drain electrode sharing the drain electrode of the first thin film transistor, and a support member;
    The display element is disposed opposite to the drive substrate between the display elements, and includes a display substrate having an upper electrode,
    In the first thin film transistor, a first gate electrode is provided on a surface of the support member opposite to the display element, and the first semiconductor layer and the pair of first sources are provided between the support member and the display element. An electrode and a drain electrode are provided in this order, and an elastic member having insulating properties is disposed between the first gate electrode and the first semiconductor layer,
    In the second thin film transistor, a second gate electrode, a second semiconductor layer, a pair of the second source electrode and the drain electrode are provided in this order from the support member side between the support member and the display element. The display device, wherein the second gate electrode is electrically connected to the gate line, and the drain electrode is electrically connected to the signal line.
PCT/JP2016/064327 2015-05-26 2016-05-13 Display device WO2016190136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-106812 2015-05-26
JP2015106812A JP2016218412A (en) 2015-05-26 2015-05-26 Display device

Publications (1)

Publication Number Publication Date
WO2016190136A1 true WO2016190136A1 (en) 2016-12-01

Family

ID=57393236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064327 WO2016190136A1 (en) 2015-05-26 2016-05-13 Display device

Country Status (2)

Country Link
JP (1) JP2016218412A (en)
WO (1) WO2016190136A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164671A (en) * 2006-12-27 2008-07-17 Seiko Epson Corp Display apparatus and electronic paper
JP2008180953A (en) * 2007-01-25 2008-08-07 Seiko Epson Corp Display device, manufacturing method of display device and electronic paper
JP2012022296A (en) * 2010-06-18 2012-02-02 Sony Corp Electrophoretic element, display apparatus, electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164671A (en) * 2006-12-27 2008-07-17 Seiko Epson Corp Display apparatus and electronic paper
JP2008180953A (en) * 2007-01-25 2008-08-07 Seiko Epson Corp Display device, manufacturing method of display device and electronic paper
JP2012022296A (en) * 2010-06-18 2012-02-02 Sony Corp Electrophoretic element, display apparatus, electronic device

Also Published As

Publication number Publication date
JP2016218412A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP2012203342A (en) Electrophoretic element, display device and electronic apparatus
US10816791B1 (en) Insulated notch design for pixels in an electrowetting device
KR20140093676A (en) Electrophoretic element, method of manufacturing same, and display device
JPWO2014038291A1 (en) Electrophoretic element, display device and electronic apparatus
JP2022172363A (en) Pressure sensitive writing media having electrophoretic material
US20110181533A1 (en) Electronic paper device
US8570271B2 (en) Electronic paper display device and manufacturing method thereof
JP5870605B2 (en) Display device, driving method thereof, and electronic apparatus
WO2017013973A1 (en) Display device
WO2016190136A1 (en) Display device
JP2017167344A (en) Reflective display device and electronic device
JP2014106332A (en) Electrophoretic element and display device
JP5942776B2 (en) Electrophoretic element and display device
WO2015145965A1 (en) Display unit and electronic apparatus
JP5817464B2 (en) Electrophoretic element and display device
WO2014208022A1 (en) Display unit and electronic apparatus
WO2016208381A1 (en) Display device
WO2017141608A1 (en) Display device, display device manufacturing method, and electronic apparatus
WO2017073169A1 (en) Electrophoresis element, display device, and electronic equipment
US9910264B1 (en) Contact of spacers to pixel walls in an electrowetting device
WO2016170970A1 (en) Display device and display device manufacturing method
WO2017149986A1 (en) Display device and electronic apparatus
WO2016199617A1 (en) Display device and electronic apparatus
WO2018020856A1 (en) Display device and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799844

Country of ref document: EP

Kind code of ref document: A1