WO2017149986A1 - Display device and electronic apparatus - Google Patents

Display device and electronic apparatus Download PDF

Info

Publication number
WO2017149986A1
WO2017149986A1 PCT/JP2017/001913 JP2017001913W WO2017149986A1 WO 2017149986 A1 WO2017149986 A1 WO 2017149986A1 JP 2017001913 W JP2017001913 W JP 2017001913W WO 2017149986 A1 WO2017149986 A1 WO 2017149986A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
display device
porous layer
migrating
migrating particles
Prior art date
Application number
PCT/JP2017/001913
Other languages
French (fr)
Japanese (ja)
Inventor
亮 加瀬川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017149986A1 publication Critical patent/WO2017149986A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Definitions

  • the present disclosure relates to a display device and an electronic apparatus that perform display using an electrophoresis phenomenon.
  • an electrophoretic display capable of color display is required to have high color reproducibility in addition to high brightness and saturation.
  • a display device is formed of two or more kinds of migrating particles having selective optical transmission characteristics and a fibrous structure in an insulating liquid, and has light transmittance.
  • a first layer disposed on the display surface side and a porous layer having an optical reflection characteristic different from that of the migrating particles and including a second layer disposed on the back surface side are provided.
  • An electronic apparatus includes the display device according to the embodiment of the present disclosure.
  • the porous layer is configured by a plurality of layers, and a light-transmitting layer (first layer) is disposed on the display surface side. Accordingly, it is possible to prevent a decrease in saturation due to the migrating particles having a color desired to be displayed being concealed by the porous layer (second layer) having a light reflection characteristic different from that of the migrating particles.
  • the porous layer includes a plurality of layers, and the light-transmitting layer (first layer) is disposed on the display surface side.
  • the light-transmitting layer first layer
  • color display with high saturation becomes possible. That is, it is possible to provide a display device and an electronic device with high color reproducibility.
  • the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
  • FIG. 2 is a schematic plan view for explaining the electrophoretic element shown in FIG. 1.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1.
  • It is a figure showing the time change of the electric potential difference with respect to the display surface side of the back side of the display apparatus shown in FIG.
  • FIG. 7B is a perspective view illustrating another example of the electronic book illustrated in FIG. 7A.
  • 12 is a perspective view illustrating an appearance of application example 2.
  • FIG. 14 is a perspective view illustrating an example of an appearance of application example 3.
  • FIG. 22 is a perspective view illustrating another example of the appearance of application example 3.
  • Embodiment (example in which a light-transmitting porous layer is provided on the display surface side) 1-1.
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure.
  • FIG. 2 schematically shows a planar configuration of the main part of the display device 1.
  • FIG. 1 shows a cross section taken along line II in FIG.
  • the display device 1 is an electrophoretic display that generates contrast using an electrophoretic phenomenon, and an electrophoretic element (electrophoretic element 30) is used as a display element.
  • the display device 1 includes, for example, an electrophoretic element 30 as a display body between a drive substrate 10 and a counter substrate 20 that are arranged to face each other with a spacer 40 interposed therebetween.
  • the electrophoretic element 30 includes a plurality of types of migrating particles 32 and a porous layer 33 composed of a fibrous structure 331 in an insulating liquid 31.
  • the porous layer 33 here, two layers (porous layer 33A, 33B)) a plurality of layers made of, a porous layer 33A having optical transparency on the display surface S 1 side It has an arranged configuration. 1 and 2 schematically show the configuration of the display device 1 and may differ from actual dimensions and shapes.
  • a drive substrate 10 and a counter substrate 20 are disposed so as to face each other with an electrophoretic element 30 therebetween, and a display surface S 1 is provided on the counter substrate 20 side. is doing.
  • the phrase “having a display surface on the counter substrate 20 side” means that an image is displayed toward the counter substrate 20 (the user can visually recognize an image from the counter substrate 20 side).
  • an adhesive layer 16 and an adhesive layer 23 are provided between the drive substrate 10 and the electrophoretic element 30 and between the counter substrate 20 and the electrophoretic element 30, respectively. The substrate 20 and the electrophoretic element 30 are bonded together.
  • the driving substrate 10 has a thin film transistor (TFT) 12, a protective layer 13, a planarization insulating layer 14, and a pixel electrode 15 formed in this order on one surface of a support base 11.
  • TFT thin film transistor
  • the TFT 12 and the pixel electrode 15 are divided and formed in a matrix or segment according to a pixel pattern or the like.
  • the support base 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like.
  • the inorganic material include silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ).
  • Silicon oxide includes glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel
  • examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether.
  • Examples include ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyethersulfone (PES).
  • the support substrate 11 may be light transmissive or non-light transmissive. This is because the image is displayed on the counter substrate 20 side, and thus the support base 11 does not necessarily need to be light transmissive.
  • the support base 11 may be a rigid substrate such as a wafer, or may be composed of a flexible thin glass or film. By using a flexible material for the support base 11, a flexible display device 1 can be realized.
  • the TFT 12 is a switching element for selecting a pixel.
  • the TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer.
  • Examples of the material for the inorganic semiconductor layer include amorphous silicon, polysilicon, and oxide.
  • Examples of the material for the organic semiconductor layer include pentacene.
  • the protective layer 13 and the planarization insulating layer 14 are made of an insulating resin material such as polyimide, for example. If the surface of the protective layer 13 is sufficiently flat, the planarization insulating layer 14 can be omitted.
  • the pixel electrode 15 is formed of a metal material such as gold (Au), silver (Ag), or copper (Cu), for example.
  • the pixel electrode 15 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the planarization insulating layer 14.
  • FIG. 1 shows a case where, for example, the TFT 12 is arranged for each cell 36 described later (one TFT 12 is provided for one cell 36).
  • the present invention is not necessarily limited to this, and the numbers and positional relationships of the cells 36 and the TFTs 12 may be arbitrary.
  • two TFTs 12 may be arranged for three cells 36, or a boundary between two adjacent TFTs 12 may be located within the range of the cell 36.
  • the adhesive layer 16 is for bonding the drive substrate 10 and the partition unit 38, and is made of, for example, acrylic resin, urethane resin, rubber, or the like, and has a film thickness of, for example, 1 ⁇ m to 100 ⁇ m.
  • the counter substrate 20 includes, for example, a support base 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support base 21 (a surface facing the drive substrate 10).
  • the counter electrode 22 may be arranged in a matrix or segment like the pixel electrode 15.
  • the support base 21 is made of the same material as the support base 11 except that it is light transmissive.
  • a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO).
  • ITO indium oxide-tin oxide
  • ATO antimony oxide-tin oxide
  • FTO fluorine-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the film thickness of the support base 21 is, for example, 1 ⁇ m to 250 ⁇ m.
  • the light transmittance (transmittance) of the counter electrode 22 should be as high as possible. For example, 80% or more.
  • examples of such a material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • the thickness of the counter electrode 22 is, for example, 0.001 ⁇ m to 1 ⁇ m.
  • the electrical resistance of the counter electrode 22 is preferably as low as possible, for example, 100 ⁇ / ⁇ or less.
  • the adhesive layer 23 is for bonding the counter substrate 20 and the partition unit 38 (particularly, the partition 35), and is made of, for example, acrylic resin, urethane resin, or rubber, and has a film thickness of, for example, 1 ⁇ m to 100 ⁇ m. is there.
  • a seal layer and a color filter may be laminated on the counter substrate 20.
  • a film having a conductive layer may be used as the counter substrate 20.
  • a moisture-proof film or the like that prevents intrusion of moisture or the like may be provided on the display surface side of the support base 21.
  • the electrophoretic element 30 includes a plurality of types of migrating particles 32 (here, three types of migrating particles 32 ⁇ / b> C, 32 ⁇ / b> M, and 32 ⁇ / b> Y) and a plurality of layers in an insulating liquid 31.
  • the porous layer 33 (here, two layers, porous layers 33A and 33B) is provided.
  • the migrating particles 32C, 32M, and 32Y are dispersed in the insulating liquid 31.
  • the porous layer 33A is configured using the fibrous structure 331 and has light transmittance.
  • the porous layer 33B includes a fibrous structure 331 and non-migrating particles 332, and has an optical reflection characteristic different from that of the migrating particles 32C, 32M, and 32Y.
  • Each of the porous layers 33A and 33B has one or two or more pores 333, and one or two or more partition walls 35 are formed on the porous layer 33 from the opposite side (drive substrate 10 side) of the display surface. Adjacent.
  • the insulating liquid 31 is filled in a space between the drive substrate 10 and the counter substrate 20, for example.
  • the insulating liquid 31 is composed of, for example, any one or two or more kinds of non-aqueous solvents such as organic solvents, and specifically includes hydrocarbon solvents such as paraffin. It is preferable to make the viscosity and refractive index of the insulating liquid 31 as low as possible. When the viscosity of the insulating liquid 31 is lowered, the mobility (response speed) of the migrating particles 32 is improved. In accordance with this, the energy (power consumption) required to move the migrating particles 32 is reduced.
  • the refractive index of the insulating liquid 31 When the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased.
  • a weak conductive liquid may be used instead of the insulating liquid 31.
  • the insulating liquid 31 may contain other various materials as necessary.
  • a colorant for example, a colorant, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant or a resin may be added.
  • the electrophoretic particles 32 are one or more charged particles (electrophoretic particles) that migrate electrically, and are displayed by moving in the insulating liquid 31 toward the pixel electrode 15 or the counter electrode 22 in accordance with an electric field. An image is displayed on the surface.
  • the migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, pigments, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). As the electrophoretic particles 32, one of these may be used, or two or more of them may be used.
  • the electrophoretic particles 32 may be pulverized particles or capsule particles of resin solids containing the above particles.
  • the particle size of the migrating particles 32 is, for example, in the range of not less than 100 nm and not more than 5 ⁇ m.
  • the migrating particle 32 of the present embodiment has the three types of migrating particles 32C, 32M, and 32Y.
  • the kind here is an average migration speed of the migrating particles 32 in the insulating liquid 31 when a potential difference is generated between the display surface S 1 and the back surface S 2 .
  • the migration speed of the migrating particles 32 is determined by, for example, the charge amount of the migrating particles 32, and the migration speed increases as the charge amount increases.
  • the charge amount varies depending on, for example, the particle size of the migrating particles 32. The larger the particle size, the larger the charge amount.
  • the three types of migrating particles 32C, 32M, and 32Y used in the present embodiment are charged particles having the same charge (same polarity), and, for example, the migrating particle 32C is the fastest, and then the migrating particle 32M. And the migrating particle 32Y is the slowest of the three types of migrating particles. Therefore, the average particle diameters of the migrating particles 32C, 32M, and 32Y are, for example, 1.8 ⁇ m (migrating particle 32C), 0.6 ⁇ m (migrating particle 32M), and 0.2 ⁇ m (migrating particle 32Y).
  • the average particle size of each of the migrating particles 32C, 32M, and 32Y is not limited to the above value.
  • the smaller migrating particles have an average particle size a 1 and a particle size dispersion value ⁇ 1 and a larger migrating particle.
  • the particles in an average particle size of a 2 and a particle size distribution value sigma 2 may be a relationship between a 1 -2 ⁇ 1> a 2 + 2 ⁇ 2.
  • the electrophoretic particles 32C, 32M, and 32Y each have transmission characteristics (selective optical transmission characteristics) that selectively transmit arbitrary color light.
  • the optical transmission characteristics of the migrating particles 32C, 32M, and 32Y are not particularly limited, but are preferably set so that the porous layer 33 can be shielded at least during black display. This is because the contrast is generated by utilizing the selective light transmission of the migrating particles 32C, 32M, and 32Y and the light reflection of the porous layer 33.
  • the migrating particles 32C, 32M, and 32Y absorb light in different wavelength ranges.
  • the migrating particle 32C selectively absorbs, for example, cyan complementary color light and exhibits a cyan color as a display color.
  • the migrating particle 32M selectively absorbs magenta complementary color light and exhibits a magenta color as a display color.
  • the migrating particle 32Y selectively absorbs yellow complementary color light and exhibits yellow as a display color.
  • cyan, magenta, and yellow are displayed by the migrating particles 32C, 32M, and 32Y, and black display is provided by a subtractive color mixture of the migrating particles 32C, 32M, and 32Y.
  • White display is made by the quality layer 33.
  • Examples of the material constituting the migrating particles 32C, the migrating particles 32M, and the migrating particles 32Y include pigments that exhibit corresponding colors.
  • Specific materials include, for example, quinacridone, perylene, perinone, isoindolinone, dioxazine, isoindoline, anthraquinone, quinophthalone, diketopyrrolopyrrole and other polycyclic pigments, phthalocyanine pigments, azo lake red, azo lake red, piazolone, Examples thereof include azo pigments such as disazo, monoazo, condensed azo, naphthol, and pendimidazolone, and inorganic pigments such as cadmium yellow, strontium chromate, viridian, oxide chromium, cobalt blue, and ultramarine. These series of materials may be used alone or in combination of two or more.
  • the content (concentration) of the migrating particles 32 (32C, 32M, 32Y) in the insulating liquid 31 is not particularly limited, but the entire migrating particles 32 may be, for example, 0.1 wt% to 10 wt%. preferable. This is because the shielding and mobility of the migrating particles 32 are ensured. For example, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are difficult to shield the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate.
  • the content (concentration) of the electrophoretic particles 32C, 32M, and 32Y colored in the respective colors depends on the particle size, but for example, the electrophoretic particle 32C having the largest particle size has a weight of 0.1 to 4% by weight, and the following.
  • the electrophoretic particle 32C having the largest particle size has a weight of 0.1 to 4% by weight, and the following.
  • the larger migrating particles 32M it is preferably 0.1% by weight to 4% by weight
  • the next larger migrating particle 32Y it is preferably 0.1% by weight to 4% by weight.
  • the migrating particles 32C, 32M, and 32Y are easily dispersed and charged in the insulating liquid 31 over a long period of time and are difficult to be adsorbed to the porous layer 33.
  • a dispersing agent or charge adjusting agent for dispersing the electrophoretic particles 32C, 32M, and 32Y by electrostatic repulsion may be used, or surface treatment may be applied to the electrophoretic particles 32C, 32M, and 32Y. May be.
  • This dispersing agent or charge adjusting agent has, for example, either positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31.
  • a dispersant examples include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemic, and Span series manufactured by TCI America.
  • the surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, pulling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • long-term dispersion stability of the migrating particles 32C, 32M, and 32Y can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
  • a material (adsorbent material) having a functional group (adsorptive functional group) that can be adsorbed on the surface of the migrating particles 32C, 32M, and 32Y and a polymerizable functional group is used.
  • the adsorptive functional group is determined according to the forming material of the migrating particles 32C, 32M, and 32Y.
  • an aniline derivative such as 4-vinylaniline
  • the migrating particles 32C, 32M, and 32Y are made of a metal oxide.
  • organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate can be adsorbed.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a polymerizable functional group may be introduced on the surface of the migrating particles 32C, 32M, and 32Y and grafted onto the surface to perform surface treatment (graftable material).
  • the graft material has, for example, a polymerizable functional group and a dispersing functional group.
  • the dispersion functional group disperses the migrating particles 32C, 32M, and 32Y in the insulating liquid 31, and retains dispersibility due to the steric hindrance.
  • the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • AIBN azobisisobutyronitrile
  • a material having a functional group that can be adsorbed on the surface of the migrating particles 32C, 32M, and 32Y and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate and pulling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate and pulling agents.
  • the porous layer 33 has a two-layer structure of a porous layer 33A and a porous layer 33B.
  • the porous layer 33 is a three-dimensional structure (irregular network structure such as a non-woven fabric) formed of a fibrous structure 331, and is one or two or more.
  • Gap pore 333.
  • the pore 333 is filled with the insulating liquid 31, and the migrating particles 32 ⁇ / b> C, 32 ⁇ / b> M, and 32 ⁇ / b> Y move between the pixel electrode 15 and the counter electrode 22 through the pore 333.
  • the porous layer 33 may be adjacent to the counter electrode 22 or may be separated from it.
  • the electrophoretic element 30 shown in FIG. 3 is a simplified representation of the porous layer 33B.
  • the fibrous structure 331 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter).
  • the shape (external appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a fibrous shape that is sufficiently long with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 331 is not particularly limited.
  • phase separation method for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred.
  • electrostatic (electric field) spinning method for example, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred.
  • a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • the average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 333 increases.
  • the average fiber diameter is, for example, preferably a fiber diameter that allows the fibrous structure 331 to hold non-electrophoretic particles 332 described later, and is preferably 10 ⁇ m or less, for example.
  • the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
  • the fibrous structure 331 is preferably a nanofiber.
  • the nanofiber is a fibrous substance having a fiber diameter of 0.001 ⁇ m to 0.1 ⁇ m and a length of 100 times or more of the fiber diameter.
  • the fibrous structure 331 made of nanofibers the proportion of the pores 333 in the unit volume increases, and the migrating particles 32 can easily move through the pores 333. Therefore, the energy required for moving the migrating particles 32 can be reduced.
  • the fibrous structure 331 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrostatic spinning method, the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
  • the fibrous structure 331 is formed of, for example, any one kind or two or more kinds of a polymer material or an inorganic material.
  • the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a photoreactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
  • the fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32C, 32M, and 32Y.
  • the light reflectance of the fibrous structure 331 is not particularly limited, but is set so that at least the porous layer 33 can conceal the migrating particles 32C, 32M, and 32Y as a whole when displaying white. It is preferred that This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32C, 32M, and 32Y and the light reflectance of the porous layer 33.
  • the porous layer 33 has a two-layer structure in which a porous layer 33A and a porous layer 33B are arranged in this order from the display surface S 1 side, the display surface S
  • the porous layer 33A disposed on the 1 side has light transmittance. Therefore, the fibrous structure 331 itself preferably has light transmittance (colorless and transparent) in the insulating liquid 31, and the reflectance of the fibrous structure 331, that is, the reflectance of the entire porous layer 33 is It is preferably determined substantially by non-electrophoretic particles 332 described later.
  • the porous layer 33 has the light-transmitting porous layer 33A disposed on the display surface S 1 side, and the back surface S 2 side has optical reflection characteristics.
  • the layer 33B is arranged.
  • the porous layer 33A is formed of a fibrous structure 331 having light permeability, and includes one or more pores 333.
  • the porous layer 33B is formed of a fibrous structure holding one or more non-migrating particles 332 having optical reflection characteristics different from the migrating particles 32C, 32M, and 32Y, and is similar to the porous layer 33A.
  • one or two or more pores 333 are included.
  • non-migrating particles 332 are included in the fibrous structure 331 that constitutes the porous layer 33B .
  • contrast becomes higher.
  • the non-migrating particles 332 are one or more particles that are fixed to the fibrous structure 331 and do not migrate electrically.
  • the non-migrating particles 332 may be embedded in the held fibrous structure 331 or may partially protrude from the fibrous structure 331.
  • the non-migrating particles 332 have optical reflection characteristics different from those of the migrating particles 32C, 32M, and 32Y.
  • the light reflectance of the non-migrating particles 332 is not particularly limited, but is preferably set so that at least the porous layer 33 can conceal the migrating particles 32C, 32M, and 32Y as a whole. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32C, 32M, and 32Y and the light reflectance of the porous layer 33.
  • the specific forming material of the non-migrating particles 332 is selected according to the role played by the non-migrating particles 332 in order to generate contrast, for example.
  • the porous layer 33 specifically, the non-electrophoretic particle 332
  • a metal oxide is preferable, and titanium oxide is more preferable. This is because it is excellent in electrochemical stability and fixability, and high reflectance can be obtained.
  • the forming material of the non-migrating particles 332 may be the same type as the forming material of the migrating particles 32C, 32M, and 32Y, or may be a different type. Note that the non-migrating particles 332 may be a combination of two or more types of particles having different particle sizes.
  • the fibrous structure 331 constituting the porous layer 33A preferably contains particles that do not reflect visible light (non-visible light particles).
  • the particles that do not reflect visible light include titania (TiO 2 ) having a particle size of 250 nm or less. This is because the retention performance of the migrating particles 32C, 32M, and 32Y in the porous layer 33A may be improved by containing the fibrous structure 331TiO 2 .
  • one fibrous structure 331 may be entangled randomly, or a plurality of fibrous structures 331 are gathered and randomly overlapped. Alternatively, both may be mixed.
  • the porous layers 33A and 33B are three-dimensional structures because the average pore diameter of the pores 333 is increased and the number thereof is increased, so that the migrating particles 32C, 32M, and 32Y easily pass through the pores 333. Because it becomes. As a result, the time required to move the migrating particles 32C, 32M, and 32Y is shortened, and the energy required to move the migrating particles 32C, 32M, and 32Y is also reduced. Further, in the porous layer 33B including the non-electrophoretic particles 332, external light is likely to be irregularly reflected (multiple scattering) due to the irregular three-dimensional structure, and the light reflectance of the porous layer 33B is increased.
  • the pore 333 is formed by overlapping a plurality of fibrous structures 331 or entwining one fibrous structure 331.
  • the average pore diameter of the pores 333 is not particularly limited, but is preferably as large as possible so that the migrating particles 32C, 32M, and 32Y can easily move through the pores 333. For this reason, the average pore diameter of the pores 333 is preferably 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the total film thickness (W 0 ) of the porous layer 33 is not particularly limited, but is preferably 5 ⁇ m to 100 ⁇ m, for example. This is because the concealability of the porous layer 33 is enhanced, and the migrating particles 32 can easily pass through the pores 333.
  • the film thicknesses of the porous layer 33A and the porous layer 33B are preferably determined as follows, for example.
  • the film thickness (W 1 ) of the light-transmitting porous layer 33A is the same as the film thickness (W 0 ) of the entire porous layer 33 (in this embodiment, the electrophoretic particles 32C, It is preferable to set a value obtained by dividing by (the three types of 32M and 32Y) (the film thickness (W 0 ) of the entire porous layer 33 / the number of species of the migrating particles).
  • the migrating speed of the migrating particle 32C that moves the fastest is V1
  • the migration that moves the second fastest is the migration that moves the second fastest.
  • the film thickness (W 1 ) of the first layer with respect to the film thickness (W 0 ) of the entire porous layer 33 is The larger value of W 0 ⁇ (V2 / V1) and W 0 ⁇ (V3 / V2) is preferably the film thickness of the porous layer 33A.
  • the film thickness (W 2 ) of the porous layer 33B is obtained by subtracting the film thickness (W 1 ) of the porous layer 33A obtained from the above calculation from the film thickness (W 0 ) of the entire porous layer 33. Become.
  • electrophoretic particles having a desired display color e.g., electrophoretic particles 32M
  • electrophoretic particles 32M porous layer It is possible to prevent hiding by 33 (specifically, the porous layer 33B having optical reflection characteristics).
  • the partition 35 partitions the possible range of the migrating particles 32C, 32M, and 32Y dispersed in the insulating liquid 31, and accommodates the migrating particles 32C, 32M, and 32Y as shown in FIGS.
  • a space (cell 36 to be described later) is formed.
  • the partition wall 35 extends toward the counter substrate 20 and is adjacent to a part of the porous layer 33 from the opposite side of the display surface.
  • the number and arrangement pattern of the cells 36 formed by the partition walls 35 are not particularly limited. However, in order to efficiently arrange the plurality of cells 36, the cells 36 are preferably arranged in a matrix (arrangement of a plurality of rows and a plurality of columns). Further, the shape (opening shape) of the cell 36 is not particularly limited, and may be a rectangular shape as shown in FIG. 2 or another shape (such as a hexagon).
  • the material for forming the partition wall 35 is not particularly limited as long as it does not affect the operation performance of the electrophoretic element 30, but is preferably a resin that is excellent in molding. This is because it is easy to form the partition wall 35 having a desired size and shape.
  • This resin is, for example, a thermoplastic resin or a photo-curing resin (including a resist for photolithography), and other resins may be used.
  • the partition wall 35 is formed by, for example, a thermal imprint method using a thermoplastic resin or a photo imprint method using a photocurable resin. .
  • the thermal imprint method for example, after a mold (female mold) is pressed onto a resin (polymer material) heated to a glass transition temperature or higher, the mold is peeled off from the cooled resin. Thereby, since the shape of a mold is transcribe
  • This mold may be, for example, a photoresist film formed by a photolithography method, or a metal plate formed by machining such as a cutting tool.
  • the partition wall 35 may have a support body 37 that is continuous with the drive substrate 10, and the partition wall 35 may be supported by the support body 37.
  • the partition and support 37 may be unitized (partition unit 38).
  • the partition wall 35 and the support body 37 may be integrated or separated.
  • the support 37 may be a film or the like.
  • the width of the partition wall 35 in the X-axis direction may be uniform or non-uniform in the extending direction.
  • the width is preferably gradually reduced toward the porous layer 33. This is because the opening range (R3) of the cell 36 is widened toward the display surface side, and the immovable region (R4) of the migrating particles 32 is narrowed accordingly, so that the image display range is widened.
  • the inclination angle (so-called taper angle) of the side surface of the partition wall 35 is not particularly limited, but is, for example, 60 ° to 90 °, preferably 75 ° to 85 °.
  • the pitch and height of the partition walls 35 are not particularly limited and can be set arbitrarily.
  • the pitch of the partition walls 35 is 30 ⁇ m to 300 ⁇ m, preferably 60 ⁇ m to 150 ⁇ m, and the height of the partition walls 35 is 10 ⁇ m to 100 ⁇ m, preferably 30 ⁇ m to 50 ⁇ m.
  • the height of the partition wall 35 and the thickness of the porous layer 33 in the Z-axis direction are substantially uniform. This is because the distance between the pixel electrode 15 and the counter electrode 22 (so-called gap) is constant, and the electric field strength is made uniform. Thereby, nonuniformity such as response speed is improved.
  • the spacer 40 is for supporting the space between the driving substrate 10 and the counter substrate 20.
  • the film thickness of the spacer 40 is, for example, 10 ⁇ m to 100 ⁇ m, and is preferably as thin as possible. Thereby, power consumption can be suppressed.
  • the spacer 40 is made of an insulating material such as a polymer material, for example.
  • the arrangement shape of the spacer 140 is not particularly limited, but it is preferable that the spacer 140 is provided so as not to disturb the movement of the migrating particles 32 and to uniformly distribute the migrating particles 32.
  • the partition wall 35 may also serve as the spacer 40.
  • the display device 1 of the present embodiment can be manufactured by the following method, for example.
  • the manufacturing method demonstrated here is an example, You may manufacture using another method.
  • the TFT 12, the protective layer 13, the planarization insulating layer 14, and the pixel electrode 15 are formed in this order on one surface of the support base 11 to produce the drive substrate 10, and the partition unit 38 is formed via the adhesive layer 16. .
  • the partition unit 38 may be formed by resin molding using a thermal imprint method or the like to integrally form the partition 35 and the support 37, or may be formed separately. At this time, the spacer 40 may be formed at the same time.
  • the migrating particles 32 and the porous layer 33 are accommodated in the cell 36 formed by the partition unit 38 and the insulating liquid 31 is injected.
  • a spinning solution is prepared by dispersing the forming material of the fibrous structure 331 in an organic solvent or the like, and the non-electrophoretic particles 332 are dispersed in the spinning solution. Spin by electrospinning method. Thereby, the porous layer 33B in which the non-migrating particles 332 are held by the fibrous structure 331 is formed.
  • the porous layer 33A composed of the fibrous structure 331 having optical transparency is formed.
  • this spinning process may be performed in air
  • the area occupation ratio of the pores 333 is substantially uniform throughout.
  • the drive substrate 10 and the counter substrate 20 provided with the counter electrode 22 and the adhesive layer 23 are arranged to face each other, and the drive substrate 10 and the counter substrate 20 are bonded together. Thereby, the display apparatus 1 (FIG. 1) shown in FIG. 1 is completed.
  • the display device 1 operates as follows. 4A and 4B are for explaining the basic operation of the display device, and show a cross-sectional configuration corresponding to FIG.
  • the porous layer 33 is shown as one layer, and the adhesive layer 16 and the partition unit 38 are omitted.
  • the migrating particles 32 are also shown as one type.
  • the migrating particles 32 are arranged in the retreat area R1 (FIG. 4A). In this case, since the migrating particles 32 are concealed by the porous layer 33 in all the pixels, when the display device 1 is viewed from the counter substrate 20 side, no contrast is generated (an image is not displayed). It is in.
  • the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to the display area R2 via (pore 333).
  • the contrast is generated when the display device 1 is viewed from the counter substrate 20 side. Become. Thereby, an image is displayed.
  • the drive substrate 10 is provided with a peripheral circuit (not shown) for driving the electrophoretic element 30 for each pixel (applying a drive voltage between the pixel electrode 15 and the counter electrode 22).
  • the peripheral circuit includes, for example, a voltage control driver for forming an active matrix driving circuit, a power source, a memory, and the like, and corresponds to an image signal for one or more selective sub-pixels. A drive voltage can be applied.
  • Display device 1 of this embodiment will be described in detail later, as electrophoretic particles 32, the average migration velocity of different electrophoretic particles 32C, 32M, due to the use of 32Y, the rear S 2 side with respect to the display surface S 1 side By changing the potential difference, the distribution positions of the migrating particles 32C, 32M, and 32Y can be adjusted. As a result, the display device 1 of the present embodiment can display five colors of white (W), cyan (C), magenta (M), yellow (Y), and black (K). Further, in the display device 1 of the present embodiment, full color display is also possible by subtractive color mixture.
  • the porous layer 33A having optical transparency is disposed on the display surface S 1 side, and the optical reflection characteristic is provided on the back surface S 2 side.
  • the porous layer 33B was arranged.
  • three types of migrating particles 32C, 32M, and 32Y having different optical reflection characteristics are used as the particles for migrating the insulating liquid 31.
  • the migrating particles 32C, 32M, and 32Y are colored cyan (migrating particles 32C), magenta (migrating particles 32M), and yellow (migrating particles 32Y), for example.
  • the optical reflection characteristic of the porous layer 33B is different from the optical reflection characteristic of the migrating particles 32C, 32M, and 32Y, and is colored white by including the white non-migrating particles 332 here.
  • FIG. 5 shows changes over time in the potential difference with respect to the display surface S 1 side on the back surface S 2 side as an example of the driving method of the display device 1.
  • Figure 6 is a representation of electrophoretic particles 32C by time variation of the potential difference across the display surface S 1 side of the back S 2 side shown in FIG. 5, 32M, the time variation of the average moving position of 32Y.
  • the film thicknesses of the porous layer 33A and the porous layer 33B are designed by using the above calculation method, and the film thickness (W 0 ) of the entire porous layer 33 is 30 ⁇ m, of which the porous layer 33A
  • the film thickness (W 1 ) is 10 ⁇ m
  • the film thickness (W 2 ) of the porous layer 33B is 20 ⁇ m.
  • the film thickness (W 0 ) of the porous layer 33 is the distance between the driving substrate 10 and the counter substrate 20.
  • the thickness (W1) of each porous layer 33A, each electrophoretic particle 32C, 32M, 32Y is charged positive (+) and has the electrophoretic speed shown in Table 1.
  • Electrophoretic particles 32M will reverse potential of back S 2 side at the time of reaching the display surface S 1, when a low potential with respect to the display surface S 1, most migration speed fast electrophoretic particles 32C is faster than electrophoretic particles 32M to move to the back S 2 side.
  • electrophoretic particles 32C to zero the potential difference at the time it reaches the rear S 2
  • electrophoretic particles 32C, 32M, 32Y are distributed from the display surface S 1 side electrophoretic particles 32M, electrophoretic particles 32Y, in the order of electrophoretic particles 32C.
  • the migrating particles 32M are located in the light-transmitting porous layer 33A and the migrating particles 32Y and 32C are located in the porous layer 33B, the migrating particles 32Y and 32C are hidden by the porous layer 33B and displayed.
  • the display color of the surface S 1 is magenta (M).
  • electrophoretic particles 32M is until most electrophoretic slow electrophoretic particles 32Y is concealed by a porous layer 32B, but would move toward the rear S 2, in the present embodiment, the display surface S Since the light-transmitting porous layer 33A is disposed on the 1 side, the saturation is ensured.
  • multicolor display here white (W), cyan (C), magenta (M), yellow (Y) and Black (K) five-color display is possible.
  • the halftone can be displayed by the same method.
  • full color display is also possible by subtractive color mixing.
  • the three types of migrating particles 32C, 32M, and 32Y having different optical reflection characteristics are used as the migrating particles that migrate in the insulating liquid 31.
  • the porous layer 33 is composed of a porous layer 33A having optical transparency and a porous layer 33B having optical reflection characteristics different from those of the migrating particles 32C, 32M, 32Y, and on the display surface S 1 side.
  • the porous layer 33A was arranged.
  • electrophoretic particles 32C between the display surface S 1 and the back S 2, 32M when displaying the desired display color by controlling the distribution permutations of 32Y, electrophoretic particles having a desired display color (e.g., be distributed at a position electrophoretic particles 32M) is separated from the display surface S 1, electrophoretic particles 32M color saturation is concealed by a porous layer 33B it is possible to prevent the decrease. Therefore, it is possible to provide the display device 1 with high color reproducibility.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 7A, or may be provided on the upper surface as illustrated in FIG. 7B.
  • the display unit 110 is configured by the display device 1.
  • the display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 7A and 7B.
  • PDA Personal Digital Assistants
  • FIG. 8 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 1.
  • the display device 1 can also be applied to a part of clothing such as a watch (watch), a bag, clothes, a hat, glasses, and shoes as a so-called wearable terminal. Below, an example of such an electronic device integrated with clothing is shown.
  • the electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 9A and 9B by display driving using the above-described electrophoretic element.
  • the band unit 420 is a part that can be attached to, for example, an arm. By using the display device 1 in the band unit 420, various color patterns can be displayed, and the design of the band unit 420 can be changed from the example of FIG. 9A to the example of FIG. 9B. . Electronic devices that are also useful in fashion applications can be realized.
  • the fibrous structure 331 is preferably light transmissive (colorless and transparent).
  • the fibrous structure 331 constituting the porous layer 33B itself is an electrophoretic particle.
  • 32 may be made of a light-reflective material that can be concealed.
  • the porous layer 33 has a two-layer structure of the porous layer 33A having light permeability and the porous layer 33B having optical reflection characteristics different from the migrating particles 32C, 32M, and 32Y.
  • the porous layer 33B is composed of a plurality of layers may be arranged so that the average pore size of each pore 333 is sequentially reduced from the display surface S 1 side. The reverse is also possible.
  • the electrophoretic element 30 including the insulating liquid 31, the electrophoretic particles 32C, 32M, and 32Y and the porous layer 33 is exemplified as the display element. It is not limited to the one using the porous layer 33 as long as it can form a contrast by light reflection for each pixel using the electrophoresis phenomenon.
  • the example in which the migrating particles 32C, 32M, and 32Y that are colored cyan, magenta, and yellow are used as the migrating particles is not limited thereto. Alternatively, particles colored in a color such as white or black may be used.
  • this indication can also take the following structures.
  • Two or more types of migrating particles having selective optical transmission properties A first layer that is formed of a fibrous structure and has optical transparency, is disposed on the display surface side, and has a different optical reflection characteristic from the migrating particles, and is disposed on the back side.
  • a porous layer containing the display device (2) Wherein for the porous layer having a thickness (W 0) a first layer of a thickness (W 1), the thickness (W 0) of the porous layer / a genus of the electrophoretic particles, wherein (1) The display device described in 1. (3) The display device according to (1) or (2), wherein the two or more types of electrophoretic particles have different electrophoretic velocities.
  • the electrophoretic speed of the electrophoretic particles moving fastest is V1
  • the electrophoretic speed of the electrophoretic particles moving fastest is V2
  • the electrophoretic speed of the electrophoretic particles moving fastest is V3.
  • the thickness of the porous layer (W 0) is, W 0 ⁇ (V2 / V1 ) and W 0 ⁇ (V3 / V2)
  • the display device according to any one of (1) to (5), wherein the second layer includes non-electrophoretic particles having optical reflection characteristics different from the electrophoretic particles.
  • the first layer includes particles that do not reflect visible light.
  • the particles that do not reflect visible light are titania (TiO 2 ) having a particle size of 250 nm or less.
  • the two or more kinds of migrating particles have a color selected from one or more of cyan, magenta, yellow, green, blue, white and black, according to (1) to (8) above The display apparatus in any one of them.
  • a display device In the insulating liquid, the display device Two or more types of migrating particles having selective optical transmission properties; A first layer that is formed of a fibrous structure and has optical transparency, is disposed on the display surface side, and has a different optical reflection characteristic from the migrating particles, and is disposed on the back side.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A display device according to an embodiment of the present disclosure comprises, in an insulating liquid, at least two kinds of electrophoretic particles having a selective optical transmission property; and a porous layer including a first layer and a second layer, wherein the first layer is formed of a fibrous structure, has a light transmitting property, and is disposed on a display surface side, and the second layer has an optical reflection property different from that of the electrophoretic particles, and is disposed on a rear surface side.

Description

表示装置および電子機器Display device and electronic device
 本開示は、電気泳動現象を利用して表示を行う表示装置および電子機器に関する。 The present disclosure relates to a display device and an electronic apparatus that perform display using an electrophoresis phenomenon.
 電気泳動現象を利用した電気泳動型ディスプレイにおいて彩度および明度の高いカラー表示を実現するためには、表示色以外の色を有する着色粒子を隠蔽する必要がある。表示色以外の色を有する着色粒子を隠蔽する方法としては、例えば、着色粒子の拡散反射率を高くして粒子濃度を濃くする方法がある。また、着色粒子の濃度分布のピークが表示面側から表示したい色を有する着色粒子、白色粒子、その他の色の粒子という順に配置する方法がある。この方法では、表示したい色を有する着色粒子で選択された光は白色粒子で拡散反射される。これにより、着色粒子が有する表示したい色を表示することができるが、所望の粒子分布の順列を実現するためには複雑な駆動が必要となる。 In order to realize color display with high saturation and lightness in an electrophoretic display using an electrophoretic phenomenon, it is necessary to conceal colored particles having a color other than the display color. As a method of concealing colored particles having a color other than the display color, for example, there is a method of increasing the diffuse reflectance of the colored particles to increase the particle concentration. Further, there is a method in which the colored particle concentration distribution peaks are arranged in the order of colored particles having a color desired to be displayed from the display surface side, white particles, and other color particles. In this method, light selected by colored particles having a color to be displayed is diffusely reflected by white particles. This makes it possible to display the color that the colored particles want to display, but in order to realize a desired permutation of particle distribution, complicated driving is required.
 このため、簡単な駆動で上記粒子分布の順列を実現すること方法が検討され、一例として、光隠蔽性の高い非泳動白色粒子を透明電極から裏面電極までの空間に配置すると共に、泳動速度に差のある着色粒子を用いる電気泳動ディスプレイの構成が見出されている。この電気泳動ディスプレイでは、所望の色を有する粒子とその他の色を有する粒子との距離を広げ易くなると共に、その他の色を有する粒子は、非泳動白色粒子によって効率よく隠蔽される。具体的には、例えば、特許文献1において、電気泳動粒子として互いに色および泳動を開始する閾値電圧が異なる複数種類の帯電粒子と、電気泳動粒子を保持するための白色の保持体とを用いた画像表示装置が開示されている。 For this reason, a method for realizing the permutation of the particle distribution with a simple drive has been studied, and as an example, non-migrated white particles with high light hiding properties are arranged in the space from the transparent electrode to the back electrode, and the migration speed is increased. An electrophoretic display configuration using colored particles with differences has been found. In this electrophoretic display, it becomes easy to increase the distance between particles having a desired color and particles having other colors, and particles having other colors are efficiently concealed by non-electrophoretic white particles. Specifically, for example, in Patent Document 1, a plurality of types of charged particles having different colors and threshold voltages for starting migration as electrophoretic particles and a white holding body for holding the electrophoretic particles are used. An image display device is disclosed.
特開2012-181507号公報JP 2012-181507 A
 ところで、カラー表示が可能な電気泳動型ディスプレイには、高い明度および彩度の他に、高い色再現性が求められている。 Incidentally, an electrophoretic display capable of color display is required to have high color reproducibility in addition to high brightness and saturation.
 高い色再現性を実現することが可能な表示装置および電子機器を提供することが望ましい。 It is desirable to provide a display device and an electronic device that can realize high color reproducibility.
 本開示の一実施形態に係る表示装置は、絶縁性液体中に、選択的な光学的透過特性を有する2種以上の泳動粒子と、繊維状構造体により形成され、光透過性を有すると共に、表示面側に配置された第1層と、泳動粒子とは異なる光学的反射特性を有すると共に、背面側に配置された第2層とを含む多孔質層とを備えたものである。 A display device according to an embodiment of the present disclosure is formed of two or more kinds of migrating particles having selective optical transmission characteristics and a fibrous structure in an insulating liquid, and has light transmittance. A first layer disposed on the display surface side and a porous layer having an optical reflection characteristic different from that of the migrating particles and including a second layer disposed on the back surface side are provided.
 本開示の一実施形態に係る電子機器は、上記本開示の一実施形態に係る表示装置を有するものである。 An electronic apparatus according to an embodiment of the present disclosure includes the display device according to the embodiment of the present disclosure.
 本開示の一実施形態に係る表示装置および一実施形態に係る電子機器では、多孔質層を複数の層から構成し、表示面側に光透過性を有する層(第1層)を配置することにより、表示したい色を有する泳動粒子が、泳動粒子とは異なる光反射特性を有する多孔質層(第2層)によって隠蔽されることによる彩度の低下を防ぐことが可能となる。 In a display device according to an embodiment of the present disclosure and an electronic apparatus according to an embodiment, the porous layer is configured by a plurality of layers, and a light-transmitting layer (first layer) is disposed on the display surface side. Accordingly, it is possible to prevent a decrease in saturation due to the migrating particles having a color desired to be displayed being concealed by the porous layer (second layer) having a light reflection characteristic different from that of the migrating particles.
 本開示の一実施形態に係る表示装置および一実施形態に係る電子機器によれば、多孔質層を複数の層から構成し、表示面側に光透過性を有する層(第1層)を配置するようにしたので、彩度の高い色表示が可能となる。即ち、色再現性の高い表示装置および電子機器を提供することが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the display device according to an embodiment of the present disclosure and the electronic apparatus according to the embodiment, the porous layer includes a plurality of layers, and the light-transmitting layer (first layer) is disposed on the display surface side. As a result, color display with high saturation becomes possible. That is, it is possible to provide a display device and an electronic device with high color reproducibility. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本開示の一実施の形態に係る表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus which concerns on one embodiment of this indication. 図1に示した表示装置の平面模式図である。It is a plane schematic diagram of the display apparatus shown in FIG. 図1に示した電気泳動素子を説明する平面模式図である。FIG. 2 is a schematic plan view for explaining the electrophoretic element shown in FIG. 1. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 図1に示した表示装置の動作を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the operation of the display device shown in FIG. 1. 図1に示した表示装置の背面側の表示面側に対する電位差の時間変化を表す図である。It is a figure showing the time change of the electric potential difference with respect to the display surface side of the back side of the display apparatus shown in FIG. 図5に示した電位差の時間変化による各泳動粒子の平均位置の時間変化を表す図である。It is a figure showing the time change of the average position of each migrating particle by the time change of the electric potential difference shown in FIG. 適用例1の外観を表す斜視図である。14 is a perspective view illustrating an appearance of application example 1. FIG. 図7Aに示した電子ブックの他の例を表す斜視図である。FIG. 7B is a perspective view illustrating another example of the electronic book illustrated in FIG. 7A. 適用例2の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 2. FIG. 適用例3の外観の一例を表す斜視図である。14 is a perspective view illustrating an example of an appearance of application example 3. FIG. 適用例3の外観の他の例を表す斜視図である。22 is a perspective view illustrating another example of the appearance of application example 3. FIG.
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
 1.実施の形態(表示面側に光透過性を有する多孔質層が設けられた例)
  1-1.表示装置の構成
  1-2.表示装置の製造方法
  1-3.表示装置の動作
  1-4.作用・効果
 2.適用例(電子機器)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The order of explanation is as follows.
1. Embodiment (example in which a light-transmitting porous layer is provided on the display surface side)
1-1. Configuration of display device 1-2. Manufacturing method of display device 1-3. Operation of display device 1-4. Action / Effect Application example (electronic equipment)
<1.実施の形態>
 図1は、本開示の一実施の形態の表示装置(表示装置1)の断面構成を表したものである。図2は、表示装置1の主要部の平面構成を模式的に表したものである。図1は、図2におけるI-I線に沿った断面を示している。この表示装置1は、電気泳動現象を利用してコントラストを生じさせる電気泳動型ディスプレイであり、表示素子として、電気泳動素子(電気泳動素子30)が用いられている。この表示装置1は、例えば、スペーサ40を介して対向配置された駆動基板10と対向基板20との間に、表示体として電気泳動素子30を備えたものである。電気泳動素子30は、絶縁性液体31中に、複数種類の泳動粒子32と、繊維状構造体331により構成される多孔質層33とを含んで構成されている。本実施の形態では、多孔質層33は、複数の層(ここでは、2層(多孔質層33A,33B))からなり、表示面S1側には光透過性を有する多孔質層33Aが配置された構成を有する。なお、図1,2は表示装置1の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
<1. Embodiment>
FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure. FIG. 2 schematically shows a planar configuration of the main part of the display device 1. FIG. 1 shows a cross section taken along line II in FIG. The display device 1 is an electrophoretic display that generates contrast using an electrophoretic phenomenon, and an electrophoretic element (electrophoretic element 30) is used as a display element. The display device 1 includes, for example, an electrophoretic element 30 as a display body between a drive substrate 10 and a counter substrate 20 that are arranged to face each other with a spacer 40 interposed therebetween. The electrophoretic element 30 includes a plurality of types of migrating particles 32 and a porous layer 33 composed of a fibrous structure 331 in an insulating liquid 31. In this embodiment, the porous layer 33 (here, two layers ( porous layer 33A, 33B)) a plurality of layers made of, a porous layer 33A having optical transparency on the display surface S 1 side It has an arranged configuration. 1 and 2 schematically show the configuration of the display device 1 and may differ from actual dimensions and shapes.
(1-1.表示装置の構成)
 表示装置1は、例えば、図1に示したように、駆動基板10と対向基板20とが電気泳動素子30を間に対向配置されたものであり、対向基板20側に表示面S1を有している。この「対向基板20側に表示面を有する」とは、対向基板20側に向かって画像を表示する(ユーザが対向基板20側から画像を視認可能である)という意味である。また、駆動基板10と電気泳動素子30との間および対向基板20と電気泳動素子30との間には、それぞれ接着層16,接着層23が設けられており、これによって、駆動基板10および対向基板20と電気泳動素子30とが貼り合わされている。
(1-1. Configuration of display device)
In the display device 1, for example, as shown in FIG. 1, a drive substrate 10 and a counter substrate 20 are disposed so as to face each other with an electrophoretic element 30 therebetween, and a display surface S 1 is provided on the counter substrate 20 side. is doing. The phrase “having a display surface on the counter substrate 20 side” means that an image is displayed toward the counter substrate 20 (the user can visually recognize an image from the counter substrate 20 side). Further, an adhesive layer 16 and an adhesive layer 23 are provided between the drive substrate 10 and the electrophoretic element 30 and between the counter substrate 20 and the electrophoretic element 30, respectively. The substrate 20 and the electrophoretic element 30 are bonded together.
 駆動基板10は、例えば、支持基体11の一面に薄膜トランジスタ(Thin Film Transistor;TFT)12と、保護層13と、平坦化絶縁層14と、画素電極15とがこの順に形成されたものである。TFT12および画素電極15は、例えば、画素パターン等に応じてマトリクス状またはセグメント状に分割配置および分割形成されている。 For example, the driving substrate 10 has a thin film transistor (TFT) 12, a protective layer 13, a planarization insulating layer 14, and a pixel electrode 15 formed in this order on one surface of a support base 11. For example, the TFT 12 and the pixel electrode 15 are divided and formed in a matrix or segment according to a pixel pattern or the like.
 支持基体11は、例えば、無機材料,金属材料またはプラスチック材料等により構成されている。無機材料としては、例えば、ケイ素(Si)、酸化ケイ素(SiOX)、窒化ケイ素(SiNX)または酸化アルミニウム(AlOX)等が挙げられる。酸化ケイ素には、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料としては、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等が挙げられ、プラスチック材料としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン(PEEK)、シクロオレフィンポリマー(COP)、ポリイミド(PI)またはポリエーテルサルフォン(PES)等が挙げられる。 The support base 11 is made of, for example, an inorganic material, a metal material, a plastic material, or the like. Examples of the inorganic material include silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), and aluminum oxide (AlO x ). Silicon oxide includes glass or spin-on-glass (SOG). Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel, and examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Examples include ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyethersulfone (PES).
 この支持基体11は、光透過性でもよいし、非光透過性でもよい。対向基板20側に画像が表示されるため、支持基体11は必ずしも光透過性である必要がないからである。支持基体11は、ウェハ等の剛性を有する基板でもよいし、可撓性を有する薄層ガラスまたはフィルム等により構成してもよい。支持基体11に可撓性材料を用いることにより、フレキシブル(折り曲げ可能)な表示装置1を実現できる。 The support substrate 11 may be light transmissive or non-light transmissive. This is because the image is displayed on the counter substrate 20 side, and thus the support base 11 does not necessarily need to be light transmissive. The support base 11 may be a rigid substrate such as a wafer, or may be composed of a flexible thin glass or film. By using a flexible material for the support base 11, a flexible display device 1 can be realized.
 TFT12は、画素を選択するためのスイッチング用素子である。このTFT12は、チャネル層としての無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。無機半導体層の材料としては、例えば、アモルファスシリコン、ポリシリコンまたは酸化物等が挙げられる。有機半導体層の材料としては、ペンタセン等が挙げられる。保護層13および平坦化絶縁層14は、例えば、ポリイミド等の絶縁性樹脂材料により構成されている。保護層13の表面が十分に平坦であれば、平坦化絶縁層14を省略することも可能である。画素電極15は、例えば、金(Au)、銀(Ag)または銅(Cu)等の金属材料により形成されている。画素電極15は、保護層13および平坦化絶縁層14に設けられたコンタクトホール(図示せず)を通じてTFT12に接続されている。 TFT 12 is a switching element for selecting a pixel. The TFT 12 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer, or an organic TFT using an organic semiconductor layer. Examples of the material for the inorganic semiconductor layer include amorphous silicon, polysilicon, and oxide. Examples of the material for the organic semiconductor layer include pentacene. The protective layer 13 and the planarization insulating layer 14 are made of an insulating resin material such as polyimide, for example. If the surface of the protective layer 13 is sufficiently flat, the planarization insulating layer 14 can be omitted. The pixel electrode 15 is formed of a metal material such as gold (Au), silver (Ag), or copper (Cu), for example. The pixel electrode 15 is connected to the TFT 12 through a contact hole (not shown) provided in the protective layer 13 and the planarization insulating layer 14.
 なお、図1では、例えば、TFT12が後述するセル36ごとに配置されている(1つのセル36に対して1つのTFT12が設けられている)場合を示している。しかしながら、必ずしもこれに限られず、セル36およびTFT12のそれぞれの個数および位置関係は任意でよい。例えば、3つのセル36に対して2つのTFT12が配置されていてもよいし、セル36の範囲内に隣り合う2つのTFT12間の境界が位置してもよい。 Note that FIG. 1 shows a case where, for example, the TFT 12 is arranged for each cell 36 described later (one TFT 12 is provided for one cell 36). However, the present invention is not necessarily limited to this, and the numbers and positional relationships of the cells 36 and the TFTs 12 may be arbitrary. For example, two TFTs 12 may be arranged for three cells 36, or a boundary between two adjacent TFTs 12 may be located within the range of the cell 36.
 接着層16は、駆動基板10と隔壁ユニット38とを貼り合わせるものであり、例えば、アクリル系樹脂、ウレタン系樹脂またはゴム等により構成され、膜厚は、例えば1μm~100μmである。 The adhesive layer 16 is for bonding the drive substrate 10 and the partition unit 38, and is made of, for example, acrylic resin, urethane resin, rubber, or the like, and has a film thickness of, for example, 1 μm to 100 μm.
 対向基板20は、例えば、支持基体21および対向電極22を有しており、支持基体21の全面(駆動基板10との対向面)に対向電極22が設けられている。対向電極22は、画素電極15と同様に、マトリクス状またはセグメント状に配置するようにしてもよい。 The counter substrate 20 includes, for example, a support base 21 and a counter electrode 22, and the counter electrode 22 is provided on the entire surface of the support base 21 (a surface facing the drive substrate 10). The counter electrode 22 may be arranged in a matrix or segment like the pixel electrode 15.
 支持基体21は、光透過性であることを除き、支持基体11と同様の材料により構成されている。対向電極22には、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等の光透光性導電性材料(透明電極材料)により形成されている。支持基体21の膜厚は、例えば1μm~250μmである。 The support base 21 is made of the same material as the support base 11 except that it is light transmissive. For the counter electrode 22, for example, a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). (Transparent electrode material). The film thickness of the support base 21 is, for example, 1 μm to 250 μm.
 対向基板20側に画像を表示する場合には、対向電極22を介して表示装置(電気泳動素子30)を見ることになるため、対向電極22の光透過性(透過率)は、できるだけ高いことが好ましく、例えば、80%以上である。このような材料としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等が挙げられる。対向電極22の膜厚は、例えば0.001μm~1μmである。また、対向電極22の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□以下である。なお、対向電極22は、図1では支持基体21の一面に全面形成された例を示したが、画素電極15と同様に、例えば画素毎に分割形成されていてもよい。 When displaying an image on the counter substrate 20 side, since the display device (electrophoretic element 30) is viewed through the counter electrode 22, the light transmittance (transmittance) of the counter electrode 22 should be as high as possible. For example, 80% or more. Examples of such a material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). The thickness of the counter electrode 22 is, for example, 0.001 μm to 1 μm. Further, the electrical resistance of the counter electrode 22 is preferably as low as possible, for example, 100Ω / □ or less. Although the example in which the counter electrode 22 is formed on the entire surface of the support base 21 is shown in FIG. 1, similarly to the pixel electrode 15, for example, the counter electrode 22 may be formed separately for each pixel.
 接着層23は、対向基板20と隔壁ユニット38(特に、隔壁35)とを貼り合わせるものであり、例えば、アクリル系樹脂、ウレタン系樹脂またはゴムにより構成され、膜厚は、例えば1μm~100μmである。 The adhesive layer 23 is for bonding the counter substrate 20 and the partition unit 38 (particularly, the partition 35), and is made of, for example, acrylic resin, urethane resin, or rubber, and has a film thickness of, for example, 1 μm to 100 μm. is there.
 なお、ここでは、接着層23を対向電極22の全面に設けた例を示したが、隔壁35との接触部分にのみ設けるようにしてもよい。また、対向基板20上には、シール層やカラーフィルタが積層されていてもよい。更に、対向基板20としては導電層を有するフィルムを用いてもよい。更にまた、支持基体21の表示面側に、水分等の浸入を防ぐ防湿フィルム等を設けてもよい。 In addition, although the example which provided the contact bonding layer 23 in the whole surface of the counter electrode 22 was shown here, you may make it provide only in the contact part with the partition 35. FIG. Further, a seal layer and a color filter may be laminated on the counter substrate 20. Furthermore, a film having a conductive layer may be used as the counter substrate 20. Furthermore, a moisture-proof film or the like that prevents intrusion of moisture or the like may be provided on the display surface side of the support base 21.
 電気泳動素子30は、図1および図3に示したように、絶縁性液体31中に、複数種類の泳動粒子32(ここでは、3種類、泳動粒子32C,32M,32Y)および複数の層からなる多孔質層33(ここでは、2層、多孔質層33A,33B)を備えている。泳動粒子32C,32M,32Yは、絶縁性液体31中に分散されている。多孔質層33Aは、繊維状構造体331を用いて構成され、光透過性を有している。多孔質層33Bは、繊維状構造体331および非泳動粒子332を含んで構成され、泳動粒子32C,32M,32Yとは異なる光学的反射特性を有している。多孔質層33A,33Bは、それぞれ、1または2以上の細孔333を有し、多孔質層33には、表示面の反対側(駆動基板10側)から、1または2以上の隔壁35が隣接されている。 As shown in FIGS. 1 and 3, the electrophoretic element 30 includes a plurality of types of migrating particles 32 (here, three types of migrating particles 32 </ b> C, 32 </ b> M, and 32 </ b> Y) and a plurality of layers in an insulating liquid 31. The porous layer 33 (here, two layers, porous layers 33A and 33B) is provided. The migrating particles 32C, 32M, and 32Y are dispersed in the insulating liquid 31. The porous layer 33A is configured using the fibrous structure 331 and has light transmittance. The porous layer 33B includes a fibrous structure 331 and non-migrating particles 332, and has an optical reflection characteristic different from that of the migrating particles 32C, 32M, and 32Y. Each of the porous layers 33A and 33B has one or two or more pores 333, and one or two or more partition walls 35 are formed on the porous layer 33 from the opposite side (drive substrate 10 side) of the display surface. Adjacent.
 絶縁性液体31は、例えば、駆動基板10と対向基板20との間の空間に充填されている。絶縁性液体31は、例えば、有機溶媒等の非水溶媒のいずれか1種類または2種類以上によって構成されており、具体的には、パラフィン等の炭化水素系溶媒が挙げられる。絶縁性液体31の粘度および屈折率は、できるだけ低くすることが好ましい。絶縁性液体31の粘度を低くすると泳動粒子32の移動性(応答速度)が向上する。また、これに応じて泳動粒子32の移動に必要なエネルギー(消費電力)は低くなる。絶縁性液体31の屈折率を低くすると、絶縁性液体31と多孔質層33との屈折率の差が大きくなり、多孔質層33の反射率が高くなる。なお、絶縁性液体31の代わりに、微弱導電性液体を用いてもよい。 The insulating liquid 31 is filled in a space between the drive substrate 10 and the counter substrate 20, for example. The insulating liquid 31 is composed of, for example, any one or two or more kinds of non-aqueous solvents such as organic solvents, and specifically includes hydrocarbon solvents such as paraffin. It is preferable to make the viscosity and refractive index of the insulating liquid 31 as low as possible. When the viscosity of the insulating liquid 31 is lowered, the mobility (response speed) of the migrating particles 32 is improved. In accordance with this, the energy (power consumption) required to move the migrating particles 32 is reduced. When the refractive index of the insulating liquid 31 is lowered, the difference in refractive index between the insulating liquid 31 and the porous layer 33 is increased, and the reflectance of the porous layer 33 is increased. Note that a weak conductive liquid may be used instead of the insulating liquid 31.
 絶縁性液体31には、必要に応じて他の各種材料を含んでいてもよい。例えば、着色剤、電荷調整剤、分散安定剤、粘度調整剤、界面活性剤または樹脂等を添加するようにしてもよい。 The insulating liquid 31 may contain other various materials as necessary. For example, a colorant, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant or a resin may be added.
 泳動粒子32は、電気的に泳動する1または2以上の荷電粒子(電気泳動粒子)であり、電界に応じて絶縁性液体31中を画素電極15または対向電極22に向かって移動することで表示面に画像を表示するものである。この泳動粒子32は、例えば、有機顔料、無機顔料、顔料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)等の粒子(粉末)により構成されている。泳動粒子32は、これらのうちの1種類を用いてもよく、または2種類以上を用いてもよい。泳動粒子32を、上記粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等でもよい。なお、上記炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または顔料に該当する材料から除く。泳動粒子32の粒径は、例えば、100nm以上5μm以下の範囲である。 The electrophoretic particles 32 are one or more charged particles (electrophoretic particles) that migrate electrically, and are displayed by moving in the insulating liquid 31 toward the pixel electrode 15 or the counter electrode 22 in accordance with an electric field. An image is displayed on the surface. The migrating particles 32 are made of particles (powder) such as organic pigments, inorganic pigments, pigments, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). As the electrophoretic particles 32, one of these may be used, or two or more of them may be used. The electrophoretic particles 32 may be pulverized particles or capsule particles of resin solids containing the above particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or pigments. The particle size of the migrating particles 32 is, for example, in the range of not less than 100 nm and not more than 5 μm.
 本実施の形態の泳動粒子32は、上記のように、3種類の泳動粒子32C,32M,32Yを有する。ここでいう種類とは、表示面S1と背面S2との間に電位差が生じた際の絶縁性液体31中における泳動粒子32の平均泳動速度のことである。泳動粒子32の泳動速度は、例えば泳動粒子32の帯電量によって決定され、帯電量が大きいほど泳動速度は速くなる。帯電量は、例えば泳動粒子32の粒径によって変化し、粒径が大きいほど、その帯電量は大きくなる。 As described above, the migrating particle 32 of the present embodiment has the three types of migrating particles 32C, 32M, and 32Y. The kind here is an average migration speed of the migrating particles 32 in the insulating liquid 31 when a potential difference is generated between the display surface S 1 and the back surface S 2 . The migration speed of the migrating particles 32 is determined by, for example, the charge amount of the migrating particles 32, and the migration speed increases as the charge amount increases. The charge amount varies depending on, for example, the particle size of the migrating particles 32. The larger the particle size, the larger the charge amount.
 本実施の形態において用いられる3種類の泳動粒子32C,32M,32Yは、同じ電荷(同一極性)を有する荷電粒子であり、その平均泳動速度は、例えば泳動粒子32Cが最も速く、次いで泳動粒子32Mが速く、泳動粒子32Yが3種類の泳動粒子の中で最も遅い。このため、泳動粒子32C,32M,32Yの各平均粒径は、例えば、1.8μm(泳動粒子32C),0.6μm(泳動粒子32M),0.2μm(泳動粒子32Y)となっている。なお、各泳動粒子32C,32M,32Yの平均粒径は上記値に限定されるものではなく、例えば、小さい側の泳動粒子を平均粒径a1および粒径分散値σ1、大きい側の泳動粒子を平均粒径a2および粒径分散値σ2とした場合、a1-2σ1>a2+2σ2の関係であればよい。 The three types of migrating particles 32C, 32M, and 32Y used in the present embodiment are charged particles having the same charge (same polarity), and, for example, the migrating particle 32C is the fastest, and then the migrating particle 32M. And the migrating particle 32Y is the slowest of the three types of migrating particles. Therefore, the average particle diameters of the migrating particles 32C, 32M, and 32Y are, for example, 1.8 μm (migrating particle 32C), 0.6 μm (migrating particle 32M), and 0.2 μm (migrating particle 32Y). The average particle size of each of the migrating particles 32C, 32M, and 32Y is not limited to the above value. For example, the smaller migrating particles have an average particle size a 1 and a particle size dispersion value σ 1 and a larger migrating particle. If the particles in an average particle size of a 2 and a particle size distribution value sigma 2, may be a relationship between a 1 -2σ 1> a 2 + 2.
 泳動粒子32C,32M,32Yは、それぞれ任意の色光を選択的に透過する透過特性(選択的な光学的透過特性)を有している。泳動粒子32C,32M,32Yの光学的透過特性は特に限定されないが、少なくとも黒表示の際に多孔質層33を遮蔽可能となるように設定されることが好ましい。泳動粒子32C,32M,32Yの選択的な光透過と多孔質層33の光反射とを利用してコントラストを生じさせるためである。本実施の形態では、泳動粒子32C,32M,32Yは、それぞれ異なる波長域の光を吸収する。具体的には、泳動粒子32Cは、例えば、シアンの補色光を選択的に吸収して、表示色としてはシアン色を呈する。泳動粒子32Mは、例えば、マゼンダの補色光を選択的に吸収して、表示色としてはマゼンダ色を呈する。泳動粒子32Yは、例えば、黄色の補色光を選択的に吸収して、表示色としては黄色を呈する。 The electrophoretic particles 32C, 32M, and 32Y each have transmission characteristics (selective optical transmission characteristics) that selectively transmit arbitrary color light. The optical transmission characteristics of the migrating particles 32C, 32M, and 32Y are not particularly limited, but are preferably set so that the porous layer 33 can be shielded at least during black display. This is because the contrast is generated by utilizing the selective light transmission of the migrating particles 32C, 32M, and 32Y and the light reflection of the porous layer 33. In the present embodiment, the migrating particles 32C, 32M, and 32Y absorb light in different wavelength ranges. Specifically, the migrating particle 32C selectively absorbs, for example, cyan complementary color light and exhibits a cyan color as a display color. For example, the migrating particle 32M selectively absorbs magenta complementary color light and exhibits a magenta color as a display color. For example, the migrating particle 32Y selectively absorbs yellow complementary color light and exhibits yellow as a display color.
 本実施の形態の表示装置1では、泳動粒子32C,32M,32Yによって、シアン色、マゼンダ色および黄色のカラー表示がなされ、泳動粒子32C,32M,32Yの減法混色によって黒表示が、後述する多孔質層33によって白表示がなされる。 In the display device 1 of the present embodiment, cyan, magenta, and yellow are displayed by the migrating particles 32C, 32M, and 32Y, and black display is provided by a subtractive color mixture of the migrating particles 32C, 32M, and 32Y. White display is made by the quality layer 33.
 泳動粒子32C、泳動粒子32Mおよび泳動粒子32Yを構成する材料は、それぞれ対応する色を呈する顔料が挙げられる。具体的な材料としては、例えば、キナクリドン、ペリレン、ペリノン、イソインドリノン、ジオキサジン、イソインドリン、アントラキノン、キノフタロン、ジケトピロロピロール等の多環式顔料、フタロシアニン顔料、アゾイエロレーキ、アゾレーキレッド、ピアゾロン、ジスアゾ、モノアゾ、縮合アゾ、ナフトール、ペンズイミダゾロン等のアゾ顔料、カドミウムイエロー、ストロンチウムクロメート、ビリジアン、オキサイドクロミウム、コバルト青、ウルトラマリン等の無機顔料が挙げられる。これら一連の材料は、単独でもよいし、2種類以上を混合して用いてもよい。 Examples of the material constituting the migrating particles 32C, the migrating particles 32M, and the migrating particles 32Y include pigments that exhibit corresponding colors. Specific materials include, for example, quinacridone, perylene, perinone, isoindolinone, dioxazine, isoindoline, anthraquinone, quinophthalone, diketopyrrolopyrrole and other polycyclic pigments, phthalocyanine pigments, azo lake red, azo lake red, piazolone, Examples thereof include azo pigments such as disazo, monoazo, condensed azo, naphthol, and pendimidazolone, and inorganic pigments such as cadmium yellow, strontium chromate, viridian, oxide chromium, cobalt blue, and ultramarine. These series of materials may be used alone or in combination of two or more.
 絶縁性液体31中における泳動粒子32(32C,32M,32Y)の含有量(濃度)は、特に限定されないが、泳動粒子32全体では、例えば、0.1重量%~10重量%であることが好ましい。泳動粒子32の遮蔽性および移動性が確保されるからである。例えば、泳動粒子32の含有量が0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽しにくくなり、十分にコントラストを生じさせることができない可能性がある。一方、泳動粒子32の含有量が10重量%よりも多いと、泳動粒子32の分散性が低下するため、その泳動粒子32が泳動しにくくなり、凝集する虞がある。各色に着色された泳動粒子32C,32M,32Yの含有量(濃度)は、粒径にもよるが、例えば、最も粒径の大きな泳動粒子32Cでは、0.1重量%~4重量%、次に大きな泳動粒子32Mでは、0.1重量%~4重量%、その次に大きな泳動粒子32Yでは、0.1重量%~4重量%であることが好ましい。ただし、最適な重量%は期待する表示特性、色域、コントラストによってそれぞれの粒子の重量比率を変化させることが望ましい。 The content (concentration) of the migrating particles 32 (32C, 32M, 32Y) in the insulating liquid 31 is not particularly limited, but the entire migrating particles 32 may be, for example, 0.1 wt% to 10 wt%. preferable. This is because the shielding and mobility of the migrating particles 32 are ensured. For example, if the content of the migrating particles 32 is less than 0.1% by weight, the migrating particles 32 are difficult to shield the porous layer 33, and there is a possibility that sufficient contrast cannot be generated. On the other hand, if the content of the migrating particles 32 is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate and may aggregate. The content (concentration) of the electrophoretic particles 32C, 32M, and 32Y colored in the respective colors depends on the particle size, but for example, the electrophoretic particle 32C having the largest particle size has a weight of 0.1 to 4% by weight, and the following. In the case of the larger migrating particles 32M, it is preferably 0.1% by weight to 4% by weight, and in the next larger migrating particle 32Y, it is preferably 0.1% by weight to 4% by weight. However, it is desirable to change the weight ratio of each particle according to the expected display characteristics, color gamut, and contrast.
 泳動粒子32C,32M,32Yは、絶縁性液体31中で長期間に渡って分散および帯電しやすく、また、多孔質層33に吸着しにくいことが好ましい。このため、静電反発により泳動粒子32C,32M,32Yを分散させるための分散剤(または電荷調整剤)を用いたり、泳動粒子32C,32M,32Yに表面処理を施してもよく、両者を併用してもよい。 It is preferable that the migrating particles 32C, 32M, and 32Y are easily dispersed and charged in the insulating liquid 31 over a long period of time and are difficult to be adsorbed to the porous layer 33. For this reason, a dispersing agent (or charge adjusting agent) for dispersing the electrophoretic particles 32C, 32M, and 32Y by electrostatic repulsion may be used, or surface treatment may be applied to the electrophoretic particles 32C, 32M, and 32Y. May be.
 この分散剤または電荷調整剤は、例えば、正、負のどちらか一方、または両方の電荷を有しており、絶縁性液体31中の帯電量を増加させものである。このような分散剤として、例えば、Lubrizol社製のSolsperceシリーズ、BYK-Chemic社製のBYKシリーズまたはAnti-Terraシリーズ、あるいはTCI America社製Spanシリーズ等が挙げられる。 This dispersing agent or charge adjusting agent has, for example, either positive or negative charge, or both, and increases the amount of charge in the insulating liquid 31. Examples of such a dispersant include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemic, and Span series manufactured by TCI America.
 表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、且つ、プリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。特に、グラフト重合処理、マイクロカプセル化処理またはこれらを組み合わせて処理を行うことにより、泳動粒子32C,32M,32Yの長期間の分散安定性を維持することができる。 The surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, pulling agent treatment, graft polymerization treatment or microencapsulation treatment. In particular, long-term dispersion stability of the migrating particles 32C, 32M, and 32Y can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
 このような表面処理には、例えば、泳動粒子32C,32M,32Yの表面に吸着可能な官能基(吸着性官能基)と重合性官能基とを有する材料(吸着性材料)等が用いられる。吸着性官能基は、泳動粒子32C,32M,32Yの形成材料に応じて決定される。例えば、泳動粒子32C,32M,32Yがカーボンブラック等の炭素材料により構成されている場合には、4-ビニルアニリン等のアニリン誘導体、泳動粒子32C,32M,32Yが金属酸化物により構成されている場合には、メタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体をそれぞれ吸着することができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 For such surface treatment, for example, a material (adsorbent material) having a functional group (adsorptive functional group) that can be adsorbed on the surface of the migrating particles 32C, 32M, and 32Y and a polymerizable functional group is used. The adsorptive functional group is determined according to the forming material of the migrating particles 32C, 32M, and 32Y. For example, when the migrating particles 32C, 32M, and 32Y are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline and the migrating particles 32C, 32M, and 32Y are made of a metal oxide. In some cases, organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate can be adsorbed. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 泳動粒子32C,32M,32Yの表面に重合性官能基を導入し、これにグラフトさせて表面処理を行うようにしてもよい(グラフト性材料)。グラフト性材料は、例えば、重合性官能基と分散用官能基とを有している。分散用官能基は、絶縁性液体31中に泳動粒子32C,32M,32Yを分散させ、その立体障害により分散性を保持するものである。絶縁性液体31が例えば、パラフィンである場合、分散用官能基として分岐状のアルキル基等を用いることができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。グラフト性材料を重合およびグラフトさせるためには、例えば、アゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。この他、泳動粒子32C,32M,32Yの表面に吸着可能な官能基と分散性を付与するためのアルキル鎖を有する材料を用いることができる。このような材料としては、例えば、チタネート系且つプリング剤(例えば、味の素ファインテクノ株式会社製KR-TTS)およびアルミネート系且つプリング剤が挙げられる。 A polymerizable functional group may be introduced on the surface of the migrating particles 32C, 32M, and 32Y and grafted onto the surface to perform surface treatment (graftable material). The graft material has, for example, a polymerizable functional group and a dispersing functional group. The dispersion functional group disperses the migrating particles 32C, 32M, and 32Y in the insulating liquid 31, and retains dispersibility due to the steric hindrance. For example, when the insulating liquid 31 is paraffin, a branched alkyl group or the like can be used as the functional group for dispersion. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used. In addition, a material having a functional group that can be adsorbed on the surface of the migrating particles 32C, 32M, and 32Y and an alkyl chain for imparting dispersibility can be used. Examples of such materials include titanate and pulling agents (for example, KR-TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) and aluminate and pulling agents.
 上記泳動粒子32C,32M,32Yを絶縁性液体31中に分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For details of the method of dispersing the electrophoretic particles 32C, 32M, and 32Y in the insulating liquid 31, see “Ultrafine Particle Dispersion Technology and its Evaluation—Surface Treatment / Fine Grinding and Dispersion in Air / Liquid / Polymer”. Stabilization-(Science & Technology) "and other books.
 多孔質層33は、図1に示したように、多孔質層33Aおよび多孔質層33Bの2層構造を有する。多孔質層33は、図1や図3に示したように、繊維状構造体331により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)であり、1または2以上の隙間(細孔333)を有している。細孔333には絶縁性液体31が満たされており、泳動粒子32C,32M,32Yはこの細孔333を介して画素電極15と対向電極22との間を移動する。なお、多孔質層33は、対向電極22に隣接していてもよいし、それから離間されていてもよい。なお、図3に示した電気泳動素子30は多孔質層33Bを簡略化して表したものである。 As shown in FIG. 1, the porous layer 33 has a two-layer structure of a porous layer 33A and a porous layer 33B. As shown in FIGS. 1 and 3, the porous layer 33 is a three-dimensional structure (irregular network structure such as a non-woven fabric) formed of a fibrous structure 331, and is one or two or more. Gap (pore 333). The pore 333 is filled with the insulating liquid 31, and the migrating particles 32 </ b> C, 32 </ b> M, and 32 </ b> Y move between the pixel electrode 15 and the counter electrode 22 through the pore 333. The porous layer 33 may be adjacent to the counter electrode 22 or may be separated from it. The electrophoretic element 30 shown in FIG. 3 is a simplified representation of the porous layer 33B.
 繊維状構造体331は、繊維径(直径)に対して長さが十分に大きい繊維状物質である。繊維状構造体331の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体331の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法等であることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易、且つ、安定に形成しやすいからである。 The fibrous structure 331 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter). The shape (external appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a fibrous shape that is sufficiently long with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction. The formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体331の平均繊維径は、特に限定されないが、できるだけ小さいことが好ましい。光が乱反射しやすくなると共に、細孔333の平均孔径が大きくなるからである。但し、平均繊維径は、例えば、繊維状構造体331が後述する非泳動粒子332を保持できる繊維径であることが好ましく、例えば、10μm以下であることが好ましい。なお、平均繊維径の下限は、特に限定されないが、例えば、0.1μmであり、それ以下でもよい。この平均繊維径は、例えば、走査型電子顕微鏡(SEM)等を用いた顕微鏡観察により測定される。なお、繊維状構造体331の平均長さは、任意でよい。 The average fiber diameter of the fibrous structure 331 is not particularly limited, but is preferably as small as possible. This is because light easily diffuses and the average pore diameter of the pores 333 increases. However, the average fiber diameter is, for example, preferably a fiber diameter that allows the fibrous structure 331 to hold non-electrophoretic particles 332 described later, and is preferably 10 μm or less, for example. In addition, although the minimum of an average fiber diameter is not specifically limited, For example, it is 0.1 micrometer and may be less than that. This average fiber diameter is measured, for example, by microscopic observation using a scanning electron microscope (SEM) or the like. Note that the average length of the fibrous structure 331 may be arbitrary.
 繊維状構造体331は、ナノファイバーであることが好ましい。ここでナノファイバーとは、繊維径が0.001μm~0.1μmであり、長さが繊維径の100倍以上である繊維状物質である。このようなナノファイバーを繊維状構造体331として用いることにより、光が乱反射し易くなり、多孔質層33の反射率をより向上させることができる。即ち、電気泳動素子30のコントラストを向上させることが可能となる。また、ナノファイバーからなる繊維状構造体331では、単位体積中に占める細孔333の割合が大きくなり、細孔333を経由して泳動粒子32が移動し易くなる。従って、泳動粒子32の移動に必要なエネルギーを小さくすることができる。ナノファイバーからなる繊維状構造体331は、静電紡糸法により形成することが好ましい。静電紡糸法を用いることにより繊維径が小さい繊維状構造体331を容易に、且つ、安定して形成することができる。 The fibrous structure 331 is preferably a nanofiber. Here, the nanofiber is a fibrous substance having a fiber diameter of 0.001 μm to 0.1 μm and a length of 100 times or more of the fiber diameter. By using such a nanofiber as the fibrous structure 331, light is easily irregularly reflected, and the reflectance of the porous layer 33 can be further improved. That is, the contrast of the electrophoretic element 30 can be improved. Further, in the fibrous structure 331 made of nanofibers, the proportion of the pores 333 in the unit volume increases, and the migrating particles 32 can easily move through the pores 333. Therefore, the energy required for moving the migrating particles 32 can be reduced. The fibrous structure 331 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrostatic spinning method, the fibrous structure 331 having a small fiber diameter can be easily and stably formed.
 繊維状構造体331は、例えば、高分子材料または無機材料等のいずれか1種類または2種類以上によって形成されている。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマー等である。無機材料は、例えば、酸化チタン等である。中でも、繊維状構造体331の形成材料としては、高分子材料が好ましい。反応性(光反応性等)が低い(化学的に安定である)ため、繊維状構造体331の意図しない分解反応が抑制されるからである。なお、繊維状構造体331が光反応性の材料により形成される場合には、その繊維状構造体331の表面は任意の保護層により被覆されることが好ましい。 The fibrous structure 331 is formed of, for example, any one kind or two or more kinds of a polymer material or an inorganic material. Examples of the polymer material include nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof. The inorganic material is, for example, titanium oxide. Among these, a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that an unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a photoreactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
 繊維状構造体331は、泳動粒子32C,32M,32Yとは異なる光学的反射特性を有することが好ましい。具体的には、繊維状構造体331の光反射率は、特に限定されないが、少なくとも、白表示の際に多孔質層33が全体として泳動粒子32C,32M,32Yを隠蔽可能となるように設定されることが好ましい。泳動粒子32C,32M,32Yの光反射率と、多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。但し、本実施の形態では、多孔質層33は、上記のように、表示面S1側から多孔質層33Aおよび多孔質層33Bがこの順に配置された2層構造を有し、表示面S1側に配置された多孔質層33Aは、光透過性を有する。このため、繊維状構造体331自体は、絶縁性液体31中で光透過性(無色透明)を有することが好ましく、繊維状構造体331の反射率、即ち、多孔質層33全体の反射率は、後述する非泳動粒子332により実質的に決定されることが好ましい。 The fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32C, 32M, and 32Y. Specifically, the light reflectance of the fibrous structure 331 is not particularly limited, but is set so that at least the porous layer 33 can conceal the migrating particles 32C, 32M, and 32Y as a whole when displaying white. It is preferred that This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32C, 32M, and 32Y and the light reflectance of the porous layer 33. However, in this embodiment, the porous layer 33, as described above, has a two-layer structure in which a porous layer 33A and a porous layer 33B are arranged in this order from the display surface S 1 side, the display surface S The porous layer 33A disposed on the 1 side has light transmittance. Therefore, the fibrous structure 331 itself preferably has light transmittance (colorless and transparent) in the insulating liquid 31, and the reflectance of the fibrous structure 331, that is, the reflectance of the entire porous layer 33 is It is preferably determined substantially by non-electrophoretic particles 332 described later.
 本実施の形態の多孔質層33は、上記のように、表示面S1側に光透過性を有する多孔質層33Aが配置され、背面S2側には、光学的反射特性を有する多孔質層33Bが配置された構成を有する。多孔質層33Aは、光透過性を有する繊維状構造体331によって形成されており、1または2以上の細孔333を含むものである。多孔質層33Bは、泳動粒子32C,32M,32Yとは異なる光学的反射特性を有する1または2以上の非泳動粒子332を保持する繊維状構造体によって形成されており、多孔質層33Aと同様に、1または2以上の細孔333を含むものである。多孔質層33Bを構成する繊維状構造体331に非泳動粒子332が含まれているのは、外光がより乱反射しやすくなるため、多孔質層33の光反射率がより高くなるからである。これにより、コントラストがより高くなる。 As described above, the porous layer 33 according to the present embodiment has the light-transmitting porous layer 33A disposed on the display surface S 1 side, and the back surface S 2 side has optical reflection characteristics. The layer 33B is arranged. The porous layer 33A is formed of a fibrous structure 331 having light permeability, and includes one or more pores 333. The porous layer 33B is formed of a fibrous structure holding one or more non-migrating particles 332 having optical reflection characteristics different from the migrating particles 32C, 32M, and 32Y, and is similar to the porous layer 33A. In addition, one or two or more pores 333 are included. The reason why the non-migrating particles 332 are included in the fibrous structure 331 that constitutes the porous layer 33B is that external light is more likely to be diffusely reflected, and thus the light reflectance of the porous layer 33 is higher. . Thereby, contrast becomes higher.
 非泳動粒子332は、繊維状構造体331に固定されており、電気的に泳動しない1または2以上の粒子である。非泳動粒子332は、保持されている繊維状構造体331の内部に埋設されていてもよく、あるいは、繊維状構造体331から部分的に突出してしてもよい。 The non-migrating particles 332 are one or more particles that are fixed to the fibrous structure 331 and do not migrate electrically. The non-migrating particles 332 may be embedded in the held fibrous structure 331 or may partially protrude from the fibrous structure 331.
 非泳動粒子332は、泳動粒子32C,32M,32Yとは異なる光学的反射特性を有している。非泳動粒子332の光反射率は、特に限定されないが、少なくとも多孔質層33が全体として泳動粒子32C,32M,32Yを隠蔽可能となるように設定されることが好ましい。泳動粒子32C,32M,32Yの光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。 The non-migrating particles 332 have optical reflection characteristics different from those of the migrating particles 32C, 32M, and 32Y. The light reflectance of the non-migrating particles 332 is not particularly limited, but is preferably set so that at least the porous layer 33 can conceal the migrating particles 32C, 32M, and 32Y as a whole. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32C, 32M, and 32Y and the light reflectance of the porous layer 33.
 ここで、非泳動粒子332の具体的な形成材料は、例えば、コントラストを生じさせるために非泳動粒子332が担う役割に応じて選択される。例えば、多孔質層33(具体的には、非泳動粒子332)が白表示を担う場合には、例えば、金属酸化物が好ましく、酸化チタンがより好ましい。電気化学的安定性および定着性等に優れていると共に、高い反射率が得られるからである。コントラストを生じさせることができれば、非泳動粒子332の形成材料は、泳動粒子32C,32M,32Yの形成材料と同じ種類でもよいし、違う種類でもよい。なお、非泳動粒子332は、粒径の異なる2種類以上の粒子を組み合わせて用いてもよい。 Here, the specific forming material of the non-migrating particles 332 is selected according to the role played by the non-migrating particles 332 in order to generate contrast, for example. For example, when the porous layer 33 (specifically, the non-electrophoretic particle 332) is responsible for white display, for example, a metal oxide is preferable, and titanium oxide is more preferable. This is because it is excellent in electrochemical stability and fixability, and high reflectance can be obtained. If the contrast can be generated, the forming material of the non-migrating particles 332 may be the same type as the forming material of the migrating particles 32C, 32M, and 32Y, or may be a different type. Note that the non-migrating particles 332 may be a combination of two or more types of particles having different particle sizes.
 なお、多孔質層33Aを構成する繊維状構造体331は、可視光を反射しない粒子(非可視光粒子)を含んでいることが好ましい。可視光を反射しない粒子とは、例えば、粒径250nm以下のチタニア(TiO2)が挙げられる。繊維状構造体331TiO2を含有させることにより、多孔質層33A内における泳動粒子32C,32M,32Yの保持性能が向上する可能性があるからである。 The fibrous structure 331 constituting the porous layer 33A preferably contains particles that do not reflect visible light (non-visible light particles). Examples of the particles that do not reflect visible light include titania (TiO 2 ) having a particle size of 250 nm or less. This is because the retention performance of the migrating particles 32C, 32M, and 32Y in the porous layer 33A may be improved by containing the fibrous structure 331TiO 2 .
 3次元立体構造物である多孔質層33A,33Bでは、1本の繊維状構造体331がランダムに絡み合っていてもよいし、複数本の繊維状構造体331が集合してランダムに重なっていてもよいし、両者が混在していてもよい。 In the porous layers 33A and 33B, which are three-dimensional solid structures, one fibrous structure 331 may be entangled randomly, or a plurality of fibrous structures 331 are gathered and randomly overlapped. Alternatively, both may be mixed.
 多孔質層33A,33Bが3次元立体構造物であるのは、細孔333の平均孔径が大きくなると共に、その数が多くなるため、泳動粒子32C,32M,32Yが細孔333を通過しやすくなるからである。これにより、泳動粒子32C,32M,32Yの移動に要する時間が短くなると共に、その泳動粒子32C,32M,32Yの移動に要するエネルギーも低くなる。また、非泳動粒子332を含む多孔質層33Bでは、その不規則な立体構造により外光が乱反射(多重散乱)されやすくなり、多孔質層33Bの光反射率が高くなるからである。これにより、多孔質層33Bの膜厚が薄くても、泳動粒子32C,32M,32Yとの高いコントラストが得られると共に、泳動粒子32C,32M,32Yを移動させるために必要なエネルギーを抑えることが可能となる。 The porous layers 33A and 33B are three-dimensional structures because the average pore diameter of the pores 333 is increased and the number thereof is increased, so that the migrating particles 32C, 32M, and 32Y easily pass through the pores 333. Because it becomes. As a result, the time required to move the migrating particles 32C, 32M, and 32Y is shortened, and the energy required to move the migrating particles 32C, 32M, and 32Y is also reduced. Further, in the porous layer 33B including the non-electrophoretic particles 332, external light is likely to be irregularly reflected (multiple scattering) due to the irregular three-dimensional structure, and the light reflectance of the porous layer 33B is increased. Thereby, even if the film thickness of the porous layer 33B is thin, a high contrast with the migrating particles 32C, 32M, and 32Y can be obtained, and energy necessary for moving the migrating particles 32C, 32M, and 32Y can be suppressed. It becomes possible.
 細孔333は、複数の繊維状構造体331が重なり合い、または1つの繊維状構造体331が絡まりあうことによって形成されている。細孔333の平均孔径は、特に限定されないが、泳動粒子32C,32M,32Yが細孔333を経由して移動しやすいよう、出来だけ大きいことが好ましい。このため、細孔333の平均孔径は、0.1μm以上10μm以下であることが好ましい。 The pore 333 is formed by overlapping a plurality of fibrous structures 331 or entwining one fibrous structure 331. The average pore diameter of the pores 333 is not particularly limited, but is preferably as large as possible so that the migrating particles 32C, 32M, and 32Y can easily move through the pores 333. For this reason, the average pore diameter of the pores 333 is preferably 0.1 μm or more and 10 μm or less.
 多孔質層33の全体の膜厚(W0)は、特に限定されないが、例えば、5μm~100μmであることが好ましい。多孔質層33の隠蔽性が高くなると共に、泳動粒子32が細孔333を通過しやすくなるからである。多孔質層33Aおよび多孔質層33Bの膜厚は、例えば、以下のように決定することが好ましい。例えば、光透過性を有する多孔質層33Aの膜厚(W1)は、多孔質層33全体の膜厚(W0)を泳動粒子32の種数(本実施の形態では、泳動粒子32C,32M,32Yの3種)で除算(多孔質層33全体の膜厚(W0)/前記泳動粒子の種数)した値とすることが好ましい。あるいは、例えば、本実施の形態のように、泳動粒子32C,32M,32Yの泳動速度が互いに異なる場合には、1番速く移動する泳動粒子32Cの泳動速度をV1、2番目に速く移動する泳動粒子32Mの泳動速度をV2、3番目に速く移動する泳動粒子32Yの泳動速度をV3とすると、多孔質層33全体の膜厚(W0)に対する前記第1層の膜厚(W1)は、W0×(V2/V1)およびW0×(V3/V2)のうちの大きい方の数値を多孔質層33Aの膜厚とすることが好ましい。一方、多孔質層33Bの膜厚(W2)は、多孔質層33全体の膜厚(W0)から上記計算から得られる多孔質層33Aの膜厚(W1)を減算した膜厚となる。これにより、詳細は後述するが、所望の表示色を有する泳動粒子(例えば、泳動粒子32M)が表示面S1からある程度背面S2側に泳動してしまっても、泳動粒子32Mが多孔質層33(具体的には、光学的反射特性を有する多孔質層33B)によって隠蔽されることを防ぐことが可能となる。 The total film thickness (W 0 ) of the porous layer 33 is not particularly limited, but is preferably 5 μm to 100 μm, for example. This is because the concealability of the porous layer 33 is enhanced, and the migrating particles 32 can easily pass through the pores 333. The film thicknesses of the porous layer 33A and the porous layer 33B are preferably determined as follows, for example. For example, the film thickness (W 1 ) of the light-transmitting porous layer 33A is the same as the film thickness (W 0 ) of the entire porous layer 33 (in this embodiment, the electrophoretic particles 32C, It is preferable to set a value obtained by dividing by (the three types of 32M and 32Y) (the film thickness (W 0 ) of the entire porous layer 33 / the number of species of the migrating particles). Alternatively, for example, when the migration speeds of the migrating particles 32C, 32M, and 32Y are different from each other as in the present embodiment, the migrating speed of the migrating particle 32C that moves the fastest is V1, the migration that moves the second fastest. When the migration speed of the particles 32M is V2, and the migration speed of the migration particles 32Y moving the third fastest is V3, the film thickness (W 1 ) of the first layer with respect to the film thickness (W 0 ) of the entire porous layer 33 is The larger value of W 0 × (V2 / V1) and W 0 × (V3 / V2) is preferably the film thickness of the porous layer 33A. On the other hand, the film thickness (W 2 ) of the porous layer 33B is obtained by subtracting the film thickness (W 1 ) of the porous layer 33A obtained from the above calculation from the film thickness (W 0 ) of the entire porous layer 33. Become. Accordingly, details will be described later, electrophoretic particles having a desired display color (e.g., electrophoretic particles 32M) even if accidentally migrate to some extent back S 2 side from the display surface S 1, electrophoretic particles 32M porous layer It is possible to prevent hiding by 33 (specifically, the porous layer 33B having optical reflection characteristics).
 隔壁35は、絶縁性液体31中に分散された泳動粒子32C,32M,32Yの存在可能範囲を仕切り、例えば、図1,図2に示したように、その泳動粒子32C,32M,32Yを収容する空間(後述するセル36)を形成するものである。この隔壁35は、例えば対向基板20に向かって延在しており、表示面の反対側から多孔質層33の一部に隣接している。隔壁35に泳動粒子32C,32M,32Yを収容することによって、表示装置1の面内において泳動粒子32C,32M,32Yの偏ることを防ぐことができる。 The partition 35 partitions the possible range of the migrating particles 32C, 32M, and 32Y dispersed in the insulating liquid 31, and accommodates the migrating particles 32C, 32M, and 32Y as shown in FIGS. A space (cell 36 to be described later) is formed. For example, the partition wall 35 extends toward the counter substrate 20 and is adjacent to a part of the porous layer 33 from the opposite side of the display surface. By accommodating the migrating particles 32C, 32M, and 32Y in the partition wall 35, it is possible to prevent the migrating particles 32C, 32M, and 32Y from being biased in the plane of the display device 1.
 隔壁35によって形成されるセル36の数および配列パターンは、特に限定されない。ただし、複数のセル36を効率よく配置するために、セル36はマトリクス状(複数行×複数列の配置)に配列されていることが好ましい。また、セル36の形状(開口形状)は、特に限定されず、図2に示したように矩形状でもよいし、他の形状(六角形等)でもよい。 The number and arrangement pattern of the cells 36 formed by the partition walls 35 are not particularly limited. However, in order to efficiently arrange the plurality of cells 36, the cells 36 are preferably arranged in a matrix (arrangement of a plurality of rows and a plurality of columns). Further, the shape (opening shape) of the cell 36 is not particularly limited, and may be a rectangular shape as shown in FIG. 2 or another shape (such as a hexagon).
 隔壁35の形成材料は、電気泳動素子30の動作性能等に影響を及ぼさない材料であれば、特に限定されないが、成形加工に優れた樹脂等であることが好ましい。所望の寸法および形状を有する隔壁35を形成しやすいからである。この樹脂は、例えば、熱可塑性樹脂または光硬化性樹脂等(フォトリソグラフィ用のレジストを含む)であり、それ以外の樹脂でもよい。 The material for forming the partition wall 35 is not particularly limited as long as it does not affect the operation performance of the electrophoretic element 30, but is preferably a resin that is excellent in molding. This is because it is easy to form the partition wall 35 having a desired size and shape. This resin is, for example, a thermoplastic resin or a photo-curing resin (including a resist for photolithography), and other resins may be used.
 なお、隔壁35の形成材料として樹脂を用いる場合には、その隔壁35は、例えば、熱可塑性樹脂を用いた熱インプリント法、または光硬化性樹脂を用いた光インプリント法等により形成される。具体的には、熱インプリント法では、例えば、ガラス転移温度以上に加熱された樹脂(高分子材料)にモールド(雌型)がプレスされたのち、冷却後の樹脂からモールドが剥離される。これにより、モールドの形状が樹脂の表面に転写されるため、所望の形状を有する隔壁35が形成される。このモールドは、例えば、フォトリソグラフィ法により成形されたフォトレジスト膜でもよいし、バイト等の機械加工により成形された金属板等でもよい。 When a resin is used as the material for forming the partition wall 35, the partition wall 35 is formed by, for example, a thermal imprint method using a thermoplastic resin or a photo imprint method using a photocurable resin. . Specifically, in the thermal imprint method, for example, after a mold (female mold) is pressed onto a resin (polymer material) heated to a glass transition temperature or higher, the mold is peeled off from the cooled resin. Thereby, since the shape of a mold is transcribe | transferred to the surface of resin, the partition 35 which has a desired shape is formed. This mold may be, for example, a photoresist film formed by a photolithography method, or a metal plate formed by machining such as a cutting tool.
 なお、隔壁35は、駆動基板10側に連続する支持体37を有していてもよく、隔壁35は、この支持体37によって支持されていてもよい。この場合には、隔壁および支持体37がユニット化(隔壁ユニット38)されていてもよい。但し、隔壁35および支持体37は、一体化されていてもよいし、別体化されていてもよい。後者の場合、支持体37は、フィルム等でもよい。 The partition wall 35 may have a support body 37 that is continuous with the drive substrate 10, and the partition wall 35 may be supported by the support body 37. In this case, the partition and support 37 may be unitized (partition unit 38). However, the partition wall 35 and the support body 37 may be integrated or separated. In the latter case, the support 37 may be a film or the like.
 隔壁35のX軸方向の幅は、その延在方向において均一でもよいし、不均一でもよく、例えば、幅は、多孔質層33に近づくにしたがって次第に小さくなっていることが好ましい。表示面側に向かってセル36の開口範囲(R3)が広くなると共に、それに応じて泳動粒子32の移動不能領域(R4)が狭くなるため、画像の表示範囲が広くなるからである。隔壁35の側面の傾斜角度(いわゆるテーパ角度)は、特に限定されないが、例えば、60°~90°、好ましくは75°~85°である。 The width of the partition wall 35 in the X-axis direction may be uniform or non-uniform in the extending direction. For example, the width is preferably gradually reduced toward the porous layer 33. This is because the opening range (R3) of the cell 36 is widened toward the display surface side, and the immovable region (R4) of the migrating particles 32 is narrowed accordingly, so that the image display range is widened. The inclination angle (so-called taper angle) of the side surface of the partition wall 35 is not particularly limited, but is, for example, 60 ° to 90 °, preferably 75 ° to 85 °.
 なお、隔壁35のピッチおよび高さ等は、特に限定されず、任意に設定可能である。一例を挙げると、隔壁35のピッチは、30μm~300μm、好ましくは60μm~150μmであり、隔壁35の高さは、10μm~100μm、好ましくは30μm~50μmである。 The pitch and height of the partition walls 35 are not particularly limited and can be set arbitrarily. For example, the pitch of the partition walls 35 is 30 μm to 300 μm, preferably 60 μm to 150 μm, and the height of the partition walls 35 is 10 μm to 100 μm, preferably 30 μm to 50 μm.
 また、隔壁35の高さおよび多孔質層33のZ軸方向の膜厚は、ほぼ均一であることが好ましい。画素電極15と対向電極22との間の距離(いわゆるギャップ)が一定になるため、電界強度が均一化されるからである。これにより、応答速度等のムラが改善される。 Further, it is preferable that the height of the partition wall 35 and the thickness of the porous layer 33 in the Z-axis direction are substantially uniform. This is because the distance between the pixel electrode 15 and the counter electrode 22 (so-called gap) is constant, and the electric field strength is made uniform. Thereby, nonuniformity such as response speed is improved.
 スペーサ40は、駆動基板10と対向基板20との間隔を支持するためのものである。スペーサ40の膜厚は、例えば10μm~100μmであり、できるだけ、薄くすることが好ましい。これにより、消費電力を抑えることができる。スペーサ40は、例えば、高分子材料等の絶縁性材料により構成されている。スペーサ140の配置形状は、特に限定されないが、泳動粒子32の移動を妨げず、且つ、泳動粒子32を均一分布させるように設けることが好ましい。なお、隔壁35がスペーサ40を兼ねるようにしてもよい。 The spacer 40 is for supporting the space between the driving substrate 10 and the counter substrate 20. The film thickness of the spacer 40 is, for example, 10 μm to 100 μm, and is preferably as thin as possible. Thereby, power consumption can be suppressed. The spacer 40 is made of an insulating material such as a polymer material, for example. The arrangement shape of the spacer 140 is not particularly limited, but it is preferable that the spacer 140 is provided so as not to disturb the movement of the migrating particles 32 and to uniformly distribute the migrating particles 32. The partition wall 35 may also serve as the spacer 40.
(1-2.表示装置の製造方法)
 本実施の形態の表示装置1は、例えば、以下の方法により製造することができる。なお、ここで説明する製造方法は一例であり、その他の方法を用いて製造してもよい。
(1-2. Manufacturing method of display device)
The display device 1 of the present embodiment can be manufactured by the following method, for example. In addition, the manufacturing method demonstrated here is an example, You may manufacture using another method.
 まず、支持基体11の一面にTFT12、保護層13、平坦化絶縁層14および画素電極15をこの順に形成して、駆動基板10を作製すると共に、接着層16を介して隔壁ユニット38を形成する。なお、各構成要素の形成方法としては、例えば、既存の形成方法を随時選択して用いることができる。また、隔壁ユニット38は、上記のように、熱インプリント法等を用いて樹脂を成形して隔壁35および支持体37を一体形成してもよいし、それらを別体形成してもよい。このとき、スペーサ40を同時に形成するようにしてもよい。 First, the TFT 12, the protective layer 13, the planarization insulating layer 14, and the pixel electrode 15 are formed in this order on one surface of the support base 11 to produce the drive substrate 10, and the partition unit 38 is formed via the adhesive layer 16. . In addition, as a formation method of each component, for example, an existing formation method can be selected and used as needed. Further, as described above, the partition unit 38 may be formed by resin molding using a thermal imprint method or the like to integrally form the partition 35 and the support 37, or may be formed separately. At this time, the spacer 40 may be formed at the same time.
 続いて、隔壁ユニット38によって形成されたセル36内に泳動粒子32および多孔質層33を収容すると共に、絶縁性液体31を注入する。多孔質層33を形成する場合には、例えば、有機溶媒などに繊維状構造体331の形成材料を分散させて紡糸溶液を調製し、この紡糸溶液に非泳動粒子332を分散させたのち、静電紡糸法により紡糸を行う。これにより、非泳動粒子332が繊維状構造体331により保持された多孔質層33Bが形成される。続いて、例えば、有機溶媒などに繊維状構造体331の形成材料を分散させた紡糸溶液を用いて静電紡糸法により紡糸を行う。これにより、光透過性を有する繊維状構造体331からなる多孔質層33Aが形成される。なお、この紡糸処理は、大気中で行われてもよいし、減圧雰囲気中で行われてもよい。形成後の多孔質層33では、細孔333の面積占有率が全体に渡ってほぼ均一である。 Subsequently, the migrating particles 32 and the porous layer 33 are accommodated in the cell 36 formed by the partition unit 38 and the insulating liquid 31 is injected. When the porous layer 33 is formed, for example, a spinning solution is prepared by dispersing the forming material of the fibrous structure 331 in an organic solvent or the like, and the non-electrophoretic particles 332 are dispersed in the spinning solution. Spin by electrospinning method. Thereby, the porous layer 33B in which the non-migrating particles 332 are held by the fibrous structure 331 is formed. Subsequently, for example, spinning is performed by an electrostatic spinning method using a spinning solution in which a material for forming the fibrous structure 331 is dispersed in an organic solvent or the like. Thereby, the porous layer 33A composed of the fibrous structure 331 having optical transparency is formed. In addition, this spinning process may be performed in air | atmosphere and may be performed in a pressure-reduced atmosphere. In the porous layer 33 after formation, the area occupation ratio of the pores 333 is substantially uniform throughout.
 次に、駆動基板10と対向電極22および接着層23を備えた対向基板20とを対向配置して駆動基板10と対向基板20とを貼り合わせる。これにより、図1に示した表示装置1(図1)が完成する。 Next, the drive substrate 10 and the counter substrate 20 provided with the counter electrode 22 and the adhesive layer 23 are arranged to face each other, and the drive substrate 10 and the counter substrate 20 are bonded together. Thereby, the display apparatus 1 (FIG. 1) shown in FIG. 1 is completed.
(1-3.表示装置の動作)
 この表示装置1は、以下のように動作する。図4Aおよび図4Bは、表示装置の基本動作を説明するためのものであり、図1に対応する断面構成を表している。なお、ここでは、図示内容を簡略化するために多孔質層33を1層とし、接着層16および隔壁ユニット38を省略して表している。また、泳動粒子32も1種類で示している。
(1-3. Operation of display device)
The display device 1 operates as follows. 4A and 4B are for explaining the basic operation of the display device, and show a cross-sectional configuration corresponding to FIG. Here, in order to simplify the illustrated contents, the porous layer 33 is shown as one layer, and the adhesive layer 16 and the partition unit 38 are omitted. In addition, the migrating particles 32 are also shown as one type.
 初期状態の表示装置1では、泳動粒子32が待避領域R1に配置されている(図4A)。この場合には、全ての画素で泳動粒子32が多孔質層33により隠蔽されているため、対向基板20側から表示装置1を見ると、コントラストが生じていない(画像が表示されていない)状態にある。 In the display device 1 in the initial state, the migrating particles 32 are arranged in the retreat area R1 (FIG. 4A). In this case, since the migrating particles 32 are concealed by the porous layer 33 in all the pixels, when the display device 1 is viewed from the counter substrate 20 side, no contrast is generated (an image is not displayed). It is in.
 一方、TFT12により画素が選択され、画素電極15と対向電極22との間に電界が印加されると、図5Bに示したように、画素毎に泳動粒子32が待避領域R1から多孔質層33(細孔333)を経由して表示領域R2に移動する。この場合には、泳動粒子32が多孔質層33により隠蔽されている画素と隠蔽されていない画素とが併存するため、対向基板20側から表示装置1を見ると、コントラストが生じている状態になる。これにより、画像が表示される。 On the other hand, when a pixel is selected by the TFT 12 and an electric field is applied between the pixel electrode 15 and the counter electrode 22, as shown in FIG. 5B, the migrating particles 32 are moved from the retreat area R1 to the porous layer 33 for each pixel. It moves to the display area R2 via (pore 333). In this case, since the migrating particles 32 are concealed by the pixels hidden by the porous layer 33 and the pixels not hidden, the contrast is generated when the display device 1 is viewed from the counter substrate 20 side. Become. Thereby, an image is displayed.
 なお、駆動基板10には、上記電気泳動素子30を画素毎に駆動する(画素電極15および対向電極22間に駆動電圧を印加する)ための周辺回路(図示せず)が設けられている。周辺回路は、例えば、アクティブマトリクス方式の駆動回路を形成するための電圧制御用のドライバ、電源およびメモリ等を含んでおり、1または2以上の選択的なサブピクセルに対して画像信号に対応する駆動電圧を印加可能となっている。 The drive substrate 10 is provided with a peripheral circuit (not shown) for driving the electrophoretic element 30 for each pixel (applying a drive voltage between the pixel electrode 15 and the counter electrode 22). The peripheral circuit includes, for example, a voltage control driver for forming an active matrix driving circuit, a power source, a memory, and the like, and corresponds to an image signal for one or more selective sub-pixels. A drive voltage can be applied.
 本実施の形態の表示装置1は、詳細は後述するが、泳動粒子32として、平均泳動速度の異なる泳動粒子32C,32M,32Yを用いているため、背面S2側の表示面S1側に対する電位差を変化させることによって、泳動粒子32C,32M,32Yの分布位置を調整することができる。これにより、本実施の形態の表示装置1では、白色(W)、シアン色(C)、マゼンダ色(M)、黄色(Y)および黒色(K)の5色表示が可能となる。また、本実施の形態の表示装置1では、減法混色によってフルカラー表示も可能となる。 Display device 1 of this embodiment will be described in detail later, as electrophoretic particles 32, the average migration velocity of different electrophoretic particles 32C, 32M, due to the use of 32Y, the rear S 2 side with respect to the display surface S 1 side By changing the potential difference, the distribution positions of the migrating particles 32C, 32M, and 32Y can be adjusted. As a result, the display device 1 of the present embodiment can display five colors of white (W), cyan (C), magenta (M), yellow (Y), and black (K). Further, in the display device 1 of the present embodiment, full color display is also possible by subtractive color mixture.
(1-4.作用・効果)
 カラー表示が可能な電気泳動型ディスプレイでは、泳動速度に差のある着色粒子を用いることで、所望の色を有する着色粒子とその他の色の着色粒子との差を広げ易くし、さらに、透明電極(表示面)から裏面電極(背面)までの空間に配置した光隠蔽性の高い非泳動白色粒子によって、その他の色の着色粒子を隠蔽させることで簡単な駆動で所望の色が表示されるようになっている。しかしながら、このような構成を有する電気泳動ディスプレイでは、必ずしも所望の色の着色粒子を表示面に接する位置に留まらせることは難しい。表示面から離れた所望の色の着色粒子は、非泳動白色粒子によって隠蔽されるため、高い彩度が得られず、色再現性が低下するという問題がある。
(1-4. Action and effect)
In an electrophoretic display capable of color display, the use of colored particles having a difference in migration speed makes it easy to widen the difference between colored particles having a desired color and colored particles of other colors. The desired color can be displayed with a simple drive by concealing colored particles of other colors by non-migrating white particles with high light concealment arranged in the space from the (display surface) to the back electrode (back surface). It has become. However, in an electrophoretic display having such a configuration, it is difficult to keep the colored particles of a desired color in a position in contact with the display surface. Since the colored particles having a desired color away from the display surface are concealed by the non-migrating white particles, there is a problem that high saturation cannot be obtained and color reproducibility is lowered.
 これに対して本実施の形態の表示装置1では、上記のように、表示面S1側に光透過性を有する多孔質層33Aを配置すると共に、背面S2側に光学的反射特性を有する多孔質層33Bを配置するようにした。また、絶縁性液体31を泳動する粒子として互いに異なる光学的反射特性を有する3種類の泳動粒子32C,32M,32Yを用いるようにした。なお、泳動粒子32C,32M,32Yは、一例として、それぞれシアン色(泳動粒子32C)、マゼンダ色(泳動粒子32M)および黄色(泳動粒子32Y)に着色されている。また、多孔質層33Bの光学的反射特性は、泳動粒子32C,32M,32Yの光学的反射特性とは異なり、ここでは白色の非泳動粒子332を含むことで白色に着色されている。 On the other hand, in the display device 1 of the present embodiment, as described above, the porous layer 33A having optical transparency is disposed on the display surface S 1 side, and the optical reflection characteristic is provided on the back surface S 2 side. The porous layer 33B was arranged. In addition, three types of migrating particles 32C, 32M, and 32Y having different optical reflection characteristics are used as the particles for migrating the insulating liquid 31. The migrating particles 32C, 32M, and 32Y are colored cyan (migrating particles 32C), magenta (migrating particles 32M), and yellow (migrating particles 32Y), for example. Further, the optical reflection characteristic of the porous layer 33B is different from the optical reflection characteristic of the migrating particles 32C, 32M, and 32Y, and is colored white by including the white non-migrating particles 332 here.
 図5は、表示装置1の駆動方法の一例としての背面S2側の表示面S1側に対する電位差の時間変化を表したものである。図6は、図5に示した背面S2側の表示面S1側に対する電位差の時間変化による泳動粒子32C,32M,32Yの平均移動位置の時間変化を表したものである。なお、多孔質層33Aおよび多孔質層33Bの膜厚は、上記計算方法を用いて設計したものであり、多孔質層33全体の膜厚(W0)は30μmであり、そのうち多孔質層33Aの膜厚(W1)は10μm、多孔質層33Bの膜厚(W2)は20μmとなっている。なお、多孔質層33の膜厚(W0)が駆動基板10と対向基板20との間の距離である。また、多孔質層33Aの膜厚(W1)各泳動粒子32C,32M,32Yは、それぞれ正(+)に帯電すると共に、表1に示した泳動速度を有するものとする。 FIG. 5 shows changes over time in the potential difference with respect to the display surface S 1 side on the back surface S 2 side as an example of the driving method of the display device 1. Figure 6 is a representation of electrophoretic particles 32C by time variation of the potential difference across the display surface S 1 side of the back S 2 side shown in FIG. 5, 32M, the time variation of the average moving position of 32Y. The film thicknesses of the porous layer 33A and the porous layer 33B are designed by using the above calculation method, and the film thickness (W 0 ) of the entire porous layer 33 is 30 μm, of which the porous layer 33A The film thickness (W 1 ) is 10 μm, and the film thickness (W 2 ) of the porous layer 33B is 20 μm. The film thickness (W 0 ) of the porous layer 33 is the distance between the driving substrate 10 and the counter substrate 20. In addition, the thickness (W1) of each porous layer 33A, each electrophoretic particle 32C, 32M, 32Y is charged positive (+) and has the electrophoretic speed shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 まず、全ての泳動粒子32C,32M,32Yを背面S2側に移動させる。このとき、表示面S1は白表示となる(起点0秒)。背面S2側の電位を高くすると、正に帯電している泳動粒子32C,32M,32Yは、表示面S1側に移動を始める。最も泳動速度の速い泳動粒子32Cが表示面S1に到達した時点で電位差を0にすることで、泳動粒子32Cよりも泳動速度の遅い泳動粒子32M,32Yは、多孔質層33B中に位置するため、泳動粒子32M,32Yは多孔質層33Bによって隠蔽される。これにより、表示面S1の表示色はシアン色(C)になる。 First, all the electrophoretic particles 32C, 32M, move 32Y to the rear S 2 side. At this time, the display surface S 1 is displayed in white (starting point 0 second). When the potential on the back surface S 2 side is increased, the positively charged migrating particles 32C, 32M, and 32Y start moving to the display surface S 1 side. Most migration speed fast electrophoretic particles 32C of the potential difference at the time of reaching the display surface S 1 by 0, slow electrophoretic particles 32M of electrophoretic speed than the electrophoretic particles 32C, 32Y are located in the porous layer 33B Therefore, the migrating particles 32M and 32Y are concealed by the porous layer 33B. As a result, the display color of the display surface S 1 becomes cyan (C).
 続いて、背面S2側の電位を高くすると、表示面S1と背面S2との間にとどまっていた泳動粒子32M,32Yが表示面S1に向かって移動する。泳動粒子32Mが表示面S1に到達した時点で背面S2側の電位を反転させ、表示面S1に対して電位を低くすると、最も泳動速度の速い泳動粒子32Cが泳動粒子32Mよりも早く背面S2側に移動する。泳動粒子32Cが背面S2に到達した時点で電位差を0にすると、泳動粒子32C,32M,32Yは、表示面S1側から泳動粒子32M,泳動粒子32Y,泳動粒子32Cの順に分布する。このとき、泳動粒子32Mは光透過性を有する多孔質層33A中に、泳動粒子32Y,32Cは多孔質層33B中に位置するため、泳動粒子32Y,32Cは多孔質層33Bによって隠蔽され、表示面S1の表示色はマゼンダ色(M)になる。なお、泳動粒子32Mは、最も泳動速度の遅い泳動粒子32Yが多孔質層32Bによって隠蔽されるまでの間に、背面S2に向かって移動してしまうが、本実施の形態では、表示面S1側に光透過性を有する多孔質層33Aを配置しているため、その彩度が確保される。 Subsequently, when the potential on the back surface S 2 side is increased, the migrating particles 32M and 32Y staying between the display surface S 1 and the back surface S 2 move toward the display surface S 1 . Electrophoretic particles 32M will reverse potential of back S 2 side at the time of reaching the display surface S 1, when a low potential with respect to the display surface S 1, most migration speed fast electrophoretic particles 32C is faster than electrophoretic particles 32M to move to the back S 2 side. When electrophoretic particles 32C to zero the potential difference at the time it reaches the rear S 2, electrophoretic particles 32C, 32M, 32Y are distributed from the display surface S 1 side electrophoretic particles 32M, electrophoretic particles 32Y, in the order of electrophoretic particles 32C. At this time, since the migrating particles 32M are located in the light-transmitting porous layer 33A and the migrating particles 32Y and 32C are located in the porous layer 33B, the migrating particles 32Y and 32C are hidden by the porous layer 33B and displayed. The display color of the surface S 1 is magenta (M). Incidentally, electrophoretic particles 32M is until most electrophoretic slow electrophoretic particles 32Y is concealed by a porous layer 32B, but would move toward the rear S 2, in the present embodiment, the display surface S Since the light-transmitting porous layer 33A is disposed on the 1 side, the saturation is ensured.
 次に、再度背面S2側の電位を表示面S1側に対して高くすると表示面S1側に全ての泳動粒子32C,32M,32Yは表示面S1に到達する。この時、泳動粒子32C,32M,32Yは、表示面S1側の多孔質層33A中で減法混色し、表示面S1は黒表示となる。本実施の形態では、表示面S1側に光透過性を有する多孔質層33Aを配置しているため、減法混色が効率よく行われ、コントラストの高い表示が得られる。 Then, all the electrophoretic particles 32C on the display surface S 1 side to increase the potential of the back S 2 side with respect to the display surface S 1 side again, 32M, 32Y reaches the display surface S 1. At this time, the migrating particles 32C, 32M, and 32Y are subtractively mixed in the porous layer 33A on the display surface S 1 side, and the display surface S 1 is displayed in black. In the present embodiment, since the light-transmitting porous layer 33A is arranged on the display surface S 1 side, subtractive color mixing is performed efficiently, and a display with high contrast can be obtained.
 続いて、表示面S1側の電位を高くすると全ての泳動粒子32C,32M,32Yが背面S2側に向かって移動する。泳動粒子32Mが背面S2側に到達した時点で電位差を0とすると、泳動粒子32Yと泳動粒子32C,32Mとの距離が保たれた状態となる。このとき泳動粒子32C,32Mは多孔質層33Bに隠蔽され、泳動粒子32Yは多孔質層33A中に位置するため、表示面S1の表示色は黄色(Y)となる。 Subsequently, when the potential on the display surface S 1 side is increased, all the migrating particles 32C, 32M, 32Y move toward the back surface S 2 side. When electrophoretic particles 32M is zero potential difference at the time it reaches the rear S 2 side, a state in which electrophoretic particles 32Y and electrophoretic particles 32C, the distance between 32M maintained. At this time the electrophoretic particles 32C, 32M is concealed in the porous layer 33B, electrophoretic particles 32Y is to located in the porous layer 33A, the display color of the display surface S 1 becomes yellow (Y).
 このように、背面S2側の表示面S1側に対する電位差を変化させることによって、多色表示、ここでは白色(W)、シアン色(C)、マゼンダ色(M)、黄色(Y)および黒色(K)の5色表示が可能となる。また、中間調についても同様の方法によって表示が可能となる。更に、減法混色によってフルカラー表示も可能となる。 In this way, by changing the potential difference between the back surface S 2 side and the display surface S 1 side, multicolor display, here white (W), cyan (C), magenta (M), yellow (Y) and Black (K) five-color display is possible. Further, the halftone can be displayed by the same method. Furthermore, full color display is also possible by subtractive color mixing.
 以上のように、本実施の形態の表示装置1では、絶縁性液体31中を泳動する泳動粒子として、互いに異なる光学的反射特性を有する3種類の泳動粒子32C,32M,32Yを用いるようにした。また、多孔質層33を、光透過性を有する多孔質層33Aと、泳動粒子32C,32M,32Yとは異なる光学的反射特性を有する多孔質層33Bとから構成し、表示面S1側に多孔質層33Aを配置するようにした。これにより、表示面S1と背面S2との間における泳動粒子32C,32M,32Yの分布順列を制御して所望の表示色を表示する際に、所望の表示色を有する泳動粒子(例えば、泳動粒子32M)が表示面S1から離れた位置に分布しても、泳動粒子32Mが多孔質層33Bによって隠蔽されて彩度が低下することを防ぐことが可能となる。よって、色再現性の高い表示装置1を提供することが可能となる。 As described above, in the display device 1 according to the present embodiment, the three types of migrating particles 32C, 32M, and 32Y having different optical reflection characteristics are used as the migrating particles that migrate in the insulating liquid 31. . Further, the porous layer 33 is composed of a porous layer 33A having optical transparency and a porous layer 33B having optical reflection characteristics different from those of the migrating particles 32C, 32M, 32Y, and on the display surface S 1 side. The porous layer 33A was arranged. Thus, electrophoretic particles 32C between the display surface S 1 and the back S 2, 32M, when displaying the desired display color by controlling the distribution permutations of 32Y, electrophoretic particles having a desired display color (e.g., be distributed at a position electrophoretic particles 32M) is separated from the display surface S 1, electrophoretic particles 32M color saturation is concealed by a porous layer 33B it is possible to prevent the decrease. Therefore, it is possible to provide the display device 1 with high color reproducibility.
<2.適用例>
 次に、上記実施の形態において説明した表示装置(表示装置1)の適用例について説明する。ただし、以下で説明する電子機器の構成はあくまで一例であり、その構成は適宜変更可能である。上記の表示装置1は、各種の電子機器あるいは服飾品の一部に適用可能であり、その電子機器等の種類は特に限定されない。
<2. Application example>
Next, an application example of the display device (display device 1) described in the above embodiment will be described. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate. The display device 1 can be applied to a part of various electronic devices or clothing, and the type of the electronic device is not particularly limited.
(適用例1)
 図7Aおよび図7Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図7Aに示したように非表示部120の前面に設けられていてもよいし、図7Bに示したように上面に設けられていてもよい。表示部110が表示装置1により構成される。なお、表示装置1は、図7Aおよび図7Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。
(Application example 1)
7A and 7B show the external configuration of the electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. Note that the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 7A, or may be provided on the upper surface as illustrated in FIG. 7B. The display unit 110 is configured by the display device 1. The display device 1 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 7A and 7B.
(適用例2)
 図8は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部310および筐体320を有しており、タッチパネル部310が上記表示装置1により構成されている。
(Application example 2)
FIG. 8 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 1.
(適用例3)
 上記の表示装置1は、いわゆるウェアラブル端末として、例えば時計(腕時計)、鞄、衣服、帽子、眼鏡および靴等の服飾品の一部に適用することも可能である。以下に、そのような服飾品一体型の電子機器の一例を示す。
(Application example 3)
The display device 1 can also be applied to a part of clothing such as a watch (watch), a bag, clothes, a hat, glasses, and shoes as a so-called wearable terminal. Below, an example of such an electronic device integrated with clothing is shown.
 図9Aおよび図9Bは、電子時計(腕時計一体型電子機器)の外観を表したものである。この電子時計は、例えば文字盤(文字情報表示部分)410とバンド部(色柄表示部分)420とを有しており、これらの文字盤410とバンド部420とが上記表示装置1を含んで構成されている。文字盤410には、上述の電気泳動素子を用いた表示駆動により、図9Aおよび図9Bのように、例えば様々な文字や図柄が表示される。バンド部420は、例えば腕等に装着可能な部位である。このバンド部420において、表示装置1が用いられることで、様々な色柄を表示することができ、図9Aの例から図9Bの例のように、バンド部420の意匠を変更することができる。ファッション用途においても有用な電子デバイスを実現可能となる。 9A and 9B show the appearance of an electronic timepiece (wristwatch-integrated electronic device). The electronic timepiece has, for example, a dial (character information display portion) 410 and a band portion (color pattern display portion) 420, and the dial 410 and the band portion 420 include the display device 1. It is configured. For example, various characters and designs are displayed on the dial plate 410 as shown in FIGS. 9A and 9B by display driving using the above-described electrophoretic element. The band unit 420 is a part that can be attached to, for example, an arm. By using the display device 1 in the band unit 420, various color patterns can be displayed, and the design of the band unit 420 can be changed from the example of FIG. 9A to the example of FIG. 9B. . Electronic devices that are also useful in fashion applications can be realized.
 以上、一実施の形態を挙げて説明したが、本開示内容は上記実施の形態で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態では、繊維状構造体331は光透過性(無色透明)を有することが好ましいとしたが、例えば、多孔質層33Bを構成する繊維状構造体331は、自身が泳動粒子32を隠蔽可能となるような光反射性を有する材料で形成するようにしてもよい。 As described above, the embodiment has been described with reference to the embodiment. However, the present disclosure is not limited to the aspect described in the embodiment, and various modifications can be made. For example, in the above embodiment, the fibrous structure 331 is preferably light transmissive (colorless and transparent). For example, the fibrous structure 331 constituting the porous layer 33B itself is an electrophoretic particle. 32 may be made of a light-reflective material that can be concealed.
 また、上記実施の形態では、多孔質層33を、光透過性を有する多孔質層33Aと、泳動粒子32C,32M,32Yとは異なる光学的反射特性を有する多孔質層33Bとの2層構造を例に挙げたが、これ以外の層を有していてもよい。例えば、多孔質層33Bを複数層によって構成し、それぞれ細孔333の平均孔径が表示面S1側から順に小さくなるように配置してもよい。また、その逆でもよい。 In the above embodiment, the porous layer 33 has a two-layer structure of the porous layer 33A having light permeability and the porous layer 33B having optical reflection characteristics different from the migrating particles 32C, 32M, and 32Y. Is given as an example, but other layers may be included. For example, the porous layer 33B is composed of a plurality of layers may be arranged so that the average pore size of each pore 333 is sequentially reduced from the display surface S 1 side. The reverse is also possible.
 更に、上記実施の形態では、表示素子として、絶縁性液体31、泳動粒子32C,32M,32Yおよび多孔質層33を備えた電気泳動素子30を例示したが、電気泳動素子30の構成は、このような多孔質層33を用いたものに限定されず、電気泳動現象を利用して画素毎に光反射によるコントラスト形成が可能なものであればよい。また、上記実施の形態では、泳動粒子として、それぞれ、シアン色、マゼンダ色、黄色に着色された泳動粒子32C,32M,32Yを用いた例を示したがこれに限らず、例えば、緑色、青色、白色、黒色等の色に着色された粒子を用いてもよい。 Furthermore, in the above-described embodiment, the electrophoretic element 30 including the insulating liquid 31, the electrophoretic particles 32C, 32M, and 32Y and the porous layer 33 is exemplified as the display element. It is not limited to the one using the porous layer 33 as long as it can form a contrast by light reflection for each pixel using the electrophoresis phenomenon. In the above-described embodiment, the example in which the migrating particles 32C, 32M, and 32Y that are colored cyan, magenta, and yellow are used as the migrating particles is not limited thereto. Alternatively, particles colored in a color such as white or black may be used.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本開示は以下のような構成を取ることも可能である。
(1)
 絶縁性液体中に、
 選択的な光学的透過特性を有する2種以上の泳動粒子と、
 繊維状構造体により形成され、光透過性を有すると共に、表示面側に配置された第1層と、前記泳動粒子とは異なる光学的反射特性を有すると共に、背面側に配置された第2層とを含む多孔質層と
 を備えた表示装置。
(2)
 前記多孔質層の膜厚(W0)に対する前記第1層の膜厚(W1)は、前記多孔質層の膜厚(W0)/前記泳動粒子の種数である、前記(1)に記載の表示装置。
(3)
 前記2種以上の泳動粒子は、互いに異なる泳動速度を有する、前記(1)または(2)に記載の表示装置。
(4)
 前記泳動粒子として、互いに泳動速度の異なる3種類の泳動粒子を用いた場合、
 前記3種類の泳動粒子の中で1番速く移動する泳動粒子の泳動速度をV1、2番目に速く移動する泳動粒子の泳動速度をV2、3番目に速く移動する泳動粒子の泳動速度をV3とすると、
 前記多孔質層の膜厚(W0)に対する前記第1層の膜厚(W1)は、W0×(V2/V1)およびW0×(V3/V2)のうちの大きい方の数値である、前記(1)または(3)に記載の表示装置。
(5)
 前記2種以上の泳動粒子は、同じ電荷を有すると共に互いに異なる帯電量を有する、前記(1)乃至(4)のうちのいずれかに記載の表示装置。
(6)
 前記第2層は、前記泳動粒子とは異なる光学的反射特性を有する非泳動粒子を含む、前記(1)乃至(5)のうちのいずれかに記載の表示装置。
(7)
 前記第1層は、可視光を反射しない粒子を含む、前記(1)乃至(6)のうちのいずれかに記載の表示装置。
(8)
 前記可視光を反射しない粒子は、粒径が250nm以下のチタニア(TiO2)である、前記(7)に記載の表示装置。
(9)
 前記2種以上の泳動粒子は、シアン色、マゼンダ色、黄色、緑色、青色、白色および黒色のうちの1色または2色以上から選択された色を有する、前記(1)乃至(8)のうちのいずれかに記載の表示装置。
(10)
 前記非泳動粒子は、前記繊維状構造体によって保持されている、前記(6)乃至(9)のうちのいずれかに記載の表示装置。
(11)
 表示装置を備え、
 前記表示装置は、絶縁性液体中に、
 選択的な光学的透過特性を有する2種以上の泳動粒子と、
 繊維状構造体により形成され、光透過性を有すると共に、表示面側に配置された第1層と、前記泳動粒子とは異なる光学的反射特性を有すると共に、背面側に配置された第2層とを含む多孔質層と
 を有する電子機器。
In addition, this indication can also take the following structures.
(1)
In insulating liquid,
Two or more types of migrating particles having selective optical transmission properties;
A first layer that is formed of a fibrous structure and has optical transparency, is disposed on the display surface side, and has a different optical reflection characteristic from the migrating particles, and is disposed on the back side. And a porous layer containing the display device.
(2)
Wherein for the porous layer having a thickness (W 0) a first layer of a thickness (W 1), the thickness (W 0) of the porous layer / a genus of the electrophoretic particles, wherein (1) The display device described in 1.
(3)
The display device according to (1) or (2), wherein the two or more types of electrophoretic particles have different electrophoretic velocities.
(4)
When three types of migrating particles having different migration speeds are used as the migrating particles,
Among the three types of electrophoretic particles, the electrophoretic speed of the electrophoretic particles moving fastest is V1, the electrophoretic speed of the electrophoretic particles moving fastest is V2, and the electrophoretic speed of the electrophoretic particles moving fastest is V3. Then
In larger numerical value of the thickness of the porous layer (W 0) the thickness of the first layer to the (W 1) is, W 0 × (V2 / V1 ) and W 0 × (V3 / V2) The display device according to (1) or (3).
(5)
The display device according to any one of (1) to (4), wherein the two or more types of migrating particles have the same charge and different charge amounts.
(6)
The display device according to any one of (1) to (5), wherein the second layer includes non-electrophoretic particles having optical reflection characteristics different from the electrophoretic particles.
(7)
The display device according to any one of (1) to (6), wherein the first layer includes particles that do not reflect visible light.
(8)
The display device according to (7), wherein the particles that do not reflect visible light are titania (TiO 2 ) having a particle size of 250 nm or less.
(9)
The two or more kinds of migrating particles have a color selected from one or more of cyan, magenta, yellow, green, blue, white and black, according to (1) to (8) above The display apparatus in any one of them.
(10)
The display device according to any one of (6) to (9), wherein the non-migrating particles are held by the fibrous structure.
(11)
A display device,
In the insulating liquid, the display device
Two or more types of migrating particles having selective optical transmission properties;
A first layer that is formed of a fibrous structure and has optical transparency, is disposed on the display surface side, and has a different optical reflection characteristic from the migrating particles, and is disposed on the back side. An electronic device having a porous layer containing:
 本出願は、日本国特許庁において2016年3月2日に出願された日本特許出願番号2016-040191号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-040191 filed on March 2, 2016 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (11)

  1.  絶縁性液体中に、
     選択的な光学的透過特性を有する2種以上の泳動粒子と、
     繊維状構造体により形成され、光透過性を有すると共に、表示面側に配置された第1層と、前記泳動粒子とは異なる光学的反射特性を有すると共に、背面側に配置された第2層とを含む多孔質層と
     を備えた表示装置。
    In insulating liquid,
    Two or more types of migrating particles having selective optical transmission properties;
    A first layer that is formed of a fibrous structure and has optical transparency, is disposed on the display surface side, and has a different optical reflection characteristic from the migrating particles, and is disposed on the back side. And a porous layer containing the display device.
  2.  前記多孔質層の膜厚(W0)に対する前記第1層の膜厚(W1)は、前記多孔質層の膜厚(W0)/前記泳動粒子の種数である、請求項1に記載の表示装置。 Wherein for the porous layer having a thickness (W 0) a first layer of a thickness (W 1), the thickness (W 0) of the porous layer / a genus of the electrophoretic particles, in claim 1 The display device described.
  3.  前記2種以上の泳動粒子は、互いに異なる泳動速度を有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the two or more types of migrating particles have different migration velocities.
  4.  前記泳動粒子として、互いに泳動速度の異なる3種類の泳動粒子を用いた場合、
     前記3種類の泳動粒子の中で1番速く移動する泳動粒子の泳動速度をV1、2番目に速く移動する泳動粒子の泳動速度をV2、3番目に速く移動する泳動粒子の泳動速度をV3とすると、
     前記多孔質層の膜厚(W0)に対する前記第1層の膜厚(W1)は、W0×(V2/V1)およびW0×(V3/V2)のうちの大きい方の数値である、請求項1に記載の表示装置。
    When three types of migrating particles having different migration speeds are used as the migrating particles,
    Among the three types of migrating particles, the migration speed of the electrophoretic particles moving fastest is V1, the migration speed of the electrophoretic particles moving fastest is V2, and the migration speed of the electrophoretic particles moving fastest is V3. Then
    In larger numerical value of the thickness of the porous layer (W 0) the thickness of the first layer to the (W 1) is, W 0 × (V2 / V1 ) and W 0 × (V3 / V2) The display device according to claim 1.
  5.  前記2種以上の泳動粒子は、同じ電荷を有すると共に互いに異なる帯電量を有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the two or more types of migrating particles have the same charge and different charge amounts.
  6.  前記第2層は、前記泳動粒子とは異なる光学的反射特性を有する非泳動粒子を含む、請求項1に記載の表示装置。 The display device according to claim 1, wherein the second layer includes non-electrophoretic particles having optical reflection characteristics different from those of the electrophoretic particles.
  7.  前記第1層は、可視光を反射しない粒子を含む、請求項1に記載の表示装置。 The display device according to claim 1, wherein the first layer includes particles that do not reflect visible light.
  8.  前記可視光を反射しない粒子は、粒径が250nm以下のチタニア(TiO2)である、請求項7に記載の表示装置。 The display device according to claim 7, wherein the particles that do not reflect visible light are titania (TiO 2 ) having a particle size of 250 nm or less.
  9.  前記2種以上の泳動粒子は、シアン色、マゼンダ色、黄色、緑色、青色、白色および黒色のうちの1色または2色以上から選択された色を有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the two or more types of migrating particles have a color selected from one or more of cyan, magenta, yellow, green, blue, white and black.
  10.  前記非泳動粒子は、前記繊維状構造体によって保持されている、請求項6に記載の表示装置。 The display device according to claim 6, wherein the non-electrophoretic particles are held by the fibrous structure.
  11.  表示装置を備え、
     前記表示装置は、絶縁性液体中に、
     選択的な光学的透過特性を有する2種以上の泳動粒子と、
     繊維状構造体により形成され、光透過性を有すると共に、表示面側に配置された第1層と、前記泳動粒子とは異なる光学的反射特性を有すると共に、背面側に配置された第2層とを含む多孔質層と
     を有する電子機器。
    A display device,
    In the insulating liquid, the display device
    Two or more types of migrating particles having selective optical transmission properties;
    A first layer that is formed of a fibrous structure and has optical transparency, is disposed on the display surface side, and has a different optical reflection characteristic from the migrating particles, and is disposed on the back side. An electronic device having a porous layer containing:
PCT/JP2017/001913 2016-03-02 2017-01-20 Display device and electronic apparatus WO2017149986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016040191A JP2017156569A (en) 2016-03-02 2016-03-02 Display device and electronic apparatus
JP2016-040191 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017149986A1 true WO2017149986A1 (en) 2017-09-08

Family

ID=59743895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001913 WO2017149986A1 (en) 2016-03-02 2017-01-20 Display device and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2017156569A (en)
WO (1) WO2017149986A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286855A (en) * 2007-05-15 2008-11-27 Fuji Xerox Co Ltd Display medium and display device
JP2009244635A (en) * 2008-03-31 2009-10-22 Brother Ind Ltd Particle movement type display device and image display device with the particle movement type display device
JP2012093627A (en) * 2010-10-28 2012-05-17 Seiko Epson Corp Display sheet, display device and electronic apparatus
JP2014106333A (en) * 2012-11-27 2014-06-09 Sony Corp Electrophoretic element, display device, and electronic apparatus
JP2015197491A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Display unit and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286855A (en) * 2007-05-15 2008-11-27 Fuji Xerox Co Ltd Display medium and display device
JP2009244635A (en) * 2008-03-31 2009-10-22 Brother Ind Ltd Particle movement type display device and image display device with the particle movement type display device
JP2012093627A (en) * 2010-10-28 2012-05-17 Seiko Epson Corp Display sheet, display device and electronic apparatus
JP2014106333A (en) * 2012-11-27 2014-06-09 Sony Corp Electrophoretic element, display device, and electronic apparatus
JP2015197491A (en) * 2014-03-31 2015-11-09 ソニー株式会社 Display unit and electronic apparatus

Also Published As

Publication number Publication date
JP2017156569A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP5741122B2 (en) Electrophoretic element, display device and electronic device
JP5609700B2 (en) Electrophoretic element and display device
JP2013045074A (en) Electrophoretic element and method of manufacturing the same, display device, display substrate and electronic apparatus
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP5942394B2 (en) Electrophoretic element and display device
JP6176252B2 (en) Electrophoretic element, display device and electronic apparatus
JP5880295B2 (en) Method for manufacturing electrophoretic element
JPWO2017187808A1 (en) Fiber assembly, display device and electronic device
JP5900179B2 (en) Electrophoretic element and display device
JP2014106333A (en) Electrophoretic element, display device, and electronic apparatus
JP5870605B2 (en) Display device, driving method thereof, and electronic apparatus
US20150124312A1 (en) Display unit and electronic apparatus
WO2017159075A1 (en) Reflective display device and electronic device
WO2017149986A1 (en) Display device and electronic apparatus
JP5966885B2 (en) Electrophoretic element and display device
WO2016043057A1 (en) Display apparatus and electronic device
JP5942776B2 (en) Electrophoretic element and display device
US20160139479A1 (en) Display unit and electronic apparatus
WO2016199617A1 (en) Display device and electronic apparatus
WO2017141608A1 (en) Display device, display device manufacturing method, and electronic apparatus
WO2016170970A1 (en) Display device and display device manufacturing method
WO2016190136A1 (en) Display device
WO2016114011A1 (en) Display device and electronic device
WO2016208381A1 (en) Display device
JP2014209159A (en) Display unit and electronic apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759458

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759458

Country of ref document: EP

Kind code of ref document: A1