WO2016170970A1 - Display device and display device manufacturing method - Google Patents

Display device and display device manufacturing method Download PDF

Info

Publication number
WO2016170970A1
WO2016170970A1 PCT/JP2016/061132 JP2016061132W WO2016170970A1 WO 2016170970 A1 WO2016170970 A1 WO 2016170970A1 JP 2016061132 W JP2016061132 W JP 2016061132W WO 2016170970 A1 WO2016170970 A1 WO 2016170970A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
pixel
display
particles
migrating particles
Prior art date
Application number
PCT/JP2016/061132
Other languages
French (fr)
Japanese (ja)
Inventor
正太 西
健太郎 佐藤
平井 基介
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016170970A1 publication Critical patent/WO2016170970A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Definitions

  • the present disclosure relates to a display device that displays an image using an electrophoretic phenomenon and a manufacturing method thereof.
  • an electrophoretic display device that produces a contrast (contrast) using an electrophoretic phenomenon can be cited.
  • Various studies have been made on display methods of electrophoretic display devices. Specifically, a method has been proposed in which two types of charged particles having different optical reflection characteristics and polarities are dispersed in an insulating liquid, and each charged particle is moved using the difference in polarity. In this method, since the distribution of the two types of charged particles changes according to the electric field, contrast is generated using the difference in optical reflection characteristics.
  • the display since the display is performed using the contrast of the reflected light as described above, the display is basically monochrome (monochrome) display.
  • the display is basically monochrome (monochrome) display.
  • Patent Document 1 by combining color filters A display device that performs color display is disclosed.
  • Patent Document 2 discloses a reflective display that performs color display using capsules containing particles of different colors for each sub-pixel (sub-pixel) constituting a pixel without using a color filter.
  • the reflective display has a problem that color mixing occurs between adjacent sub-pixels. Further, in such a method, it is not easy to store different particles for each sub-pixel, so that there is a problem that the manufacturing cost increases.
  • a display device includes electrophoretic particles and a porous layer formed of a fibrous structure and colored in a plurality of colors.
  • a method of manufacturing a display device includes a step of forming migrating particles, a step of forming a fibrous structure constituting a porous layer, and a step of dyeing the fibrous structure into a plurality of colors. Is included.
  • the method for manufacturing the display device according to one embodiment by using migrating particles and a porous layer formed of a fibrous structure and colored in a plurality of colors.
  • a plurality of colors can be displayed without using a color filter.
  • the migrating particles and the porous layer formed of a fibrous structure and colored in a plurality of colors are used. I did it. Accordingly, multicolor display can be performed without using a color filter, and a display device with high luminance can be realized. In addition, gradation expression can be achieved by adjusting the concentration of the migrating particles on the display surface side. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
  • FIG. 4A It is a schematic diagram explaining the process of the display apparatus following FIG. 4B. It is a schematic diagram explaining the process of the display apparatus following FIG. 4C. It is a schematic diagram explaining operation
  • FIG. 4 summarizes examples of gradation expressions of the display device shown in FIG. 1. It is a perspective view showing the external appearance of the electronic book using the display apparatus of this indication.
  • FIG. 7B is a perspective view illustrating another example of the electronic book illustrated in FIG. 7A. It is a perspective view showing the external appearance of the tablet personal computer using the display apparatus of this indication.
  • Embodiment display device using a porous layer colored in a plurality of colors
  • Configuration of electrophoretic element 1-2.
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure.
  • the display device 1 is applied to various electronic devices such as a display device that displays an image by using an electrophoretic phenomenon and displays an image, for example, an electronic paper display.
  • the display device 1 includes, for example, an electrophoretic element 30 as a display layer between a drive substrate 10 and a counter substrate 20 that are arranged to face each other with a spacer 40 interposed therebetween.
  • FIG. 2 schematically shows a planar configuration of the display layer of the display device 1, that is, a planar configuration of the electrophoretic element 30.
  • the electrophoretic element 30 includes electrophoretic particles 32 and a porous layer 33 in an insulating liquid 31. 1 and 2 schematically show the configuration of the electrophoretic element 30 and may differ from actual dimensions and shapes.
  • the display device 1 includes a plurality of pixels 2, and each pixel 2 includes, for example, a red pixel 2R, a green pixel 2G, and a blue pixel 2B as subpixels. Each pixel is provided with an electrophoretic element 30.
  • the electrophoretic element 30 of the present embodiment includes, for example, two types of electrophoretic particles 32A and 32B having different light reflectivities as the electrophoretic particles 32, and the porous layer 33 has, for example, red (33R) and green ( 33G) and blue (33B).
  • the regions (33R, 33G, 33B) colored in red, green, and blue in the porous layer 33 are arranged at positions corresponding to the sub-pixels (2R, 2G, 2B), respectively.
  • the insulating liquid 31 is, for example, one type or two or more types of non-aqueous solvents such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 be as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
  • the insulating liquid 31 may contain various materials as necessary. This material is, for example, a colorant, a charge control agent, a dispersion stabilizer, a viscosity modifier, a surfactant or a resin.
  • the electrophoretic particles 32 are one or more charged particles that are electrically movable, and are dispersed in the insulating liquid 31.
  • the migrating particles 32 can move between the pixel electrode 14 and the counter electrode 22 in the insulating liquid 31.
  • the migrating particles 32 also have arbitrary optical reflection characteristics (light reflectivity).
  • the light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • the migrating particles 32 are composed of two types of migrating particles 32A and 32B having different light reflectivities. Specifically, the migrating particles 32A are colored black and the migrating particles 32B are colored white. When the migrating particles 32A and the migrating particles 32B are appropriately moved to the display surface S1, each pixel 2 of the display device 1 can perform black display, white display, or other color display.
  • the migrating particles 32 are, for example, one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). .
  • the migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
  • the specific forming material of the migrating particles 32 is selected according to the role of the migrating particles 32 in order to cause contrast, for example.
  • the migrating particles 32A that perform black display are, for example, a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the migrating particles 32B that perform white display are, for example, metal oxides such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate.
  • metal oxides such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate.
  • titanium oxide is preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, but the entire migrating particles 32 are, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may be aggregated in some cases.
  • the average particle diameter of the migrating particles 32 is preferably in the range of 0.1 ⁇ m to 10 ⁇ m, for example.
  • the average particle diameters of the migrating particles 32A and the migrating particles 32B may be the same or different.
  • the electrophoretic particles 32A and 32B are preferably charged and have different charges.
  • the difference in charge amount can be added by performing surface treatment, for example.
  • the positive charge is added by, for example, modification with a functional group having an electron donating property.
  • the migrating particle 32B has a negative charge
  • the negative charge is added by, for example, modification with a functional group having an electron-withdrawing property.
  • the migrating particles 32A and 32B may have the same charge, and in this case, the charge amount is preferably different.
  • the functional groups that modify the surfaces of the migrating particles 32A and 32B may be the same functional groups as each other or different functional groups may be introduced.
  • the dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK® series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
  • the surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
  • the surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32.
  • the type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32.
  • carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced.
  • the graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance.
  • the kind of polymerizable functional group is the same as that described for the adsorptive material.
  • the dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • the porous layer 33 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG.
  • the porous layer 33 has a plurality of gaps (pores 332) through which the migrating particles 32A and 32B pass at a location where the fibrous structure 331 does not exist.
  • porous layer 33 which is a three-dimensional structure
  • one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. However, both may be mixed.
  • FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.
  • the fibrous structure 331 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter).
  • the porous layer 33 is a three-dimensional structure
  • the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 33 increases and the high light
  • the porous layer 33 can be thin in order to obtain the reflectance.
  • the contrast increases and the energy required to move the migrating particles 32A and 32B decreases.
  • the migrating particles 32 easily pass through the pores 332. As a result, the time required to move the migrating particles 32 is shortened, and the energy required to move the migrating particles 32 is also reduced.
  • the shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous material having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • the average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 332 increases. For this reason, it is preferable that the average fiber diameter of the fibrous structure 331 is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
  • the average pore diameter of the pores 332 is not particularly limited, but is preferably as large as possible. This is because the migrating particles 32 ⁇ / b> A and 32 ⁇ / b> B can easily pass through the pores 332. Therefore, the average pore diameter of the pores 332 is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the thickness of the porous layer 33 is not particularly limited, but is, for example, 5 ⁇ m to 100 ⁇ m. This is because the shielding property of the porous layer 33 is enhanced and the migrating particles 32 and 32B easily pass through the pores 332.
  • the fibrous structure 33 for example, one or two or more of polymer materials such as acrylic resins or inorganic materials are included, and other materials may be included.
  • the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, and polyvinylidene. Fluoride, polyhexafluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
  • the fibrous structure 331 is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is likely to be diffusely reflected, the light reflectance of the porous layer 33 is further increased, and the volume ratio of the pores 332 in the unit volume of the porous layer 33 is increased. This is because the migrating particles 32 easily pass through the pores 332. Thereby, the contrast becomes higher and the energy required to move the migrating particles 32 becomes lower.
  • Nanofiber is a fibrous substance having a fiber diameter of 0.001 ⁇ m to 0.1 ⁇ m and a length that is 100 times or more of the fiber diameter.
  • the fibrous structure 331 that is a nanofiber is preferably formed by an electrospinning method using a polymer material. This is because the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
  • This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32.
  • the light reflectance of the fibrous structure 331 is not particularly limited, but is preferably set so that at least the porous layer 33 can shield the migrating particles 32 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • the porous layer 33 is colored red (33R), green (33G), and blue (33B), and the red porous layer 33R, the green porous layer 33G,
  • the blue porous layer 33B is disposed at a position corresponding to each sub-pixel, red pixel 2R, green pixel 2G, and blue pixel 2B.
  • the spacer 40 includes, for example, an insulating material such as a polymer material.
  • the configuration of the spacer 40 is not particularly limited, and may be a sealing material mixed with fine particles.
  • the shape of the spacer 40 is not particularly limited, but is preferably a shape that does not hinder the movement of the migrating particles 32 between the pixel electrode 14 and the counter electrode 22 and that can be uniformly distributed. is there. Moreover, from the relationship of the manufacturing process mentioned later, it is preferable that it is a reverse taper shape from the drive substrate 10 side to the opposing substrate 20 side, for example.
  • the thickness of the spacer 40 is not particularly limited, but in particular, it is preferably as thin as possible in order to reduce power consumption, for example, 10 ⁇ m to 100 ⁇ m.
  • the spacer 40 may be formed at an appropriate position in the display layer, and is not necessarily provided so as to partition between the pixels 2 or between the sub-pixels 2R, 2G, and 2B. For example, as shown in FIG. 1, it may be provided in the section of the green pixel 2G. However, the tip of the spacer 40 on the drive substrate 10 side is preferably provided at a position where a pixel electrode 14 described later is not formed.
  • the display device 1 includes the pair of substrates, the drive substrate 10 and the counter counter substrate 20 facing each other via the spacer 40, and includes the electrophoretic element 30 as a display layer therebetween. is there. Note that the periphery of the display device 1 is sealed with a sealing material 42.
  • the driving substrate 10 is, for example, one in which a thin film transistor (TFT) 12, a protective layer 13, and a pixel electrode 14 are laminated in this order on one surface of a support member 11.
  • TFT thin film transistor
  • the TFT 12 and the pixel electrode 14 are divided and formed in a matrix according to the pixel arrangement, for example, in order to construct an active matrix drive circuit.
  • the support member 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like.
  • the inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like. Etc. are included.
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel.
  • the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
  • the support member 11 may be light transmissive or non-light transmissive.
  • the support member 11 may be a rigid substrate such as a wafer, or may be a flexible thin glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material.
  • the TFT 12 is a switching element for selecting a pixel.
  • the TFT 12 may be, for example, an inorganic TFT using an inorganic semiconductor layer such as amorphous silicon, polysilicon, or oxide as a channel layer (active layer), or an organic TFT using an organic semiconductor layer such as pentacene.
  • the TFT 12 is covered with a protective layer 13, for example.
  • a planarization insulating film (not shown) made of an insulating material such as polyimide may be further provided.
  • the pixel electrode 14 is formed independently for each of the sub-pixels 2R, 2G, and 2B, and a plurality of pixel electrodes 14 are also provided as independent electrodes within the sub-pixels 2R, 2G, and 2B. Specifically, the same number as the type of migrating particles 32, two here (pixel electrode 14A and pixel electrode 14B) are provided.
  • the pixel electrodes 14A and 14B include one or more of conductive materials such as gold (Au), silver (Ag), and copper (Cu).
  • the pixel electrodes 14A and 14B are electrically connected to the TFT 12. Note that the number of TFTs 12 arranged for one pixel electrode 14A (or pixel electrode 14B) is arbitrary, and is not limited to one, and may be two or more.
  • the adhesive layer 15 is bonded to the driving substrate 10 and a display layer described later, and is made of, for example, an acrylic resin, a urethane resin, or rubber, and has a thickness of, for example, 1 ⁇ m to 100 ⁇ m.
  • an anionic additive, a cationic additive, or a lithium salt additive may be added to the adhesive layer 15 for the purpose of providing conductivity.
  • a peripheral circuit (not shown) for driving the electrophoretic element 30 for each of the sub-pixels 2R, 2G, 2B (applying a driving voltage between the pixel electrode 14 and the counter electrode 22) is provided on the driving substrate 10. Is provided.
  • the peripheral circuit includes, for example, a voltage control driver for forming an active matrix driving circuit, a power source, a memory, and the like, and corresponds to an image signal for one or more selective sub-pixels. A drive voltage can be applied.
  • the counter substrate 20 is provided with a counter electrode 22 on one surface side (display layer side) of the support member 21.
  • the support member 21 is made of the same material as the support member 11 except that it is light transmissive. This is because the image is displayed on the upper surface side of the counter substrate 20, and thus the support member 21 needs to be light transmissive.
  • the thickness of the support member 21 is, for example, 1 ⁇ m to 250 ⁇ m.
  • the counter electrode 22 includes, for example, one or more of translucent conductive materials (transparent conductive materials). Examples of such a conductive material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • the thickness of the counter electrode 22 is, for example, 0.001 ⁇ m to 1 ⁇ m.
  • the counter electrode 22 is formed on the entire surface of the support member 21, for example, but may be formed separately for each pixel 2, for example, similarly to the pixel electrode 14.
  • the light transmittance of the counter electrode 22 is preferably as high as possible, for example, 80% or more. It is.
  • the electric resistance of the counter electrode 22 is preferably as low as possible, for example, 100 ⁇ / ⁇ (square) or less.
  • an electrophoretic element 30 that is voltage-controlled for each pixel 2 is provided.
  • the electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and includes electrophoretic particles 32 that can move between the pixel electrode 14 and the counter electrode 22 in accordance with an electric field.
  • the electrophoretic element 30 includes, for example, a porous layer 33 together with electrophoretic particles 32 in an insulating liquid 31.
  • the insulating liquid 31 and the porous layer 33 are provided in common for each pixel. Yes.
  • the display device 1 of the present embodiment can be formed by, for example, the following method.
  • the counter electrode 22 is provided on one surface of the support member 21 using an existing method such as various film forming methods, the counter substrate 20 is formed, and the spacer 40 is formed on the counter electrode 22.
  • the spacer 40 can be formed by, for example, the following imprint method.
  • a solution containing a constituent material of the spacer 40 (for example, a photosensitive resin material) is applied on the counter electrode 22.
  • a mold having a recess on the coated surface is pressed and exposed to light, and then the mold is removed. Thereby, the columnar spacer 40 is formed.
  • the spacer 40 is preferably a so-called reverse taper in which the width gradually decreases from the counter substrate 20 side to the drive substrate 10 side. Thereby, the mold can be easily removed from the spacer 40.
  • a fibrous structure 331 is disposed between the adjacent spacers 40, that is, in the cells 41.
  • the fibrous structure 331 is formed, for example, by the manufacturing process shown in FIG. Specifically, first, for example, a polymer solution (spinning solution) in which polyacrylonitrile is dispersed or dissolved as a fibrous structure 331 in N, N′-dimethylformamide is prepared (step S101). Subsequently, using this spinning solution, spinning is performed on another substrate by, for example, an electrostatic spinning method (step S102). Thereby, the fibrous structure 331 shown in FIG. 4B is formed.
  • the fibrous structure 331 is formed by a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like instead of the electrostatic spinning method. May be.
  • the fibrous structure 331 is colored red (33R), green (33G), and blue (33B) so as to correspond to the sub-pixels 2R, 2G, and 2B (step S103).
  • the coloring method include screen printing, ink jet printing, sublimation heat transfer, and laser dyeing.
  • alignment marks for alignment with the drive substrate are also printed at the same time.
  • the colored fibrous structure 331 is divided into appropriate sizes and placed in each cell 41 (step S104). Specifically, the fibrous structure 331 is scraped off by the spacer 40 by pressing the fibrous structure 331 from above (the direction opposite to the support member 21). The cut fibrous structure 331 is accommodated between the spacers 40. In this way, the porous layer 33 can be formed for each cell 41.
  • the insulating liquid 31 in which the migrating particles 32 (32A, 32B) are dispersed to the counter substrate 20 on which the porous layer 33 is disposed this is treated with, for example, a sealing agent (not shown).
  • a peeling member (not shown) on which the seal layer 16 is disposed is made to face each other.
  • the driving substrate 10 on which the TFT 12 and the pixel electrode 14 and the like are formed on the seal layer 16 via the adhesive layer 15 is fixed.
  • the alignment of the pixel circuit on the driving substrate 10 is performed using the alignment mark.
  • the display device 1 is completed through the above steps.
  • contrast is generated by utilizing the difference between the light reflectance of the electrophoretic particles 32 and the light reflectance of the porous layer 33.
  • the migrating particles 32 are composed of black migrating particles 32A and white migrating particles 32B, and the porous layer 33 is formed in each sub-pixel, red pixel 2R, green pixel 2G, and blue pixel 2B. Corresponding red 33R, green 33G and blue 33B are colored.
  • the migrating particles 32A and 32B are charged with positive charges (migrating particles 32A) and negative charges (migrating particles 32B), respectively, and the pixel electrode 14 is 2 for each of the sub-pixels 2R, 2G, and 2B. It is divided and formed one by one.
  • 5A to 5C are schematic diagrams for explaining the operation of the display device 1 when performing color display of any one of black, white, and RGB (here, red R).
  • the support member 11 and the TFT 12 of the drive substrate 10 are omitted.
  • the migrating particles 32A when a negative (minus) potential is applied to both of the pixel electrodes 14A and 14B provided in the sub-pixels 2R, 2G, and 2B, the migrating particles 32A. Move to the drive substrate 10 side, that is, the back surface S2 side, and the migrating particles 32B move to the counter substrate 20 side, that is, the display surface S1 side.
  • the display color in the sub-pixels 2R, 2G, and 2B is white.
  • the migrating particles 32A migrate to the display surface S1 side.
  • the particles 32B move to the back surface S2.
  • the display color in the sub-pixels 2R, 2G, and 2B, that is, the pixel 2 is black.
  • the migrating particles 43A are moved to the pixel electrode 14A side.
  • the migrating particles 32B move to the drive substrate 10 side on the pixel electrode 14B side (see, for example, the green pixel 2G in FIG. 1) on the drive substrate 10 side.
  • the display color in the sub-pixels 2R, 2G, and 2B is the color of the porous layer 33 (red, green, or blue). For example, when the display color of the pixel 2 is red, as illustrated in FIG.
  • one of the pixel electrodes 14A and 14B (for example, the pixel electrode 14A) of the sub-pixel 2R has a negative (minus) potential
  • the migrating particles 43A and the migrating particles 32B in the sub-pixel 2R move to the display surface S1, respectively, and the display color in the sub-pixel 2R is the porous layer 33R. It becomes red.
  • a positive (plus) potential is applied to the pixel electrodes 14A and 14B of the sub-pixels 2G and 2B.
  • the migrating particles 32A in the sub-pixels 2G and 2B move to the display surface S1 side, and the migrating particles 32B move to the back surface S2 side, and the display color of the sub-pixels 2G and 2B becomes black. As a result, the display color of the pixel 2 is red.
  • subpixels for example, subpixels
  • subpixels other than the subpixel (for example, subpixel 2G) provided with the porous layers 33R, 33G, and 33B colored in the target color (for example, green). 2R, 2B) may be displayed in black or white.
  • two types of migrating particles 32 (32A, 32B) having different reflection characteristics (white or black) and different polar charges are provided independently in each of the sub-pixels 2R, 2G, 2B.
  • the sub-pixels 2R, 2G, 2B can electrically select any one of white, black, and RGB, respectively. It becomes.
  • a multicolor display is realized by providing a color filter on the display surface side.
  • the color (RGB) of each subpixel when the color (RGB) of each subpixel is selectively displayed, the other subpixels display black.
  • RGB red, green, or blue
  • the color of each sub-pixel is reflected in white display and not reflected in black display.
  • 2/3 of the pixel area is black. Therefore, the reflected light of a desired color in this pixel can be obtained only 1/3 of the pixel area, which is very dark and low in luminance.
  • the display element two types of migrating particles 32 of black migrating particles 32A and white migrating particles 32B, red 33R, green 33G, and blue 33B are used.
  • the electrophoretic element 30 including the colored porous layer 33 is used.
  • gradation expression is possible by adjusting the density of the black particles (electrophoretic particles 32A) and white particles (electrophoretic particles 32B) on the display surface S1 side.
  • FIG. 6 summarizes colors that can be displayed in the pixel 2 including the red pixel 2R, the green pixel 2G, and the blue pixel 2B, and the gradation expression thereof.
  • the electrophoretic particles 32A, 32B are moved to the back surface S2 side to obtain the desired color, that is, the porous layer. 33 colors become display colors.
  • the migrating particles 32A are moved to the display surface S1 side in one subpixel, and the migrating particles 32B are moved to the back surface S2 side to display the subpixels in black, and migrate in the other subpixel.
  • the pixel 2 can obtain reflected light having 2/3 of the pixel area, and can obtain higher luminance than the display device using the color filter. it can.
  • the migrating particles 32A are moved to the display surface S1 side and the migrating particles 32B are moved to the back surface S2 side, so that the subpixels other than the subpixel corresponding to the desired color These pixels are displayed in black.
  • the pixel 2 can obtain reflected light having 1/3 of the pixel area, and the monochromatic light having the same luminance as the display device using the color filter. Can be obtained.
  • the migrating particles 32A are moved to the back surface S2 side, and the migrating particles 32B are moved to the display surface S1 side, so that other than the sub-pixels corresponding to the desired color.
  • These pixels are displayed in white. That is, as shown in the L column of FIG. 6, the pixel 2 can obtain reflected light of 100% of the pixel area, and can obtain brighter monochromatic light.
  • the electrophoretic particles 32A of two subpixels out of the three subpixels are moved to the display surface S1 side, and the electrophoretic particles 32B are moved to the back surface S2 side to display black.
  • a dark gray color can be displayed by moving the migrating particles 32A of the remaining one subpixel to the back surface S2 side and moving the migrating particles 32B to the display surface S1 side to display white.
  • the porous layer 33 is colored in a desired color, and the electrophoretic particles 32A exhibiting black and the electrophoretic particles 32B exhibiting white are appropriately moved, so that a multicolor display and a plurality of colors can be displayed without using a color filter. Gradation can be expressed.
  • the porous layer 33 colored in red, green, and blue corresponding to a plurality of colors, for example, the sub-pixels 2R, 2G, and 2B is used, the color filter Multi-color display is possible without using. Further, the luminance can be improved as much as no color filter is used.
  • black electrophoretic particles 32A and white electrophoretic particles 32B charged to different polarities are used as electrophoretic particles 32, and a plurality of independent pixel electrodes are provided for each of subpixels 2R, 2G, and 2B. (Two here). Thereby, higher luminance can be obtained and a plurality of gradations can be expressed.
  • the porous layer 33 is colored by printing, it is easy to forcibly and can be manufactured at low cost. Furthermore, since a color filter is not used, it is possible to reduce the thickness and reduce the member cost as compared with a general reflective display device.
  • the pixel 2 may be composed of two RGBW sub-pixels, and a white colored porous layer 33 may be disposed in the white pixel.
  • the white porous layer 33 can be formed by adding the material mentioned as the constituent material of the migrating particles 32 such as titanium oxide at the time of spinning the fibrous structure 331.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 7A, or may be provided on the upper surface as illustrated in FIG. 7B.
  • the display unit 110 is configured by the display device 1.
  • the display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 7A and 7B.
  • PDA Personal Digital Assistants
  • FIG. 8 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 210 and a housing 220, and the touch panel unit 210 is configured by the display device 1.
  • the display device 1 of the above embodiment may be applied to an electronic bulletin board or the like.
  • the present disclosure is not limited to the aspects described in the embodiments, and various modifications can be made.
  • the configuration including the insulating liquid 31, the electrophoresis device 32, and the porous layer 33 is illustrated as the electrophoresis device 30, but the configuration of the electrophoresis device 30 (display layer) is It is not limited to the one using the porous layer 33 as described above, and any material that can form a contrast by light reflection for each pixel by using an electrophoretic phenomenon may be used.
  • this indication can also take the following structures.
  • a display device including migrating particles and a porous layer formed of a fibrous structure and colored in a plurality of colors.
  • the migrating particles include a plurality of types having different light reflection characteristics.
  • the display device according to (1) or (2), wherein the plurality of types of migrating particles are charged and have different charges.
  • the electrophoretic particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material.
  • (11) The display device according to any one of (1) to (10), wherein the fibrous structure is made of an acrylic resin.
  • the insulating liquid contains a dispersant that disperses the electrophoretic particles.
  • a method for manufacturing a display device including a step of forming migrating particles, a step of forming a fibrous structure constituting a porous layer, and a step of dyeing the fibrous structure into a plurality of colors.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

According to one embodiment of the present invention, a display device is provided with: electrophoretic particles; and a porous layer, which is formed of a fibrous structure, and is colored in a plurality of colors.

Description

表示装置および表示装置の製造方法Display device and manufacturing method of display device
 本開示は、電気泳動現象を利用して画像表示を行う表示装置およびその製造方法に関する。 The present disclosure relates to a display device that displays an image using an electrophoretic phenomenon and a manufacturing method thereof.
 近年、携帯電話機または携帯情報端末機器(PDA)等の多様な電子機器の普及に伴い、低消費電力で高品位画質の表示装置に関する需要が高まっている。中でも、最近では、電子書籍の配信事業の誕生に伴い、文字情報を長時間読むことを目的とした読書用途の電子書籍端末が注目されているため、その用途に適した表示品位を有する表示装置が望まれている。読書用途としては、コレステリック液晶型、電気泳動型、電気酸化還元型またはツイストボール型等の表示装置が提案されているが、中でも、反射型に分類される表示装置が好ましい。紙と同様に外光の反射(散乱)を利用して明表示するため、紙に近い表示品位が得られるからである。また、バックライトが不要であるため、消費電力が抑えられるからである。 In recent years, with the widespread use of various electronic devices such as mobile phones and personal digital assistants (PDAs), there is an increasing demand for display devices with low power consumption and high image quality. Among them, recently, with the birth of the electronic book distribution business, electronic book terminals for reading purposes aimed at reading character information for a long time have been attracting attention, so a display device having a display quality suitable for that purpose Is desired. As reading applications, display devices of a cholesteric liquid crystal type, an electrophoretic type, an electrooxidation reduction type, a twist ball type, and the like have been proposed, and among them, a display device classified as a reflection type is preferable. This is because bright display is performed using reflection (scattering) of external light as in the case of paper, and display quality close to that of paper can be obtained. In addition, since a backlight is unnecessary, power consumption can be suppressed.
 反射型の表示装置の有力候補としては、電気泳動現象を利用して明暗(コントラスト)を生じさせる電気泳動型の表示装置が挙げられる。電気泳動型の表示装置の表示方法については様々な検討がなされている。具体的には、絶縁性液体中に光学的反射特性および極性が異なる2種類の荷電粒子を分散させて、その極性の違いを利用して各荷電粒子を移動させる方法が提案されている。この方法では、電界応じて2種類の荷電粒子の分布が変化するため、光学的反射特性の違いを利用してコントラストが生じる。 As a promising candidate for a reflective display device, an electrophoretic display device that produces a contrast (contrast) using an electrophoretic phenomenon can be cited. Various studies have been made on display methods of electrophoretic display devices. Specifically, a method has been proposed in which two types of charged particles having different optical reflection characteristics and polarities are dispersed in an insulating liquid, and each charged particle is moved using the difference in polarity. In this method, since the distribution of the two types of charged particles changes according to the electric field, contrast is generated using the difference in optical reflection characteristics.
 電気泳動型の表示装置では、上記のように反射光のコントラストを利用して表示を行うため、基本的にモノクロ(モノクローム)表示となるが、例えば、特許文献1では、カラーフィルタを組み合わせることによってカラー表示を行う表示装置が開示されている。 In the electrophoretic display device, since the display is performed using the contrast of the reflected light as described above, the display is basically monochrome (monochrome) display. However, in Patent Document 1, for example, by combining color filters A display device that performs color display is disclosed.
特開2012-53184号公報JP 2012-53184 A 特開2011―100155号公報JP 2011-100155 A
 しかしながら、このような表示装置では、カラーフィルタの色を表示色とする場合には、カラーフィルタが設けられていない部分を黒表示とする必要がある。また、反射光はカラーフィルタを介して表示面側に射出されるため、反射光の一部がカラーフィルタによって吸収されてしまう。このため、面積階調でカラー表現を行う反射型の表示装置においては、輝度が大幅に低下するという問題があった。 However, in such a display device, when the color of the color filter is used as the display color, it is necessary to display a portion where the color filter is not provided in black. Further, since the reflected light is emitted to the display surface side through the color filter, a part of the reflected light is absorbed by the color filter. For this reason, the reflective display device that performs color expression with area gradation has a problem that the luminance is significantly reduced.
 一方、特許文献2では、カラーフィルタを用いずに、画素を構成する副画素(サブピクセル)ごとに異なる色の粒子を含むカプセルを用いてカラー表示を行う反射ディスプレイが開示されているが、この反射ディスプレイでは、隣接する副画素間において混色が生じるという問題があった。また、このような方式では副画素毎に異なる粒子を格納することが容易ではないため、製造コストが上昇するという問題があった。 On the other hand, Patent Document 2 discloses a reflective display that performs color display using capsules containing particles of different colors for each sub-pixel (sub-pixel) constituting a pixel without using a color filter. The reflective display has a problem that color mixing occurs between adjacent sub-pixels. Further, in such a method, it is not easy to store different particles for each sub-pixel, so that there is a problem that the manufacturing cost increases.
 従って、輝度を向上させると共に、階調表現が可能な表示装置およびその製造方法を提供することが望ましい。 Therefore, it is desirable to provide a display device capable of improving luminance and expressing gradation and a manufacturing method thereof.
 本開示の一実施形態の表示装置は、泳動粒子と、繊維状構造体により形成されると共に、複数の色に着色された多孔質層とを備えたものである。 A display device according to an embodiment of the present disclosure includes electrophoretic particles and a porous layer formed of a fibrous structure and colored in a plurality of colors.
 本開示の一実施形態の表示装置の製造方法は、泳動粒子を形成する工程と、多孔質層を構成する繊維状構造体を形成する工程と、繊維状構造体を複数の色に染色する工程とを含むものである。 A method of manufacturing a display device according to an embodiment of the present disclosure includes a step of forming migrating particles, a step of forming a fibrous structure constituting a porous layer, and a step of dyeing the fibrous structure into a plurality of colors. Is included.
 本開示の一実施形態の表示装置および一実施形態の表示装置の製造方法では、泳動粒子と、繊維状構造体により形成されると共に、複数の色に着色された多孔質層とを用いることにより、カラーフィルタを用いることなく、複数の色を表示することが可能となる。 In the display device according to one embodiment of the present disclosure and the method for manufacturing the display device according to one embodiment, by using migrating particles and a porous layer formed of a fibrous structure and colored in a plurality of colors. A plurality of colors can be displayed without using a color filter.
 本開示の一実施形態の表示装置および一実施形態の表示装置の製造方法によれば、泳動粒子と、繊維状構造体により形成されると共に、複数の色に着色された多孔質層とを用いるようにした。これにより、カラーフィルタを用いることなく多色表示が可能となり、高輝度な表示装置を実現することができる。また、表示面側における泳動粒子の濃度を調整することにより、階調表現が可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the display device of one embodiment of the present disclosure and the method for manufacturing the display device of one embodiment, the migrating particles and the porous layer formed of a fibrous structure and colored in a plurality of colors are used. I did it. Accordingly, multicolor display can be performed without using a color filter, and a display device with high luminance can be realized. In addition, gradation expression can be achieved by adjusting the concentration of the migrating particles on the display surface side. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本開示の一実施の形態に係る表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus which concerns on one embodiment of this indication. 図1に示した表示装置に用いた電気泳動素子の模式図である。It is a schematic diagram of the electrophoretic element used for the display apparatus shown in FIG. 図1に示した表示装置の製造工程の一部を説明する流れ図である。It is a flowchart explaining a part of manufacturing process of the display apparatus shown in FIG. 図1に示した表示装置の工程の一部を説明する模式図である。It is a schematic diagram explaining a part of process of the display apparatus shown in FIG. 図4Aに続く表示装置の工程を説明する模式図である。It is a schematic diagram explaining the process of the display apparatus following FIG. 4A. 図4Bに続く表示装置の工程を説明する模式図である。It is a schematic diagram explaining the process of the display apparatus following FIG. 4B. 図4Cに続く表示装置の工程を説明する模式図である。It is a schematic diagram explaining the process of the display apparatus following FIG. 4C. 図1に示した表示装置の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the display apparatus shown in FIG. 図1に示した表示装置の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the display apparatus shown in FIG. 図1に示した表示装置の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the display apparatus shown in FIG. 図1に示した表示装置の階調表現の一例をまとめたものである。FIG. 4 summarizes examples of gradation expressions of the display device shown in FIG. 1. 本開示の表示装置を用いた電子ブックの外観を表す斜視図である。It is a perspective view showing the external appearance of the electronic book using the display apparatus of this indication. 図7Aに示した電子ブックの他の例を表す斜視図である。FIG. 7B is a perspective view illustrating another example of the electronic book illustrated in FIG. 7A. 本開示の表示装置を用いたタブレットパーソナルコンピュータの外観を表す斜視図である。It is a perspective view showing the external appearance of the tablet personal computer using the display apparatus of this indication.
 以下、本開示における一実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.実施の形態(複数の色に着色された多孔質層を用いた表示装置)
 1-1.電気泳動素子の構成
 1-2.表示装置の構成
 1-3.表示装置の製造方法
 1-4.表示装置の好ましい表示方法
 1-5.作用・効果
2.適用例(電子機器)
Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the drawings. The order of explanation is as follows.
1. Embodiment (display device using a porous layer colored in a plurality of colors)
1-1. Configuration of electrophoretic element 1-2. Configuration of display device 1-3. Manufacturing method of display device 1-4. Preferred display method of display device 1-5. Action / Effect Application example (electronic equipment)
<1.実施の形態>
 図1は、本開示の一実施の形態の表示装置(表示装置1)の断面構成を表したものである。表示装置1は、電気泳動現象を利用してコントラストを生じさせ、画像を表示する表示装置、例えば電子ペーパーディスプレイ等の多様な電子機器に適用されるものである。この表示装置1は、例えば、スペーサ40を介して対向配置された駆動基板10と対向基板20との間に、表示層として電気泳動素子30を備えたものである。図2は、表示装置1の表示層の平面構成、即ち、電気泳動素子30の平面構成を模式的に表したものである。電気泳動素子30は、絶縁性液体31中に、泳動粒子32と多孔質層33とを含んでいる。なお、図1,2は電気泳動素子30の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
<1. Embodiment>
FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure. The display device 1 is applied to various electronic devices such as a display device that displays an image by using an electrophoretic phenomenon and displays an image, for example, an electronic paper display. The display device 1 includes, for example, an electrophoretic element 30 as a display layer between a drive substrate 10 and a counter substrate 20 that are arranged to face each other with a spacer 40 interposed therebetween. FIG. 2 schematically shows a planar configuration of the display layer of the display device 1, that is, a planar configuration of the electrophoretic element 30. The electrophoretic element 30 includes electrophoretic particles 32 and a porous layer 33 in an insulating liquid 31. 1 and 2 schematically show the configuration of the electrophoretic element 30 and may differ from actual dimensions and shapes.
(1-1.電気泳動素子の構成)
 表示装置1は、複数の画素2を有し、各画素2は、例えば、副画素として、赤色画素2R,緑色画素2Gおよび青色画素2Bを有する。各画素には、それぞれ電気泳動素子30が設けられている。本実施の形態の電気泳動素子30は、泳動粒子32として、例えば、光反射性の異なる2種類の泳動粒子32A,32Bを備えると共に、多孔質層33が、例えば、赤色(33R),緑色(33G),青色(33B)に着色された構成を有する。多孔質層33の赤色,緑色および青色に着色された領域(33R,33G,33B)は、それぞれ、各副画素(2R,2G,2B)に対応する位置に配置されている。
(1-1. Configuration of electrophoretic element)
The display device 1 includes a plurality of pixels 2, and each pixel 2 includes, for example, a red pixel 2R, a green pixel 2G, and a blue pixel 2B as subpixels. Each pixel is provided with an electrophoretic element 30. The electrophoretic element 30 of the present embodiment includes, for example, two types of electrophoretic particles 32A and 32B having different light reflectivities as the electrophoretic particles 32, and the porous layer 33 has, for example, red (33R) and green ( 33G) and blue (33B). The regions (33R, 33G, 33B) colored in red, green, and blue in the porous layer 33 are arranged at positions corresponding to the sub-pixels (2R, 2G, 2B), respectively.
 絶縁性液体31は、例えば、有機溶媒等の非水溶媒のいずれか1種類または2種類以上であり、具体的には、パラフィンまたはイソパラフィン等を含んで構成されている。この絶縁性液体31の粘度および屈折率は、出来るだけ低いことが好ましい。泳動粒子32の移動性(応答速度)が向上すると共に、それに応じて泳動粒子32の移動に要するエネルギー(消費電力)が低くなるからである。また、絶縁性液体31の屈折率と多孔質層33の屈折率との差が大きくなるため、その多孔質層33の光反射率が高くなるからである。なお、絶縁性液体31の代わりに、微弱導電性液体を用いてもよい。 The insulating liquid 31 is, for example, one type or two or more types of non-aqueous solvents such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 be as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
 なお、絶縁性液体31は、必要に応じて各種材料を含んでいてもよい。この材料は、例えば、着色剤、電荷制御剤、分散安定剤、粘度調整剤、界面活性剤または樹脂等である。 The insulating liquid 31 may contain various materials as necessary. This material is, for example, a colorant, a charge control agent, a dispersion stabilizer, a viscosity modifier, a surfactant or a resin.
 泳動粒子32は、電気的に移動可能な1または2以上の荷電粒子であり、絶縁性液体31中に分散されている。この泳動粒子32は、絶縁性液体31中で画素電極14と対向電極22との間を移動可能になっている。泳動粒子32は、また、任意の光学的反射特性(光反射率)を有している。泳動粒子32の光反射率は、特に限定されないが、少なくとも泳動粒子32が多孔質層33を遮蔽可能となるように設定されることが好ましい。泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。 The electrophoretic particles 32 are one or more charged particles that are electrically movable, and are dispersed in the insulating liquid 31. The migrating particles 32 can move between the pixel electrode 14 and the counter electrode 22 in the insulating liquid 31. The migrating particles 32 also have arbitrary optical reflection characteristics (light reflectivity). The light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
 本実施の形態では、上記のように、泳動粒子32は、互いに光反射性の異なる2種類の泳動粒子32A,32Bから構成されている。具体的には、泳動粒子32Aは黒色に、泳動粒子32Bは白色に着色されている。これら泳動粒子32Aおよび泳動粒子32Bが適宜表示面S1に移動することによって、表示装置1の各画素2は、黒表示、白表示あるいはその他の色表示が可能となる。 In the present embodiment, as described above, the migrating particles 32 are composed of two types of migrating particles 32A and 32B having different light reflectivities. Specifically, the migrating particles 32A are colored black and the migrating particles 32B are colored white. When the migrating particles 32A and the migrating particles 32B are appropriately moved to the display surface S1, each pixel 2 of the display device 1 can perform black display, white display, or other color display.
泳動粒子32は、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)等のいずれか1種類または2種類以上の粒子(粉末)である。なお、泳動粒子32は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等でもよい。但し、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または染料に該当する材料から除かれることとする。 The migrating particles 32 are, for example, one kind or two or more kinds of particles (powder) such as an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, or a polymer material (resin). . The migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
 有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、カーボンブラック、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。このように可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
 泳動粒子32の具体的な形成材料は、例えば、コントラストを生じさせるために泳動粒子32が担う役割に応じて選択される。例えば、黒表示を行う泳動粒子32Aは、例えば、炭素材料または金属酸化物等である。炭素材料は、例えば、カーボンブラック等であり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。白表示を行う泳動粒子32Bは、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性等に優れていると共に、高い反射率が得られるからである。 The specific forming material of the migrating particles 32 is selected according to the role of the migrating particles 32 in order to cause contrast, for example. For example, the migrating particles 32A that perform black display are, for example, a carbon material or a metal oxide. The carbon material is, for example, carbon black, and the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like. Among these, a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained. The migrating particles 32B that perform white display are, for example, metal oxides such as titanium oxide, zinc oxide, zirconium oxide, barium titanate, or potassium titanate. Among these, titanium oxide is preferable. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、泳動粒子32全体では、例えば、0.1重量%~10重量%である。泳動粒子32の遮蔽(隠蔽)性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽しにくくなる可能性がある。一方、10重量%よりも多いと、泳動粒子32の分散性が低下するため、泳動粒子32が泳動しにくくなり、場合によっては凝集する可能性がある。 The content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, but the entire migrating particles 32 are, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may be aggregated in some cases.
 泳動粒子32の平均粒径は、例えば、0.1μm以上10μm以下の範囲であることが好ましい。なお、泳動粒子32Aおよび泳動粒子32Bの平均粒径は、それぞれ同じ大きさでもよいが、異なっていてもよい。 The average particle diameter of the migrating particles 32 is preferably in the range of 0.1 μm to 10 μm, for example. The average particle diameters of the migrating particles 32A and the migrating particles 32B may be the same or different.
 泳動粒子32A,32Bは、帯電していると共に、互いに異なる電荷を有することが好ましい。帯電量の差は、例えば、表面処理を行うことによって付加することができる。具体的には、例えば、泳動粒子32Aが正の電荷を有する場合には、例えば、電子供与性を有する官能基による修飾を行うことで正電荷が付加される。例えば、泳動粒子32Bが負の電荷を有する場合には、例えば、電子吸引性を有する官能基による修飾を行うことで負電荷が付加される。なお、泳動粒子32A,32Bは、互いに同じ電荷を有していてもよく、その場合には、帯電量が異なることが好ましい。その場合、泳動粒子32A,32Bの表面を修飾する官能基は、互いに同じ官能基でもよいし、異なる官能基を導入しても構わない。また、表面処理の代わりに電荷調整剤等の分散剤を用いたり、両者を併用してもよい。 The electrophoretic particles 32A and 32B are preferably charged and have different charges. The difference in charge amount can be added by performing surface treatment, for example. Specifically, for example, when the migrating particle 32A has a positive charge, the positive charge is added by, for example, modification with a functional group having an electron donating property. For example, when the migrating particle 32B has a negative charge, the negative charge is added by, for example, modification with a functional group having an electron-withdrawing property. Note that the migrating particles 32A and 32B may have the same charge, and in this case, the charge amount is preferably different. In this case, the functional groups that modify the surfaces of the migrating particles 32A and 32B may be the same functional groups as each other or different functional groups may be introduced. Moreover, you may use dispersing agents, such as a charge control agent, instead of surface treatment, or you may use both together.
 分散剤は、例えばLubrizol社製のSolsperseシリーズ、BYK-Chemie社製のBYK シリーズまたはAnti-Terra シリーズ、あるいはICI Americas 社製Spanシリーズ等である。 The dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK® series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
 表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。中でも、グラフト重合処理、マイクロカプセル化処理またはそれらの組み合わせが好ましい。長期間の分散安定性等が得られるからである。 The surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. Among these, graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
 表面処理用の材料は、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着材料)等である。吸着可能な官能基の種類は、泳動粒子32の形成材料に応じて決定される。一例を挙げると、カーボンブラック等の炭素材料に対しては4-ビニルアニリン等のアニリン誘導体であり、金属酸化物に対してはメタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体である。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 The surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32. The type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32. For example, carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate. . Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 また、表面処理用の材料は、例えば、重合性官能基が導入された泳動粒子32の表面にグラフト可能な材料(グラフト性材料)である。このグラフト性材料は、重合性官能基と、絶縁性液体31中に分散可能であると共に、立体障害により分散性を保持可能な分散用官能基とを有していることが好ましい。重合性官能基の種類は、吸着性材料について説明した場合と同様である。分散用官能基は、例えば、絶縁性液体31がパラフィンである場合には分岐状のアルキル基等である。グラフト性材料を重合およびグラフトさせるためには、例えばアゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。 Further, the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced. The graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance. The kind of polymerizable functional group is the same as that described for the adsorptive material. The dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
 参考までに、上記したように絶縁性液体31中に泳動粒子32を分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For reference, the details of the method for dispersing the migrating particles 32 in the insulating liquid 31 as described above are described in “Dispersion Technology of Ultrafine Particles and Its Evaluation—Surface Treatment / Fine Grinding and Air / Liquid / Polymer”. It is published in books such as “Dispersion Stabilization ~ (Science & Technology)”.
 多孔質層33は、例えば、図2に示したように、繊維状構造体331により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)である。この多孔質層33は、繊維状構造体331が存在していない箇所に、泳動粒子32A,32Bが通過するための複数の隙間(細孔332)を有している。 The porous layer 33 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG. The porous layer 33 has a plurality of gaps (pores 332) through which the migrating particles 32A and 32B pass at a location where the fibrous structure 331 does not exist.
 3次元立体構造物である多孔質層33では、1本の繊維状構造体331がランダムに絡み合っていてもよいし、複数本の繊維状構造体331が集合してランダムに重なっていてもよいし、両者が混在していてもよい。なお、図2では、複数本の繊維状構造体331により多孔質層33が形成されている場合を示している。また、繊維状構造体331は、繊維径(直径)に対して長さが十分に大きい繊維状物質である。 In the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. However, both may be mixed. FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331. The fibrous structure 331 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter).
 多孔質層33が3次元立体構造物であるのは、その不規則な立体構造により外光が乱反射(多重散乱)されやすいため、多孔質層33の光反射率が高くなると共に、その高い光反射率を得るために多孔質層33が薄くて済むからである。これにより、コントラストが高くなると共に、泳動粒子32A,32Bを移動させるために必要なエネルギーが低くなる。また、細孔332の平均孔径が大きくなると共に、その数が多くなるため、泳動粒子32が細孔332を通過しやすくなるからである。これにより、泳動粒子32の移動に要する時間が短くなると共に、その泳動粒子32の移動に要するエネルギーも低くなる。 The reason why the porous layer 33 is a three-dimensional structure is that the irregular three-dimensional structure easily causes external light to be irregularly reflected (multiple scattering), so that the light reflectance of the porous layer 33 increases and the high light This is because the porous layer 33 can be thin in order to obtain the reflectance. As a result, the contrast increases and the energy required to move the migrating particles 32A and 32B decreases. Further, since the average pore diameter of the pores 332 increases and the number thereof increases, the migrating particles 32 easily pass through the pores 332. As a result, the time required to move the migrating particles 32 is shortened, and the energy required to move the migrating particles 32 is also reduced.
 繊維状構造体331の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体331の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法等であることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易且つ安定に形成しやすいからである。 The shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction. The formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous material having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体331の平均繊維径は、特に限定されないが、できるだけ小さいことが好ましい。光が乱反射しやすくなると共に、細孔332の平均孔径が大きくなるからである。このため、繊維状構造体331の平均繊維径は、10μm以下であることが好ましい。なお、平均繊維径の下限は、特に限定されないが、例えば、0.1μmであり、それ以下でもよい。この平均繊維径は、例えば、走査型電子顕微鏡(SEM)等を用いた顕微鏡観察により測定される。なお、繊維状構造体331の平均長さは、任意でよい。 The average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 332 increases. For this reason, it is preferable that the average fiber diameter of the fibrous structure 331 is 10 micrometers or less. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
 細孔332の平均孔径は、特に限定されないが、中でも、できるだけ大きいことが好ましい。泳動粒子32A,32Bが細孔332を通過しやすくなるからである。このため、細孔332の平均孔径は、0.1μm~10μmであることが好ましい。 The average pore diameter of the pores 332 is not particularly limited, but is preferably as large as possible. This is because the migrating particles 32 </ b> A and 32 </ b> B can easily pass through the pores 332. Therefore, the average pore diameter of the pores 332 is preferably 0.1 μm to 10 μm.
 多孔質層33の厚さは、特に限定されないが、例えば、5μm~100μmである。多孔質層33の遮蔽性が高くなると共に、泳動粒子32,32Bが細孔332を通過しやすくなるからである。 The thickness of the porous layer 33 is not particularly limited, but is, for example, 5 μm to 100 μm. This is because the shielding property of the porous layer 33 is enhanced and the migrating particles 32 and 32B easily pass through the pores 332.
 繊維状構造体331を構成する材料としては、例えば、アクリル樹脂等の高分子材料または無機材料等のいずれか1種類または2種類以上を含んでおり、他の材料を含んでいてもよい。高分子材料は、具体的には、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマー等である。無機材料は、例えば、酸化チタン等である。中でも、繊維状構造体331の形成材料としては、高分子材料が好ましい。反応性(光反応性等)が低い(化学的に安定である)ため、繊維状構造体331の意図しない分解反応が抑制されるからである。なお、繊維状構造体331が高反応性の材料により形成されている場合には、その繊維状構造体331の表面は任意の保護層により被覆されていることが好ましい。 As a material constituting the fibrous structure 331, for example, one or two or more of polymer materials such as acrylic resins or inorganic materials are included, and other materials may be included. Specific examples of the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, and polyvinylidene. Fluoride, polyhexafluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof. The inorganic material is, for example, titanium oxide. Among these, a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
 特に、繊維状構造体331は、ナノファイバーであることが好ましい。立体構造が複雑化して外光が乱反射しやすくなるため、多孔質層33の光反射率がより高くなると共に、多孔質層33の単位体積中に占める細孔332の体積の割合が大きくなるため、泳動粒子32が細孔332を通過しやすくなるからである。これにより、コントラストがより高くなると共に、泳動粒子32の移動に要するエネルギーがより低くなる。ナノファイバーとは、繊維径が0.001μm~0.1μmであると共に、長さが繊維径の100倍以上である繊維状物質である。ナノファイバーである繊維状構造体331は、高分子材料を用いて静電紡糸法により形成されていることが好ましい。繊維径が小さい繊維状構造体331を容易且つ安定に形成しやすいからである。 In particular, the fibrous structure 331 is preferably a nanofiber. Since the three-dimensional structure is complicated and external light is likely to be diffusely reflected, the light reflectance of the porous layer 33 is further increased, and the volume ratio of the pores 332 in the unit volume of the porous layer 33 is increased. This is because the migrating particles 32 easily pass through the pores 332. Thereby, the contrast becomes higher and the energy required to move the migrating particles 32 becomes lower. Nanofiber is a fibrous substance having a fiber diameter of 0.001 μm to 0.1 μm and a length that is 100 times or more of the fiber diameter. The fibrous structure 331 that is a nanofiber is preferably formed by an electrospinning method using a polymer material. This is because the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
 この繊維状構造体331は、泳動粒子32とは異なる光学的反射特性を有していることが好ましい。具体的には、繊維状構造体331の光反射率は、特に限定されないが、少なくとも多孔質層33が全体として泳動粒子32を遮蔽可能となるように設定されることが好ましい。上記したように、泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。 This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32. Specifically, the light reflectance of the fibrous structure 331 is not particularly limited, but is preferably set so that at least the porous layer 33 can shield the migrating particles 32 as a whole. As described above, this is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
 本実施の形態では、多孔質層33は、赤色(33R),緑色(33G),青色(33B)に着色されており、上記色に着色された赤色多孔質層33R,緑色多孔質層33Gおよび青色多孔質層33Bは、それぞれ各副画素、赤色画素2R,緑色画素2Gおよび青色画素2Bに対応する位置に配置されている。 In the present embodiment, the porous layer 33 is colored red (33R), green (33G), and blue (33B), and the red porous layer 33R, the green porous layer 33G, The blue porous layer 33B is disposed at a position corresponding to each sub-pixel, red pixel 2R, green pixel 2G, and blue pixel 2B.
 スペーサ40は、例えば、高分子材料等の絶縁性材料を含んでいる。但し、スペーサ40の構成は、特に限定されず、微粒子が混入されたシール材等でもよい。スペーサ40の形状は、特に限定されないが、泳動粒子32の画素電極14および対向電極22間の移動を妨げないと共に、それを均一分布させることができる形状であることが好ましく、例えば、格子状である。また、後述する製造工程の関係から、例えば、駆動基板10側から対向基板20側にかけて逆テーパ形状であることが好ましい。スペーサ40の厚みは、特に限定されないが、中でも、消費電力を低くするためにできるだけ薄いことが好ましく、例えば、10μm~100μmである。スペーサ40の形成位置は、表示層内において適当な位置に設ければよく、必ずしも、画素2の間、あるいは、副画素2R,2G,2Bの間を仕切るように設ける必要はない。例えば、図1に示したように、緑色画素2Gの区画内に設けてもよい。但し、スペーサ40の駆動基板10側の先端は、後述する画素電極14が形成されていない位置に設けられていることが好ましい。 The spacer 40 includes, for example, an insulating material such as a polymer material. However, the configuration of the spacer 40 is not particularly limited, and may be a sealing material mixed with fine particles. The shape of the spacer 40 is not particularly limited, but is preferably a shape that does not hinder the movement of the migrating particles 32 between the pixel electrode 14 and the counter electrode 22 and that can be uniformly distributed. is there. Moreover, from the relationship of the manufacturing process mentioned later, it is preferable that it is a reverse taper shape from the drive substrate 10 side to the opposing substrate 20 side, for example. The thickness of the spacer 40 is not particularly limited, but in particular, it is preferably as thin as possible in order to reduce power consumption, for example, 10 μm to 100 μm. The spacer 40 may be formed at an appropriate position in the display layer, and is not necessarily provided so as to partition between the pixels 2 or between the sub-pixels 2R, 2G, and 2B. For example, as shown in FIG. 1, it may be provided in the section of the green pixel 2G. However, the tip of the spacer 40 on the drive substrate 10 side is preferably provided at a position where a pixel electrode 14 described later is not formed.
(1-2.表示装置の構成)
 表示装置1は、上記のように、スペーサ40を介して一対の基板、駆動基板10と対向対向基板20とが対向配置されており、その間に表示層として、電気泳動素子30を備えたものである。なお、表示装置1の周縁は、封止材42によって封止されている。
(1-2. Configuration of display device)
As described above, the display device 1 includes the pair of substrates, the drive substrate 10 and the counter counter substrate 20 facing each other via the spacer 40, and includes the electrophoretic element 30 as a display layer therebetween. is there. Note that the periphery of the display device 1 is sealed with a sealing material 42.
 駆動基板10は、例えば、支持部材11の一面に、薄膜トランジスタ(TFT)12、保護層13および画素電極14がこの順に積層されたものである。TFT12および画素電極14は、例えば、アクティブマトリクス方式の駆動回路を構築するために、画素配置に応じてマトリクス状に分割形成されている。 The driving substrate 10 is, for example, one in which a thin film transistor (TFT) 12, a protective layer 13, and a pixel electrode 14 are laminated in this order on one surface of a support member 11. The TFT 12 and the pixel electrode 14 are divided and formed in a matrix according to the pixel arrangement, for example, in order to construct an active matrix drive circuit.
 支持部材11は、例えば、無機材料、金属材料またはプラスチック材料等のいずれか1種類または2種類以上により形成されている。無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiOx)、窒化ケイ素(SiNx)または酸化アルミニウム(AlOx)等であり、その酸化ケイ素には、例えば、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料は、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等である。プラスチック材料は、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン(PEEK)、シクロオレフィンポリマー(COP)、ポリイミド(PI)またはポリエーテルサルフォン(PES)等である。 The support member 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like. The inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like. Etc. are included. Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel. Examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
 この支持部材11は、光透過性であってもよいし、非光透過性であってもよい。また、支持部材11は、ウェハ等の剛性を有する基板であってもよいし、可撓性を有する薄層ガラスまたはフィルム等であってもよい。但し、フレキシブル(折り曲げ可能)な電子ペーパーディスプレイを実現できることから、可撓性を有する材料からなることが望ましい。 The support member 11 may be light transmissive or non-light transmissive. The support member 11 may be a rigid substrate such as a wafer, or may be a flexible thin glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material.
 TFT12は、画素を選択するためのスイッチング用素子である。このTFT12は、例えば、チャネル層(活性層)として、アモルファスシリコン、ポリシリコンまたは酸化物等の無機半導体層を用いた無機TFTでもよいし、ペンタセン等の有機半導体層を用いた有機TFTでもよい。TFT層12では、このTFT12が、例えば保護層13によって被覆されている。この保護層13上には、更に、例えば、ポリイミド等の絶縁性材料からなる平坦化絶縁膜(図示せず)が設けられていてもよい。 TFT 12 is a switching element for selecting a pixel. The TFT 12 may be, for example, an inorganic TFT using an inorganic semiconductor layer such as amorphous silicon, polysilicon, or oxide as a channel layer (active layer), or an organic TFT using an organic semiconductor layer such as pentacene. In the TFT layer 12, the TFT 12 is covered with a protective layer 13, for example. On the protective layer 13, a planarization insulating film (not shown) made of an insulating material such as polyimide may be further provided.
 画素電極14は、副画素2R,2G,2Bごとに独立して形成されていると共に、さらに、副画素2R,2G,2B内でも独立する電極として複数設けられている。具体的には、泳動粒子32の種類と同数、ここでは2つ(画素電極14A,画素電極14B)設けられている。画素電極14A,14Bは、例えば、金(Au)、銀(Ag)または銅(Cu)等の導電性材料のいずれか1種類または2種類以上を含んでいる。この画素電極14A,14Bは、TFT12に電気的に接続されている。なお、1つの画素電極14A(あるいは画素電極14B)に対して配置されるTFT12の数は任意であり、1つに限らず、2つ以上でもよい。 The pixel electrode 14 is formed independently for each of the sub-pixels 2R, 2G, and 2B, and a plurality of pixel electrodes 14 are also provided as independent electrodes within the sub-pixels 2R, 2G, and 2B. Specifically, the same number as the type of migrating particles 32, two here (pixel electrode 14A and pixel electrode 14B) are provided. The pixel electrodes 14A and 14B include one or more of conductive materials such as gold (Au), silver (Ag), and copper (Cu). The pixel electrodes 14A and 14B are electrically connected to the TFT 12. Note that the number of TFTs 12 arranged for one pixel electrode 14A (or pixel electrode 14B) is arbitrary, and is not limited to one, and may be two or more.
 接着層15は、駆動基板10と後述する表示層と貼り合わせるものであり、例えば、アクリル系樹脂、ウレタン系樹脂またはゴムにより構成され、厚みが、例えば、1μm~100μmである。なお、接着層15には、導電性を持たせることを目的として、例えばアニオン系添加剤、カチオン系添加剤またはリチウム塩系添加剤等が添加されていてもよい。 The adhesive layer 15 is bonded to the driving substrate 10 and a display layer described later, and is made of, for example, an acrylic resin, a urethane resin, or rubber, and has a thickness of, for example, 1 μm to 100 μm. For example, an anionic additive, a cationic additive, or a lithium salt additive may be added to the adhesive layer 15 for the purpose of providing conductivity.
 なお、駆動基板10には、上記電気泳動素子30を副画素2R,2G,2Bごとに駆動する(画素電極14および対向電極22間に駆動電圧を印加する)ための周辺回路(図示せず)が設けられている。周辺回路は、例えば、アクティブマトリクス方式の駆動回路を形成するための電圧制御用のドライバ、電源およびメモリ等を含んでおり、1または2以上の選択的なサブピクセルに対して画像信号に対応する駆動電圧を印加可能となっている。 A peripheral circuit (not shown) for driving the electrophoretic element 30 for each of the sub-pixels 2R, 2G, 2B (applying a driving voltage between the pixel electrode 14 and the counter electrode 22) is provided on the driving substrate 10. Is provided. The peripheral circuit includes, for example, a voltage control driver for forming an active matrix driving circuit, a power source, a memory, and the like, and corresponds to an image signal for one or more selective sub-pixels. A drive voltage can be applied.
 対向基板20は、支持部材21の一面側(表示層側)に対向電極22が設けられたものである。 The counter substrate 20 is provided with a counter electrode 22 on one surface side (display layer side) of the support member 21.
 支持部材21は、光透過性であることを除き、支持部材11と同様の材料により構成されている。対向基板20の上面側に画像が表示されるため、支持部材21は光透過性である必要があるからである。この支持部材21の厚みは、例えば1μm~250μmである。 The support member 21 is made of the same material as the support member 11 except that it is light transmissive. This is because the image is displayed on the upper surface side of the counter substrate 20, and thus the support member 21 needs to be light transmissive. The thickness of the support member 21 is, for example, 1 μm to 250 μm.
 対向電極22は、例えば、透光性を有する導電性材料(透明導電材料)のいずれか1種類または2種類以上を含んでいる。このような導電性材料としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等が挙げられる。この対向電極22の厚みは、例えば0.001μm~1μmである。なお、対向電極22は、例えば、支持部材21の一面に全面形成されているが、画素電極14と同様に、例えば、画素2ごとに分割形成されていてもよい。 The counter electrode 22 includes, for example, one or more of translucent conductive materials (transparent conductive materials). Examples of such a conductive material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). The thickness of the counter electrode 22 is, for example, 0.001 μm to 1 μm. The counter electrode 22 is formed on the entire surface of the support member 21, for example, but may be formed separately for each pixel 2, for example, similarly to the pixel electrode 14.
 対向基板20側に画像を表示する場合には、対向電極22を介して電気泳動素子30を見ることになるため、その対向電極22の光透過率はできるだけ高いことが好ましく、例えば、80%以上である。また、対向電極22の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□(スクエア)以下である。 When displaying an image on the counter substrate 20 side, since the electrophoretic element 30 is viewed through the counter electrode 22, the light transmittance of the counter electrode 22 is preferably as high as possible, for example, 80% or more. It is. The electric resistance of the counter electrode 22 is preferably as low as possible, for example, 100Ω / □ (square) or less.
 表示層には、例えば、画素2ごとに電圧制御される電気泳動素子30が設けられている。電気泳動素子30は、電気泳動現象を利用してコントラストを生じさせるものであり、電界に応じて画素電極14と対向電極22との間を移動可能な泳動粒子32を含んでいる。電気泳動素子30は、例えば、絶縁性液体31中に泳動粒子32と共に、多孔質層33を含んでおり、ここでは、絶縁性液体31および多孔質層33は各画素に共通して設けられている。 In the display layer, for example, an electrophoretic element 30 that is voltage-controlled for each pixel 2 is provided. The electrophoretic element 30 generates contrast using an electrophoretic phenomenon, and includes electrophoretic particles 32 that can move between the pixel electrode 14 and the counter electrode 22 in accordance with an electric field. The electrophoretic element 30 includes, for example, a porous layer 33 together with electrophoretic particles 32 in an insulating liquid 31. Here, the insulating liquid 31 and the porous layer 33 are provided in common for each pixel. Yes.
(1-3.表示装置の製造方法)
 本実施の形態の表示装置1は、例えば、以下の方法により形成することができる。まず、図4Aに示したように、支持部材21の一面に対向電極22を、各種成膜法等の既存の方法を用いて設け、対向基板20を形成すると共に、対向電極22上にスペーサ40を形成する。スペーサ40は、例えば、以下のようなインプリント法により形成することができる。まず、スペーサ40の構成材料(例えば、感光性樹脂材料)を含む溶液を対向電極22上に塗布する。次いで、塗布面に凹部を有する型を押し当て、感光させた後、型を外す。これにより、柱状のスペーサ40が形成される。このとき、スペーサ40は、幅が対向基板20側から駆動基板10側に徐々に狭くなる、いわゆる逆テーパとすることが好ましい。これにより、スペーサ40から型を容易に外すことができる。
(1-3. Manufacturing method of display device)
The display device 1 of the present embodiment can be formed by, for example, the following method. First, as shown in FIG. 4A, the counter electrode 22 is provided on one surface of the support member 21 using an existing method such as various film forming methods, the counter substrate 20 is formed, and the spacer 40 is formed on the counter electrode 22. Form. The spacer 40 can be formed by, for example, the following imprint method. First, a solution containing a constituent material of the spacer 40 (for example, a photosensitive resin material) is applied on the counter electrode 22. Next, a mold having a recess on the coated surface is pressed and exposed to light, and then the mold is removed. Thereby, the columnar spacer 40 is formed. At this time, the spacer 40 is preferably a so-called reverse taper in which the width gradually decreases from the counter substrate 20 side to the drive substrate 10 side. Thereby, the mold can be easily removed from the spacer 40.
 続いて、隣り合うスペーサ40の間、即ち、セル41内に繊維状構造体331を配設する。繊維状構造体331は、例えば、図3に示した製造工程によって形成される。具体的には、まず、例えば、N,N'-ジメチルホルムアミドに繊維状構造体331としてポリアクリロニトリルを分散または溶解させた高分子溶液(紡糸溶液)を調整する(ステップS101)。続いて、この紡糸溶液を用いて、例えば、静電紡糸法によって、別の基板上で紡糸する(ステップS102)。これにより、図4Bに示した繊維状構造体331が形成される。なお、繊維状構造体331は、静電紡糸法に代えて、相分離法、相反転法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法およびスプレー塗布法等によって形成してもよい。 Subsequently, a fibrous structure 331 is disposed between the adjacent spacers 40, that is, in the cells 41. The fibrous structure 331 is formed, for example, by the manufacturing process shown in FIG. Specifically, first, for example, a polymer solution (spinning solution) in which polyacrylonitrile is dispersed or dissolved as a fibrous structure 331 in N, N′-dimethylformamide is prepared (step S101). Subsequently, using this spinning solution, spinning is performed on another substrate by, for example, an electrostatic spinning method (step S102). Thereby, the fibrous structure 331 shown in FIG. 4B is formed. The fibrous structure 331 is formed by a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like instead of the electrostatic spinning method. May be.
 また、繊維状構造体331の形成方法としては、高分子フィルムにレーザ加工を用いて孔開けを行い、繊維状構造体を形成する方法も提案されているが(特開2005-107146号公報参照)、この方法では孔径50μm程度の大きな孔しか形成できず、繊維状構造体により泳動粒子を完全に遮蔽することができない虞がある。 As a method for forming the fibrous structure 331, a method of forming a fibrous structure by perforating a polymer film using laser processing has been proposed (see Japanese Patent Application Laid-Open No. 2005-107146). ), Only large pores having a pore diameter of about 50 μm can be formed by this method, and the migrating particles may not be completely shielded by the fibrous structure.
 次いで、図4Cに示したように、繊維状構造体331を、副画素2R,2G,2Bに対応するように赤色(33R),緑色(33G)および青色(33B)に着色する(ステップS103)。着色方法は、例えば、スクリーン印刷、インクジェット印刷、昇華熱転写、レーザ染色等が挙げられる。このとき、駆動基板との位置合わせ用のアライメントマークも同時に印刷しておく。続いて、図4Dに示したように、着色した繊維状構造体331を適当な大きさに分断して各セル41内に載置する(ステップS104)。具体的には、繊維状構造体331を上(支持部材21と反対の方向)から押圧することによって、スペーサ40により繊維状構造体331は摺り切られる。この切断された繊維状構造体331をスペーサ40間に収容する。このようにして、多孔質層33をセル41毎に形成することができる。 Next, as shown in FIG. 4C, the fibrous structure 331 is colored red (33R), green (33G), and blue (33B) so as to correspond to the sub-pixels 2R, 2G, and 2B (step S103). . Examples of the coloring method include screen printing, ink jet printing, sublimation heat transfer, and laser dyeing. At this time, alignment marks for alignment with the drive substrate are also printed at the same time. Subsequently, as shown in FIG. 4D, the colored fibrous structure 331 is divided into appropriate sizes and placed in each cell 41 (step S104). Specifically, the fibrous structure 331 is scraped off by the spacer 40 by pressing the fibrous structure 331 from above (the direction opposite to the support member 21). The cut fibrous structure 331 is accommodated between the spacers 40. In this way, the porous layer 33 can be formed for each cell 41.
 続いて、多孔質層33が配置された対向基板20に、泳動粒子32(32A,32B)を分散させた絶縁性液体31を塗布したのち、これを、例えば、封止剤(図示せず)を介してシール層16が配設された剥離部材(図示せず)を対向させる。最後に、剥離部材を剥がしたのち、シール層16上に接着層15を介してTFT12および画素電極14等が形成された駆動基板10を固定する。この際に、上記アライメントマークを利用して、駆動基板10上の画素回路の位置合わせを行う。以上の工程により、表示装置1が完成する。 Subsequently, after applying the insulating liquid 31 in which the migrating particles 32 (32A, 32B) are dispersed to the counter substrate 20 on which the porous layer 33 is disposed, this is treated with, for example, a sealing agent (not shown). A peeling member (not shown) on which the seal layer 16 is disposed is made to face each other. Finally, after peeling off the peeling member, the driving substrate 10 on which the TFT 12 and the pixel electrode 14 and the like are formed on the seal layer 16 via the adhesive layer 15 is fixed. At this time, the alignment of the pixel circuit on the driving substrate 10 is performed using the alignment mark. The display device 1 is completed through the above steps.
(1-4.表示装置の好ましい表示方法)
 電気泳動素子30では、上記したように、泳動粒子32の光反射率と、多孔質層33の光反射率との違いを利用してコントラストが生じる。
(1-4. Preferred Display Method of Display Device)
In the electrophoretic element 30, as described above, contrast is generated by utilizing the difference between the light reflectance of the electrophoretic particles 32 and the light reflectance of the porous layer 33.
 本実施の形態では、泳動粒子32は、黒色を呈する泳動粒子32Aおよび白色を呈する泳動粒子32Bから構成され、多孔質層33は、各副画素、赤色画素2R,緑色画素2Gおよび青色画素2Bに対応する赤色33R,緑色33Gおよび青色33Bに着色されている。また、泳動粒子32A,32Bは、それぞれ正電荷(泳動粒子32A)および負電荷(泳動粒子32B)に帯電していると共に、画素電極14は、各副画素2R,2G,2Bごとに、それぞれ2つづつ分割形成されている。 In the present embodiment, the migrating particles 32 are composed of black migrating particles 32A and white migrating particles 32B, and the porous layer 33 is formed in each sub-pixel, red pixel 2R, green pixel 2G, and blue pixel 2B. Corresponding red 33R, green 33G and blue 33B are colored. In addition, the migrating particles 32A and 32B are charged with positive charges (migrating particles 32A) and negative charges (migrating particles 32B), respectively, and the pixel electrode 14 is 2 for each of the sub-pixels 2R, 2G, and 2B. It is divided and formed one by one.
 図5A~図5Cは、黒色,白色,RGBのいずれか(ここでは赤色R)の色表示を行う際の表示装置1の動作を説明するための模式図である。なお、ここでは、わかりやすくするため、駆動基板10の支持部材11およびTFT12等は省略している。本実施の形態の表示装置1では、図5Aに示したように、副画素2R,2G,2Bにそれぞれ設けられた画素電極14A,14Bの両方に負(マイナス)電位を印加すると、泳動粒子32Aは駆動基板10側、即ち、背面S2側に、泳動粒子32Bは対向基板20側、即ち、表示面S1側に移動する。これにより、副画素2R,2G,2B、即ち、画素2における表示色は白色となる。また、図5Bに示したように、副画素2R,2G,2Bにそれぞれ設けられた画素電極14A,14Bの両方に正(プラス)電位を印加すると、泳動粒子32Aは表示面S1側に、泳動粒子32Bは背面S2側に移動する。これにより、副画素2R,2G,2B、即ち、画素2における表示色は黒色となる。更に、画素電極14A,14Bの一方(例えば、画素電極14A)に負(マイナス)電位、他方(例えば、画素電極14B)に正(プラス)電位を印加すると、泳動粒子43Aは画素電極14A側の駆動基板10側に、泳動粒子32Bは画素電極14B側の駆動基板10側に、それぞれ移動する(例えば、図1の緑色画素2G参照)。これにより、副画素2R,2G,2Bにおける表示色は多孔質層33の色(赤色、緑色あるいは青色)となる。例えば、画素2の表示色を赤色にする場合には、図5Cに示したように、例えば、副画素2Rの画素電極14A,14Bの一方(例えば、画素電極14A)に負(マイナス)電位、他方(例えば、画素電極14B)に正電位を印加することにより、副画素2R中の泳動粒子43Aおよび泳動粒子32Bは表示面S1側にそれぞれ移動し、副画素2Rにおける表示色は多孔質層33Rの赤色となる。また、副画素2G,2Bの画素電極14A,14Bには、例えば、正(プラス)電位を印加する。これにより、副画素2G,2B中の泳動粒子32Aは表示面S1側に、泳動粒子32Bは背面S2側に移動し、副画素2G,2Bの表示色は黒色となる。これにより、画素2の表示色は赤色となる。 5A to 5C are schematic diagrams for explaining the operation of the display device 1 when performing color display of any one of black, white, and RGB (here, red R). Here, for the sake of clarity, the support member 11 and the TFT 12 of the drive substrate 10 are omitted. In the display device 1 according to the present embodiment, as shown in FIG. 5A, when a negative (minus) potential is applied to both of the pixel electrodes 14A and 14B provided in the sub-pixels 2R, 2G, and 2B, the migrating particles 32A. Move to the drive substrate 10 side, that is, the back surface S2 side, and the migrating particles 32B move to the counter substrate 20 side, that is, the display surface S1 side. Thereby, the display color in the sub-pixels 2R, 2G, and 2B, that is, the pixel 2 is white. As shown in FIG. 5B, when a positive potential is applied to both of the pixel electrodes 14A and 14B provided in the sub-pixels 2R, 2G, and 2B, the migrating particles 32A migrate to the display surface S1 side. The particles 32B move to the back surface S2. Thereby, the display color in the sub-pixels 2R, 2G, and 2B, that is, the pixel 2 is black. Further, when a negative (minus) potential is applied to one of the pixel electrodes 14A and 14B (for example, the pixel electrode 14A) and a positive (plus) potential is applied to the other (for example, the pixel electrode 14B), the migrating particles 43A are moved to the pixel electrode 14A side. The migrating particles 32B move to the drive substrate 10 side on the pixel electrode 14B side (see, for example, the green pixel 2G in FIG. 1) on the drive substrate 10 side. Thereby, the display color in the sub-pixels 2R, 2G, and 2B is the color of the porous layer 33 (red, green, or blue). For example, when the display color of the pixel 2 is red, as illustrated in FIG. 5C, for example, one of the pixel electrodes 14A and 14B (for example, the pixel electrode 14A) of the sub-pixel 2R has a negative (minus) potential, By applying a positive potential to the other (for example, the pixel electrode 14B), the migrating particles 43A and the migrating particles 32B in the sub-pixel 2R move to the display surface S1, respectively, and the display color in the sub-pixel 2R is the porous layer 33R. It becomes red. Further, for example, a positive (plus) potential is applied to the pixel electrodes 14A and 14B of the sub-pixels 2G and 2B. Thereby, the migrating particles 32A in the sub-pixels 2G and 2B move to the display surface S1 side, and the migrating particles 32B move to the back surface S2 side, and the display color of the sub-pixels 2G and 2B becomes black. As a result, the display color of the pixel 2 is red.
 なお、詳細は後述するが、目的とする色(例えば、緑色)に着色された多孔質層33R,33G,33Bを備えた副画素(例えば、副画素2G)以外の副画素(例えば、副画素2R,2B)はその表示色を黒色あるいは白色のいずれとしてもよい。 Although details will be described later, subpixels (for example, subpixels) other than the subpixel (for example, subpixel 2G) provided with the porous layers 33R, 33G, and 33B colored in the target color (for example, green). 2R, 2B) may be displayed in black or white.
 このように、異なる反射特性(白または黒)を有すると共に、異なる極性の電荷を有する2種類の泳動粒子32(32A,32B)と、各副画素2R,2G,2B内にそれぞれ独立して設けられた画素電極14(14A,14B)に印加される電位とを組み合わせることにより、副画素2R,2G,2Bはそれぞれ、白,黒およびRGBのいずれかの色を電気的に選択することが可能となる。 In this way, two types of migrating particles 32 (32A, 32B) having different reflection characteristics (white or black) and different polar charges are provided independently in each of the sub-pixels 2R, 2G, 2B. By combining the potential applied to the pixel electrode 14 (14A, 14B), the sub-pixels 2R, 2G, 2B can electrically select any one of white, black, and RGB, respectively. It becomes.
(1-5.作用・効果)
 前述したように、反射型の表示素子として電気泳動素子を用いた表示装置では、表示面側にカラーフィルタを設けることで多色表示を実現していた。このような表示装置では、各副画素の色(RGB)を選択的に表示する場合には、他の副画素では黒表示とする。これは、反射型の表示層上にカラーフィルタを積層しているために、白表示では各副画素の色が反射され、黒表示では反射されないという原理に基づくものである。このため、RGBの3つの副画素によって構成された画素において、赤色,緑色あるいは青色の単色表示を行う場合、画素面積の2/3は黒表示となる。よって、この画素における所望の色の反射光は画素面積の1/3しか得られず、非常に暗く、輝度の低い状態となる。
(1-5. Action and effect)
As described above, in a display device using an electrophoretic element as a reflective display element, a multicolor display is realized by providing a color filter on the display surface side. In such a display device, when the color (RGB) of each subpixel is selectively displayed, the other subpixels display black. This is based on the principle that since the color filter is laminated on the reflective display layer, the color of each sub-pixel is reflected in white display and not reflected in black display. For this reason, when a single color display of red, green, or blue is performed in a pixel constituted by three sub-pixels of RGB, 2/3 of the pixel area is black. Therefore, the reflected light of a desired color in this pixel can be obtained only 1/3 of the pixel area, which is very dark and low in luminance.
 この輝度の低い状態を改善するものとして、1画素をRGBWの4つの副画素によって構成する表示装置が提案されている。しかしながら、このような表示装置においても、赤色,緑色あるいは青色の単色表示を行う場合に得られる反射光は、画素面積の1/2であったため、十分な輝度を得ることは難しかった。また、表示面側にカラーフィルタを配置しているため、反射光の一部がカラーフィルタに吸収されてしまう。このカラーフィルタによる反射光の吸収も、輝度の低下の一因となっていた。 In order to improve this low luminance state, a display device in which one pixel is constituted by four RGBW sub-pixels has been proposed. However, even in such a display device, it is difficult to obtain sufficient luminance because the reflected light obtained when performing red, green, or blue monochromatic display is ½ of the pixel area. Further, since the color filter is arranged on the display surface side, a part of the reflected light is absorbed by the color filter. Absorption of reflected light by the color filter also contributes to a decrease in luminance.
 これに対して、本実施の形態の表示装置1では、表示素子として、黒色を呈する泳動粒子32Aおよび白色を呈する泳動粒子32Bの2種類の泳動粒子32と、赤色33R,緑色33Gおよび青色33Bに着色された多孔質層33とを含む電気泳動素子30を用いるようにした。これにより、赤色,緑色あるいは青色の単色表示を行う場合、最大で画素面積の100%の反射光を表示に用いることができる。また、表示面S1側における黒粒子(泳動粒子32A)および白粒子(泳動粒子32B)の濃度を調整することで、階調表現が可能となる。 On the other hand, in the display device 1 of the present embodiment, as the display element, two types of migrating particles 32 of black migrating particles 32A and white migrating particles 32B, red 33R, green 33G, and blue 33B are used. The electrophoretic element 30 including the colored porous layer 33 is used. As a result, when a single color display of red, green, or blue is performed, reflected light that is 100% of the pixel area at the maximum can be used for display. Also, gradation expression is possible by adjusting the density of the black particles (electrophoretic particles 32A) and white particles (electrophoretic particles 32B) on the display surface S1 side.
 図6は、赤色画素2R,緑色画素2G,青色画素2Bからなる画素2において表示可能な色およびその階調表現をまとめたものである。表示装置1では、赤色,緑色あるいは青色の単色表示を行う場合、所望の色に対応する副画素では、泳動粒子32A,32Bを背面S2側に移動させることによって所望の色、即ち、多孔質層33の色が表示色となる。それ以外の2つの副画素では、一方の副画素で泳動粒子32Aを表示面S1側に、泳動粒子32Bを背面S2側に移動させることによってその副画素を黒表示に、他方の副画素で泳動粒子32Aを背面S2側に、泳動粒子32Bを表示面S1側に移動させることによってその副画素を白表示とする。これにより、図6のN欄にしめしたように、画素2では、画素面積の2/3の反射光が得られるようになり、上記カラーフィルタを用いた表示装置よりも高い輝度を得ることができる。 FIG. 6 summarizes colors that can be displayed in the pixel 2 including the red pixel 2R, the green pixel 2G, and the blue pixel 2B, and the gradation expression thereof. When the display device 1 performs single color display of red, green, or blue, in the sub-pixel corresponding to the desired color, the electrophoretic particles 32A, 32B are moved to the back surface S2 side to obtain the desired color, that is, the porous layer. 33 colors become display colors. In the other two subpixels, the migrating particles 32A are moved to the display surface S1 side in one subpixel, and the migrating particles 32B are moved to the back surface S2 side to display the subpixels in black, and migrate in the other subpixel. By moving the particles 32A to the back surface S2 side and the migrating particles 32B to the display surface S1 side, the sub-pixels are displayed in white. As a result, as shown in the N column of FIG. 6, the pixel 2 can obtain reflected light having 2/3 of the pixel area, and can obtain higher luminance than the display device using the color filter. it can.
 また、所望の色に対応する副画素以外の2つの副画素において、泳動粒子32Aを表示面S1側に、泳動粒子32Bを背面S2側に移動させることによって、所望の色に対応する副画素以外の画素は黒表示となる。これにより、図6のD欄に示したように、画素2では、画素面積の1/3の反射光が得られるようになり、上記カラーフィルタを用いた表示装置と同程度の輝度の単色光を得ることができる。 Further, in the two subpixels other than the subpixel corresponding to the desired color, the migrating particles 32A are moved to the display surface S1 side and the migrating particles 32B are moved to the back surface S2 side, so that the subpixels other than the subpixel corresponding to the desired color These pixels are displayed in black. As a result, as shown in the D column of FIG. 6, the pixel 2 can obtain reflected light having 1/3 of the pixel area, and the monochromatic light having the same luminance as the display device using the color filter. Can be obtained.
 更に、所望の色に対応する副画素以外の2つの副画素において、泳動粒子32Aを背面S2側に、泳動粒子32Bを表示面S1側に移動させることによって、所望の色に対応する副画素以外の画素は白表示となる。即ち、図6のL欄に示したように、画素2では、画素面積の100%の反射光が得られるようになり、より明るい単色光を得ることができる。 Further, in two sub-pixels other than the sub-pixel corresponding to the desired color, the migrating particles 32A are moved to the back surface S2 side, and the migrating particles 32B are moved to the display surface S1 side, so that other than the sub-pixels corresponding to the desired color. These pixels are displayed in white. That is, as shown in the L column of FIG. 6, the pixel 2 can obtain reflected light of 100% of the pixel area, and can obtain brighter monochromatic light.
 なお、図6の下の欄に示したように、3つの副画素のうち、2つの副画素の泳動粒子32Aを表示面S1側に、泳動粒子32Bを背面S2側に移動させて黒表示に、残り1つの副画素の泳動粒子32Aを背面S2側に、泳動粒子32Bを表示面S1側に移動させて白表示にすることによって濃い灰色を表示することができる。また、図示していないが、黒表示を行う副画素を1つ、色表示を行う副画素を2つとすることで、淡い灰色を表示することが可能となる。 As shown in the lower column of FIG. 6, the electrophoretic particles 32A of two subpixels out of the three subpixels are moved to the display surface S1 side, and the electrophoretic particles 32B are moved to the back surface S2 side to display black. A dark gray color can be displayed by moving the migrating particles 32A of the remaining one subpixel to the back surface S2 side and moving the migrating particles 32B to the display surface S1 side to display white. Although not shown, it is possible to display light gray by using one sub-pixel for black display and two sub-pixels for color display.
 このように、多孔質層33を所望の色に着色すると共に、黒色を呈する泳動粒子32Aおよび白色を呈する泳動粒子32Bを適宜移動させることにより、カラーフィルタを用いることなく、多色表示および複数の階調表現が可能となる。 In this way, the porous layer 33 is colored in a desired color, and the electrophoretic particles 32A exhibiting black and the electrophoretic particles 32B exhibiting white are appropriately moved, so that a multicolor display and a plurality of colors can be displayed without using a color filter. Gradation can be expressed.
 以上のように、本実施の形態では、複数の色、例えば、各副画素2R,2G,2Bに対応する赤色,緑色,青色に着色された多孔質層33と用いるようにしたので、カラーフィルタを用いることなく多色表示が可能となる。また、カラーフィルタを用いない分、輝度を向上させることが可能となる。 As described above, in the present embodiment, since the porous layer 33 colored in red, green, and blue corresponding to a plurality of colors, for example, the sub-pixels 2R, 2G, and 2B is used, the color filter Multi-color display is possible without using. Further, the luminance can be improved as much as no color filter is used.
 また、本実施の形態では、泳動粒子32として、互いに異なる極性に帯電した黒色の泳動粒子32Aおよび白色の泳動粒子32Bを用いると共に、各副画素2R,2G,2Bにそれぞれ独立した画素電極を複数(ここでは2つ)設けるようにした。これにより、より高い輝度を得ることができると共に、複数の階調表現が可能となる。 In the present embodiment, black electrophoretic particles 32A and white electrophoretic particles 32B charged to different polarities are used as electrophoretic particles 32, and a plurality of independent pixel electrodes are provided for each of subpixels 2R, 2G, and 2B. (Two here). Thereby, higher luminance can be obtained and a plurality of gradations can be expressed.
 更に、本実施の形態では、多孔質層33の着色を、印刷によって行うため無理分けが容易であり、安価に製造することができる。更にまた、カラーフィルタを用いないため、一般的な反射型の表示装置と比較して薄型にすることが可能となると共に、部材コストを低減することができる。 Furthermore, in this embodiment, since the porous layer 33 is colored by printing, it is easy to forcibly and can be manufactured at low cost. Furthermore, since a color filter is not used, it is possible to reduce the thickness and reduce the member cost as compared with a general reflective display device.
 なお、本実施の形態では、泳動粒子32として黒色の泳動粒子32Aおよび白色の泳動粒子32Bの2種類を用いたが、例えば、黒色の泳動粒子32A1種類でも多色表示および階調表現は可能である。その場合には、例えば、画素2をRGBWの2つの副画素から構成し、白色画素には、白色に着色された多孔質層33を配置するようにすればよい。白色の多孔質層33は、繊維状構造体331の紡糸時に、酸化チタン等の上記泳動粒子32の構成材料として挙げた材料を添加することで形成することができる。 In the present embodiment, two types of electrophoretic particles 32, black electrophoretic particles 32A and white electrophoretic particles 32B, are used. For example, multicolor display and gradation expression are possible even with black electrophoretic particles 32A1. is there. In that case, for example, the pixel 2 may be composed of two RGBW sub-pixels, and a white colored porous layer 33 may be disposed in the white pixel. The white porous layer 33 can be formed by adding the material mentioned as the constituent material of the migrating particles 32 such as titanium oxide at the time of spinning the fibrous structure 331.
<2.適用例>
 次に、上記実施の形態の表示装置1の適用例について説明する。但し、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。
<2. Application example>
Next, an application example of the display device 1 according to the above embodiment will be described. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
(適用例1)
 図7A,図7Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図7Aに示したように非表示部120の前面に設けられていてもよいし、図7Bに示したように上面に設けられていてもよい。表示部110が表示装置1により構成される。なお、表示装置1は、図7A,7Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。
(Application example 1)
7A and 7B show the external configuration of the electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. Note that the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 7A, or may be provided on the upper surface as illustrated in FIG. 7B. The display unit 110 is configured by the display device 1. The display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 7A and 7B.
(適用例2)
 図8は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部210および筐体220を有しており、タッチパネル部210が上記表示装置1により構成されている。
(Application example 2)
FIG. 8 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 210 and a housing 220, and the touch panel unit 210 is configured by the display device 1.
 また、上記実施の形態の表示装置1は、電子掲示板等に適用してもよい。 Further, the display device 1 of the above embodiment may be applied to an electronic bulletin board or the like.
 以上、実施形態を挙げて説明したが、本開示内容は実施形態で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態では、電気泳動素子30として、絶縁性液体31、電気泳動素子32および多孔質層33を備えた構成を例示したが、電気泳動素子30(表示層)の構成は、このような多孔質層33を用いたものに限定されず、電気泳動現象を利用して画素ごとに光反射によるコントラスト形成が可能なものであればよい。 Although the embodiments have been described above, the present disclosure is not limited to the aspects described in the embodiments, and various modifications can be made. For example, in the above embodiment, the configuration including the insulating liquid 31, the electrophoresis device 32, and the porous layer 33 is illustrated as the electrophoresis device 30, but the configuration of the electrophoresis device 30 (display layer) is It is not limited to the one using the porous layer 33 as described above, and any material that can form a contrast by light reflection for each pixel by using an electrophoretic phenomenon may be used.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本開示は以下のような構成を取ることも可能である。
(1)泳動粒子と、繊維状構造体により形成されると共に、複数の色に着色された多孔質層とを備えた表示装置。
(2)前記泳動粒子は、互いに光反射特性の異なる複数種類からなる、前記(1)に記載の表示装置。
(3)複数種類からなる前記泳動粒子は、それぞれ帯電すると共に、互いに異なる電荷を有する、前記(1)または(2)に記載の表示装置。
(4)前記多孔質層は、赤色、緑色および青色に着色されている、前記(1)乃至(3)のいずれかに記載の表示装置。
(5)複数種類からなる前記泳動粒子は、黒色または白色を呈する、前記(1)乃至(4)のいずれかに記載の表示装置。
(6)それぞれ、少なくとも赤色画素、緑色画素および青色画素を含む複数の画素を有し、
前記画素には、それぞれ独立した複数の画素電極が設けられている、前記(1)乃至(5)のいずれかに記載の表示装置。
(7)前記画素に設けられた前記複数の画素電極の数は、前記泳動粒子の種類と同数である、前記(6)に記載の表示装置。
(8)赤色、緑色および青色に着色された前記多孔質層は、それぞれ対応する赤色画素、緑色画素および青色画素に配設されている、前記(6)または(7)に記載の表示装置。
(9)前記繊維状構造体は静電紡糸法により形成されている、前記(1)乃至(8)のいずれかに記載の表示装置。
(10)前記泳動粒子は、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスおよび高分子材料のうちの少なくともいずれか1つにより構成されている、前記(1)乃至(9)のいずれかに記載の表示装置。
(11)前記繊維状構造体はアクリル樹脂からなる、前記(1)乃至(10)のいずれかに記載の表示装置。
(12)前記絶縁性液体中に、前記泳動粒子を分散させる分散剤を含有する、前記(1)乃至(11)のいずれかに記載の表示装置。
(13)泳動粒子を形成する工程と、多孔質層を構成する繊維状構造体を形成する工程と、前記繊維状構造体を複数の色に染色する工程とを含む表示装置の製造方法。
In addition, this indication can also take the following structures.
(1) A display device including migrating particles and a porous layer formed of a fibrous structure and colored in a plurality of colors.
(2) The display device according to (1), wherein the migrating particles include a plurality of types having different light reflection characteristics.
(3) The display device according to (1) or (2), wherein the plurality of types of migrating particles are charged and have different charges.
(4) The display device according to any one of (1) to (3), wherein the porous layer is colored red, green, and blue.
(5) The display device according to any one of (1) to (4), wherein the plurality of types of migrating particles exhibit black or white.
(6) each having a plurality of pixels including at least a red pixel, a green pixel and a blue pixel;
The display device according to any one of (1) to (5), wherein each of the pixels is provided with a plurality of independent pixel electrodes.
(7) The display device according to (6), wherein the number of the plurality of pixel electrodes provided in the pixel is the same as the number of the electrophoretic particles.
(8) The display device according to (6) or (7), wherein the porous layers colored in red, green, and blue are disposed in corresponding red pixels, green pixels, and blue pixels, respectively.
(9) The display device according to any one of (1) to (8), wherein the fibrous structure is formed by an electrostatic spinning method.
(10) The electrophoretic particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material. The display device according to any one of (9).
(11) The display device according to any one of (1) to (10), wherein the fibrous structure is made of an acrylic resin.
(12) The display device according to any one of (1) to (11), wherein the insulating liquid contains a dispersant that disperses the electrophoretic particles.
(13) A method for manufacturing a display device, including a step of forming migrating particles, a step of forming a fibrous structure constituting a porous layer, and a step of dyeing the fibrous structure into a plurality of colors.
 本出願は、日本国特許庁において2015年4月22日に出願された日本特許出願番号2015-087847号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-087847 filed on April 22, 2015 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (13)

  1.  泳動粒子と、
     繊維状構造体により形成されると共に、複数の色に着色された多孔質層と
     を備えた表示装置。
    Electrophoretic particles,
    A display device comprising a porous layer formed of a fibrous structure and colored in a plurality of colors.
  2.  前記泳動粒子は、互いに光反射特性の異なる複数種類からなる、請求項1に記載の表示装置。 The display device according to claim 1, wherein the migrating particles are composed of a plurality of types having different light reflection characteristics.
  3.  複数種類からなる前記泳動粒子は、それぞれ帯電すると共に、互いに異なる電荷を有する、請求項1に記載の表示装置。 2. The display device according to claim 1, wherein the plurality of types of migrating particles are charged and have different charges.
  4.  前記多孔質層は、赤色、緑色および青色に着色されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the porous layer is colored red, green and blue.
  5.  複数種類からなる前記泳動粒子は、黒色または白色を呈する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the plurality of types of migrating particles exhibit black or white.
  6.  それぞれ、少なくとも赤色画素、緑色画素および青色画素を含む複数の画素を有し、
     前記画素には、それぞれ独立した複数の画素電極が設けられている、請求項1に記載の表示装置。
    Each having a plurality of pixels including at least a red pixel, a green pixel and a blue pixel;
    The display device according to claim 1, wherein each of the pixels is provided with a plurality of independent pixel electrodes.
  7.  前記画素に設けられた前記複数の画素電極の数は、前記泳動粒子の種類と同数である、請求項6に記載の表示装置。 The display device according to claim 6, wherein the number of the plurality of pixel electrodes provided in the pixel is the same as the number of the electrophoretic particles.
  8.  赤色、緑色および青色に着色された前記多孔質層は、それぞれ対応する赤色画素、緑色画素および青色画素に配設されている、請求項6に記載の表示装置。 The display device according to claim 6, wherein the porous layers colored in red, green, and blue are disposed in corresponding red pixels, green pixels, and blue pixels, respectively.
  9.  前記繊維状構造体は静電紡糸法により形成されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the fibrous structure is formed by an electrostatic spinning method.
  10.  前記泳動粒子は、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスおよび高分子材料のうちの少なくともいずれか1つにより構成されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the migrating particles are made of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material. .
  11.  前記繊維状構造体はアクリル樹脂からなる、請求項1に記載の表示装置。 The display device according to claim 1, wherein the fibrous structure is made of an acrylic resin.
  12.  前記絶縁性液体中に、前記泳動粒子を分散させる分散剤を含有する、請求項1に記載の表示装置。 2. The display device according to claim 1, further comprising a dispersing agent that disperses the electrophoretic particles in the insulating liquid.
  13.  泳動粒子を形成する工程と、
     多孔質層を構成する繊維状構造体を形成する工程と、
     前記繊維状構造体を複数の色に染色する工程と
     を含む表示装置の製造方法。
    Forming a migrating particle;
    Forming a fibrous structure constituting the porous layer; and
    And a step of dyeing the fibrous structure into a plurality of colors.
PCT/JP2016/061132 2015-04-22 2016-04-05 Display device and display device manufacturing method WO2016170970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015087847A JP2016206412A (en) 2015-04-22 2015-04-22 Display and manufacturing method of display
JP2015-087847 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016170970A1 true WO2016170970A1 (en) 2016-10-27

Family

ID=57144116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061132 WO2016170970A1 (en) 2015-04-22 2016-04-05 Display device and display device manufacturing method

Country Status (2)

Country Link
JP (1) JP2016206412A (en)
WO (1) WO2016170970A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156808A (en) * 2003-11-25 2005-06-16 Dainippon Ink & Chem Inc Electrophoretic multicolor display device
JP2007212854A (en) * 2006-02-10 2007-08-23 Fuji Xerox Co Ltd Image display medium and image display device with same
JP2013238791A (en) * 2012-05-16 2013-11-28 Sony Corp Electrophoretic device, electrophoretic display apparatus, electronic apparatus, and method of manufacturing electrophoretic device
JP2015004914A (en) * 2013-06-24 2015-01-08 ソニー株式会社 Display unit and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156808A (en) * 2003-11-25 2005-06-16 Dainippon Ink & Chem Inc Electrophoretic multicolor display device
JP2007212854A (en) * 2006-02-10 2007-08-23 Fuji Xerox Co Ltd Image display medium and image display device with same
JP2013238791A (en) * 2012-05-16 2013-11-28 Sony Corp Electrophoretic device, electrophoretic display apparatus, electronic apparatus, and method of manufacturing electrophoretic device
JP2015004914A (en) * 2013-06-24 2015-01-08 ソニー株式会社 Display unit and electronic apparatus

Also Published As

Publication number Publication date
JP2016206412A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5741122B2 (en) Electrophoretic element, display device and electronic device
WO2013145914A1 (en) Display device and electronic equipment
US8711469B2 (en) Electrophoretic element and display device
US9429810B2 (en) Electrophoresis device and display
US8553317B2 (en) Electrophoresis device, method of manufacturing the electrophoresis device, display, display substrate, and electronic unit
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP5942394B2 (en) Electrophoretic element and display device
WO2014038291A1 (en) Electrophoretic element, display device, and electronic apparatus
US8908258B2 (en) Electrophoresis device and display unit
JP5870605B2 (en) Display device, driving method thereof, and electronic apparatus
WO2016170970A1 (en) Display device and display device manufacturing method
US9869920B2 (en) Display unit and electronic apparatus
WO2016043057A1 (en) Display apparatus and electronic device
JP2014106332A (en) Electrophoretic element and display device
JP5817464B2 (en) Electrophoretic element and display device
WO2015145965A1 (en) Display unit and electronic apparatus
JP2015004912A (en) Display unit and electronic apparatus
WO2016199617A1 (en) Display device and electronic apparatus
JP2012173602A (en) Electrophoretic element and display device
WO2017149986A1 (en) Display device and electronic apparatus
WO2016190136A1 (en) Display device
WO2016194504A1 (en) Display device and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782991

Country of ref document: EP

Kind code of ref document: A1