WO2017013973A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2017013973A1
WO2017013973A1 PCT/JP2016/067902 JP2016067902W WO2017013973A1 WO 2017013973 A1 WO2017013973 A1 WO 2017013973A1 JP 2016067902 W JP2016067902 W JP 2016067902W WO 2017013973 A1 WO2017013973 A1 WO 2017013973A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display
display device
pressure
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2016/067902
Other languages
French (fr)
Japanese (ja)
Inventor
正太 西
慎 赤阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of WO2017013973A1 publication Critical patent/WO2017013973A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements

Definitions

  • the present disclosure relates to a display device that displays an image using reflected light.
  • Patent Document 1 a driving method capable of displaying a locus drawn with a finger or a pen (handwriting input) has been developed.
  • Patent Document 1 by providing a pressure-sensitive switch in a pixel, a portion pressed by a pen or the like can be partially driven to display a drawn locus.
  • a display device includes a plurality of display elements each having a display body between a first electrode and a second electrode facing each other, and a display state changing according to an applied voltage.
  • a thin film transistor provided for each display element, which performs switching for applying a voltage to the first electrode, a pressure sensitive conductive layer formed below the thin film transistor, and connected to the first electrode via the pressure sensitive conductive layer
  • a first path including a thin film transistor and a second path including a pressure-sensitive conductive layer and a third electrode are formed as a voltage application path to the first electrode. These first and second paths are selected by a switch. Thereby, when the first path is selected, display driving (active matrix driving) using a thin film transistor is possible. On the other hand, when the second path is selected, the surface of the apparatus is pressurized (pressed), so that a voltage can be directly applied to the display element at the pressurized location.
  • the pressure-sensitive conductive layer is disposed below the thin film transistor, the influence on the circuit layout is small as compared with the case where the pressure-sensitive conductive layer is disposed in the pixel circuit.
  • the first path including the thin film transistor and the second path including the pressure-sensitive conductive layer and the third electrode are formed as the voltage application path to the first electrode.
  • a switch for selecting these first and second paths is provided.
  • the pressure-sensitive conductive layer is arranged below the thin film transistor, the influence on the circuit layout is reduced and the decrease in resolution and aperture ratio is suppressed compared to the case where it is arranged in the pixel circuit. it can. Therefore, it is possible to realize video display and handwriting input while suppressing a decrease in resolution and aperture ratio.
  • the above content is an example of the present disclosure.
  • the effects of the present disclosure are not limited to those described above, and other effects may be included or further effects may be included.
  • FIG. 2 is a cross-sectional view illustrating configurations of a first electrode, a TFT layer, a first substrate, a pressure-sensitive conductive layer, a third electrode, and a switch illustrated in FIG. 1. It is a circuit diagram showing the circuit structure for driving one display element with a switch. It is sectional drawing for demonstrating the manufacturing process of the display apparatus shown in FIG.
  • FIG. 6B is a cross-sectional view for explaining a process following the process in FIG. 6B. It is sectional drawing for demonstrating the process following FIG. 6C. It is sectional drawing for demonstrating the process following FIG. 6D. It is sectional drawing for demonstrating the process following FIG. 7A. It is sectional drawing for demonstrating the process following FIG. 7B.
  • FIG. 7D is a cross-sectional view for illustrating a step following the step in FIG. 7C. It is sectional drawing for demonstrating the process following FIG. 7D. It is sectional drawing for demonstrating the process following FIG. 7E.
  • FIG. 7D is a cross-sectional view for illustrating a step following the step in FIG. 7F.
  • FIG. 9 is a cross-sectional view for explaining a step following the step in FIG. 8.
  • FIG. 10 is a cross-sectional view for explaining a step following the step in FIG. 9. It is sectional drawing for demonstrating the manufacturing process of the display apparatus shown in FIG. It is sectional drawing for demonstrating the process following FIG. 11A. It is sectional drawing for demonstrating the process following FIG. 11B. It is a flowchart for demonstrating the processing flow at the time of TFT drive (at the time of video display). It is a circuit diagram for demonstrating the voltage application path
  • FIG. 10 is a schematic diagram for explaining the operation (large parallax) of the display device according to Comparative Example 1.
  • FIG. 10 is a schematic diagram for explaining an effect
  • FIG. 10 is a schematic diagram for explaining a driving operation (partial erasing operation) according to Modification 1.
  • FIG. 20B is a schematic diagram for explaining the driving operation subsequent to FIG. 19B. It is a circuit diagram for demonstrating the voltage application path
  • FIG. 22 is a schematic diagram illustrating an example of a partial erasing operation using the input pen of the display device illustrated in FIG. 21. 10 is a schematic cross-sectional view illustrating a configuration of a pressure-sensitive conductive layer according to Modification 3.
  • FIG. 10 is a schematic cross-sectional view for explaining the action of the pressure-sensitive conductive layer according to Comparative Example 2.
  • FIG. It is a cross-sectional schematic diagram for demonstrating an effect
  • action of the pressure-sensitive conductive layer shown in FIG. 10 is a cross-sectional view illustrating a configuration of a display device according to modification example 4.
  • FIG. FIG. 26 is a schematic diagram illustrating a perspective configuration of a third electrode illustrated in FIG. 25.
  • It is a cross-sectional schematic diagram for demonstrating the display state at the time of the handwriting input of the display apparatus shown in FIG. 10 is a cross-sectional view illustrating a configuration of a display device according to Modification Example 5.
  • FIG. It is a perspective view showing the external appearance of the tablet personal computer which concerns on an application example.
  • Embodiment Example of a reflective display device capable of selectively switching between TFT driving and driving using a pressure-sensitive conductive layer by a switch
  • Modification 1 example of partial erase drive
  • Modification 2 Example of partial erasure driving using an input pen equipped with a tilt sensor
  • Modification 3 example in which a groove is provided in the pressure-sensitive conductive layer
  • Modification 4 example in which the third electrode is divided and arranged in the color reflection type display device
  • Modification 5 (example in which the third electrode is divided and arranged in a monochrome reflection type display device) 7).
  • Application example electromechanical equipment
  • FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure.
  • the display device 1 is a monochrome reflection type display device that displays an image by light reflectance control using a display element (display element 10) such as an electrophoretic display element.
  • the display device 1 includes a TFT (thin film transistor) layer 12 and a plurality of display elements 10 arranged in a matrix, for example, on a first substrate 11.
  • Each display element 10 has a display body 10 ⁇ / b> A between the first electrode 13 and the second electrode 16.
  • the display body 10 ⁇ / b> A is separated for each display element 10 (for each pixel) by a spacer (partition wall) 15.
  • a second substrate 17 is provided on the second electrode 16.
  • a seal layer 14 is interposed between the first electrode 13 and the display body 10A.
  • FIG. 1 schematically shows the configuration of the display device 1 and may differ from actual dimensions and shapes. Hereinafter, the configuration of each unit will be described.
  • the first substrate 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like.
  • the inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like.
  • silicon oxide include glass or spin-on-glass (SOG). Etc. are included.
  • metal material include aluminum (Al), nickel (Ni), and stainless steel.
  • plastic material examples include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEEK polyethyl ether ketone
  • COP cycloolefin polymer
  • PI polyimide
  • PES polyether sulfone
  • the first substrate 11 may or may not have optical transparency. Further, the first substrate 11 may be a rigid substrate such as a wafer, or may be a flexible thin-layer glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material. Although details will be described later on the first substrate 11, for example, a through electrode 11 ⁇ / b> A is formed for each display element 10.
  • the TFT layer 12 is a layer in which, for example, a pixel circuit including a TFT 12A described later is formed. The detailed configuration of the TFT layer 12 will be described later.
  • the first electrode 13 is provided for each display element 10.
  • the first electrode 13 is one of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C (carbon), Au (gold), Ag (silver), or Cu (copper). Includes one or more types.
  • a voltage (Vsig) set for each display element 10 can be applied to the first electrode 13 via a TFT 12A described later or a pressure-sensitive conductive layer 18.
  • the seal layer 14 is made of a resin material such as a thermosetting resin and an ultraviolet curable resin.
  • the spacer 15 is made of, for example, a photosensitive resin.
  • the shape of the spacer 15 is not particularly limited, but is preferably a shape that does not hinder the movement of the migrating particles 32 between the first electrode 13 and the second electrode 16 and can uniformly distribute the migrating particles 32. Is.
  • the thickness of the spacer 15 is not particularly limited, but in particular, it is preferably as thin as possible in order to reduce power consumption, and is, for example, 10 ⁇ m to 100 ⁇ m.
  • the second electrode 16 includes, for example, one kind or two or more kinds of light-transmitting conductive materials (transparent conductive materials).
  • the conductive material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • the thickness of the second electrode 16 is, for example, not less than 0.001 ⁇ m and not more than 1 ⁇ m.
  • the second electrode 16 is formed on one surface of the second substrate 17 over, for example, the entire displayable region, and is an electrode common to the display elements 10. However, similarly to the first electrode 13, it may be divided into a plurality of elements for each element.
  • the display body 10A When an image is displayed on the surface (display surface S1) of the second substrate 17, the display body 10A is viewed through the second electrode 16, and therefore the light transmittance of the second electrode 16 is as high as possible. For example, 80% or more.
  • the electric resistance of the second electrode 16 is preferably as low as possible, for example, 100 ⁇ / ⁇ (square) or less.
  • the second substrate 17 is made of, for example, PET, TAC, PEN, PC, acrylic, glass, or the like.
  • a material having optical transparency can be used from the materials listed as the constituent material of the first substrate 11. This is because an image is displayed on the upper surface side of the second substrate 17, and the second substrate 17 needs to be light transmissive.
  • the thickness of the second substrate 17 is, for example, not less than 10 ⁇ m and not more than 250 ⁇ m.
  • the display body 10 ⁇ / b> A changes its display state (light reflectance) in accordance with a change in voltage applied through the first electrode 13 and the second electrode 16.
  • the display body 10A generates contrast using, for example, an electrophoretic phenomenon.
  • the display body 10A includes electrophoretic particles 32 that can move between a pair of electrodes (first electrode 13 and second electrode 16) according to an applied electric field. Contains.
  • Examples of the display element 10 having such a display body 10A include a microcup type or microcapsule type electrophoretic display element.
  • the display body 10A includes electrophoretic particles (electrophoretic particles 32) colored black and a liquid or porous layer colored white, and a rib (spacer 15) having a high elastic modulus. It has the structure separated by.
  • a 1 particle type may be sufficient and a 2 particle type may be sufficient.
  • a two-particle type microcapsule method may be used.
  • a plurality of capsules each encapsulating electrophoretic particles colored in white and electrophoretic particles colored in black are used.
  • the line width displayed (drawn) by handwriting input is more easily controlled when the microcup method is used than when the microcapsule method is used.
  • the display element 10 it is also possible to use a colored liquid itself without using the porous layer 33.
  • an electrochromic display element or the like may be used.
  • a one-particle type microcup electrophoretic display element will be described.
  • FIG. 2 shows an example of the display body 10A.
  • the display body 10 ⁇ / b> A includes, for example, a porous layer 33 and migrating particles 32 in an insulating liquid 31.
  • the insulating liquid 31 is a nonaqueous solvent such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 are as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased.
  • the insulating liquid 31 may contain various materials as necessary.
  • the insulating liquid 31 may include a colorant, a charge control agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin.
  • a weak conductive liquid may be used instead of the insulating liquid 31.
  • the migrating particles 32 are one type or two or more types of charged particles that can move between the first electrode 13 and the second electrode 16, and are dispersed in the insulating liquid 31.
  • the migrating particles 32 have arbitrary optical reflection characteristics (light reflectivity).
  • the light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.
  • the constituent material of the migrating particles 32 for example, one kind or two or more kinds of particles (organic pigment, inorganic pigment, dye, carbon material, metal material, metal oxide, glass, polymer material (resin), etc. ( Powder).
  • the migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • the electrophoretic particles 32 any one of the above may be used, or a plurality of types may be used.
  • Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.
  • the specific forming material of the migrating particles 32 is selected from the above materials according to the role of the migrating particles 32 in order to cause contrast, for example.
  • the material in the case of dark display (black display) by the migrating particles 32 is a black material such as a carbon material or a metal oxide.
  • the carbon material is, for example, carbon black
  • the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like.
  • a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained.
  • the material in the case of bright display (white display) by the migrating particles 32 is a white material, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, Titanium oxide is preferred. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.
  • the content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate, and in some cases, there is a possibility of aggregation.
  • the average particle diameter of the migrating particles 32 is preferably in the range of 0.1 ⁇ m to 10 ⁇ m, for example.
  • the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 over a long period of time and are not easily adsorbed by the porous layer 33.
  • a dispersant or a charge adjusting agent
  • the electrophoretic particles 32 may be subjected to a surface treatment. Moreover, you may use both together.
  • the dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.
  • the surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.
  • the surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32.
  • the type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32.
  • carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced.
  • the graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance.
  • the kind of polymerizable functional group is the same as that described for the adsorptive material.
  • the dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • the porous layer 33 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG.
  • the porous layer 33 has a plurality of gaps (pores 333) through which the migrating particles 32 pass in places where the fibrous structure 331 does not exist.
  • the fibrous structure 331 includes one or more non-migrating particles 332, and the non-migrating particles 332 are held by the fibrous structure 331.
  • the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. In addition, both may be mixed.
  • each fibrous structure 331 preferably holds one or more non-migrating particles 332.
  • FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.
  • the reason why the non-migrating particles 332 are included in the fibrous structure 331 is that the light reflectance of the porous layer 33 is higher because external light is more easily diffusely reflected. Thereby, compared with the case where the non-electrophoretic particle 332 is not contained, contrast can be raised more.
  • the fibrous structure 331 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter).
  • the fibrous structure 331 includes, for example, any one type or two or more types such as a polymer material or an inorganic material, and may include other materials.
  • Polymer materials include, for example, nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof.
  • the inorganic material is, for example, titanium oxide.
  • a polymer material is preferable as a material for forming the fibrous structure 331.
  • the reactivity photoreactivity, etc.
  • the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.
  • the shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction.
  • the formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.
  • This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32. For example, when dark display is performed by the migrating particles 32, black migrating particles 32 and white fibrous structures 331 are used. When a bright display is performed by the migrating particles 32, white migrating particles 32 and a black fibrous structure 331 are used.
  • Non-electrophoretic particles 332 are particles that are fixed to the fibrous structure 331 and do not migrate electrically.
  • the material for forming the non-electrophoretic particles 332 is the same as the material for forming the electrophoretic particles 32, for example, and is selected according to the role that the non-electrophoretic particles 332 play.
  • the non-migrating particles 332 have optical reflection characteristics different from those of the migrating particles 32.
  • the pressure-sensitive conductive layer 18 and the third electrode 19 are formed in this order below the TFT layer 12, for example, on the back surface of the first substrate 11. .
  • the pressure-sensitive conductive layer 18 is a structure in which the electric resistance changes according to the pressure (pressurized state), and specifically, the electric resistance is reduced (exhibits conductivity) by being pressurized. It is made of a material such as a pressure-sensitive conductive rubber.
  • FIGS. 3A and 3B An example is shown in FIGS. 3A and 3B. However, FIG. 3A schematically illustrates a cross-sectional configuration in a non-pressurized state, and FIG. 3B schematically illustrates a cross-sectional configuration in a pressurized state.
  • the pressure-sensitive conductive layer 18 is obtained by dispersing the conductive elements 182 in the insulating layer 181 made of, for example, a rubber material. In the non-pressurized state (FIG.
  • each conductive element 182 is discrete in the insulating layer 181, the electrical resistance is high.
  • the pressure-sensitive conductive layer 18 bends (deforms), and each conductive element 182 in the insulating layer 181. Are connected or close together. As a result, a conductive path R is formed in the pressure-sensitive conductive layer 18 (electrical resistance is reduced).
  • the thickness of the pressure-sensitive conductive layer 18 is not particularly limited, but is preferably 1 mm or less, for example.
  • the constituent material of the pressure-sensitive conductive layer 18 includes, for example, pressure-sensitive ink, anisotropic conductive film, adhesive containing charged particles, or anisotropic conductive rubber in addition to the pressure-sensitive conductive rubber as described above. Etc. can be used.
  • the pressure-sensitive conductive layer 18 is formed continuously over the entire surface of the first substrate 11, for example, as a layer common to the plurality of display elements 10.
  • the third electrode 19 includes one or more of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C, Au, Ag, or Cu, for example.
  • the thickness of the third electrode 19 is, for example, not less than 0.01 ⁇ m and not more than 100 ⁇ m.
  • the third electrode 19 is formed continuously on the back surface of the pressure-sensitive conductive layer 18 (here, between the pressure-sensitive conductive layer 18 and the support substrate 20) as a layer common to the plurality of display elements 10. ing.
  • a support substrate (support film) 20 is further bonded to the back surface of the third electrode 19.
  • a switch 41 that selectively switches between the TFT layer 12 and the third electrode 19 and connects to the voltage application unit 40 (power source) is provided.
  • a switch 41 ⁇ / b> A is provided between the TFT layer 12 and the voltage application unit 40
  • a switch 41 ⁇ / b> B is provided between the third electrode 19 and the voltage application unit 40.
  • FIG. 4 shows the detailed configuration of the TFT layer 12 together with the configuration of the first electrode 13, the first substrate 11, the pressure-sensitive conductive layer 18, the third electrode 19, and the switch 41.
  • FIG. 5 shows a circuit configuration of a region corresponding to one display element 10 (region corresponding to a pixel).
  • the TFT layer 12 includes, for example, the TFT 12A and the storage capacitor 12B.
  • a gate electrode 122a and a lower electrode 122b are formed in a selective region on the first substrate 11 with a planarizing film 121 interposed therebetween.
  • a gate insulating film 123 is formed so as to cover these gate electrode 122a and lower electrode 122b.
  • a semiconductor layer 124 is formed in a region on the gate insulating film 123 facing the gate electrode 122a.
  • Source / drain electrodes 125 ⁇ / b> A and 125 ⁇ / b> B are formed by being electrically connected to the semiconductor layer 124 (overlapping with part of the semiconductor layer 124).
  • a part of the source / drain electrode 125B is stacked on the lower electrode 122b via the gate insulating film 123, and these stacked portions form the storage capacitor 12B.
  • a protective film 126 is formed so as to cover the TFT 12A and the storage capacitor 12B, and the first electrode 13 is disposed on the interlayer insulating film 127.
  • the TFT 12A is a thin film transistor having a bottom gate structure, for example, and is composed of an n-channel or p-channel MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).
  • the gate electrode 122a is connected to the gate line 131, and the on state and the off state of the TFT 12A are switched (a switching operation is performed) by application of the gate voltage Vg via the gate line 131.
  • One of the source / drain electrodes 125A and 125B functions as a source electrode and the other functions as a drain electrode. Of these, the source / drain electrode 125A (for example, the source electrode) is connected to the switch 41 (switch 41A) via the wiring 132a.
  • the source / drain electrode 125B (for example, the drain electrode) is electrically connected to the first electrode 13 through a contact hole H3 provided in the interlayer insulating film 127. Part of the source / drain electrode 125B also serves as an upper electrode of the storage capacitor 12B (connected to one end of the storage capacitor 12B).
  • the semiconductor layer 124 is made of, for example, an oxide semiconductor, an organic semiconductor, polycrystalline silicon, amorphous silicon, or microcrystalline silicon.
  • One end (upper electrode) of the storage capacitor 12B is electrically connected to the source / drain electrode 125B and the first electrode 13.
  • the other end (lower electrode 122b) of the holding capacitor 12B is connected to the common potential line 133, and is held at a constant voltage Vcom, for example.
  • the second electrode 16 of the display element 10 is also connected to the common potential line 133 (the second electrode 16 is held at the voltage Vcom).
  • the pressure-sensitive conductive layer 18 and the third electrode 19 are disposed below the TFT layer 12.
  • the pressure-sensitive conductive layer 18 is adjacent to the through electrode 11 ⁇ / b> A provided on the first substrate 11, and the through electrode 11 ⁇ / b> A is electrically connected to the first electrode 13.
  • the source / drain electrode 125B of the TFT 12A extends to the formation position of the through electrode 11A, and the extended portion is electrically connected to the through electrode 11A through the contact hole H2.
  • the pressure-sensitive conductive layer 18 and the third electrode 19 are connected to the switch 41 (switch 41B) via the wiring 132b.
  • the through electrode 11 ⁇ / b> A is provided, for example, for each display element 10, that is, one through electrode 11 ⁇ / b> A is provided for one first electrode 13.
  • the through electrode 11A is made of a conductive material such as Al, Au, Cu, or Ni.
  • the through electrode 11A is not limited to the illustrated configuration, and one through electrode 11A may be provided for two or more display elements 10, or two or more through electrodes may be provided for one display element 10.
  • the electrode 11A may be provided.
  • the shape, size, pitch, and the like of the through electrode 11A can take various configurations.
  • a first path including the TFT 12 ⁇ / b> A (path R ⁇ b> 1 to be described later)
  • This route (route R2 described later) can be selected by the switch 41.
  • the switch 41 is configured to selectively connect the source / drain electrode 125A (source electrode) of the TFT 12A and the third electrode 19 to the power supply (voltage application unit 40).
  • the switch 41 may be switched automatically or based on an external input signal (for example, an input signal from a user or the like). Although details will be described later, by switching the switch 41, the signal voltage Vsig can be supplied to the first electrode 13 via the TFT 12 ⁇ / b> A or the pressure-sensitive conductive layer 18.
  • the display device 1 of the present embodiment can be manufactured as follows, for example.
  • the first substrate 11 is bonded to one surface of the support substrate 210 via the release layer 220.
  • a contact hole H1 is formed in a selective region of the first substrate 11.
  • the conductive layer 11a1 is formed by plating, for example, so as to fill the contact hole H1.
  • the surface of the formed conductive layer 11a1 is etched back to form the through electrode 11A.
  • the TFT layer 12 is formed. Specifically, first, as shown in FIG. 7A, a planarizing film 121 is formed. Note that a barrier film may be formed instead of the planarizing film 121, or the planarizing film 121 and the barrier film may be laminated. Thereafter, as shown in FIG. 7B, the gate electrode 122a and the lower electrode 122b are patterned in a selective region on the planarizing film 121. Then, as shown in FIG. Subsequently, as illustrated in FIG. 7C, a gate insulating film 123 is formed so as to cover the gate electrode 122a and the lower electrode 122b. Thereafter, as shown in FIG.
  • a semiconductor layer 124 is patterned in a selective region on the gate insulating film 123.
  • the contact hole H2 is formed by partially etching the region of the gate insulating film 123 and the planarizing film 121 that faces the through electrode 11A.
  • the through electrode 11A is exposed from the planarization film 121 and the gate insulating film 123.
  • the source / drain electrodes 125A and 125B are patterned.
  • the source / drain electrode 125B is patterned so as to be in contact with the through electrode 11A via the contact hole H2.
  • the protective film 126 is patterned so as to cover the portions of the semiconductor layer 124 exposed from the source / drain electrodes 125A and 125B.
  • the TFT 12A and the storage capacitor 12B can be formed.
  • an interlayer insulating film 127 is formed.
  • a contact hole H3 is formed to face part of the source / drain electrode 125B. In this way, the TFT layer 12 can be formed.
  • the first electrode 13 is patterned on the interlayer insulating film 127 so as to fill the contact hole H3.
  • the support substrate 210 is peeled from the first substrate 11. Thereby, an element substrate (driving substrate) in which the TFT layer 12 is formed on the first substrate 11 having the through electrode 11A can be formed.
  • the second electrode 16 is formed on one surface of the second substrate 17 by a film forming method such as sputtering.
  • the spacers 15 are pattern-formed on the second electrode 16 by, for example, an imprint method. Specifically, after a solution containing the constituent material of the spacer 15 (for example, a photosensitive resin material) is applied on the second electrode 16, a mold having a recess is pressed against the coating film and exposed to light, and then the mold is formed. Remove. Thereby, the columnar spacer 15 can be formed. By making the spacer 15 have a reverse taper shape as shown in the figure, the mold can be easily removed.
  • the porous layer 33 is formed in the region (cell 150) surrounded by the spacer 15.
  • titanium oxide is added to the spinning solution as non-electrophoretic particles 332 and stirred sufficiently, and then this is spun.
  • the spinning solution is prepared, for example, by dispersing or dissolving polyacrylonitrile as the fibrous structure 331 in N, N′-dimethylformamide.
  • the spinning method include an electrostatic spinning method. Instead of the electrostatic spinning method, a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like may be used.
  • the spinning method as described above for forming the fibrous structure 331.
  • a method for forming the fibrous structure 331 in addition to the spinning method, for example, there is a method of making a hole in a polymer film using laser processing.
  • the pore diameter tends to increase. There is.
  • the spinning method the pore diameter can be easily controlled to be small, and the migrating particles 32 can be easily shielded by the fibrous structure 331.
  • the fibrous structure 331 After forming the fibrous structure 331 by spinning as described above, it is divided and stored in each cell 150. When the formed fibrous structure 331 is pressed from above (the direction opposite to the second substrate 17), it is slid by the spacer 15. By accommodating the divided fibrous structure 331 in the region surrounded by the spacer 15, the porous layer 33 in which the non-electrophoretic particles 332 are held in the fibrous structure 331 is formed in each cell 150. can do.
  • the display body 10A is formed by applying the insulating liquid 31 in which the migrating particles 32 are dispersed in the cell 150 in which the porous layer 33 is formed (not shown in FIG. 11C).
  • a peeling member (not shown) provided with a seal layer 14 is opposed to the display body 10A, for example, via a sealant (not shown).
  • substrate with 11 A of penetration electrodes formed by the above-mentioned flow is bonded on the sealing layer 14 via the adhesion layer (not shown).
  • the pressure-sensitive conductive layer 18, the third electrode 19, and the support substrate 20 are bonded to the back surface of the first substrate 11 via a conductive adhesive or the like. Note that the support substrate 20 is used as necessary and may not be used.
  • the display device 1 is completed through the above steps.
  • the switch 41 is controlled based on a control signal from a control unit (not shown). For example, one of the switch 41A and the switch 41B is turned on and the other is turned off. This makes it possible to selectively switch between display driving using the TFT 12A (video display by active matrix driving) and display driving using the pressure-sensitive conductive layer 18 (handwriting input). Hereinafter, each driving operation will be described.
  • FIG. 12 shows a processing flow when driving the TFT.
  • FIG. 13 is a circuit diagram for explaining a voltage application path during TFT driving. In this way, TFT driving is selected (the switch 41A is turned on and the switch 41B is turned off) (step S11), and the TFT 12A (source / drain electrode 125A) is connected to the power supply (voltage application unit 40). (Step S12).
  • step S13 image data is fetched from the outside (step S13), and predetermined signal processing is performed on the fetched image data (step S14).
  • the signal voltage Vsig is applied to the source / drain electrode 125A of the TFT 12A.
  • a predetermined ON voltage is applied to the gate electrode 122a of the TFT 12A for each display element 10.
  • the source and drain of the TFT 12A become conductive, and the path R1 is formed (the path R1 is selected).
  • a signal voltage Vsig (for example, ⁇ 100 V to +100 V) corresponding to the video signal is supplied to the first electrode 13 of each display element 10 via the path R1 including the TFT 12A.
  • each display element 10 since the second electrode 16 is connected to the common potential line 133 and is held at a constant voltage Vcom (for example, 0 V, GND), each display element 10 includes the first electrode 13 and the second electrode 16.
  • Vcom constant voltage
  • the migrating particle 32 is a negatively charged black particle, as shown in FIG. 14, in the pixels a1 and a3 in which 0 V is applied to the first electrode 13, the migrating particle 32 is the first particle, for example. It stays on the 1 electrode 13 side and becomes white display (bright display).
  • FIG. 15 shows a processing flow at the time of handwriting input.
  • FIG. 16 is a circuit diagram for explaining a voltage application path during handwriting input.
  • FIG. 17 is a schematic diagram for explaining a display state during handwriting input.
  • step S23 when the display surface S1 is pressed (pressed) with a pen or the like (step S23), the portion of the pressure-sensitive conductive layer 18 corresponding to the pressed portion is locally deformed, and the electric resistance of the portion is reduced. Lower. Thereby, the route R2 is formed (the route R2 is selected). That is, the first electrode 13 and the third electrode 19 of the display element 10 corresponding to the pressurization location are electrically connected through the pressure-sensitive conductive layer 18 and the through electrode 11A. As a result, the signal voltage Vsig (for example, ⁇ 15 V) is supplied to the first electrode 13 of the display element 10 corresponding to the pressed portion.
  • Vsig for example, ⁇ 15 V
  • the second electrode 16 is held at a constant voltage Vcom (for example, 0 V, GND), the first electrode 13 and the second electrode 16 in the display element 10 corresponding to the pressurization location.
  • Vcom constant voltage
  • the first electrode 13 and the second electrode 16 in the display element 10 corresponding to the pressurization location.
  • a bias voltage is applied between the electrodes 16 (display body 10A).
  • the migrating particle 32 is a negatively charged black particle, as shown in FIG. 17, in the pixels a4 and a6 to which the pressure P is not applied, the migrating particle 32 is on the first electrode 13 side.
  • the white display (bright display).
  • the migrating particles 32 move to the second electrode 16 side and display black (dark display).
  • the plurality of display elements 10 are partially driven, and the locus drawn with a pen or the like is displayed (displayed on the display surface S1) (step S24).
  • the path 41 including the pressure-sensitive conductive layer 18 and the third electrode 19 is selected by the switch 41, so that the display element 10 corresponding to the pressurization location is directly connected (via a display drive circuit or the like).
  • a voltage is applied (an electric field is generated).
  • the migrating particles 32 move to the second electrode 16 side, and the display state changes. Thereby, a black line is drawn on the display surface S1 of the display device 1 along the trace traced with a pen or the like. That is, handwriting input is realized.
  • the pen that pressurizes the display surface S1 does not need to be a pen dedicated to the display device 1, and the shape and structure thereof are not particularly limited as long as the pressure can be applied to the display surface S1.
  • the case of drawing a black line on a white background (white background color) has been described.
  • two paths of a path R1 including the TFT 12A and a path R2 including the pressure-sensitive conductive layer 18 and the third electrode 19 are formed as voltage application paths to the first electrode 13 of the display element 10. These routes R1 and R2 are selected by the switch 41. Thereby, when the path R1 is selected, display driving (active matrix driving) using the TFT 12A is possible. On the other hand, when the path R2 is selected, the display surface S1 is pressed (pressed), whereby a voltage can be directly applied to the display element 10 at the pressed position.
  • the pressure-sensitive conductive layer 18 is disposed below the TFT layer 12, and the electrical connection between the pressure-sensitive conductive layer 18 and the first electrode 13 is performed through the through electrode 11 ⁇ / b> A provided on the first substrate 11. Secured through. Compared with the case where the pressure-sensitive conductive layer 18 is disposed in the pixel circuit (in the TFT layer 12), the influence on the circuit layout is small.
  • the first electrode 13 and the through electrode 11A are formed for each display element 10, so that the locus of the pressed portion can be displayed in units of pixels. For this reason, it is possible to refine the drawing line width.
  • the pressure-sensitive conductive layer 18 is connected to the first electrodes 13 via the through electrodes 11A, the display for each display element 10 can be made uniform and sharp lines with little unevenness can be drawn. it can.
  • the deformation range of the pressure-sensitive conductive layer 18 varies depending on the magnitude of the pressure applied to the display surface S1. That is, when the pressure is high (when strongly pressed), the deformation is in a wide range, and when the pressure is low (when lightly pressed), the deformation is in a narrow range. For this reason, the number of pixels to which a voltage is applied in the width direction is large when the pressure is strongly applied and decreases when the pressure is lightly applied. Therefore, since the display can be performed in units of pixels as described above, it is possible to draw with a thick line width when strongly pressed and with a thin line width when lightly pressed. The drawing line width can be expressed by the writing pressure during handwriting.
  • the present embodiment at the time of handwriting input, it is possible to change the display state by directly applying a voltage to the display element 10 using the pressure-sensitive conductive layer 18.
  • latency is less likely to occur. That is, in a display device using a touch panel, after the position of a part input by a pen or the like is detected by a sensor, the signal processing system performs arithmetic processing on the detected position information. On the basis of the result of this calculation process, the locus of pen input is displayed on the display.
  • a touch panel it takes time for position detection and calculation processing between input (pressurization) and display, so that it is perceived as latency by human eyes.
  • the pressure-sensitive conductive layer 18 is used, so that it is directly applied to the display element 10 at the pressurization location without going through the position detection and calculation processing steps as in the case of using the touch panel.
  • the display state can be changed by applying a voltage to. For this reason, it is possible to shorten the time from input to image display, and to realize a comfortable writing feeling as if drawing on paper without latency.
  • FIG. 18A schematically shows a main configuration of a display device according to Comparative Example 1.
  • a support substrate 1017 is provided on a display body 1015, and a pressure-sensitive conductive layer 1020 is further disposed on the support substrate 1017.
  • the thickness of the pressure-sensitive conductive layer 1020 is in addition to the thickness of the support substrate 1017, the surface of the display body 1015 on which an image is actually formed and the input pen (stylus) The distance between the 50 nibs increases.
  • the appearance when viewed from an oblique direction is different from that when viewed from the front direction (parallax dp 100 is generated).
  • the pressure-sensitive conductive layer 1020 in order to dispose the pressure-sensitive conductive layer 1020 on the display surface side, it is desirable that the pressure-sensitive conductive layer 1020 is transparent and has excellent optical characteristics so as not to cause a decrease in luminance or resolution. There are few such material choices and it is not practical. Further, when the pressure-sensitive conductive layer 1020 is disposed on the display surface, the extraction efficiency of display light (reflected light) is reduced, and it is difficult to secure desired brightness.
  • the pressure-sensitive conductive layer 18 is disposed below the TFT layer 12A, that is, below the display body 10A (the pressure-sensitive conductive layer 18 is disposed above the display body 10A). It has not been). Accordingly, as schematically illustrated in FIG. 18B, the distance between the surface of the display body 10 ⁇ / b> A on which an image is actually formed and the pen tip of the input pen 50 becomes smaller than that of the first comparative example. As a result, for example, the parallax can be reduced (dp 1 ⁇ dp 100 ) so that the appearance when viewed from an oblique direction is almost the same as when viewed from the front direction.
  • the pressure-sensitive conductive layer 18 is disposed below the display body 10A, the transparency and optical characteristics of the pressure-sensitive conductive layer 18 are not particularly limited. For this reason, the choice of the material which comprises the pressure-sensitive conductive layer 18 spreads.
  • the path R1 including the TFT 12A, the path R2 including the pressure-sensitive conductive layer 18 and the third electrode 19 Is formed, and a switch 41 for selecting these paths R1 and R2 is provided.
  • the pressure-sensitive conductive layer 18 is disposed below the TFT layer 12, the influence on the circuit layout is reduced compared with the case where the pressure-sensitive conductive layer 18 is disposed in the pixel circuit, and the resolution and aperture ratio are reduced. Reduction can be suppressed. Therefore, it is possible to realize video display and handwriting input while suppressing a decrease in resolution and aperture ratio.
  • FIG. 20 is a circuit diagram for explaining a voltage application path in the erase mode.
  • the switch 41 can switch between video display by TFT driving and handwritten input using the pressure-sensitive conductive layer 18, but as in this modification example, It is also possible to drive to partially erase displayed characters and pictures.
  • the voltage Vsig for example, ⁇ 15V
  • the voltage Vcom for example, 0V
  • the pressure P is applied to the display surface S1
  • the black and negatively charged migrating particles 32 move to the second electrode 16 side at this pressurization portion, and a black display is obtained.
  • the locus traced with a pen or the like is drawn as a black line on the display surface S1 (writing mode). This is as described in the above embodiment.
  • the display body 10A is driven to apply an electric field having a polarity opposite to that in the handwriting input (writing mode). That is, the polarity of the bias voltage applied between the first electrode 13 and the second electrode 16 is reversed.
  • the voltage Vsig for example, +15 V
  • the voltage Vcom for example, 0 V
  • the voltage Vsig (for example, +15 V) is applied to the first electrode 13 at the pressurization location via the path R2. Supplied.
  • the black and negatively charged electrophoretic particles 32 move to the first electrode 13 side and display white. That is, it is possible to erase any part of the black lines drawn on the display surface S1 with a pen or the like (erase mode).
  • the migrating particles 32 are moved to the electrode side opposite to that at the time of writing, and the display state is inverted. Can do.
  • the writing mode and the erasing mode can be switched at an arbitrary timing. For example, rewriting or repetitive writing can be performed. These drive operations can be performed by a display control unit (a display control unit 30 and a drive circuit unit 30A described later).
  • the erase mode in the first modification is executed after the image is displayed by TFT driving. It may be.
  • the TFT 12A is driven for each display element 10 to display an image on the display surface S1, and then the switch 41 switches from the path R1 to the path R2.
  • a voltage capable of transitioning from black display to white display is applied to the third electrode 19 as the voltage Vsig.
  • Vsig the voltage capable of transitioning from black display to white display
  • auxiliary lines such as ruled lines are displayed on the display surface S1
  • some of the ruled lines may be erased in the erase mode.
  • the TFT drive may be selected by the switch 41, and the ruled line may be displayed (redrawn) on the display surface S1 again using the TFT 12A.
  • FIG. 21 is a block diagram for explaining operation control of the display device 1 using the input pen 50 according to the second modification.
  • FIG. 22 is a schematic cross-sectional view illustrating an example of a display state in the erase mode.
  • the first modification it has been described that the writing mode and the erasing mode can be switched at an arbitrary timing. However, in the present modification, these two modes are automatically changed according to the direction of the tip of the input pen 50. Switching control is performed.
  • the switch 41 is controlled such that the switch 41A is turned off and the switch 41B is turned on (the third electrode 19 is connected to the voltage application unit 40).
  • the display device 1 includes the display element 10 described above, and a display control unit 30 and a drive circuit unit 30A for driving and controlling each display element 10.
  • the display control unit 30 generates signals necessary for display driving of the plurality of display elements 10, and includes, for example, a timing controller and a display signal generation unit.
  • the drive circuit unit 30A includes a gate drive circuit unit and a source drive circuit unit for driving each display element 10 based on a control signal supplied from the display control unit 30, and a power source for the voltage application unit 40 and the like. It is a circuit part containing.
  • the input pen 50 used in this modification has an inclination sensor 51 inside.
  • the tilt sensor 51 has a function of recognizing the direction of the tip of the input pen 50, that is, whether the pen tip is facing upward or downward.
  • the inclination sensor 51 recognizes (detects) the direction of the tip of the input pen 50, and information (information Ds) regarding the detected direction can be transmitted to the display control unit 30 by wireless, for example.
  • the display control unit 30 and the drive circuit unit 30A in the present modification correspond to a specific example of the “display control unit” of the present disclosure.
  • the display control unit 30 can receive the information Ds transmitted from the tilt sensor 51, and switches the display state of each display element 10 based on the received information Ds. Specifically, the display control unit 30 sets the sign of the bias voltage applied to the display body 10A (specifically, the value of the voltage Vsig supplied to the first electrode 13) based on the information Ds (or Switch).
  • the “write mode” is set as, for example, black and negatively charged electrophoretic particles.
  • the polarity of the bias voltage is set (switched) so that 32 moves to the second electrode 16 side. Accordingly, when the pen tip 50A is pressed against the display surface S1, the “writing mode” is executed, and the voltage Vsig corresponding to the writing mode is supplied to the first electrode 13 through the path R2.
  • the migrating particles 32 at the pressurized location move to the second electrode 16 side, for example, and display black. That is, a black line corresponding to the locus of the input pen 50 is drawn on the display surface S1.
  • the information Ds indicates that the pen tip 50A is facing upward
  • an “erasing mode” for example, the black and negatively charged migrating particles 32 are directed to the first electrode 13 side.
  • the polarity of the bias voltage that moves is set (switched).
  • the “erase mode” is executed.
  • the voltage Vsig corresponding to the erase mode is supplied to the first electrode 13 via the path R2.
  • the migrating particles 32 at the pressurization location move to the first electrode 13 side, and white display is performed. That is, some or all of the lines drawn on the display surface S1 can be erased.
  • the user can automatically switch between the writing mode and the erasing mode only by changing the direction of the tip of the input pen 50.
  • the user can perform a series of input operations such as writing lines and characters on the display surface S1 and partially erasing the written part as if using a pencil with an eraser. it can.
  • FIG. 23 schematically illustrates a cross-sectional configuration of the pressure-sensitive conductive layer 18 according to the third modification.
  • a plurality of grooves 18a are provided on at least one surface (for example, the surface S21) side of the surface S22 on the display element 10 side and the surface S21 on the third electrode 19 side. ing.
  • the plurality of grooves 18a are formed so as to extend in one direction in plan view (in the XZ plane), and as a whole have a so-called stripe shape or lattice shape.
  • the cross-sectional shape (XY cross-sectional shape) of each groove 18a is, for example, a triangular shape.
  • the cross-sectional shape of the groove 18a is not limited to this triangular shape, and may take various shapes such as a rectangular shape, a semicircular shape, and an elliptical shape.
  • the inside of the groove 18a may be, for example, a cavity, or may be filled with resin, rubber, adhesive, or the like.
  • the groove 18a may penetrate the pressure-sensitive conductive layer 18, and the pressure-sensitive conductive layer 18 may be divided into a plurality of parts. Further, the arrangement pitch, number, size, and the like of the grooves 18a are not particularly limited. The layout of the grooves 18a may be appropriately set according to the material used for the pressure-sensitive conductive layer 18, the thickness, the required line width, and the like. As a constituent material of the pressure-sensitive conductive layer 18 of this modification, the same materials as those in the above embodiment can be exemplified.
  • FIG. 24A schematically shows a change in shape of the pressure-sensitive conductive layer 18 having no groove 18a in a pressurized state as Comparative Example 2 of the present modification.
  • the pressure-sensitive conductive layer 18 is made of pressure-sensitive conductive rubber
  • the pressure-sensitive conductive layer 18 is in a range where the pen tip is actually in contact with the display surface S1 (pressure application range). It bends (deforms) in a wider range B1. For this reason, a voltage is applied to the display elements 10 arranged in this range B1, and the display state of these display elements 10 changes. Therefore, the drawn line width may be thicker than the actually used pen tip width.
  • the pressure-sensitive conductive layer 18 As in this modification, for example, as shown in FIG. 24B, the expansion of deformation due to the application of pressure P is blocked by the grooves 18a. . That is, the deformation range (range B2) of the pressure-sensitive conductive layer 18 when pressure is applied is limited by the groove 18a, and a voltage is applied only to the display element 10 arranged in this range B2. Therefore, in the pressure-sensitive conductive layer 18, the range B ⁇ b> 2 that is deformed by pressure application can be brought close to the actual pressure application range. Compared to the second comparative example, the drawing line width can be made thinner.
  • the interval (pitch) of the grooves 18A is desirably as small as possible, thereby enabling drawing with a line having a finer width.
  • FIG. 25 illustrates a cross-sectional configuration of a display device (display device 2) according to Modification 4.
  • the display device 2 is a reflective display device that displays an image by light reflectance control using a display element (display element 10) such as an electrophoretic display element, for example, as in the display device 1 of the above-described embodiment.
  • the display device 2 includes a TFT layer 12 and a plurality of display elements 10 arranged in a matrix, for example, on a first substrate 11.
  • a display body 10 ⁇ / b> A and a spacer 15 are provided between the first electrode 13 and the second electrode 16, and a second substrate 17 is provided on the second electrode 16.
  • a seal layer 14 is interposed between the first electrode 13 and the display body 10A.
  • FIG. 1 schematically shows the configuration of the display device 1 and may differ from actual dimensions and shapes.
  • the pressure-sensitive conductive layer 18, the third electrode (third electrode 19 ⁇ / b> A), and the support substrate 20 are provided below the TFT layer 12, specifically, on the back surface of the first substrate 11. ing.
  • the path 41 including the TFT 12A and the path R2 including the pressure-sensitive conductive layer 18 can be switched by the switch 41.
  • the display device 2 of the present modification is a color reflection type electrophoretic display device.
  • the third electrode 19A includes a plurality of sub-electrodes 19R, 19G, and 19B (the third electrode 19A is divided into a plurality of sub-electrodes 19R, 19G, and 19B).
  • FIG. 25 shows a region including the color filter 21G and the display element 10 facing the pixel a7, and a region including the color filter 21B and the display element 10 facing the pixel a8.
  • a region including 21R and the display element 10 opposed thereto is shown as a pixel a9.
  • the display state of the pixel a7 changes between green (green display) and black (black display) according to the bias voltage applied to the display body 10A.
  • the display state of the pixel a8 changes between blue (blue display) and black (black display) according to the bias voltage applied to the display body 10A.
  • the display state of the pixel a9 changes between red (red display) to black (black display).
  • display states of these pixels a7, a8, and a9 in addition to white display and black display, display of any color can be performed.
  • the color filter layer 21 includes multiple color filters 21R, 21G, and 21B such as red (R), green (G), and blue (B).
  • the color filters 21R, 21G, and 21B are arranged in a stripe shape in plan view, for example.
  • the color filter 21R selectively transmits, for example, light having a wavelength corresponding to red in light (white light) emitted from the display body 10A.
  • the color filter 21G selectively transmits, for example, light having a wavelength corresponding to green among light (white light) emitted from the display body 10A.
  • the color filter 21B selectively transmits light having a wavelength corresponding to blue out of light (white light) emitted from the display body 10A, for example.
  • the sub-electrodes 19R, 19G, and 19B constituting the third electrode 19A are opposed to the color filters 21R, 21G, and 21B, respectively, and have a stripe shape as a whole. That is, the sub electrode 19R is disposed to face the color filter 21R, the sub electrode 19G is disposed to face the color filter 21G, and the sub electrode 19B is disposed to face the color filter 21B.
  • FIG. 26 shows a configuration example of the sub electrodes 19R, 19G, and 19B.
  • a plurality of display elements 10 (for example, a plurality of display elements 10 arranged side by side in the row direction or the column direction) are arranged in a region facing each of the sub-electrodes 19R, 19G, 19B.
  • These sub-electrodes 19R, 19G, and 19B can be supplied with different (or the same) voltages when handwriting input is selected by the switch 41.
  • the same or different voltage Vsig is supplied to each of the sub-electrodes 19R, 19G, and 19B in the third electrode 19A, for example, at the time of handwriting input. This makes it possible to draw with a line of any color.
  • a voltage Vcom (0V) is applied to the second electrode 16 by a voltage application unit 40 (not shown), -15V is supplied to the sub-electrodes 19R and 19G, and 0V is supplied to the sub-electrode 19B.
  • the pressure-sensitive conductive layer 18 is deformed and the path R2 is formed at the pressure locations (here, the pixels a7, a8, and a9).
  • ⁇ 15 V is supplied to the first electrode 13 in the pixels a7 and a9
  • 0 V is supplied to the first electrode 13 in the pixel a8.
  • the black and negatively charged migrating particles 32 move to the second electrode 16 side in the pixels a7 and a9, and remain on the first electrode 13 side in the pixel a8. Therefore, the pixels a7 and a9 display black, and the pixel a8 emits blue light LB. That is, in this example, the locus traced by the input pen 50 is drawn as a blue line.
  • the third electrode 19A is divided into a plurality of sub-electrodes 19R, 19G, and 19B, whereby handwritten input (drawing with a colored pen) is performed with an arbitrary color line. ) Can be performed.
  • the third electrode 19A is subdivided into sub-electrodes 19R, 19G, and 19B, a finer drawing line width can be realized than in the above embodiment.
  • the pen tip 50A of the input pen 50 is larger than the scale of one pixel.
  • the deformation range of the pressure-sensitive conductive layer 18 is wider than the range where the pen tip 50A is actually in contact with the display surface S1. For this reason, the drawing line width tends to be thick, but in this modification, the voltage can be driven in units of sub-electrodes even during handwriting input, so the drawing line width can be refined. .
  • FIG. 28 illustrates a cross-sectional configuration of a display device according to the fifth modification.
  • the third electrode 19A is divided into a plurality of sub-electrodes 19R, 19G, and 19B corresponding to the filter arrangement of the color filter layer 21, but the third electrode 19A
  • This configuration can also be applied to a monochrome reflection type display device as in this modification.
  • the TFT layer 12, the first electrode 13, the seal layer 14, the display body 10 ⁇ / b> A, the second electrode 16, and the second substrate 17 are provided on the first substrate 11 as in the above embodiment.
  • a pressure-sensitive conductive layer 18 and a third electrode 19A are formed on the back surface of the first substrate 11.
  • the third electrode 19A is divided into a plurality of sub-electrodes 19A1, 19A2, and 19A3.
  • the sub-electrodes 19A1, 19A2, and 19A3 are formed in a stripe shape as a whole, similarly to the sub-electrodes 19R, 19G, and 19B of the fourth modification.
  • a plurality of display elements 10 (for example, a plurality of display elements 10 arranged side by side in the row direction or the column direction) are arranged in regions facing the sub-electrodes 19A1, 19A2, and 19A3.
  • Each of the sub-electrodes 19A1, 19A2, and 19A3 can be supplied with different (or the same) voltages when handwriting input is selected by the switch 41.
  • the third electrode 19A may be divided.
  • a finer drawing line width can be realized than in the embodiment. That is, since voltage driving can be performed in units of sub-electrodes, lines can be displayed regardless of the deformation range of the pressure-sensitive conductive layer 18 (in a range narrower than the deformation range).
  • FIG. 29 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a display unit 310 and a housing 320, and the display unit 310 is configured by the display device 1 of the above embodiment.
  • the display device 1 of the above embodiment may be applied to an electronic bulletin board or the like.
  • the configuration including the insulating liquid 31, the migrating particles 32, and the porous layer 33 is illustrated as the display body 10A of the display element 10 (electrophoretic display element).
  • the display body 10A of the display element 10 epidermal display element
  • the porous layer 33 is illustrated as the display body 10A of the display element 10 (electrophoretic display element).
  • a capsule type or a type without a fibrous structure (colored liquid itself) may be used.
  • a plurality of display elements each having a display body between a first electrode and a second electrode facing each other, and a display state changing according to an applied voltage;
  • a thin film transistor that is provided for each display element and performs switching for applying a voltage to the first electrode;
  • a pressure-sensitive conductive layer formed below the thin film transistor; and
  • a third electrode connected to the first electrode via the pressure-sensitive conductive layer;
  • a switch for selecting one of a first path including the thin film transistor and a second path including the pressure-sensitive conductive layer and the third electrode is provided.
  • the display device according to (1) further including a through electrode provided through the first substrate and electrically connecting the pressure-sensitive conductive layer and the first electrode.
  • the display device according to (2) wherein the through electrode is provided for each display element.
  • the thin film transistor has a gate electrode, a source electrode, and a drain electrode, The drain electrode of the thin film transistor is electrically connected to the first electrode;
  • the switch is configured to selectively connect one of the source electrode and the third electrode of the thin film transistor to a power source.
  • the switch according to any one of (1) to (3), Display device.
  • a display control unit for controlling the voltage applied to the display element to drive the display element;
  • the display control unit when writing to a part of the plurality of display elements, and the second path is selected by the switch,
  • the display device according to any one of (1) to (4), wherein a voltage having a polarity opposite to a voltage at the time of writing is applied.
  • (6) When writing is performed using a pen that can recognize the direction of the tip and has a sensor capable of transmitting information on the direction of the tip.
  • the display control unit Receiving information about the orientation of the tip from the pen;
  • the display device according to any one of (1) to (6), wherein the pressure-sensitive conductive layer has a groove on at least one of the third electrode side and the display element side.
  • the third electrode is provided as a common electrode in each region corresponding to each of the plurality of display elements.
  • the third electrode includes a plurality of electrically separated sub-electrodes; When the second path is selected by the switch, a voltage can be applied to a selective sub-electrode of the plurality of sub-electrodes.
  • each of the plurality of sub-electrodes is provided in a region corresponding to any one of the color filter layers.
  • the plurality of sub-electrodes form a stripe shape as a whole.
  • the display device according to any one of (1) to (11), wherein the display element is an electrophoretic display element.
  • the electrophoretic display element is a microcup type electrophoretic display element.
  • the display device according to (12), wherein the electrophoretic display element is a microcapsule electrophoretic display element.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

This display device is provided with: a plurality of display elements, each of which comprises a display body between a first electrode and a second electrode facing each other, and the display state of which changes in accordance with the voltage applied thereto; thin film transistors which are provided for respective display elements, and each of which performs switching for the application of a voltage to the first electrode; a pressure-sensitive conductive layer that is formed below the thin film transistors; a third electrode which is connected to the first electrode via the pressure-sensitive conductive layer; and a switch which selects, as a voltage application path to the first electrode, either a first path that contains the thin film transistor or a second path that contains the pressure-sensitive conductive layer and the third electrode.

Description

表示装置Display device

 本開示は、反射光を利用して画像表示を行う表示装置に関する。 The present disclosure relates to a display device that displays an image using reflected light.

 近年、電気泳動表示素子を用いた表示装置では、指やペン等で描かれた軌跡を表示すること(手書き入力)が可能な駆動手法が開発されている(例えば、特許文献1)。 Recently, in a display device using an electrophoretic display element, a driving method capable of displaying a locus drawn with a finger or a pen (handwriting input) has been developed (for example, Patent Document 1).

 この特許文献1の手法では、画素内に感圧式スイッチを設けることで、ペン等により加圧された箇所を部分的に駆動し、描かれた軌跡を表示することができる。 In the method disclosed in Patent Document 1, by providing a pressure-sensitive switch in a pixel, a portion pressed by a pen or the like can be partially driven to display a drawn locus.

特開2008-191324号公報JP 2008-191324 A

 しかしながら、上記特許文献1の手法では、感圧式スイッチを画素回路の内部に新たに設けることになる。このため、解像度および開口率が低下する。 However, in the method of Patent Document 1, a pressure-sensitive switch is newly provided inside the pixel circuit. For this reason, the resolution and the aperture ratio are reduced.

 解像度および開口率の低下を抑制しつつ、映像表示と手書き入力とを実現可能な表示装置を提供することが望ましい。 It is desirable to provide a display device capable of realizing video display and handwriting input while suppressing a decrease in resolution and aperture ratio.

 本開示の一実施の形態の表示装置は、各々が、互いに対向する第1電極と第2電極との間に表示体を有すると共に、印加電圧に応じて表示状態が変化する複数の表示素子と、表示素子毎に設けられ、第1電極へ電圧を印加するためのスイッチングを行う薄膜トランジスタと、薄膜トランジスタよりも下層に形成された感圧導電層と、感圧導電層を介して第1電極と接続された第3電極と、第1電極への電圧印加経路として、薄膜トランジスタを含む第1の経路と、感圧導電層および第3電極を含む第2の経路とのうちの一方を選択するスイッチとを備えたものである。 A display device according to an embodiment of the present disclosure includes a plurality of display elements each having a display body between a first electrode and a second electrode facing each other, and a display state changing according to an applied voltage. A thin film transistor provided for each display element, which performs switching for applying a voltage to the first electrode, a pressure sensitive conductive layer formed below the thin film transistor, and connected to the first electrode via the pressure sensitive conductive layer And a switch for selecting one of a first path including a thin film transistor and a second path including a pressure-sensitive conductive layer and a third electrode as a voltage application path to the first electrode. It is equipped with.

 本開示の一実施の形態の表示装置では、第1電極への電圧印加経路として、薄膜トランジスタを含む第1の経路と、感圧導電層および第3電極を含む第2の経路とが形成され、これらの第1および第2の経路が、スイッチにより選択される。これにより、第1の経路が選択された場合には、薄膜トランジスタを用いた表示駆動(アクティブマトリクス駆動)が可能となる。一方で、第2の経路が選択された場合には、装置表面が加圧(押圧)されることで、その加圧された箇所の表示素子へダイレクトに電圧を印加することができる。また、感圧導電層が、薄膜トランジスタよりも下層に配置されることから、画素回路内に配置される場合に比べ、回路レイアウトへの影響が少ない。 In the display device according to the embodiment of the present disclosure, as a voltage application path to the first electrode, a first path including a thin film transistor and a second path including a pressure-sensitive conductive layer and a third electrode are formed. These first and second paths are selected by a switch. Thereby, when the first path is selected, display driving (active matrix driving) using a thin film transistor is possible. On the other hand, when the second path is selected, the surface of the apparatus is pressurized (pressed), so that a voltage can be directly applied to the display element at the pressurized location. In addition, since the pressure-sensitive conductive layer is disposed below the thin film transistor, the influence on the circuit layout is small as compared with the case where the pressure-sensitive conductive layer is disposed in the pixel circuit.

 本開示の一実施の形態の表示装置によれば、第1電極への電圧印加経路として、薄膜トランジスタを含む第1の経路と、感圧導電層および第3電極を含む第2の経路とが形成され、これらの第1および第2の経路を選択するスイッチが設けられている。これにより、薄膜トランジスタを用いた駆動による表示(映像表示)と、部分的なダイレクト駆動による表示(手書き入力)とを切り替えて実現可能となる。また、感圧導電層が、薄膜トランジスタよりも下層に配置されるようにしたので、画素回路内に配置される場合に比べ、回路レイアウトへの影響を軽減して、解像度および開口率の低下を抑制できる。よって、解像度および開口率の低下を抑制しつつ、映像表示と手書き入力とを実現可能となる。なお、上記内容は本開示の一例である。本開示の効果は上述したものに限らず、他の効果であってもよいし、更に他の効果を含んでいてもよい。 According to the display device of one embodiment of the present disclosure, the first path including the thin film transistor and the second path including the pressure-sensitive conductive layer and the third electrode are formed as the voltage application path to the first electrode. In addition, a switch for selecting these first and second paths is provided. As a result, it is possible to switch between display by driving using a thin film transistor (video display) and display by partial direct drive (handwriting input). In addition, since the pressure-sensitive conductive layer is arranged below the thin film transistor, the influence on the circuit layout is reduced and the decrease in resolution and aperture ratio is suppressed compared to the case where it is arranged in the pixel circuit. it can. Therefore, it is possible to realize video display and handwriting input while suppressing a decrease in resolution and aperture ratio. The above content is an example of the present disclosure. The effects of the present disclosure are not limited to those described above, and other effects may be included or further effects may be included.

本開示の一実施の形態に係る表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus which concerns on one embodiment of this indication. 図1に示した表示体の構成例を説明するための平面模式図である。It is a plane schematic diagram for demonstrating the structural example of the display body shown in FIG. 図1に示した感圧導電層の機能を説明するための模式図である。It is a schematic diagram for demonstrating the function of the pressure-sensitive conductive layer shown in FIG. 図1に示した感圧導電層の機能を説明するための模式図である。It is a schematic diagram for demonstrating the function of the pressure-sensitive conductive layer shown in FIG. 図1に示した第1電極、TFT層、第1基板、感圧導電層、第3電極およびスイッチの構成を表す断面図である。FIG. 2 is a cross-sectional view illustrating configurations of a first electrode, a TFT layer, a first substrate, a pressure-sensitive conductive layer, a third electrode, and a switch illustrated in FIG. 1. 1つの表示素子を駆動するための回路構成をスイッチと共に表す回路図である。It is a circuit diagram showing the circuit structure for driving one display element with a switch. 図1に示した表示装置の製造工程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the display apparatus shown in FIG. 図6Aに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 6A. 図6Bに続く工程を説明するための断面図である。FIG. 6B is a cross-sectional view for explaining a process following the process in FIG. 6B. 図6Cに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 6C. 図6Dに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 6D. 図7Aに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 7A. 図7Bに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 7B. 図7Cに続く工程を説明するための断面図である。FIG. 7D is a cross-sectional view for illustrating a step following the step in FIG. 7C. 図7Dに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 7D. 図7Eに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 7E. 図7Fに続く工程を説明するための断面図である。FIG. 7D is a cross-sectional view for illustrating a step following the step in FIG. 7F. 図7Gに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 7G. 図8に続く工程を説明するための断面図である。FIG. 9 is a cross-sectional view for explaining a step following the step in FIG. 8. 図9に続く工程を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a step following the step in FIG. 9. 図1に示した表示装置の製造工程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the display apparatus shown in FIG. 図11Aに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 11A. 図11Bに続く工程を説明するための断面図である。It is sectional drawing for demonstrating the process following FIG. 11B. TFT駆動時(映像表示時)における処理フローを説明するための流れ図である。It is a flowchart for demonstrating the processing flow at the time of TFT drive (at the time of video display). TFT駆動時における表示素子(第1電極)への電圧印加経路について説明するための回路図である。It is a circuit diagram for demonstrating the voltage application path | route to the display element (1st electrode) at the time of TFT drive. TFT駆動時における表示状態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the display state at the time of TFT drive. 手書き入力時における処理フローを説明するための流れ図である。It is a flowchart for demonstrating the processing flow at the time of handwriting input. 手書き入力時における表示素子(第1電極)への電圧印加経路について説明するための回路図である。It is a circuit diagram for demonstrating the voltage application path | route to the display element (1st electrode) at the time of handwriting input. 手書き入力時における表示状態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the display state at the time of handwriting input. 比較例1に係る表示装置の作用(視差大)について説明するための模式図である。10 is a schematic diagram for explaining the operation (large parallax) of the display device according to Comparative Example 1. FIG. 図1に示した表示装置の作用(視差小)について説明するための模式図である。It is a schematic diagram for demonstrating an effect | action (small parallax) of the display apparatus shown in FIG. 変形例1に係る駆動動作(部分消去動作)について説明するための模式図である。10 is a schematic diagram for explaining a driving operation (partial erasing operation) according to Modification 1. FIG. 図19Aに続く駆動動作を説明するための模式図である。It is a schematic diagram for demonstrating the drive operation | movement following FIG. 19A. 図19Bに続く駆動動作を説明するための模式図である。FIG. 20B is a schematic diagram for explaining the driving operation subsequent to FIG. 19B. 部分消去時における表示素子(第1電極)への電圧印加経路について説明するための回路図である。It is a circuit diagram for demonstrating the voltage application path | route to the display element (1st electrode) at the time of partial erasing. 変形例2に係る表示装置の構成を入力ペンと共に表す機能ブロック図である。It is a functional block diagram showing the structure of the display apparatus which concerns on the modification 2 with an input pen. 図21に示した表示装置の入力ペンを用いた部分消去動作の一例を表す模式図である。FIG. 22 is a schematic diagram illustrating an example of a partial erasing operation using the input pen of the display device illustrated in FIG. 21. 変形例3に係る感圧導電層の構成を表す断面模式図である。10 is a schematic cross-sectional view illustrating a configuration of a pressure-sensitive conductive layer according to Modification 3. FIG. 比較例2に係る感圧導電層の作用を説明するための断面模式図である。10 is a schematic cross-sectional view for explaining the action of the pressure-sensitive conductive layer according to Comparative Example 2. FIG. 図23に示した感圧導電層の作用を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating an effect | action of the pressure-sensitive conductive layer shown in FIG. 変形例4に係る表示装置の構成を表す断面図である。10 is a cross-sectional view illustrating a configuration of a display device according to modification example 4. FIG. 図25に示した第3電極の斜視構成を表す模式図である。FIG. 26 is a schematic diagram illustrating a perspective configuration of a third electrode illustrated in FIG. 25. 図25に示した表示装置の手書き入力時の表示状態を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the display state at the time of the handwriting input of the display apparatus shown in FIG. 変形例5に係る表示装置の構成を表す断面図である。10 is a cross-sectional view illustrating a configuration of a display device according to Modification Example 5. FIG. 適用例に係るタブレットパーソナルコンピュータの外観を表す斜視図である。It is a perspective view showing the external appearance of the tablet personal computer which concerns on an application example.

 以下、本開示における実施形態について、図面を参照して詳細に説明する。なお、説明は、以下の順序で行う。
1.実施の形態(TFT駆動と感圧導電層を用いた駆動とをスイッチにより選択切り替えが可能な反射型の表示装置の例)
2.変形例1(部分消去駆動の例)
3.変形例2(傾斜センサを搭載した入力ペンを用いた部分消去駆動の例)
4.変形例3(感圧導電層に溝を設けた例)
5.変形例4(カラー反射型の表示装置において、第3電極を分割して配置した例)
6.変形例5(モノクロ反射型の表示装置において、第3電極を分割して配置した例)
7.適用例(電子機器)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (Example of a reflective display device capable of selectively switching between TFT driving and driving using a pressure-sensitive conductive layer by a switch)
2. Modification 1 (example of partial erase drive)
3. Modification 2 (Example of partial erasure driving using an input pen equipped with a tilt sensor)
4). Modification 3 (example in which a groove is provided in the pressure-sensitive conductive layer)
5). Modification 4 (example in which the third electrode is divided and arranged in the color reflection type display device)
6). Modification 5 (example in which the third electrode is divided and arranged in a monochrome reflection type display device)
7). Application example (electronic equipment)

<1.実施の形態>
[構成]
 図1は、本開示の一実施の形態の表示装置(表示装置1)の断面構成を表したものである。表示装置1は、例えば電気泳動表示素子等の表示素子(表示素子10)を用いて、光反射率制御により画像を表示するモノクロ反射型の表示装置である。
<1. Embodiment>
[Constitution]
FIG. 1 illustrates a cross-sectional configuration of a display device (display device 1) according to an embodiment of the present disclosure. The display device 1 is a monochrome reflection type display device that displays an image by light reflectance control using a display element (display element 10) such as an electrophoretic display element.

 この表示装置1は、第1基板11上に、TFT(Thin Film Transistor:薄膜トランジスタ)層12と、例えばマトリクス状に配置された複数の表示素子10とを備えたものである。各表示素子10は、第1電極13と第2電極16との間に表示体10Aを有するものである。表示体10Aは、スペーサ(隔壁)15によって表示素子10毎(画素毎)に分離されている。また、第2電極16上には、第2基板17が設けられている。第1電極13と表示体10Aとの間にはシール層14が介在する。なお、図1は表示装置1の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。以下、各部の構成について説明する。 The display device 1 includes a TFT (thin film transistor) layer 12 and a plurality of display elements 10 arranged in a matrix, for example, on a first substrate 11. Each display element 10 has a display body 10 </ b> A between the first electrode 13 and the second electrode 16. The display body 10 </ b> A is separated for each display element 10 (for each pixel) by a spacer (partition wall) 15. A second substrate 17 is provided on the second electrode 16. A seal layer 14 is interposed between the first electrode 13 and the display body 10A. FIG. 1 schematically shows the configuration of the display device 1 and may differ from actual dimensions and shapes. Hereinafter, the configuration of each unit will be described.

 第1基板11は、例えば、無機材料、金属材料およびプラスチック材料等のうちのいずれか1種類または2種類以上により形成されている。無機材料は、例えば、ケイ素(Si)、酸化ケイ素(SiOx)、窒化ケイ素(SiNx)または酸化アルミニウム(AlOx)等であり、その酸化ケイ素には、例えば、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料は、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等である。プラスチック材料は、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチルエーテルケトン(PEEK)、シクロオレフィンポリマー(COP)、ポリイミド(PI)またはポリエーテルサルフォン(PES)等である。 The first substrate 11 is formed of, for example, one or more of inorganic materials, metal materials, plastic materials, and the like. The inorganic material is, for example, silicon (Si), silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum oxide (AlO x ), or the like. Examples of the silicon oxide include glass or spin-on-glass (SOG). Etc. are included. Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel. Examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethyl ether ketone (PEEK), cycloolefin polymer (COP), polyimide (PI), and polyether sulfone (PES). Etc.

 この第1基板11は、光透過性を有していてもよいし、有していなくともよい。また、第1基板11は、ウェハ等の剛性を有する基板であってもよいし、可撓性を有する薄層ガラスまたはフィルム等であってもよい。但し、フレキシブル(折り曲げ可能)な電子ペーパーディスプレイを実現できることから、可撓性を有する材料からなることが望ましい。この第1基板11には、詳細は後述するが、例えば表示素子10毎に貫通電極11Aが形成されている。 The first substrate 11 may or may not have optical transparency. Further, the first substrate 11 may be a rigid substrate such as a wafer, or may be a flexible thin-layer glass or film. However, since a flexible (foldable) electronic paper display can be realized, it is desirable to be made of a flexible material. Although details will be described later on the first substrate 11, for example, a through electrode 11 </ b> A is formed for each display element 10.

 TFT層12は、例えば後述のTFT12Aを含む画素回路が形成された層である。このTFT層12の詳細構成について後述する。 The TFT layer 12 is a layer in which, for example, a pixel circuit including a TFT 12A described later is formed. The detailed configuration of the TFT layer 12 will be described later.

 第1電極13は、表示素子10毎に設けられている。第1電極13は、例えば、Al,Mo,ITO,Ni,Ti,Cr,Zn,C(炭素),Au(金),Ag(銀)またはCu(銅)等の導電性材料のいずれか1種類または2種類以上を含んでいる。この第1電極13には、後述するTFT12Aを介して、あるいは感圧導電層18を介して、表示素子10毎に設定された電圧(Vsig)を印加可能となっている。 The first electrode 13 is provided for each display element 10. The first electrode 13 is one of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C (carbon), Au (gold), Ag (silver), or Cu (copper). Includes one or more types. A voltage (Vsig) set for each display element 10 can be applied to the first electrode 13 via a TFT 12A described later or a pressure-sensitive conductive layer 18.

 シール層14は、例えば熱硬化樹脂および紫外線硬化樹脂などの樹脂材料から構成されている。スペーサ15は、例えば感光性樹脂などから構成されている。スペーサ15の形状は、特に限定されないが、泳動粒子32の第1電極13および第2電極16間の移動を妨げないと共に、それを均一分布させることができる形状であることが好ましく、例えば、格子状である。スペーサ15の厚みは、特に限定されないが、中でも、消費電力を低くするためにできるだけ薄いことが好ましく、例えば、10μm~100μmである。 The seal layer 14 is made of a resin material such as a thermosetting resin and an ultraviolet curable resin. The spacer 15 is made of, for example, a photosensitive resin. The shape of the spacer 15 is not particularly limited, but is preferably a shape that does not hinder the movement of the migrating particles 32 between the first electrode 13 and the second electrode 16 and can uniformly distribute the migrating particles 32. Is. The thickness of the spacer 15 is not particularly limited, but in particular, it is preferably as thin as possible in order to reduce power consumption, and is, for example, 10 μm to 100 μm.

 第2電極16は、例えば、光透過性を有する導電性材料(透明導電材料)を1種類または2種類以上を含んでいる。導電性材料としては、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)およびアルミニウムドープ酸化亜鉛(AZO)等が挙げられる。この第2電極16の厚みは、例えば0.001μm以上1μm以下である。この第2電極16は、例えば、第2基板17の一面に、例えば表示可能な領域の全面にわたって形成され、各表示素子10に共通の電極となっている。但し、第1電極13と同様に、素子毎に複数に分割されていても構わない。 The second electrode 16 includes, for example, one kind or two or more kinds of light-transmitting conductive materials (transparent conductive materials). Examples of the conductive material include indium oxide-tin oxide (ITO), antimony oxide-tin oxide (ATO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO). The thickness of the second electrode 16 is, for example, not less than 0.001 μm and not more than 1 μm. For example, the second electrode 16 is formed on one surface of the second substrate 17 over, for example, the entire displayable region, and is an electrode common to the display elements 10. However, similarly to the first electrode 13, it may be divided into a plurality of elements for each element.

 第2基板17の表面(表示面S1)に画像が表示される場合には、第2電極16を介して表示体10Aを見ることになるため、第2電極16の光透過率はできるだけ高いことが好ましく、例えば、80%以上である。また、第2電極16の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□(スクエア)以下である。 When an image is displayed on the surface (display surface S1) of the second substrate 17, the display body 10A is viewed through the second electrode 16, and therefore the light transmittance of the second electrode 16 is as high as possible. For example, 80% or more. The electric resistance of the second electrode 16 is preferably as low as possible, for example, 100Ω / □ (square) or less.

 第2基板17は、例えば、PET,TAC,PEN,PC,アクリル,ガラス等により構成されている。第2基板17としては、この他にも、第1基板11の構成材料として挙げたものの中から光透過性を有するものを用いることができる。第2基板17の上面側に画像が表示されるため、第2基板17は光透過性である必要があるからである。この第2基板17の厚みは、例えば10μm以上250μm以下である。 The second substrate 17 is made of, for example, PET, TAC, PEN, PC, acrylic, glass, or the like. In addition to this, as the second substrate 17, a material having optical transparency can be used from the materials listed as the constituent material of the first substrate 11. This is because an image is displayed on the upper surface side of the second substrate 17, and the second substrate 17 needs to be light transmissive. The thickness of the second substrate 17 is, for example, not less than 10 μm and not more than 250 μm.

 表示体10Aは、第1電極13と第2電極16とを通じて印加される電圧の変化に応じて、その表示状態(光反射率)を変化させるものである。表示体10Aは、例えば電気泳動現象を利用してコントラストを生じさせるものであり、印加電界に応じて一対の電極(第1電極13および第2電極16)の間を移動可能な泳動粒子32を含んでいる。 The display body 10 </ b> A changes its display state (light reflectance) in accordance with a change in voltage applied through the first electrode 13 and the second electrode 16. The display body 10A generates contrast using, for example, an electrophoretic phenomenon. The display body 10A includes electrophoretic particles 32 that can move between a pair of electrodes (first electrode 13 and second electrode 16) according to an applied electric field. Contains.

 このような表示体10Aをもつ表示素子10としては、例えばマイクロカップ方式またはマイクロカプセル方式の電気泳動表示素子が挙げられる。マイクロカップ方式では、例えば、表示体10Aが、黒色に着色された泳動粒子(泳動粒子32)と、白色に着色された液体または多孔質層とを含むと共に、弾性率の高いリブ(スペーサ15)によって隔てられた構成を有している。また、このマイクロカップ方式では、1粒子タイプであってもよいし、2粒子タイプであってもよい。あるいは、2粒子タイプのマイクロカプセル方式であっても構わない。マイクロカプセル方式では、例えば、それぞれに、白色に着色された泳動粒子と黒色に着色された泳動粒子とが封入された複数のカプセルが用いられる。但し、マイクロカップ方式を用いた場合の方が、マイクロカプセル方式を用いた場合に比べ、手書き入力により表示(描画)される線幅をより精細に制御し易い。また、表示素子10としては、この他にも、多孔質層33を用いずに、液体そのものを着色したものを用いてもよい。あるいは、エレクトロクロミック表示素子などが用いられてもよい。ここでは、一例として、1粒子タイプのマイクロカップ方式の電気泳動表示素子を挙げて説明する。 Examples of the display element 10 having such a display body 10A include a microcup type or microcapsule type electrophoretic display element. In the microcup method, for example, the display body 10A includes electrophoretic particles (electrophoretic particles 32) colored black and a liquid or porous layer colored white, and a rib (spacer 15) having a high elastic modulus. It has the structure separated by. Moreover, in this microcup system, a 1 particle type may be sufficient and a 2 particle type may be sufficient. Alternatively, a two-particle type microcapsule method may be used. In the microcapsule method, for example, a plurality of capsules each encapsulating electrophoretic particles colored in white and electrophoretic particles colored in black are used. However, the line width displayed (drawn) by handwriting input is more easily controlled when the microcup method is used than when the microcapsule method is used. In addition to this, as the display element 10, it is also possible to use a colored liquid itself without using the porous layer 33. Alternatively, an electrochromic display element or the like may be used. Here, as an example, a one-particle type microcup electrophoretic display element will be described.

(表示体10Aの構成例)
 図2は、表示体10Aの一例を表したものである。表示体10Aは、例えば、絶縁性液体31中に多孔質層33と泳動粒子32とを含むものである。
(Configuration example of display 10A)
FIG. 2 shows an example of the display body 10A. The display body 10 </ b> A includes, for example, a porous layer 33 and migrating particles 32 in an insulating liquid 31.

 絶縁性液体31は、例えば有機溶媒などの非水溶媒であり、具体的には、パラフィンまたはイソパラフィンなどを含んで構成されている。この絶縁性液体31の粘度および屈折率は、できるだけ低いことが好ましい。泳動粒子32の移動性(応答速度)が向上すると共に、それに応じて泳動粒子32の移動に要するエネルギー(消費電力)が低くなるからである。また、絶縁性液体31の屈折率と多孔質層33の屈折率との差が大きくなるため、その多孔質層33の光反射率が高くなるからである。 The insulating liquid 31 is a nonaqueous solvent such as an organic solvent, and specifically includes paraffin or isoparaffin. It is preferable that the viscosity and refractive index of the insulating liquid 31 are as low as possible. This is because the mobility (response speed) of the migrating particles 32 is improved, and the energy (power consumption) required to move the migrating particles 32 is lowered accordingly. In addition, since the difference between the refractive index of the insulating liquid 31 and the refractive index of the porous layer 33 is increased, the light reflectance of the porous layer 33 is increased.

 尚、絶縁性液体31は、必要に応じて、各種材料を含んでいてもよい。例えば、絶縁性液体31は、着色剤、電荷制御剤、分散安定剤、粘度調製剤、界面活性剤または樹脂などを含んでいてもよい。また、絶縁性液体31の代わりに、微弱導電性液体が用いられてもよい。 The insulating liquid 31 may contain various materials as necessary. For example, the insulating liquid 31 may include a colorant, a charge control agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin. Further, a weak conductive liquid may be used instead of the insulating liquid 31.

 泳動粒子32は、第1電極13と第2電極16との間を移動可能な1種類または2種類以上の荷電粒子であり、絶縁性液体31中に分散されている。この泳動粒子32は、任意の光学的反射特性(光反射率)を有している。泳動粒子32の光反射率は、特に限定されないが、少なくとも泳動粒子32が多孔質層33を遮蔽可能となるように設定されることが好ましい。泳動粒子32の光反射率と多孔質層33の光反射率との違いを利用してコントラストを生じさせるためである。 The migrating particles 32 are one type or two or more types of charged particles that can move between the first electrode 13 and the second electrode 16, and are dispersed in the insulating liquid 31. The migrating particles 32 have arbitrary optical reflection characteristics (light reflectivity). The light reflectance of the migrating particles 32 is not particularly limited, but is preferably set so that at least the migrating particles 32 can shield the porous layer 33. This is because contrast is generated by utilizing the difference between the light reflectance of the migrating particles 32 and the light reflectance of the porous layer 33.

 泳動粒子32の構成材料としては、例えば、有機顔料、無機顔料、染料、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料(樹脂)などのいずれか1種類または2種類以上の粒子(粉末)が挙げられる。なお、泳動粒子32は、上記した粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子などでもよい。ただし、炭素材料、金属材料、金属酸化物、ガラスまたは高分子材料に該当する材料は、有機顔料、無機顔料または染料に該当する材料から除かれることとする。この泳動粒子32としては、上記の中のいずれか1種類が用いられてもよいし、複数種類のものが用いられてもよい。 As the constituent material of the migrating particles 32, for example, one kind or two or more kinds of particles (organic pigment, inorganic pigment, dye, carbon material, metal material, metal oxide, glass, polymer material (resin), etc. ( Powder). The migrating particles 32 may be pulverized particles or capsule particles of resin solids containing the above-described particles. However, materials corresponding to carbon materials, metal materials, metal oxides, glass, or polymer materials are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. As the electrophoretic particles 32, any one of the above may be used, or a plurality of types may be used.

 有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、カーボンブラック、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。このように可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Organic pigments include, for example, azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, perinones. Pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, carbon black, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, Lead chromate, lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. As long as the polymer compound has a light absorption region in the visible light region, the type of the compound is not particularly limited.

 泳動粒子32の具体的な形成材料は、上記材料の中から、例えば、コントラストを生じさせるために泳動粒子32が担う役割に応じて選択される。例えば、泳動粒子32により暗表示(黒表示)される場合の材料は、黒色の材料、例えば、炭素材料または金属酸化物などである。炭素材料は、例えば、カーボンブラックなどであり、金属酸化物は、例えば、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物などである。中でも、炭素材料が好ましい。優れた化学的安定性、移動性および光吸収性が得られるからである。一方、泳動粒子32により明表示(白表示)される場合の材料は、白色の材料、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウムなどの金属酸化物であり、中でも、酸化チタンが好ましい。電気化学的安定性および分散性などに優れていると共に、高い反射率が得られるからである。 The specific forming material of the migrating particles 32 is selected from the above materials according to the role of the migrating particles 32 in order to cause contrast, for example. For example, the material in the case of dark display (black display) by the migrating particles 32 is a black material such as a carbon material or a metal oxide. The carbon material is, for example, carbon black, and the metal oxide is, for example, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide, or copper-iron. -Chromium oxide and the like. Among these, a carbon material is preferable. This is because excellent chemical stability, mobility and light absorption are obtained. On the other hand, the material in the case of bright display (white display) by the migrating particles 32 is a white material, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate, Titanium oxide is preferred. This is because it is excellent in electrochemical stability and dispersibility and has high reflectance.

 絶縁性液体31中における泳動粒子32の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。泳動粒子32の遮蔽(隠蔽)性および移動性が確保されるからである。この場合には、0.1重量%よりも少ないと、泳動粒子32が多孔質層33を遮蔽しにくくなる可能性がある。一方、10重量%よりも多いと、泳動粒子32の分散性が低下するため、その泳動粒子32が泳動しにくくなり、場合によっては凝集する可能性がある。 The content (concentration) of the migrating particles 32 in the insulating liquid 31 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. This is because shielding (concealment) and mobility of the migrating particles 32 are ensured. In this case, if it is less than 0.1% by weight, the migrating particles 32 may not easily shield the porous layer 33. On the other hand, when the amount is more than 10% by weight, the dispersibility of the migrating particles 32 is lowered, so that the migrating particles 32 are difficult to migrate, and in some cases, there is a possibility of aggregation.

 泳動粒子32の平均粒径は、例えば、0.1μm以上10μm以下の範囲であることが好ましい。 The average particle diameter of the migrating particles 32 is preferably in the range of 0.1 μm to 10 μm, for example.

 なお、泳動粒子32は、絶縁性液体31中で長期間に渡って分散および帯電しやすいと共に多孔質層33に吸着されにくいことが好ましい。このため、静電反発により泳動粒子32を分散させるために分散剤(または電荷調整剤)を用いたり、泳動粒子32に表面処理を施してもよい。また、両者を併用してもよい。 In addition, it is preferable that the migrating particles 32 are easily dispersed and charged in the insulating liquid 31 over a long period of time and are not easily adsorbed by the porous layer 33. For this reason, in order to disperse the electrophoretic particles 32 by electrostatic repulsion, a dispersant (or a charge adjusting agent) may be used, or the electrophoretic particles 32 may be subjected to a surface treatment. Moreover, you may use both together.

 分散剤は、例えばLubrizol社製のSolsperseシリーズ、BYK-Chemie社製のBYKシリーズまたはAnti-Terra シリーズ、あるいはICI Americas 社製Spanシリーズ等である。 The dispersing agent is, for example, Solsperse series manufactured by Lubrizol, BYK series or Anti-Terra® series manufactured by BYK-Chemie, or Span series manufactured by ICI® Americas®.

 表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。中でも、グラフト重合処理、マイクロカプセル化処理またはそれらの組み合わせが好ましい。長期間の分散安定性等が得られるからである。 The surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. Among these, graft polymerization treatment, microencapsulation treatment, or a combination thereof is preferable. This is because long-term dispersion stability and the like can be obtained.

 表面処理用の材料は、例えば、泳動粒子32の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着材料)等である。吸着可能な官能基の種類は、泳動粒子32の形成材料に応じて決定される。一例を挙げると、カーボンブラック等の炭素材料に対しては4-ビニルアニリン等のアニリン誘導体であり、金属酸化物に対してはメタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体である。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 The surface treatment material is, for example, a material (adsorbing material) having a functional group and a polymerizable functional group that can be adsorbed on the surface of the migrating particle 32. The type of functional group that can be adsorbed is determined according to the material for forming the migrating particles 32. For example, carbon materials such as carbon black are aniline derivatives such as 4-vinylaniline, and metal oxides are organosilane derivatives such as 3- (trimethoxysilyl) propyl methacrylate. . Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.

 また、表面処理用の材料は、例えば、重合性官能基が導入された泳動粒子32の表面にグラフト可能な材料(グラフト性材料)である。このグラフト性材料は、重合性官能基と、絶縁性液体31中に分散可能であると共に、立体障害により分散性を保持可能な分散用官能基とを有していることが好ましい。重合性官能基の種類は、吸着性材料について説明した場合と同様である。分散用官能基は、例えば、絶縁性液体31がパラフィンである場合には分岐状のアルキル基等である。グラフト性材料を重合およびグラフトさせるためには、例えばアゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい。 Further, the material for surface treatment is, for example, a material (graftable material) that can be grafted on the surface of the migrating particles 32 into which a polymerizable functional group is introduced. The graft material preferably has a polymerizable functional group and a dispersing functional group that can be dispersed in the insulating liquid 31 and can maintain dispersibility due to steric hindrance. The kind of polymerizable functional group is the same as that described for the adsorptive material. The dispersing functional group is, for example, a branched alkyl group when the insulating liquid 31 is paraffin. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.

 参考までに、上記したように絶縁性液体31中に泳動粒子32を分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For reference, the details of the method for dispersing the migrating particles 32 in the insulating liquid 31 as described above are described in “Dispersion Technology of Ultrafine Particles and Its Evaluation—Surface Treatment / Fine Grinding and Air / Liquid / Polymer” It is published in books such as “Dispersion Stabilization ~ (Science & Technology)”.

 多孔質層33は、例えば、図2に示したように、繊維状構造体331により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)である。この多孔質層33は、繊維状構造体331が存在していない箇所に、泳動粒子32が通過するための複数の隙間(細孔333)を有している。 The porous layer 33 is, for example, a three-dimensional structure (irregular network structure such as a nonwoven fabric) formed by a fibrous structure 331 as shown in FIG. The porous layer 33 has a plurality of gaps (pores 333) through which the migrating particles 32 pass in places where the fibrous structure 331 does not exist.

 繊維状構造体331は、1または2以上の非泳動粒子332を含み、その非泳動粒子332は、繊維状構造体331により保持されている。3次元立体構造物である多孔質層33では、1本の繊維状構造体331がランダムに絡み合っていてもよいし、複数本の繊維状構造体331が集合してランダムに重なっていてもよいし、また、両者が混在していてもよい。繊維状構造体331が複数本である場合、各繊維状構造体331は、1または2以上の非泳動粒子332を保持していることが好ましい。なお、図2では、複数本の繊維状構造体331により多孔質層33が形成されている場合を示している。 The fibrous structure 331 includes one or more non-migrating particles 332, and the non-migrating particles 332 are held by the fibrous structure 331. In the porous layer 33 which is a three-dimensional structure, one fibrous structure 331 may be entangled at random, or a plurality of fibrous structures 331 may be gathered and overlap at random. In addition, both may be mixed. When there are a plurality of fibrous structures 331, each fibrous structure 331 preferably holds one or more non-migrating particles 332. FIG. 2 shows a case where the porous layer 33 is formed by a plurality of fibrous structures 331.

 繊維状構造体331に非泳動粒子332が含まれているのは、外光がより乱反射しやすくなるため、多孔質層33の光反射率がより高くなるからである。これにより、非泳動粒子332が含まれていない場合に比べ、コントラストをより高めることができる。 The reason why the non-migrating particles 332 are included in the fibrous structure 331 is that the light reflectance of the porous layer 33 is higher because external light is more easily diffusely reflected. Thereby, compared with the case where the non-electrophoretic particle 332 is not contained, contrast can be raised more.

 繊維状構造体331は、繊維径(直径)に対して長さが十分に大きい繊維状物質である。この繊維状構造体331は、例えば、高分子材料または無機材料などのいずれか1種類または2種類以上を含んでおり、他の材料を含んでいてもよい。高分子材料は、例えば、ナイロン、ポリ乳酸、ポリアミド、ポリイミド、ポリエチレンテレフタレート、ポリアクリロニトリル、ポリエチレンオキシド、ポリビニルカルバゾール、ポリビニルクロライド、ポリウレタン、ポリスチレン、ポリビニルアルコール、ポリサルフォン、ポリビニルピロリドン、ポリビニリデンフロリド、ポリヘキサフルオロプロピレン、セルロースアセテート、コラーゲン、ゼラチン、キトサンまたはそれらのコポリマーなどである。無機材料は、例えば、酸化チタンなどである。中でも、繊維状構造体331の形成材料としては、高分子材料が好ましい。反応性(光反応性など)が低い(化学的に安定である)ため、繊維状構造体331の意図しない分解反応が抑制されるからである。なお、繊維状構造体331が高反応性の材料により形成されている場合には、その繊維状構造体331の表面は任意の保護層により被覆されていることが好ましい。 The fibrous structure 331 is a fibrous substance having a sufficiently large length with respect to the fiber diameter (diameter). The fibrous structure 331 includes, for example, any one type or two or more types such as a polymer material or an inorganic material, and may include other materials. Polymer materials include, for example, nylon, polylactic acid, polyamide, polyimide, polyethylene terephthalate, polyacrylonitrile, polyethylene oxide, polyvinyl carbazole, polyvinyl chloride, polyurethane, polystyrene, polyvinyl alcohol, polysulfone, polyvinyl pyrrolidone, polyvinylidene fluoride, polyhexa Fluoropropylene, cellulose acetate, collagen, gelatin, chitosan or copolymers thereof. The inorganic material is, for example, titanium oxide. Among these, a polymer material is preferable as a material for forming the fibrous structure 331. This is because the reactivity (photoreactivity, etc.) is low (chemically stable), so that the unintended decomposition reaction of the fibrous structure 331 is suppressed. Note that in the case where the fibrous structure 331 is formed of a highly reactive material, the surface of the fibrous structure 331 is preferably covered with an arbitrary protective layer.

 繊維状構造体331の形状(外観)は、上記したように繊維径に対して長さが十分に大きい繊維状であれば、特に限定されない。具体的には、直線状でもよいし、縮れていたり、途中で折れ曲がっていてもよい。また、一方向に延在しているだけに限らず、途中で1または2以上の方向に分岐していてもよい。この繊維状構造体331の形成方法は、特に限定されないが、例えば、相分離法、相反転法、静電(電界)紡糸法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法またはスプレー塗布法などであることが好ましい。繊維径に対して長さが十分に大きい繊維状物質を容易かつ安定に形成しやすいからである。 The shape (appearance) of the fibrous structure 331 is not particularly limited as long as the fibrous structure 331 has a sufficiently long length with respect to the fiber diameter as described above. Specifically, it may be linear, may be curled, or may be bent in the middle. Moreover, you may branch to 1 or 2 or more directions on the way, not only extending in one direction. The formation method of the fibrous structure 331 is not particularly limited. For example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, A sol-gel method or a spray coating method is preferred. This is because a fibrous substance having a sufficiently large length with respect to the fiber diameter can be easily and stably formed.

 この繊維状構造体331は、泳動粒子32とは異なる光学的反射特性を有していることが好ましい。例えば、泳動粒子32により暗表示がなされる場合、黒色の泳動粒子32と、白色の繊維状構造体331とが用いられる。泳動粒子32により明表示がなされる場合には、白色の泳動粒子32と、黒色の繊維状構造体331とが用いられる。 This fibrous structure 331 preferably has an optical reflection characteristic different from that of the migrating particles 32. For example, when dark display is performed by the migrating particles 32, black migrating particles 32 and white fibrous structures 331 are used. When a bright display is performed by the migrating particles 32, white migrating particles 32 and a black fibrous structure 331 are used.

 非泳動粒子332は、繊維状構造体331に固定されており、電気的に泳動しない粒子である。この非泳動粒子332の形成材料は、例えば、泳動粒子32の形成材料と同様であり、非泳動粒子332が担う役割に応じて選択される。この非泳動粒子332は、泳動粒子32とは異なる光学的反射特性を有している。 Non-electrophoretic particles 332 are particles that are fixed to the fibrous structure 331 and do not migrate electrically. The material for forming the non-electrophoretic particles 332 is the same as the material for forming the electrophoretic particles 32, for example, and is selected according to the role that the non-electrophoretic particles 332 play. The non-migrating particles 332 have optical reflection characteristics different from those of the migrating particles 32.

 本実施の形態では、上記のような表示装置1において、TFT層12よりも下層に、例えば第1基板11の裏面に、感圧導電層18と第3電極19とがこの順に形成されている。 In the present embodiment, in the display device 1 as described above, the pressure-sensitive conductive layer 18 and the third electrode 19 are formed in this order below the TFT layer 12, for example, on the back surface of the first substrate 11. .

 感圧導電層18は、圧力(加圧状態)に応じて、電気抵抗が変化する構造物であり、具体的には、加圧されることで電気抵抗が小さくなる(導電性を発揮する)材料、例えば、感圧導電ゴムにより構成されている。その一例を、図3Aおよび図3Bに示す。但し、図3Aは、非加圧状態の断面構成を、図3Bは、加圧状態の断面構成を、それぞれ模式的に示している。このように、感圧導電層18は、例えばゴム材料等により構成された絶縁層181中に、導電素子182を分散させたものである。非加圧状態(図3A)では、絶縁層181中において各導電素子182が離散しているため、電気抵抗が高い。一方、図3Bに示したように、加圧状態(Y軸方向に沿って圧力Pを印加した状態)では、感圧導電層18が撓み(変形し)、絶縁層181中において各導電素子182が連なる、あるいは近接する。これにより、感圧導電層18内に、導電経路Rが形成される(電気抵抗が低くなる)。なお、感圧導電層18の厚みは、特に限定されないが、例えば、1mm以下であることが好ましい。 The pressure-sensitive conductive layer 18 is a structure in which the electric resistance changes according to the pressure (pressurized state), and specifically, the electric resistance is reduced (exhibits conductivity) by being pressurized. It is made of a material such as a pressure-sensitive conductive rubber. An example is shown in FIGS. 3A and 3B. However, FIG. 3A schematically illustrates a cross-sectional configuration in a non-pressurized state, and FIG. 3B schematically illustrates a cross-sectional configuration in a pressurized state. Thus, the pressure-sensitive conductive layer 18 is obtained by dispersing the conductive elements 182 in the insulating layer 181 made of, for example, a rubber material. In the non-pressurized state (FIG. 3A), since each conductive element 182 is discrete in the insulating layer 181, the electrical resistance is high. On the other hand, as shown in FIG. 3B, in a pressurized state (a state where pressure P is applied along the Y-axis direction), the pressure-sensitive conductive layer 18 bends (deforms), and each conductive element 182 in the insulating layer 181. Are connected or close together. As a result, a conductive path R is formed in the pressure-sensitive conductive layer 18 (electrical resistance is reduced). The thickness of the pressure-sensitive conductive layer 18 is not particularly limited, but is preferably 1 mm or less, for example.

 尚、感圧導電層18の構成材料としては、上記のような感圧導電ゴムの他にも、例えば感圧インク、異方性導電膜、荷電粒子を含有した粘着材または異方性導電ゴムなどを用いることができる。 The constituent material of the pressure-sensitive conductive layer 18 includes, for example, pressure-sensitive ink, anisotropic conductive film, adhesive containing charged particles, or anisotropic conductive rubber in addition to the pressure-sensitive conductive rubber as described above. Etc. can be used.

 この感圧導電層18は、例えば複数の表示素子10に共通の層として、第1基板11の全面にわたって連続して形成されている。 The pressure-sensitive conductive layer 18 is formed continuously over the entire surface of the first substrate 11, for example, as a layer common to the plurality of display elements 10.

 第3電極19は、例えば、Al,Mo,ITO,Ni,Ti,Cr,Zn,C,Au,AgまたはCu等の導電性材料のいずれか1種類または2種類以上を含んでいる。この第3電極19の厚みは、例えば0.01μm以上100μm以下である。第3電極19は、例えば複数の表示素子10に共通の層として、感圧導電層18の裏面に(ここでは、感圧導電層18と支持基板20との間に)、連続して形成されている。この第3電極19の裏面には、更に支持基板(支持フィルム)20が貼り合わせられている。 The third electrode 19 includes one or more of conductive materials such as Al, Mo, ITO, Ni, Ti, Cr, Zn, C, Au, Ag, or Cu, for example. The thickness of the third electrode 19 is, for example, not less than 0.01 μm and not more than 100 μm. For example, the third electrode 19 is formed continuously on the back surface of the pressure-sensitive conductive layer 18 (here, between the pressure-sensitive conductive layer 18 and the support substrate 20) as a layer common to the plurality of display elements 10. ing. A support substrate (support film) 20 is further bonded to the back surface of the third electrode 19.

 本実施の形態では、TFT層12と第3電極19とを選択的に切り替えて電圧印加部40(電源)に接続するスイッチ41を備えている。ここでは、スイッチ41として、TFT層12と電圧印加部40との間にスイッチ41Aが、第3電極19と電圧印加部40との間には、スイッチ41Bがそれぞれ設けられている。 In the present embodiment, a switch 41 that selectively switches between the TFT layer 12 and the third electrode 19 and connects to the voltage application unit 40 (power source) is provided. Here, as the switch 41, a switch 41 </ b> A is provided between the TFT layer 12 and the voltage application unit 40, and a switch 41 </ b> B is provided between the third electrode 19 and the voltage application unit 40.

 図4は、TFT層12の詳細構成を、第1電極13、第1基板11、感圧導電層18、第3電極19およびスイッチ41の構成と共に表したものである。図5は、1つの表示素子10に対応する領域(画素に対応する領域)の回路構成を表したものである。このように、TFT層12は、例えばTFT12Aと保持容量12Bとを含んで構成されている。 FIG. 4 shows the detailed configuration of the TFT layer 12 together with the configuration of the first electrode 13, the first substrate 11, the pressure-sensitive conductive layer 18, the third electrode 19, and the switch 41. FIG. 5 shows a circuit configuration of a region corresponding to one display element 10 (region corresponding to a pixel). As described above, the TFT layer 12 includes, for example, the TFT 12A and the storage capacitor 12B.

 具体的には、第1基板11上の選択的な領域に、平坦化膜121を介して、ゲート電極122aと下部電極122bとが形成されている。これらのゲート電極122aと下部電極122bとを覆うようにゲート絶縁膜123が形成されている。ゲート絶縁膜123上のゲート電極122aと対向する領域には、半導体層124が形成されている。この半導体層124に電気的に接続されて(半導体層124の一部に重畳して)、ソース・ドレイン電極125A,125Bが形成されている。ソース・ドレイン電極125Bの一部は、下部電極122b上にゲート絶縁膜123を介して積層されており、これらの積層部分が保持容量12Bを成している。半導体層124の上面のうち、ソース・ドレイン電極125A,125Bから露出した部分は保護膜126によって覆われている。これらのTFT12Aおよび保持容量12Bを覆って、層間絶縁膜127が形成されており、この層間絶縁膜127上に、第1電極13が配置されている。 Specifically, a gate electrode 122a and a lower electrode 122b are formed in a selective region on the first substrate 11 with a planarizing film 121 interposed therebetween. A gate insulating film 123 is formed so as to cover these gate electrode 122a and lower electrode 122b. A semiconductor layer 124 is formed in a region on the gate insulating film 123 facing the gate electrode 122a. Source / drain electrodes 125 </ b> A and 125 </ b> B are formed by being electrically connected to the semiconductor layer 124 (overlapping with part of the semiconductor layer 124). A part of the source / drain electrode 125B is stacked on the lower electrode 122b via the gate insulating film 123, and these stacked portions form the storage capacitor 12B. Of the upper surface of the semiconductor layer 124, portions exposed from the source / drain electrodes 125 </ b> A and 125 </ b> B are covered with a protective film 126. An interlayer insulating film 127 is formed so as to cover the TFT 12A and the storage capacitor 12B, and the first electrode 13 is disposed on the interlayer insulating film 127.

 TFT12Aは、例えばボトムゲート構造の薄膜トランジスタであり、nチャネル型またはpチャネル型のMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)により構成されている。ゲート電極122aは、ゲート線131に接続されており、このゲート線131を介したゲート電圧Vgの印加によってTFT12Aのオン状態およびオフ状態が切り替えられる(スイッチング動作がなされる)ようになっている。ソース・ドレイン電極125A,125Bは、一方がソース電極、他方がドレイン電極として機能するものである。これらのうちソース・ドレイン電極125A(例えばソース電極)は、配線132aを介してスイッチ41(スイッチ41A)に接続されている。ソース・ドレイン電極125B(例えばドレイン電極)は、層間絶縁膜127に設けられたコンタクトホールH3を介して、第1電極13と電気的に接続されている。このソース・ドレイン電極125Bの一部は、保持容量12Bの上部電極を兼ねている(保持容量12Bの一端に接続されている)。半導体層124は、例えば酸化物半導体、有機半導体、多結晶シリコン、非結晶シリコンまたは微結晶シリコン等から構成されている。 The TFT 12A is a thin film transistor having a bottom gate structure, for example, and is composed of an n-channel or p-channel MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor). The gate electrode 122a is connected to the gate line 131, and the on state and the off state of the TFT 12A are switched (a switching operation is performed) by application of the gate voltage Vg via the gate line 131. One of the source / drain electrodes 125A and 125B functions as a source electrode and the other functions as a drain electrode. Of these, the source / drain electrode 125A (for example, the source electrode) is connected to the switch 41 (switch 41A) via the wiring 132a. The source / drain electrode 125B (for example, the drain electrode) is electrically connected to the first electrode 13 through a contact hole H3 provided in the interlayer insulating film 127. Part of the source / drain electrode 125B also serves as an upper electrode of the storage capacitor 12B (connected to one end of the storage capacitor 12B). The semiconductor layer 124 is made of, for example, an oxide semiconductor, an organic semiconductor, polycrystalline silicon, amorphous silicon, or microcrystalline silicon.

 保持容量12Bの一端(上部電極)は、ソース・ドレイン電極125Bおよび第1電極13に電気的に接続されている。保持容量12Bの他端(下部電極122b)は、共通電位線133に接続されており、例えば一定の電圧Vcomに保持されている。表示素子10の第2電極16も、その共通電位線133に接続されている(第2電極16は電圧Vcomに保持されている)。 One end (upper electrode) of the storage capacitor 12B is electrically connected to the source / drain electrode 125B and the first electrode 13. The other end (lower electrode 122b) of the holding capacitor 12B is connected to the common potential line 133, and is held at a constant voltage Vcom, for example. The second electrode 16 of the display element 10 is also connected to the common potential line 133 (the second electrode 16 is held at the voltage Vcom).

 本実施の形態では、このようなTFT層12よりも下層に感圧導電層18および第3電極19が配置されている。感圧導電層18は、第1基板11に設けられた貫通電極11Aに隣接しており、貫通電極11Aは、第1電極13と電気的に接続されている。ここでは、TFT12Aのソース・ドレイン電極125Bが貫通電極11Aの形成箇所まで延設されており、この延設された部分が、コンタクトホールH2を介して貫通電極11Aと電気的に接続されている。感圧導電層18および第3電極19は、配線132bを介してスイッチ41(スイッチ41B)に接続されている。貫通電極11Aは、例えば表示素子10毎に設けられ、即ち1つの第1電極13に対して1つの貫通電極11Aが設けられている。 In this embodiment, the pressure-sensitive conductive layer 18 and the third electrode 19 are disposed below the TFT layer 12. The pressure-sensitive conductive layer 18 is adjacent to the through electrode 11 </ b> A provided on the first substrate 11, and the through electrode 11 </ b> A is electrically connected to the first electrode 13. Here, the source / drain electrode 125B of the TFT 12A extends to the formation position of the through electrode 11A, and the extended portion is electrically connected to the through electrode 11A through the contact hole H2. The pressure-sensitive conductive layer 18 and the third electrode 19 are connected to the switch 41 (switch 41B) via the wiring 132b. The through electrode 11 </ b> A is provided, for example, for each display element 10, that is, one through electrode 11 </ b> A is provided for one first electrode 13.

 貫通電極11Aは、例えばAl,Au,Cu,Ni等の導電材料により構成されている。尚、貫通電極11Aは、図示した構成に限らず、2以上の表示素子10に対して1つの貫通電極11Aが設けられていてもよいし、1つの表示素子10に対して、2以上の貫通電極11Aが設けられていても構わない。貫通電極11Aの形状、大きさ、ピッチ等は、様々な構成を取り得る。 The through electrode 11A is made of a conductive material such as Al, Au, Cu, or Ni. The through electrode 11A is not limited to the illustrated configuration, and one through electrode 11A may be provided for two or more display elements 10, or two or more through electrodes may be provided for one display element 10. The electrode 11A may be provided. The shape, size, pitch, and the like of the through electrode 11A can take various configurations.

 上記構成により、本実施の形態では、第1電極13への電圧印加経路として、TFT12Aを含む第1の経路(後述の経路R1)と、感圧導電層18および第3電極19を含む第2の経路(後述の経路R2)とが、スイッチ41により、選択可能となっている。換言すると、スイッチ41が、TFT12Aのソース・ドレイン電極125A(ソース電極)と、第3電極19とを選択的に電源(電圧印加部40)に接続するように構成されている。このスイッチ41の切り替えは、自動でなされてもよいし、外部入力信号(例えばユーザ等からの入力信号)に基づいてなされてもよい。詳細は後述するが、このスイッチ41の切り替えによって、TFT12Aまたは感圧導電層18を介して、第1電極13への信号電圧Vsigの供給が可能となる。 With the above configuration, in the present embodiment, as a voltage application path to the first electrode 13, a first path including the TFT 12 </ b> A (path R <b> 1 to be described later), a second including the pressure-sensitive conductive layer 18 and the third electrode 19. This route (route R2 described later) can be selected by the switch 41. In other words, the switch 41 is configured to selectively connect the source / drain electrode 125A (source electrode) of the TFT 12A and the third electrode 19 to the power supply (voltage application unit 40). The switch 41 may be switched automatically or based on an external input signal (for example, an input signal from a user or the like). Although details will be described later, by switching the switch 41, the signal voltage Vsig can be supplied to the first electrode 13 via the TFT 12 </ b> A or the pressure-sensitive conductive layer 18.

[製造方法]
 本実施の形態の表示装置1は、例えば、次のようにして製造することができる。
[Production method]
The display device 1 of the present embodiment can be manufactured as follows, for example.

 まず、図6Aに示したように、支持基板210の一面に、剥離層220を介して第1基板11を貼り合わせる。この後、図6Bに示したように、第1基板11の選択的な領域に、コンタクトホールH1を形成する。続いて、図6Cに示したように、このコンタクトホールH1を埋め込むように、導電層11a1を例えばめっきにより形成する。その後、図6Dに示したように、形成した導電層11a1の表面をエッチバックすることにより、貫通電極11Aを形成する。 First, as shown in FIG. 6A, the first substrate 11 is bonded to one surface of the support substrate 210 via the release layer 220. Thereafter, as shown in FIG. 6B, a contact hole H1 is formed in a selective region of the first substrate 11. Subsequently, as shown in FIG. 6C, the conductive layer 11a1 is formed by plating, for example, so as to fill the contact hole H1. Thereafter, as shown in FIG. 6D, the surface of the formed conductive layer 11a1 is etched back to form the through electrode 11A.

 次に、TFT層12を形成する。具体的には、まず、図7Aに示したように、平坦化膜121を形成する。尚、この平坦化膜121に代えてバリア膜を形成してもよいし、平坦化膜121とバリア膜とを積層しても構わない。この後、図7Bに示したように、平坦化膜121上の選択的な領域にゲート電極122aと下部電極122bとをパターン形成する。続いて、図7Cに示したように、ゲート電極122aおよび下部電極122bを覆うように、ゲート絶縁膜123を形成する。この後、図7Dに示したように、ゲート絶縁膜123上の選択的な領域に、半導体層124をパターン形成する。その後、図7Eに示したように、ゲート絶縁膜123および平坦化膜121のうちの貫通電極11Aに対向する領域を部分的にエッチングすることにより、コンタクトホールH2を形成する。これにより貫通電極11Aを、平坦化膜121およびゲート絶縁膜123から露出させる。続いて、図7Fに示したように、ソース・ドレイン電極125A,125Bをパターン形成する。この際、ソース・ドレイン電極125Bを、コンタクトホールH2を介して貫通電極11Aに接するように、パターニングする。その後、図7Gに示したように、半導体層124上のソース・ドレイン電極125A,125Bから露出した部分を覆うように、保護膜126をパターン形成する。これにより、TFT12Aおよび保持容量12Bを形成することができる。 Next, the TFT layer 12 is formed. Specifically, first, as shown in FIG. 7A, a planarizing film 121 is formed. Note that a barrier film may be formed instead of the planarizing film 121, or the planarizing film 121 and the barrier film may be laminated. Thereafter, as shown in FIG. 7B, the gate electrode 122a and the lower electrode 122b are patterned in a selective region on the planarizing film 121. Then, as shown in FIG. Subsequently, as illustrated in FIG. 7C, a gate insulating film 123 is formed so as to cover the gate electrode 122a and the lower electrode 122b. Thereafter, as shown in FIG. 7D, a semiconductor layer 124 is patterned in a selective region on the gate insulating film 123. Thereafter, as shown in FIG. 7E, the contact hole H2 is formed by partially etching the region of the gate insulating film 123 and the planarizing film 121 that faces the through electrode 11A. Thus, the through electrode 11A is exposed from the planarization film 121 and the gate insulating film 123. Subsequently, as shown in FIG. 7F, the source / drain electrodes 125A and 125B are patterned. At this time, the source / drain electrode 125B is patterned so as to be in contact with the through electrode 11A via the contact hole H2. After that, as shown in FIG. 7G, the protective film 126 is patterned so as to cover the portions of the semiconductor layer 124 exposed from the source / drain electrodes 125A and 125B. Thereby, the TFT 12A and the storage capacitor 12B can be formed.

 続いて、図8に示したように、層間絶縁膜127を形成する。このとき、ソース・ドレイン電極125Bの一部に対向して、コンタクトホールH3を形成する。このようにして、TFT層12を形成することができる。 Subsequently, as shown in FIG. 8, an interlayer insulating film 127 is formed. At this time, a contact hole H3 is formed to face part of the source / drain electrode 125B. In this way, the TFT layer 12 can be formed.

 次に、図9に示したように、層間絶縁膜127上に、コンタクトホールH3を埋めるように、第1電極13をパターン形成する。 Next, as shown in FIG. 9, the first electrode 13 is patterned on the interlayer insulating film 127 so as to fill the contact hole H3.

 この後、図10に示したように、支持基板210を第1基板11から剥離する。これにより、貫通電極11Aを有する第1基板11上にTFT層12が形成されてなる素子基板(駆動基板)を形成することができる。 Thereafter, as shown in FIG. 10, the support substrate 210 is peeled from the first substrate 11. Thereby, an element substrate (driving substrate) in which the TFT layer 12 is formed on the first substrate 11 having the through electrode 11A can be formed.

 一方で、図11Aに示したように、第2基板17の一面に第2電極16を、例えばスパッタ法等の成膜手法により形成する。この後、図11Bに示したように、第2電極16上に、スペーサ15を、例えばインプリント法等によりパターン形成する。具体的には、スペーサ15の構成材料(例えば感光性樹脂材料)を含む溶液を、第2電極16上に塗布した後、この塗布膜に凹部を有する型を押し当て、感光させた後、型を外す。これにより、柱状のスペーサ15を形成することができる。スペーサ15を、図示したような逆テーパ形状とすることで、型を容易に外すことができる。 On the other hand, as shown in FIG. 11A, the second electrode 16 is formed on one surface of the second substrate 17 by a film forming method such as sputtering. Thereafter, as shown in FIG. 11B, the spacers 15 are pattern-formed on the second electrode 16 by, for example, an imprint method. Specifically, after a solution containing the constituent material of the spacer 15 (for example, a photosensitive resin material) is applied on the second electrode 16, a mold having a recess is pressed against the coating film and exposed to light, and then the mold is formed. Remove. Thereby, the columnar spacer 15 can be formed. By making the spacer 15 have a reverse taper shape as shown in the figure, the mold can be easily removed.

 続いて、図11Cに示したように、スペーサ15によって囲まれる領域(セル150)内に、多孔質層33を形成する。具体的には、まず、紡糸溶液に例えば非泳動粒子332として酸化チタンを加えて十分に攪拌した後、これを紡糸する。紡糸溶液は、例えばN,N'-ジメチルホルムアミドに、繊維状構造体331としてポリアクリロニトリルを分散または溶解させて調製する。紡糸法としては、例えば静電紡糸法が挙げられる。静電紡糸法に代えて、相分離法、相反転法、溶融紡糸法、湿式紡糸法、乾式紡糸法、ゲル紡糸法、ゾルゲル法およびスプレー塗布法などを用いるようにしてもよい。 Subsequently, as shown in FIG. 11C, the porous layer 33 is formed in the region (cell 150) surrounded by the spacer 15. Specifically, first, for example, titanium oxide is added to the spinning solution as non-electrophoretic particles 332 and stirred sufficiently, and then this is spun. The spinning solution is prepared, for example, by dispersing or dissolving polyacrylonitrile as the fibrous structure 331 in N, N′-dimethylformamide. Examples of the spinning method include an electrostatic spinning method. Instead of the electrostatic spinning method, a phase separation method, a phase inversion method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, a spray coating method, or the like may be used.

 尚、繊維状構造体331の形成には、上記のような紡糸法を用いることが好ましい。繊維状構造体331の形成手法としては、紡糸法の他にも、例えば、高分子フィルムにレーザ加工を用いて孔開けを行う手法等があるが、このような手法では、孔径が大きくなる傾向がある。紡糸法を用いることで、孔径を小さく制御し易く、繊維状構造体331により泳動粒子32を遮蔽し易くなる。 In addition, it is preferable to use the spinning method as described above for forming the fibrous structure 331. As a method for forming the fibrous structure 331, in addition to the spinning method, for example, there is a method of making a hole in a polymer film using laser processing. However, in such a method, the pore diameter tends to increase. There is. By using the spinning method, the pore diameter can be easily controlled to be small, and the migrating particles 32 can be easily shielded by the fibrous structure 331.

 上記のようにして紡糸により繊維状構造体331を形成した後、これを分断して、各セル150内に収める。形成した繊維状構造体331を上方(第2基板17と反対の方向)から押圧すると、スペーサ15によって摺り切られる。この分断された繊維状構造体331をスペーサ15によって囲まれる領域内に収容することで、繊維状構造体331に非泳動粒子332が保持されてなる多孔質層33を、各セル150内に形成することができる。 After forming the fibrous structure 331 by spinning as described above, it is divided and stored in each cell 150. When the formed fibrous structure 331 is pressed from above (the direction opposite to the second substrate 17), it is slid by the spacer 15. By accommodating the divided fibrous structure 331 in the region surrounded by the spacer 15, the porous layer 33 in which the non-electrophoretic particles 332 are held in the fibrous structure 331 is formed in each cell 150. can do.

 この後、多孔質層33が形成されたセル150内に、泳動粒子32を分散させた絶縁性液体31を塗布することにより、表示体10Aを形成する(図11Cには図示せず)。続いて、この表示体10Aに、例えば、封止剤(図示せず)を介してシール層14が配設された剥離部材(図示せず)を対向させる。その後、剥離部材を剥がしたのち、シール層14上に粘着層(図示せず)を介して、上述のフローで形成された、貫通電極11Aをもつ駆動基板を貼合する。 Thereafter, the display body 10A is formed by applying the insulating liquid 31 in which the migrating particles 32 are dispersed in the cell 150 in which the porous layer 33 is formed (not shown in FIG. 11C). Subsequently, a peeling member (not shown) provided with a seal layer 14 is opposed to the display body 10A, for example, via a sealant (not shown). Then, after peeling off a peeling member, the drive board | substrate with 11 A of penetration electrodes formed by the above-mentioned flow is bonded on the sealing layer 14 via the adhesion layer (not shown).

 最後に、第1基板11の裏面に、導電性の粘着剤等を介して、感圧導電層18、第3電極19および支持基板20を貼り合わせる。尚、支持基板20は必要に応じて用いられ、なくても構わない。以上の工程により、表示装置1を完成する。 Finally, the pressure-sensitive conductive layer 18, the third electrode 19, and the support substrate 20 are bonded to the back surface of the first substrate 11 via a conductive adhesive or the like. Note that the support substrate 20 is used as necessary and may not be used. The display device 1 is completed through the above steps.

[駆動方法]
 本実施の形態の表示装置1では、図示しない制御部からの制御信号に基づいて、スイッチ41が制御され、例えばスイッチ41Aおよびスイッチ41Bのうちの一方がオン状態、他方がオフ状態とされる。これにより、TFT12Aを用いた表示駆動(アクティブマトリクス駆動による映像表示)と、感圧導電層18を用いた表示駆動(手書き入力)とを選択的に切り替えて実現することが可能となる。以下、各駆動動作について説明する。
[Driving method]
In the display device 1 of the present embodiment, the switch 41 is controlled based on a control signal from a control unit (not shown). For example, one of the switch 41A and the switch 41B is turned on and the other is turned off. This makes it possible to selectively switch between display driving using the TFT 12A (video display by active matrix driving) and display driving using the pressure-sensitive conductive layer 18 (handwriting input). Hereinafter, each driving operation will be described.

(TFT駆動による映像表示)
 図12は、TFT駆動時の処理フローを表したものである。図13は、TFT駆動時における電圧印加経路について説明するための回路図である。このように、TFT駆動が選択される(スイッチ41Aがオン状態、スイッチ41Bがオフ状態に切り替えられる)(ステップS11)と、TFT12A(ソース・ドレイン電極125A)が電源(電圧印加部40)に接続される(ステップS12)。
(Video display by TFT drive)
FIG. 12 shows a processing flow when driving the TFT. FIG. 13 is a circuit diagram for explaining a voltage application path during TFT driving. In this way, TFT driving is selected (the switch 41A is turned on and the switch 41B is turned off) (step S11), and the TFT 12A (source / drain electrode 125A) is connected to the power supply (voltage application unit 40). (Step S12).

 この後、外部から画像データが取り込まれ(ステップS13)、取りこまれた画像データに対し所定の信号処理が施される(ステップS14)。この信号処理が施された画像データに基づいて、TFT12Aのソース・ドレイン電極125Aに信号電圧Vsigが印加される。一方で、TFT12Aのゲート電極122aには、表示素子10毎に所定のオン電圧が印加される。このTFT12Aのスイッチング(ステップS15)により、TFT12Aのソースおよびドレイン間が導通状態となり、経路R1が形成される(経路R1が選択される)。このTFT12Aを含む経路R1を介して、各表示素子10の第1電極13へ、映像信号に対応する信号電圧Vsig(例えば-100V~+100V)が供給される。 Thereafter, image data is fetched from the outside (step S13), and predetermined signal processing is performed on the fetched image data (step S14). Based on the image data subjected to this signal processing, the signal voltage Vsig is applied to the source / drain electrode 125A of the TFT 12A. On the other hand, a predetermined ON voltage is applied to the gate electrode 122a of the TFT 12A for each display element 10. As a result of the switching of the TFT 12A (step S15), the source and drain of the TFT 12A become conductive, and the path R1 is formed (the path R1 is selected). A signal voltage Vsig (for example, −100 V to +100 V) corresponding to the video signal is supplied to the first electrode 13 of each display element 10 via the path R1 including the TFT 12A.

 ここで、第2電極16は、共通電位線133に接続され、一定の電圧Vcom(例えば0V,GND)に保持されていることから、各表示素子10では、第1電極13と第2電極16との間(表示体10A)に例えば0~100V程度のバイアス電圧が印加される。例えば、泳動粒子32が、マイナス(負)に帯電した黒色粒子である場合、図14に示したように、第1電極13に例えば0Vが印加された画素a1,a3では、泳動粒子32は第1電極13側に留まり、白表示(明表示)となる。他方、第1電極13に例えば-15Vが印加された画素a2では、泳動粒子32は第2電極16側に移動することから、黒表示(暗表示)となる。このようにして表示面S1に、画素毎の映像表示(ディスプレイ表示)がなされる(ステップS16)。上記のように、スイッチ41によりTFT12A(経路R1)が選択されることで、表示素子10毎(画素毎)の表示駆動、即ちアクティブマトリクス駆動による映像表示が実現される。 Here, since the second electrode 16 is connected to the common potential line 133 and is held at a constant voltage Vcom (for example, 0 V, GND), each display element 10 includes the first electrode 13 and the second electrode 16. A bias voltage of about 0 to 100 V, for example, is applied between the electrodes (display body 10A). For example, when the migrating particle 32 is a negatively charged black particle, as shown in FIG. 14, in the pixels a1 and a3 in which 0 V is applied to the first electrode 13, the migrating particle 32 is the first particle, for example. It stays on the 1 electrode 13 side and becomes white display (bright display). On the other hand, in the pixel a2 in which −15 V is applied to the first electrode 13, for example, the migrating particles 32 move to the second electrode 16 side, so that black display (dark display) is obtained. In this way, video display (display display) for each pixel is performed on the display surface S1 (step S16). As described above, by selecting the TFT 12A (path R1) by the switch 41, display driving for each display element 10 (for each pixel), that is, video display by active matrix driving is realized.

(感圧導電層18を用いた手書き入力)
 図15は、手書き入力時の処理フローを表したものである。図16は、手書き入力時における電圧印加経路について説明するための回路図である。図17は、手書き入力時の表示状態を説明するための模式図である。このように、手書き入力が選択される(スイッチ41Bがオン状態、スイッチ41Aがオフ状態に切り替えられる)(ステップS21)と、第3電極19(感圧導電層18の一端側)が、電源(電圧印加部40)に接続される(ステップS22)。これにより、第3電極19には、所定の信号電圧Vsig(例えば-15V)が印加可能となる。
(Handwriting input using pressure-sensitive conductive layer 18)
FIG. 15 shows a processing flow at the time of handwriting input. FIG. 16 is a circuit diagram for explaining a voltage application path during handwriting input. FIG. 17 is a schematic diagram for explaining a display state during handwriting input. Thus, handwriting input is selected (the switch 41B is turned on and the switch 41A is turned off) (step S21), and the third electrode 19 (one end side of the pressure-sensitive conductive layer 18) is connected to the power source ( The voltage application unit 40) is connected (step S22). As a result, a predetermined signal voltage Vsig (for example, −15 V) can be applied to the third electrode 19.

 この状態で、表示面S1がペン等により加圧(押圧)される(ステップS23)と、加圧箇所に対応する部分の感圧導電層18が局所的に変形し、該部分の電気抵抗が低くなる。これにより、経路R2が形成される(経路R2が選択される)。即ち、加圧箇所に対応する表示素子10の第1電極13と第3電極19とが、感圧導電層18および貫通電極11Aを介して電気的に接続される。これにより、信号電圧Vsig(例えば-15V)が、加圧箇所に対応する表示素子10の第1電極13に供給される。 In this state, when the display surface S1 is pressed (pressed) with a pen or the like (step S23), the portion of the pressure-sensitive conductive layer 18 corresponding to the pressed portion is locally deformed, and the electric resistance of the portion is reduced. Lower. Thereby, the route R2 is formed (the route R2 is selected). That is, the first electrode 13 and the third electrode 19 of the display element 10 corresponding to the pressurization location are electrically connected through the pressure-sensitive conductive layer 18 and the through electrode 11A. As a result, the signal voltage Vsig (for example, −15 V) is supplied to the first electrode 13 of the display element 10 corresponding to the pressed portion.

 ここで、第2電極16は、上述したように、一定の電圧Vcom(例えば0V,GND)に保持されていることから、加圧箇所に対応する表示素子10では、第1電極13と第2電極16との間(表示体10A)にバイアス電圧が印加される。例えば、泳動粒子32が、マイナス(負)に帯電した黒色粒子である場合、図17に示したように、圧力Pが印加されていない画素a4,a6では、泳動粒子32は第1電極13側に留まり、白表示(明表示)となる。他方、圧力Pが印加された箇所に対応する画素a5では、泳動粒子32は第2電極16側に移動し、黒表示(暗表示)となる。このようにして、複数の表示素子10が部分的に駆動され、ペン等で描かれた軌跡が表示面S1に表示(ディスプレイ表示)される(ステップS24)。このように、スイッチ41により、感圧導電層18および第3電極19を含む経路R2が選択されることで、加圧箇所に対応する表示素子10にダイレクトに(表示駆動回路等を介すことなく)、電圧が印加される(電界が発生する)。該表示素子10では、泳動粒子32が第2電極16側に移動して、表示状態が変化する。これにより、表示装置1の表示面S1には、ペン等でなぞられた軌跡に沿って、黒い線が描画される。即ち、手書き入力が実現される。 Here, as described above, since the second electrode 16 is held at a constant voltage Vcom (for example, 0 V, GND), the first electrode 13 and the second electrode 16 in the display element 10 corresponding to the pressurization location. A bias voltage is applied between the electrodes 16 (display body 10A). For example, when the migrating particle 32 is a negatively charged black particle, as shown in FIG. 17, in the pixels a4 and a6 to which the pressure P is not applied, the migrating particle 32 is on the first electrode 13 side. The white display (bright display). On the other hand, in the pixel a5 corresponding to the location to which the pressure P is applied, the migrating particles 32 move to the second electrode 16 side and display black (dark display). In this way, the plurality of display elements 10 are partially driven, and the locus drawn with a pen or the like is displayed (displayed on the display surface S1) (step S24). As described above, the path 41 including the pressure-sensitive conductive layer 18 and the third electrode 19 is selected by the switch 41, so that the display element 10 corresponding to the pressurization location is directly connected (via a display drive circuit or the like). A voltage is applied (an electric field is generated). In the display element 10, the migrating particles 32 move to the second electrode 16 side, and the display state changes. Thereby, a black line is drawn on the display surface S1 of the display device 1 along the trace traced with a pen or the like. That is, handwriting input is realized.

 なお、表示面S1を加圧するペンは、表示装置1に専用のペンである必要はなく、表示面S1に圧力を印加できるものであれば、その形状や構造は特に限定されない。また、上記例では、白地(白の背景色)に黒い線を描画する場合について説明したが、黒地(黒の背景色)に白い線を描画することも可能である。 Note that the pen that pressurizes the display surface S1 does not need to be a pen dedicated to the display device 1, and the shape and structure thereof are not particularly limited as long as the pressure can be applied to the display surface S1. In the above example, the case of drawing a black line on a white background (white background color) has been described. However, it is also possible to draw a white line on a black background (black background color).

[作用、効果]
 本実施の形態では、表示素子10の第1電極13への電圧印加経路として、TFT12Aを含む経路R1と、感圧導電層18および第3電極19を含む経路R2との2つの経路が形成され、これらの経路R1,R2が、スイッチ41により選択される。これにより、経路R1が選択された場合には、TFT12Aを用いた表示駆動(アクティブマトリクス駆動)が可能となる。一方で、経路R2が選択された場合には、表示面S1が加圧(押圧)されることで、加圧された箇所の表示素子10へダイレクトに電圧を印加することができる。また、感圧導電層18が、TFT層12よりも下層に配置されると共に、感圧導電層18と第1電極13との電気的接続は、第1基板11に設けられた貫通電極11Aを介して確保される。感圧導電層18が、画素回路内(TFT層12内)に配置される場合に比べ、回路レイアウトへの影響が少ない。
[Action, effect]
In the present embodiment, two paths of a path R1 including the TFT 12A and a path R2 including the pressure-sensitive conductive layer 18 and the third electrode 19 are formed as voltage application paths to the first electrode 13 of the display element 10. These routes R1 and R2 are selected by the switch 41. Thereby, when the path R1 is selected, display driving (active matrix driving) using the TFT 12A is possible. On the other hand, when the path R2 is selected, the display surface S1 is pressed (pressed), whereby a voltage can be directly applied to the display element 10 at the pressed position. In addition, the pressure-sensitive conductive layer 18 is disposed below the TFT layer 12, and the electrical connection between the pressure-sensitive conductive layer 18 and the first electrode 13 is performed through the through electrode 11 </ b> A provided on the first substrate 11. Secured through. Compared with the case where the pressure-sensitive conductive layer 18 is disposed in the pixel circuit (in the TFT layer 12), the influence on the circuit layout is small.

 これにより、TFT12Aを用いた駆動による表示(映像表示)と、表示素子10のダイレクト駆動による表示(手書き入力)とを切り替えて実現可能となる。また、感圧導電層18の、回路レイアウトへの影響を軽減して、解像度および開口率の低下を抑制できる。 This makes it possible to switch between display by driving using the TFT 12A (video display) and display by direct driving of the display element 10 (handwriting input). In addition, the influence of the pressure-sensitive conductive layer 18 on the circuit layout can be reduced, and the reduction in resolution and aperture ratio can be suppressed.

 また、本実施の形態では、第1電極13および貫通電極11Aが表示素子10毎に形成されることで、加圧箇所の軌跡を、画素単位で表示することが可能となる。このため、描画線幅を精細化することが可能となる。加えて、感圧導電層18が、貫通電極11Aを介して各第1電極13に接続されているため、表示素子10毎の表示が均一化され、むらの少ないシャープな線を描画することができる。 In the present embodiment, the first electrode 13 and the through electrode 11A are formed for each display element 10, so that the locus of the pressed portion can be displayed in units of pixels. For this reason, it is possible to refine the drawing line width. In addition, since the pressure-sensitive conductive layer 18 is connected to the first electrodes 13 via the through electrodes 11A, the display for each display element 10 can be made uniform and sharp lines with little unevenness can be drawn. it can.

 ここで、感圧導電層18の変形範囲は、表示面S1に印加される圧力の大きさに応じて異なる。即ち、圧力が大きい場合(強く加圧した場合)には、広範囲での変形となり、圧力が小さい場合(軽く加圧した場合)には、狭小範囲での変形となる。このため、幅方向において電圧が印加される画素の数は、強く加圧した場合には多く、軽く加圧した場合には少なくなる。したがって、上記のように画素単位での表示が可能であることにより、強く加圧した場合には太い線幅で、軽く加圧した場合には細い線幅で、描画することができる。描画線幅を、手書き時の筆圧によって表現することが可能となる。 Here, the deformation range of the pressure-sensitive conductive layer 18 varies depending on the magnitude of the pressure applied to the display surface S1. That is, when the pressure is high (when strongly pressed), the deformation is in a wide range, and when the pressure is low (when lightly pressed), the deformation is in a narrow range. For this reason, the number of pixels to which a voltage is applied in the width direction is large when the pressure is strongly applied and decreases when the pressure is lightly applied. Therefore, since the display can be performed in units of pixels as described above, it is possible to draw with a thick line width when strongly pressed and with a thin line width when lightly pressed. The drawing line width can be expressed by the writing pressure during handwriting.

 更に、本実施の形態では、手書き入力時において、感圧導電層18を用いてダイレクトに表示素子10に電圧を印加して表示状態を変化させることが可能であることから、例えばタッチパネルを備えた表示装置に比べ、レイテンシー(遅延)が生じにくい。即ち、タッチパネルを用いた表示装置では、ペン等により入力された箇所の位置がセンサーによって検出された後、検出された位置情報に対し、信号処理システムによって演算処理が施される。この演算処理結果に基づいて、ペン入力による軌跡がディスプレイ表示される。このように、タッチパネルを用いた場合には、入力(加圧)から表示までの間に、位置検出と演算処理の時間を要するため、人間の目にはレイテンシーとして感じられる。これに対し、本実施の形態では、感圧導電層18が用いられることで、タッチパネルを用いた場合のような位置検出および演算処理の工程を経ることなく、加圧箇所の表示素子10にダイレクトに電圧を印加し、表示状態を変化させることができる。このため、入力から画像表示までの時間を短縮でき、レイテンシーのない、あたかも紙に描いているかのような快適な書き心地を実現することができる。 Furthermore, in the present embodiment, at the time of handwriting input, it is possible to change the display state by directly applying a voltage to the display element 10 using the pressure-sensitive conductive layer 18. Compared with a display device, latency (delay) is less likely to occur. That is, in a display device using a touch panel, after the position of a part input by a pen or the like is detected by a sensor, the signal processing system performs arithmetic processing on the detected position information. On the basis of the result of this calculation process, the locus of pen input is displayed on the display. As described above, when a touch panel is used, it takes time for position detection and calculation processing between input (pressurization) and display, so that it is perceived as latency by human eyes. On the other hand, in the present embodiment, the pressure-sensitive conductive layer 18 is used, so that it is directly applied to the display element 10 at the pressurization location without going through the position detection and calculation processing steps as in the case of using the touch panel. The display state can be changed by applying a voltage to. For this reason, it is possible to shorten the time from input to image display, and to realize a comfortable writing feeling as if drawing on paper without latency.

 加えて、感圧導電層18が、TFT層12よりも下層に配置されていることで、以下のような効果を得ることもできる。ここで、図18Aに比較例1に係る表示装置の要部構成を模式的に示す。この表示装置では、表示体1015上に、支持基板1017が設けられ、この支持基板1017上に、更に感圧導電層1020が配置されている。この場合、ダイレクトな手書き入力は可能であるものの、支持基板1017の厚みに加え、感圧導電層1020の厚みがあるため、実際に画像が形成される表示体1015の表面と入力ペン(スタイラス)50のペン先との間の距離が大きくなる。このため、例えば、斜め方向から見た場合と正面方向から見た場合の見え方が異なってしまう(視差dp100が発生する)。加えて、表示面側に感圧導電層1020を配置するためには、輝度低下や解像度低下が生じないよう、感圧導電層1020が透明でかつ優れた光学特性を持つことが望まれるが、そのような材料の選択肢は少なく、現実的ではない。また、表示面上に感圧導電層1020が配置されることにより、表示光(反射光)の取出し効率が低下し、所望の明るさを確保しにくい。 In addition, since the pressure-sensitive conductive layer 18 is disposed below the TFT layer 12, the following effects can be obtained. Here, FIG. 18A schematically shows a main configuration of a display device according to Comparative Example 1. In this display device, a support substrate 1017 is provided on a display body 1015, and a pressure-sensitive conductive layer 1020 is further disposed on the support substrate 1017. In this case, although direct handwriting input is possible, since the thickness of the pressure-sensitive conductive layer 1020 is in addition to the thickness of the support substrate 1017, the surface of the display body 1015 on which an image is actually formed and the input pen (stylus) The distance between the 50 nibs increases. For this reason, for example, the appearance when viewed from an oblique direction is different from that when viewed from the front direction (parallax dp 100 is generated). In addition, in order to dispose the pressure-sensitive conductive layer 1020 on the display surface side, it is desirable that the pressure-sensitive conductive layer 1020 is transparent and has excellent optical characteristics so as not to cause a decrease in luminance or resolution. There are few such material choices and it is not practical. Further, when the pressure-sensitive conductive layer 1020 is disposed on the display surface, the extraction efficiency of display light (reflected light) is reduced, and it is difficult to secure desired brightness.

 これに対し、本実施の形態では、感圧導電層18が、TFT層12Aよりも下層、即ち表示体10Aよりも下方に配置される(表示体10Aよりも上に感圧導電層18が配置されていない)。これにより、図18Bに模式的に示したように、実際に画像が形成される表示体10Aの表面と入力ペン50のペン先との間の距離が、比較例1に比べて小さくなる。この結果、例えば、斜め方向から見た場合と正面方向から見た場合の見え方がほぼ同等となる、視差を低減することができる(dp1<dp100)。 In contrast, in the present embodiment, the pressure-sensitive conductive layer 18 is disposed below the TFT layer 12A, that is, below the display body 10A (the pressure-sensitive conductive layer 18 is disposed above the display body 10A). It has not been). Accordingly, as schematically illustrated in FIG. 18B, the distance between the surface of the display body 10 </ b> A on which an image is actually formed and the pen tip of the input pen 50 becomes smaller than that of the first comparative example. As a result, for example, the parallax can be reduced (dp 1 <dp 100 ) so that the appearance when viewed from an oblique direction is almost the same as when viewed from the front direction.

 また、感圧導電層18を表示体10Aよりも下層に配置するようにしたので、感圧導電層18における透明性および光学特性は特に限定されない。このため、感圧導電層18を構成する材料の選択肢が広がる。 Further, since the pressure-sensitive conductive layer 18 is disposed below the display body 10A, the transparency and optical characteristics of the pressure-sensitive conductive layer 18 are not particularly limited. For this reason, the choice of the material which comprises the pressure-sensitive conductive layer 18 spreads.

 以上説明したように、本実施の形態では、各表示素子10の第1電極13への電圧印加経路として、TFT12Aを含む経路R1と、感圧導電層18および第3電極19を含む経路R2とが形成され、これらの経路R1,R2を選択するスイッチ41が設けられている。これにより、TFT12Aを用いた駆動による表示(映像表示)と、表示素子10のダイレクト駆動による表示(手書き入力)とを切り替えて実現可能となる。また、感圧導電層18が、TFT層12よりも下層に配置されるようにしたので、画素回路内に配置される場合に比べ、回路レイアウトへの影響を軽減して、解像度および開口率の低下を抑制できる。よって、解像度および開口率の低下を抑制しつつ、映像表示と手書き入力とを実現可能となる。 As described above, in the present embodiment, as the voltage application path to the first electrode 13 of each display element 10, the path R1 including the TFT 12A, the path R2 including the pressure-sensitive conductive layer 18 and the third electrode 19 Is formed, and a switch 41 for selecting these paths R1 and R2 is provided. This makes it possible to switch between display (video display) by driving using the TFT 12A and display (handwriting input) by direct driving of the display element 10. In addition, since the pressure-sensitive conductive layer 18 is disposed below the TFT layer 12, the influence on the circuit layout is reduced compared with the case where the pressure-sensitive conductive layer 18 is disposed in the pixel circuit, and the resolution and aperture ratio are reduced. Reduction can be suppressed. Therefore, it is possible to realize video display and handwriting input while suppressing a decrease in resolution and aperture ratio.

 以下に、上記実施の形態の変形例について説明する。尚、上記実施の形態と同様の構成要素については同一の符号を付し、適宜その説明を省略する。 Hereinafter, modifications of the above embodiment will be described. In addition, the same code | symbol is attached | subjected about the component similar to the said embodiment, and the description is abbreviate | omitted suitably.

<変形例1>
 図19A~図19Cは、本変形例に係る表示装置の駆動動作(部分消去動作)について説明するための断面模式図である。図20は、消去モード時の電圧印加経路について説明するための回路図である。上記実施の形態の表示装置1では、スイッチ41により、TFT駆動による映像表示と、感圧導電層18を用いた手書き入力とを切り替え可能であることを述べたが、本変形例のように、表示されている文字や絵を部分的に消去する駆動を行うことも可能である。
<Modification 1>
19A to 19C are schematic cross-sectional views for explaining the drive operation (partial erase operation) of the display device according to this modification. FIG. 20 is a circuit diagram for explaining a voltage application path in the erase mode. In the display device 1 of the above-described embodiment, it has been described that the switch 41 can switch between video display by TFT driving and handwritten input using the pressure-sensitive conductive layer 18, but as in this modification example, It is also possible to drive to partially erase displayed characters and pictures.

 例えば、図19Aに示したように、手書き入力時(スイッチ41により経路R2が選択された場合)に、第3電極19に電圧Vsig(例えば-15V)、第2電極16に電圧Vcom(例えば0V)がそれぞれ印加された状態では、表示面S1に圧力Pが加わると、この加圧箇所では、例えば黒色かつ負に帯電した泳動粒子32が第2電極16側へ移動し、黒表示となる。これにより、表示面S1には、ペン等でなぞった軌跡が黒い線として描画される(書き込みモード)。これは、上記実施の形態で述べた通りである。 For example, as shown in FIG. 19A, when handwriting is input (when the path R2 is selected by the switch 41), the voltage Vsig (for example, −15V) is applied to the third electrode 19, and the voltage Vcom (for example, 0V) is applied to the second electrode 16. ) Are applied, and when the pressure P is applied to the display surface S1, for example, the black and negatively charged migrating particles 32 move to the second electrode 16 side at this pressurization portion, and a black display is obtained. As a result, the locus traced with a pen or the like is drawn as a black line on the display surface S1 (writing mode). This is as described in the above embodiment.

 但し、本変形例では、この後、図19Bに示したように、表示体10Aに対して、上記手書き入力(書き込みモード)時とは逆極性の電界を印加する駆動を行う。即ち、第1電極13と第2電極16との間に印加されるバイアス電圧の正負を逆にする。例えば、第3電極19に電圧Vsig(例えば+15V)、第2電極16に電圧Vcom(例えば0V)がそれぞれ印加される。 However, in this modification, thereafter, as shown in FIG. 19B, the display body 10A is driven to apply an electric field having a polarity opposite to that in the handwriting input (writing mode). That is, the polarity of the bias voltage applied between the first electrode 13 and the second electrode 16 is reversed. For example, the voltage Vsig (for example, +15 V) is applied to the third electrode 19, and the voltage Vcom (for example, 0 V) is applied to the second electrode 16.

 この状態で、表示面S1に圧力Pが印加されると、図19Cおよび図20に示したように、加圧箇所の第1電極13には、電圧Vsig(例えば+15V)が経路R2を介して供給される。これにより、例えば黒色かつ負に帯電した泳動粒子32は、第1電極13側へ移動し、白表示となる。つまり、表示面S1に描画された黒い線のうちの任意の部分を、ペン等でなぞって消去することが可能となる(消去モード)。このように、第1電極13と第2電極16との間に印加されるバイアス電圧の正負を切り替えることによって、泳動粒子32を書き込み時と反対の電極側へ移動させ、表示状態を反転させることができる。したがって、表示面S1に描画された線の一部を選択的に消去することが可能となる。あるいは、描画された線の全部を消去して、全体を白表示とすることも可能である。このように、本変形例では、書き込みモードと消去モードとを任意のタイミングで切り替えることができ、例えば書き直し、あるいは繰り返しの書き込みを行うことが可能となる。尚、これらの駆動動作は、表示制御部(後述の表示制御部30および駆動回路部30A)により行うことができる。 In this state, when the pressure P is applied to the display surface S1, as shown in FIG. 19C and FIG. 20, the voltage Vsig (for example, +15 V) is applied to the first electrode 13 at the pressurization location via the path R2. Supplied. Thereby, for example, the black and negatively charged electrophoretic particles 32 move to the first electrode 13 side and display white. That is, it is possible to erase any part of the black lines drawn on the display surface S1 with a pen or the like (erase mode). In this way, by switching the polarity of the bias voltage applied between the first electrode 13 and the second electrode 16, the migrating particles 32 are moved to the electrode side opposite to that at the time of writing, and the display state is inverted. Can do. Therefore, a part of the line drawn on the display surface S1 can be selectively erased. Alternatively, it is possible to erase all the drawn lines and display the whole as white. As described above, in this modification, the writing mode and the erasing mode can be switched at an arbitrary timing. For example, rewriting or repetitive writing can be performed. These drive operations can be performed by a display control unit (a display control unit 30 and a drive circuit unit 30A described later).

 尚、上記変形例1では、手書き入力によって表示面S1に描画された線を、手入力で消去する場合について説明したが、上記変形例1の消去モードは、TFT駆動による映像表示後に実行するようにしてもよい。例えば、スイッチ41により経路R1が選択された状態で、TFT12Aを表示素子10毎に駆動し、表示面S1に映像を表示した後、スイッチ41により経路R1から経路R2への切り替えを行う。この後、電圧Vsigとして、例えば黒表示から白表示へ遷移可能な電圧を第3電極19に印加する。この状態で、表示面S1を部分的に加圧することにより、加圧箇所に対応して、表示された映像(画像)のうちの任意の部分を消去することができる。 In the first modification, the case where the line drawn on the display surface S1 by handwriting input is manually erased has been described. However, the erase mode in the first modification is executed after the image is displayed by TFT driving. It may be. For example, in a state where the path R1 is selected by the switch 41, the TFT 12A is driven for each display element 10 to display an image on the display surface S1, and then the switch 41 switches from the path R1 to the path R2. Thereafter, for example, a voltage capable of transitioning from black display to white display is applied to the third electrode 19 as the voltage Vsig. In this state, by partially pressurizing the display surface S1, any part of the displayed video (image) can be erased corresponding to the pressurization location.

 また、表示面S1に、例えば罫線等の補助線を表示している状態で、上記のような書き込みおよび部分消去を行う場合には、消去モード時に罫線の一部も消えてしまうことがある。そのような場合には、スイッチ41によりTFT駆動を選択して、TFT12Aを用いて、表示面S1に罫線を再度表示(再描画)するようにしてもよい。 Further, when the above writing and partial erasure are performed in a state where auxiliary lines such as ruled lines are displayed on the display surface S1, some of the ruled lines may be erased in the erase mode. In such a case, the TFT drive may be selected by the switch 41, and the ruled line may be displayed (redrawn) on the display surface S1 again using the TFT 12A.

<変形例2>
 図21は、変形例2に係る入力ペン50を用いた表示装置1の動作制御を説明するためのブロック図である。図22は、消去モードにおける表示状態の一例を表す断面模式図である。上記変形例1では、書き込みモードと消去モードとを任意のタイミングで切り替え可能であることを述べたが、本変形例では、これら2つのモードを、入力ペン50の先端の向きに応じて自動で切り替える制御がなされる。尚、本変形例では、スイッチ41は、スイッチ41Aがオフ状態、スイッチ41Bがオン状態となるように制御される(第3電極19が電圧印加部40に接続される)。
<Modification 2>
FIG. 21 is a block diagram for explaining operation control of the display device 1 using the input pen 50 according to the second modification. FIG. 22 is a schematic cross-sectional view illustrating an example of a display state in the erase mode. In the first modification, it has been described that the writing mode and the erasing mode can be switched at an arbitrary timing. However, in the present modification, these two modes are automatically changed according to the direction of the tip of the input pen 50. Switching control is performed. In the present modification, the switch 41 is controlled such that the switch 41A is turned off and the switch 41B is turned on (the third electrode 19 is connected to the voltage application unit 40).

 表示装置1は、上述した表示素子10と、各表示素子10を駆動制御するための表示制御部30および駆動回路部30Aを備えている。表示制御部30は、複数の表示素子10を表示駆動するために必要な信号の生成を行うものであり、例えばタイミングコントローラおよび表示用信号生成部等を有している。駆動回路部30Aは、表示制御部30から供給される制御信号に基づいて、各表示素子10を駆動するためのゲート駆動回路ユニットおよびソース駆動回路ユニット等を含むと共に、電圧印加部40等の電源を含む回路部である。本変形例で用いられる入力ペン50は、内部に傾斜センサ51を有している。傾斜センサ51は、入力ペン50の先端の向き、即ちペン先が上を向いているか、あるいは下を向いているかを認識する機能を有している。この傾斜センサ51によって、入力ペン50の先端の向きが認識され(検知され)、検知された向きに関する情報(情報Ds)が、例えばワイヤレスで表示制御部30に送信可能となっている。尚、本変形例における表示制御部30および駆動回路部30Aが、本開示の「表示制御部」の一具体例に相当する。 The display device 1 includes the display element 10 described above, and a display control unit 30 and a drive circuit unit 30A for driving and controlling each display element 10. The display control unit 30 generates signals necessary for display driving of the plurality of display elements 10, and includes, for example, a timing controller and a display signal generation unit. The drive circuit unit 30A includes a gate drive circuit unit and a source drive circuit unit for driving each display element 10 based on a control signal supplied from the display control unit 30, and a power source for the voltage application unit 40 and the like. It is a circuit part containing. The input pen 50 used in this modification has an inclination sensor 51 inside. The tilt sensor 51 has a function of recognizing the direction of the tip of the input pen 50, that is, whether the pen tip is facing upward or downward. The inclination sensor 51 recognizes (detects) the direction of the tip of the input pen 50, and information (information Ds) regarding the detected direction can be transmitted to the display control unit 30 by wireless, for example. Note that the display control unit 30 and the drive circuit unit 30A in the present modification correspond to a specific example of the “display control unit” of the present disclosure.

 表示制御部30は、傾斜センサ51から送信された情報Dsを受信可能であり、受信した情報Dsに基づいて、各表示素子10の表示状態を切り替える。具体的には、表示制御部30は、情報Dsに基づいて、表示体10Aへ印加するバイアス電圧の正負(具体的には第1電極13へ供給する電圧Vsigの値)を設定する(または、切り替える)。 The display control unit 30 can receive the information Ds transmitted from the tilt sensor 51, and switches the display state of each display element 10 based on the received information Ds. Specifically, the display control unit 30 sets the sign of the bias voltage applied to the display body 10A (specifically, the value of the voltage Vsig supplied to the first electrode 13) based on the information Ds (or Switch).

 一例を挙げると、情報Dsが、入力ペン50の先端(ペン先50A)が下を向いている状態であることを示す場合には、"書き込みモード"として、例えば黒色かつ負に帯電した泳動粒子32が第2電極16側へ移動するようなバイアス電圧の極性が設定される(切り替えられる)。これにより、ペン先50Aを表示面S1に押し当てるように加圧すると、"書き込みモード"が実行され、経路R2を介して第1電極13に、書き込みモードに対応する電圧Vsigが供給される。これにより、加圧箇所の泳動粒子32が、例えば第2電極16側へ移動し、黒表示となる。即ち、表示面S1に、入力ペン50の軌跡に対応した黒い線が描画される。 As an example, when the information Ds indicates that the tip of the input pen 50 (the pen tip 50A) is facing down, the “write mode” is set as, for example, black and negatively charged electrophoretic particles. The polarity of the bias voltage is set (switched) so that 32 moves to the second electrode 16 side. Accordingly, when the pen tip 50A is pressed against the display surface S1, the “writing mode” is executed, and the voltage Vsig corresponding to the writing mode is supplied to the first electrode 13 through the path R2. As a result, the migrating particles 32 at the pressurized location move to the second electrode 16 side, for example, and display black. That is, a black line corresponding to the locus of the input pen 50 is drawn on the display surface S1.

 この一方で、情報Dsが、ペン先50Aが上を向いている状態であることを示す場合には、"消去モード"として、例えば黒色かつ負に帯電した泳動粒子32が第1電極13側へ移動するようなバイアス電圧の極性が設定される(切り替えられる)。これにより、例えば図22に示したように、ペン先50Aを上に向けた状態で加圧すると、即ち、ペン尻50Bを表示面S1に押し当てるように加圧すると、"消去モード"が実行され、経路R2を介して第1電極13に、消去モードに対応する電圧Vsigが供給される。これにより、加圧箇所の泳動粒子32が第1電極13側へ移動し、白表示となる。即ち、表示面S1に描画された線の一部または全部を消去することができる。 On the other hand, when the information Ds indicates that the pen tip 50A is facing upward, as an “erasing mode”, for example, the black and negatively charged migrating particles 32 are directed to the first electrode 13 side. The polarity of the bias voltage that moves is set (switched). Thereby, for example, as shown in FIG. 22, when the pen tip 50A is pressed upward, that is, when the pen bottom 50B is pressed against the display surface S1, the “erase mode” is executed. Then, the voltage Vsig corresponding to the erase mode is supplied to the first electrode 13 via the path R2. As a result, the migrating particles 32 at the pressurization location move to the first electrode 13 side, and white display is performed. That is, some or all of the lines drawn on the display surface S1 can be erased.

 本変形例のように、傾斜センサ51を有する入力ペン50を用いることで、例えばユーザが入力ペン50の先端の向きを変えるだけで、書き込みモードと消去モードとを自動で切り替えることができる。これにより、ユーザは、表示面S1において、線や文字を書き込み、書き込んだ部分を部分的に消す、といった一連の入力操作を、あたかも消しゴム付きの鉛筆を使っているかのような感覚で行うことができる。 As in this modification, by using the input pen 50 having the tilt sensor 51, for example, the user can automatically switch between the writing mode and the erasing mode only by changing the direction of the tip of the input pen 50. Thereby, the user can perform a series of input operations such as writing lines and characters on the display surface S1 and partially erasing the written part as if using a pencil with an eraser. it can.

<変形例3>
 図23は、変形例3に係る感圧導電層18の断面構成を模式的に表したものである。本変形例の感圧導電層18では、表示素子10側の面S22および第3電極19側の面S21のうちの少なくとも一方の面(例えば、面S21)側に、複数の溝18aが設けられている。
<Modification 3>
FIG. 23 schematically illustrates a cross-sectional configuration of the pressure-sensitive conductive layer 18 according to the third modification. In the pressure-sensitive conductive layer 18 of this modification, a plurality of grooves 18a are provided on at least one surface (for example, the surface S21) side of the surface S22 on the display element 10 side and the surface S21 on the third electrode 19 side. ing.

 複数の溝18aは、平面視的に(XZ平面において)、それぞれが一方向に延在して形成され、全体としては、いわゆるストライプ状、または格子状等を成している。また、各溝18aの断面形状(XY断面形状)は、例えば三角形状である。但し、溝18aの断面形状は、この三角形状に限定されず、例えば矩形状、半円形状および楕円形状等、様々な形状を取り得る。溝18a内は、例えば、空洞であってもよいし、あるいは、樹脂、ゴムもしくは粘着剤等によって充填されていてもよい。樹脂等によって充填する場合には、例えば、感圧導電層18よりも柔らかい材料で充填することが好ましい。なお、溝18aは、感圧導電層18を貫通し、感圧導電層18を複数に分割していても構わない。また、溝18aの配列ピッチ、個数、大きさ等も、特に限定されるものではない。溝18aのレイアウトは、感圧導電層18に用いられる材料や、厚み、必要とされる線幅等に応じて適宜設定されればよい。本変形例の感圧導電層18の構成材料としては、上記実施の形態と同様のものを挙げることができる。 The plurality of grooves 18a are formed so as to extend in one direction in plan view (in the XZ plane), and as a whole have a so-called stripe shape or lattice shape. The cross-sectional shape (XY cross-sectional shape) of each groove 18a is, for example, a triangular shape. However, the cross-sectional shape of the groove 18a is not limited to this triangular shape, and may take various shapes such as a rectangular shape, a semicircular shape, and an elliptical shape. The inside of the groove 18a may be, for example, a cavity, or may be filled with resin, rubber, adhesive, or the like. When filling with a resin or the like, for example, it is preferable to fill with a material softer than the pressure-sensitive conductive layer 18. The groove 18a may penetrate the pressure-sensitive conductive layer 18, and the pressure-sensitive conductive layer 18 may be divided into a plurality of parts. Further, the arrangement pitch, number, size, and the like of the grooves 18a are not particularly limited. The layout of the grooves 18a may be appropriately set according to the material used for the pressure-sensitive conductive layer 18, the thickness, the required line width, and the like. As a constituent material of the pressure-sensitive conductive layer 18 of this modification, the same materials as those in the above embodiment can be exemplified.

 ここで、図24Aに、本変形例の比較例2として、溝18aを持たない感圧導電層18の加圧状態における形状変化について模式的に示す。感圧導電層18が感圧導電ゴムによって構成されている場合、圧力Pが印加されると、感圧導電層18は、表示面S1においてペン先が実際に接している範囲(圧力印加範囲)よりも広い範囲B1において撓む(変形する)。このため、この範囲B1に配置された表示素子10に電圧が印加され、これらの表示素子10における表示状態が変化する。したがって、描画される線幅が、実際に使用されたペン先の幅よりも太くなることがある。 Here, FIG. 24A schematically shows a change in shape of the pressure-sensitive conductive layer 18 having no groove 18a in a pressurized state as Comparative Example 2 of the present modification. When the pressure-sensitive conductive layer 18 is made of pressure-sensitive conductive rubber, when the pressure P is applied, the pressure-sensitive conductive layer 18 is in a range where the pen tip is actually in contact with the display surface S1 (pressure application range). It bends (deforms) in a wider range B1. For this reason, a voltage is applied to the display elements 10 arranged in this range B1, and the display state of these display elements 10 changes. Therefore, the drawn line width may be thicker than the actually used pen tip width.

 そこで、本変形例のように、感圧導電層18に複数の溝18aを設けることで、例えば、図24Bに示したように、圧力Pの印加による変形の拡がりが、溝18aによって遮断される。即ち、圧力印加時における感圧導電層18の変形範囲(範囲B2)は、溝18aによって制限され、この範囲B2に配置された表示素子10にのみ電圧が印加される。したがって、感圧導電層18において、圧力印加によって変形する範囲B2を、実際の圧力印加範囲に近づけることが可能となる。上記比較例2に比べ、描画線幅をより細くすることができる。 Therefore, by providing a plurality of grooves 18a in the pressure-sensitive conductive layer 18 as in this modification, for example, as shown in FIG. 24B, the expansion of deformation due to the application of pressure P is blocked by the grooves 18a. . That is, the deformation range (range B2) of the pressure-sensitive conductive layer 18 when pressure is applied is limited by the groove 18a, and a voltage is applied only to the display element 10 arranged in this range B2. Therefore, in the pressure-sensitive conductive layer 18, the range B <b> 2 that is deformed by pressure application can be brought close to the actual pressure application range. Compared to the second comparative example, the drawing line width can be made thinner.

 なお、溝18Aの間隔(ピッチ)は、できるだけ細かいことが望ましく、これにより、より精細な幅の線で描画することが可能となる。 It should be noted that the interval (pitch) of the grooves 18A is desirably as small as possible, thereby enabling drawing with a line having a finer width.

<変形例4>
 図25は、変形例4に係る表示装置(表示装置2)の断面構成を表したものである。表示装置2は、上記実施の形態の表示装置1と同様、例えば電気泳動表示素子等の表示素子(表示素子10)を用いて、光反射率制御により画像を表示する反射型の表示装置である。また、表示装置2は、第1基板11上に、TFT層12と、例えばマトリクス状に配置された複数の表示素子10とを備えたものである。各表示素子10では、第1電極13と第2電極16との間に、表示体10Aとスペーサ15とが設けられ、第2電極16上には、第2基板17が設けられている。第1電極13と表示体10Aとの間にはシール層14が介在する。なお、図1は表示装置1の構成を模式的に表したものであり、実際の寸法、形状とは異なる場合がある。
<Modification 4>
FIG. 25 illustrates a cross-sectional configuration of a display device (display device 2) according to Modification 4. The display device 2 is a reflective display device that displays an image by light reflectance control using a display element (display element 10) such as an electrophoretic display element, for example, as in the display device 1 of the above-described embodiment. . The display device 2 includes a TFT layer 12 and a plurality of display elements 10 arranged in a matrix, for example, on a first substrate 11. In each display element 10, a display body 10 </ b> A and a spacer 15 are provided between the first electrode 13 and the second electrode 16, and a second substrate 17 is provided on the second electrode 16. A seal layer 14 is interposed between the first electrode 13 and the display body 10A. FIG. 1 schematically shows the configuration of the display device 1 and may differ from actual dimensions and shapes.

 また、上記実施の形態と同様、TFT層12よりも下層、具体的には第1基板11の裏面に、感圧導電層18、第3電極(第3電極19A)および支持基板20が設けられている。尚、図25に図示はしないが、本変形例においても、スイッチ41により、TFT12Aを含む経路R1と、感圧導電層18を含む経路R2とが切り替え可能となっている。 Similarly to the above embodiment, the pressure-sensitive conductive layer 18, the third electrode (third electrode 19 </ b> A), and the support substrate 20 are provided below the TFT layer 12, specifically, on the back surface of the first substrate 11. ing. Although not shown in FIG. 25, also in this modification, the path 41 including the TFT 12A and the path R2 including the pressure-sensitive conductive layer 18 can be switched by the switch 41.

 但し、本変形例では、上記実施の形態と異なり、第2電極16と第2基板17との間に、カラーフィルタ層(カラーフィルタ層21)が設けられている。即ち、本変形例の表示装置2は、カラー反射型の電気泳動表示装置である。また、本変形例では、第3電極19Aが、複数のサブ電極19R,19G,19Bを含んで構成されている(第3電極19Aが複数のサブ電極19R,19G,19Bに分割されている)。尚、説明上、図25には、カラーフィルタ21Gとこれに対向する表示素子10とを含む領域を画素a7、カラーフィルタ21Bとこれに対向する表示素子10とを含む領域を画素a8、カラーフィルタ21Rとこれに対向する表示素子10とを含む領域を画素a9として示している。 However, in this modification, unlike the above embodiment, a color filter layer (color filter layer 21) is provided between the second electrode 16 and the second substrate 17. That is, the display device 2 of the present modification is a color reflection type electrophoretic display device. In the present modification, the third electrode 19A includes a plurality of sub-electrodes 19R, 19G, and 19B (the third electrode 19A is divided into a plurality of sub-electrodes 19R, 19G, and 19B). . For the sake of explanation, FIG. 25 shows a region including the color filter 21G and the display element 10 facing the pixel a7, and a region including the color filter 21B and the display element 10 facing the pixel a8. A region including 21R and the display element 10 opposed thereto is shown as a pixel a9.

 画素a7は、表示体10Aへ印加されるバイアス電圧に応じて、緑色(緑色表示)から黒色(黒表示)の間で表示状態が変化するものである。画素a8は、表示体10Aへ印加されるバイアス電圧に応じて、青色(青色表示)から黒色(黒表示)の間で表示状態が変化するものである。画素a9は、赤色(赤色表示)から黒色(黒表示)の間で表示状態が変化するものである。これらの画素a7,a8,a9の表示状態の組み合わせにより、白表示および黒表示に加え、任意の色の表示を行うことができる。 The display state of the pixel a7 changes between green (green display) and black (black display) according to the bias voltage applied to the display body 10A. The display state of the pixel a8 changes between blue (blue display) and black (black display) according to the bias voltage applied to the display body 10A. The display state of the pixel a9 changes between red (red display) to black (black display). Depending on the combination of the display states of these pixels a7, a8, and a9, in addition to white display and black display, display of any color can be performed.

 カラーフィルタ層21は、例えば赤(R),緑(G)および青(B)等の複数色のカラーフィルタ21R,21G,21Bを含んでいる。カラーフィルタ21R,21G,21Bは、例えば、平面視的にストライプ状を成して配置されている。カラーフィルタ21Rは、例えば表示体10Aを出射する光(白色光)のうち赤色に対応する波長の光を選択的に透過して出射するものである。カラーフィルタ21Gは、例えば表示体10Aを出射する光(白色光)のうち緑色に対応する波長の光を選択的に透過して出射するものである。カラーフィルタ21Bは、例えば表示体10Aを出射する光(白色光)のうち青色に対応する波長の光を選択的に透過して出射するものである。 The color filter layer 21 includes multiple color filters 21R, 21G, and 21B such as red (R), green (G), and blue (B). The color filters 21R, 21G, and 21B are arranged in a stripe shape in plan view, for example. The color filter 21R selectively transmits, for example, light having a wavelength corresponding to red in light (white light) emitted from the display body 10A. The color filter 21G selectively transmits, for example, light having a wavelength corresponding to green among light (white light) emitted from the display body 10A. The color filter 21B selectively transmits light having a wavelength corresponding to blue out of light (white light) emitted from the display body 10A, for example.

 第3電極19Aを構成するサブ電極19R,19G,19Bはそれぞれ、カラーフィルタ21R,21G,21Bに対向しており、全体としてストライプ状を成している。即ち、サブ電極19Rは、カラーフィルタ21Rに対向配置され、サブ電極19Gは、カラーフィルタ21Gに対向配置され、サブ電極19Bは、カラーフィルタ21Bに対向配置されている。図26に、サブ電極19R,19G,19Bの構成例を示す。尚、各サブ電極19R,19G,19Bに対向する領域に、複数の表示素子10(例えば行方向または列方向に沿って並んで配置された複数の表示素子10)が配置されている。 The sub-electrodes 19R, 19G, and 19B constituting the third electrode 19A are opposed to the color filters 21R, 21G, and 21B, respectively, and have a stripe shape as a whole. That is, the sub electrode 19R is disposed to face the color filter 21R, the sub electrode 19G is disposed to face the color filter 21G, and the sub electrode 19B is disposed to face the color filter 21B. FIG. 26 shows a configuration example of the sub electrodes 19R, 19G, and 19B. A plurality of display elements 10 (for example, a plurality of display elements 10 arranged side by side in the row direction or the column direction) are arranged in a region facing each of the sub-electrodes 19R, 19G, 19B.

 これらのサブ電極19R,19G,19Bのそれぞれには、スイッチ41によって手書き入力が選択された場合において、互いに異なる(または同一の)電圧が供給可能となっている。 These sub-electrodes 19R, 19G, and 19B can be supplied with different (or the same) voltages when handwriting input is selected by the switch 41.

 上記構成により、本変形例では、手書き入力時において、例えば第3電極19Aにおけるサブ電極19R,19G,19Bのそれぞれに同一のまたは異なる電圧Vsigが供給される。これにより、任意の色の線で描画することが可能となる。 With the above configuration, in this modification, the same or different voltage Vsig is supplied to each of the sub-electrodes 19R, 19G, and 19B in the third electrode 19A, for example, at the time of handwriting input. This makes it possible to draw with a line of any color.

 一例を挙げると、図示しない電圧印加部40により、第2電極16に電圧Vcom(0V)が印加され、サブ電極19R,19Gに-15Vが供給され、サブ電極19Bには0Vが供給される。この状態で、表示面S1が入力ペン50により加圧されると、加圧箇所(ここでは画素a7,a8,a9)では、感圧導電層18が変形して経路R2が形成される。これにより、画素a7,a9では、第1電極13に-15Vが供給され、画素a8では、第1電極13に0Vが供給される。この結果、図27に示したように、例えば黒色かつ負に帯電した泳動粒子32が、画素a7,a9においては第2電極16側へ移動し、画素a8においては第1電極13側に留まる。したがって、画素a7,a9では黒表示となり、画素a8では青色光LBが出射される。つまり、この例では、入力ペン50によってなぞられた軌跡が青色の線として描画される。 For example, a voltage Vcom (0V) is applied to the second electrode 16 by a voltage application unit 40 (not shown), -15V is supplied to the sub-electrodes 19R and 19G, and 0V is supplied to the sub-electrode 19B. In this state, when the display surface S1 is pressurized by the input pen 50, the pressure-sensitive conductive layer 18 is deformed and the path R2 is formed at the pressure locations (here, the pixels a7, a8, and a9). Thereby, −15 V is supplied to the first electrode 13 in the pixels a7 and a9, and 0 V is supplied to the first electrode 13 in the pixel a8. As a result, as shown in FIG. 27, for example, the black and negatively charged migrating particles 32 move to the second electrode 16 side in the pixels a7 and a9, and remain on the first electrode 13 side in the pixel a8. Therefore, the pixels a7 and a9 display black, and the pixel a8 emits blue light LB. That is, in this example, the locus traced by the input pen 50 is drawn as a blue line.

 本変形例のように、カラー反射型の表示装置2において、第3電極19Aを複数のサブ電極19R,19G,19Bに分割することで、任意の色の線で手書き入力(色付きペンでの描画)を行うことが可能となる。 As in the present modification, in the color reflective display device 2, the third electrode 19A is divided into a plurality of sub-electrodes 19R, 19G, and 19B, whereby handwritten input (drawing with a colored pen) is performed with an arbitrary color line. ) Can be performed.

 また、第3電極19Aがサブ電極19R,19G,19Bに細分化されることから、上記実施の形態よりも、より精細な描画線幅を実現することができる。例えば、図27に模式的に示したように、入力ペン50のペン先50Aは、1画素のスケールよりも大きい。また、上記変形例3でも述べたように、感圧導電層18の変形範囲は、表示面S1において実際にペン先50Aが接している範囲よりも広くなる。このため、描画線幅が太くなる傾向があるが、本変形例では、手書き入力時においても、サブ電極単位での電圧駆動が可能であるため、描画線幅を精細化することが可能である。 Further, since the third electrode 19A is subdivided into sub-electrodes 19R, 19G, and 19B, a finer drawing line width can be realized than in the above embodiment. For example, as schematically shown in FIG. 27, the pen tip 50A of the input pen 50 is larger than the scale of one pixel. Further, as described in Modification 3 above, the deformation range of the pressure-sensitive conductive layer 18 is wider than the range where the pen tip 50A is actually in contact with the display surface S1. For this reason, the drawing line width tends to be thick, but in this modification, the voltage can be driven in units of sub-electrodes even during handwriting input, so the drawing line width can be refined. .

<変形例5>
 図28は、変形例5に係る表示装置の断面構成を表したものである。上記変形例4では、カラー反射型の表示装置2において、第3電極19Aをカラーフィルタ層21のフィルタ配列に対応させて複数のサブ電極19R,19G,19Bに分割したが、この第3電極19Aの構成は、本変形例のようなモノクロ反射型の表示装置にも適用可能である。本変形例では、上記実施の形態と同様、第1基板11上に、TFT層12、第1電極13、シール層14、表示体10A、第2電極16および第2基板17を備えている。第1基板11の裏面には、感圧導電層18および第3電極19Aが形成されている。第3電極19Aは、複数のサブ電極19A1,19A2,19A3に分割されている。
<Modification 5>
FIG. 28 illustrates a cross-sectional configuration of a display device according to the fifth modification. In the fourth modification, in the color reflective display device 2, the third electrode 19A is divided into a plurality of sub-electrodes 19R, 19G, and 19B corresponding to the filter arrangement of the color filter layer 21, but the third electrode 19A This configuration can also be applied to a monochrome reflection type display device as in this modification. In the present modification, the TFT layer 12, the first electrode 13, the seal layer 14, the display body 10 </ b> A, the second electrode 16, and the second substrate 17 are provided on the first substrate 11 as in the above embodiment. A pressure-sensitive conductive layer 18 and a third electrode 19A are formed on the back surface of the first substrate 11. The third electrode 19A is divided into a plurality of sub-electrodes 19A1, 19A2, and 19A3.

 サブ電極19A1,19A2,19A3は、上記変形例4のサブ電極19R,19G,19Bと同様、全体としてストライプ状を成している。また、各サブ電極19A1,19A2,19A3に対向する領域に、複数の表示素子10(例えば行方向または列方向に沿って並んで配置された複数の表示素子10)が配置されている。これらのサブ電極19A1,19A2,19A3のそれぞれには、スイッチ41によって手書き入力が選択された場合において、互いに異なる(または同一の)電圧が供給可能となっている。 The sub-electrodes 19A1, 19A2, and 19A3 are formed in a stripe shape as a whole, similarly to the sub-electrodes 19R, 19G, and 19B of the fourth modification. In addition, a plurality of display elements 10 (for example, a plurality of display elements 10 arranged side by side in the row direction or the column direction) are arranged in regions facing the sub-electrodes 19A1, 19A2, and 19A3. Each of the sub-electrodes 19A1, 19A2, and 19A3 can be supplied with different (or the same) voltages when handwriting input is selected by the switch 41.

 このように、モノクロ反射型の表示装置においても、第3電極19Aを分割した構成としてもよい。この場合には、上記変形例4の場合と同様、上記実施の形態よりも、より精細な描画線幅を実現することができる。つまり、サブ電極単位での電圧駆動が可能であることから、感圧導電層18の変形範囲に拘らず(変形範囲よりも狭い範囲で)、線を表示することが可能である。 Thus, even in a monochrome reflection type display device, the third electrode 19A may be divided. In this case, as in the case of the modification example 4, a finer drawing line width can be realized than in the embodiment. That is, since voltage driving can be performed in units of sub-electrodes, lines can be displayed regardless of the deformation range of the pressure-sensitive conductive layer 18 (in a range narrower than the deformation range).

<適用例>
 次に、上記実施の形態および変形例等で説明した表示装置(表示装置1を例に挙げる)の適用例について説明する。但し、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。
<Application example>
Next, application examples of the display device (display device 1 is taken as an example) described in the above embodiments and modifications will be described. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.

 図29は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、表示部310および筐体320を有しており、表示部310が上記実施の形態の表示装置1により構成されている。 FIG. 29 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a display unit 310 and a housing 320, and the display unit 310 is configured by the display device 1 of the above embodiment.

 また、この他にも、上記実施の形態の表示装置1は、電子掲示板等に適用してもよい。 In addition, the display device 1 of the above embodiment may be applied to an electronic bulletin board or the like.

 以上、実施の形態および変形例を挙げて説明したが、本開示内容は上記実施の形態等で説明した態様に限定されず、種々の変形が可能である。例えば、上記実施の形態では、表示素子10(電気泳動表示素子)の表示体10Aとして、絶縁性液体31、泳動粒子32および多孔質層33を備えた構成を例示したが、表示体10Aの構成は、このような多孔質層33を用いたものに限定されず、電気泳動現象を利用して画素ごとに光反射によるコントラスト形成が可能なものであればよい。例えば、カプセルタイプのものや、繊維状構造体の無いタイプ(液体そのものを着色したもの)を用いてもかまわない。 As described above, the embodiments and modifications have been described, but the present disclosure is not limited to the aspects described in the above-described embodiments and the like, and various modifications are possible. For example, in the above-described embodiment, the configuration including the insulating liquid 31, the migrating particles 32, and the porous layer 33 is illustrated as the display body 10A of the display element 10 (electrophoretic display element). Are not limited to those using such a porous layer 33, but may be any as long as the contrast can be formed by light reflection for each pixel using the electrophoresis phenomenon. For example, a capsule type or a type without a fibrous structure (colored liquid itself) may be used.

 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.

 また、本開示は以下のような構成を取ることも可能である。
(1)
 各々が、互いに対向する第1電極と第2電極との間に表示体を有すると共に、印加電圧に応じて表示状態が変化する複数の表示素子と、
 前記表示素子毎に設けられ、前記第1電極へ電圧を印加するためのスイッチングを行う薄膜トランジスタと、
 前記薄膜トランジスタよりも下層に形成された感圧導電層と、
 前記感圧導電層を介して前記第1電極と接続された第3電極と、
 前記第1電極への電圧印加経路として、前記薄膜トランジスタを含む第1の経路と、前記感圧導電層および前記第3電極を含む第2の経路とのうちの一方を選択するスイッチと
 を備えた
 表示装置。
(2)
 前記薄膜トランジスタと前記感圧導電層との間に設けられた第1基板と、
 前記第1基板を貫通して設けられると共に、前記感圧導電層と前記第1電極とを電気的に接続させる貫通電極と
 を備えた
 上記(1)に記載の表示装置。
(3)
 前記貫通電極は、前記表示素子毎に設けられている
 上記(2)に記載の表示装置。
(4)
 前記薄膜トランジスタは、ゲート電極、ソース電極およびドレイン電極を有し、
 前記薄膜トランジスタの前記ドレイン電極は、前記第1電極に電気的に接続され、
 前記スイッチは、前記薄膜トランジスタの前記ソース電極と前記第3電極とのうちの一方を選択的に電源に接続するように構成されている
 上記(1)~(3)のいずれか1つに記載の表示装置。
(5)
 前記表示素子への印加電圧を制御して、前記表示素子を駆動する表示制御部を備え、
 前記表示制御部は、前記複数の表示素子のうちの一部に書き込みが行われ、かつ前記スイッチにより前記第2の経路が選択されている場合に、
 前記書き込みが行われた際の電圧とは逆極性の電圧を印加する
 上記(1)~(4)のいずれか1つに記載の表示装置。
(6)
 先端の向きを認識可能であると共に、前記先端の向きに関する情報を送信可能なセンサを備えたペンを用いて書き込みが行われる場合に、
 前記表示制御部は、
 前記ペンから前記先端の向きに関する情報を受信し、
 受信した前記情報に基づいて前記表示素子の表示状態を変化させる駆動を行う
 上記(5)に記載の表示装置。
(7)
 前記感圧導電層は、前記第3電極の側および前記表示素子の側のうちの少なくとも一方の側に溝を有する
 上記(1)~(6)のいずれか1つに記載の表示装置。
(8)
 前記第3電極は、前記複数の表示素子のそれぞれに対応する各領域に共通の電極として設けられている
 上記(1)~(7)のいずれか1つに記載の表示装置。
(9)
 前記第3電極は、電気的に分離された複数のサブ電極を含み、
 前記スイッチにより前記第2の経路が選択されている場合に、前記複数のサブ電極のうちの選択的なサブ電極に対して電圧を印加可能に構成されている
 上記(1)~(8)のいずれか1つに記載の表示装置。
(10)
 前記表示素子の光出射側に、複数色のカラーフィルタを含むカラーフィルタ層を備え、
 前記複数のサブ電極はそれぞれ、前記カラーフィルタ層のうちのいずれかのカラーフィルタに対応する領域に設けられている
 上記(9)に記載の表示装置。
(11)
 前記複数のサブ電極は、全体としてストライプ状を成す
 上記(9)または(10)に記載の表示装置。
(12)
 前記表示素子は電気泳動表示素子である
 上記(1)~(11)のいずれか1つに記載の表示装置。
(13)
 前記電気泳動表示素子は、マイクロカップ方式の電気泳動表示素子である
 上記(12)に記載の表示装置。
(14)
 前記電気泳動表示素子は、マイクロカプセル方式の電気泳動表示素子である
 上記(12)に記載の表示装置。
Further, the present disclosure can take the following configurations.
(1)
A plurality of display elements each having a display body between a first electrode and a second electrode facing each other, and a display state changing according to an applied voltage;
A thin film transistor that is provided for each display element and performs switching for applying a voltage to the first electrode;
A pressure-sensitive conductive layer formed below the thin film transistor; and
A third electrode connected to the first electrode via the pressure-sensitive conductive layer;
As a voltage application path to the first electrode, a switch for selecting one of a first path including the thin film transistor and a second path including the pressure-sensitive conductive layer and the third electrode is provided. Display device.
(2)
A first substrate provided between the thin film transistor and the pressure-sensitive conductive layer;
The display device according to (1), further including a through electrode provided through the first substrate and electrically connecting the pressure-sensitive conductive layer and the first electrode.
(3)
The display device according to (2), wherein the through electrode is provided for each display element.
(4)
The thin film transistor has a gate electrode, a source electrode, and a drain electrode,
The drain electrode of the thin film transistor is electrically connected to the first electrode;
The switch is configured to selectively connect one of the source electrode and the third electrode of the thin film transistor to a power source. The switch according to any one of (1) to (3), Display device.
(5)
A display control unit for controlling the voltage applied to the display element to drive the display element;
The display control unit, when writing to a part of the plurality of display elements, and the second path is selected by the switch,
The display device according to any one of (1) to (4), wherein a voltage having a polarity opposite to a voltage at the time of writing is applied.
(6)
When writing is performed using a pen that can recognize the direction of the tip and has a sensor capable of transmitting information on the direction of the tip.
The display control unit
Receiving information about the orientation of the tip from the pen;
The display device according to (5), wherein driving is performed to change a display state of the display element based on the received information.
(7)
The display device according to any one of (1) to (6), wherein the pressure-sensitive conductive layer has a groove on at least one of the third electrode side and the display element side.
(8)
The display device according to any one of (1) to (7), wherein the third electrode is provided as a common electrode in each region corresponding to each of the plurality of display elements.
(9)
The third electrode includes a plurality of electrically separated sub-electrodes;
When the second path is selected by the switch, a voltage can be applied to a selective sub-electrode of the plurality of sub-electrodes. (1) to (8) The display device according to any one of the above.
(10)
Provided with a color filter layer including a plurality of color filters on the light emitting side of the display element,
The display device according to (9), wherein each of the plurality of sub-electrodes is provided in a region corresponding to any one of the color filter layers.
(11)
The display device according to (9) or (10), wherein the plurality of sub-electrodes form a stripe shape as a whole.
(12)
The display device according to any one of (1) to (11), wherein the display element is an electrophoretic display element.
(13)
The display device according to (12), wherein the electrophoretic display element is a microcup type electrophoretic display element.
(14)
The display device according to (12), wherein the electrophoretic display element is a microcapsule electrophoretic display element.

 本出願は、日本国特許庁において2015年7月17日に出願された日本特許出願番号第2015-142644号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-142644 filed on July 17, 2015 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.

 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (14)

 各々が、互いに対向する第1電極と第2電極との間に表示体を有すると共に、印加電圧に応じて表示状態が変化する複数の表示素子と、
 前記表示素子毎に設けられ、前記第1電極へ電圧を印加するためのスイッチングを行う薄膜トランジスタと、
 前記薄膜トランジスタよりも下層に形成された感圧導電層と、
 前記感圧導電層を介して前記第1電極と接続された第3電極と、
 前記第1電極への電圧印加経路として、前記薄膜トランジスタを含む第1の経路と、前記感圧導電層および前記第3電極を含む第2の経路とのうちの一方を選択するスイッチと
 を備えた
 表示装置。
A plurality of display elements each having a display body between a first electrode and a second electrode facing each other, and a display state changing according to an applied voltage;
A thin film transistor that is provided for each display element and performs switching for applying a voltage to the first electrode;
A pressure-sensitive conductive layer formed below the thin film transistor; and
A third electrode connected to the first electrode via the pressure-sensitive conductive layer;
As a voltage application path to the first electrode, a switch for selecting one of a first path including the thin film transistor and a second path including the pressure-sensitive conductive layer and the third electrode is provided. Display device.
 前記薄膜トランジスタと前記感圧導電層との間に設けられた第1基板と、
 前記第1基板を貫通して設けられると共に、前記感圧導電層と前記第1電極とを電気的に接続させる貫通電極と
 を備えた
 請求項1に記載の表示装置。
A first substrate provided between the thin film transistor and the pressure-sensitive conductive layer;
The display device according to claim 1, further comprising: a through-electrode that is provided through the first substrate and electrically connects the pressure-sensitive conductive layer and the first electrode.
 前記貫通電極は、前記表示素子毎に設けられている
 請求項2に記載の表示装置。
The display device according to claim 2, wherein the through electrode is provided for each display element.
 前記薄膜トランジスタは、ゲート電極、ソース電極およびドレイン電極を有し、
 前記薄膜トランジスタの前記ドレイン電極は、前記第1電極に電気的に接続され、
 前記スイッチは、前記薄膜トランジスタの前記ソース電極と前記第3電極とのうちの一方を選択的に電源に接続するように構成されている
 請求項1に記載の表示装置。
The thin film transistor has a gate electrode, a source electrode, and a drain electrode,
The drain electrode of the thin film transistor is electrically connected to the first electrode;
The display device according to claim 1, wherein the switch is configured to selectively connect one of the source electrode and the third electrode of the thin film transistor to a power source.
 前記表示素子への印加電圧を制御して、前記表示素子を駆動する表示制御部を備え、
 前記表示制御部は、前記複数の表示素子のうちの一部に書き込みが行われ、かつ前記スイッチにより前記第2の経路が選択されている場合に、
 前記書き込みが行われた際の電圧とは逆極性の電圧を印加する
 請求項1に記載の表示装置。
A display control unit for controlling the voltage applied to the display element to drive the display element;
The display control unit, when writing to a part of the plurality of display elements, and the second path is selected by the switch,
The display device according to claim 1, wherein a voltage having a polarity opposite to a voltage at the time of writing is applied.
 先端の向きを認識可能であると共に、前記先端の向きに関する情報を送信可能なセンサを備えたペンを用いて書き込みが行われる場合に、
 前記表示制御部は、
 前記ペンから前記先端の向きに関する情報を受信し、
 受信した前記情報に基づいて前記表示素子の表示状態を変化させる駆動を行う
 請求項5に記載の表示装置。
When writing is performed using a pen that can recognize the direction of the tip and has a sensor capable of transmitting information on the direction of the tip.
The display control unit
Receiving information about the orientation of the tip from the pen;
The display device according to claim 5, wherein driving for changing a display state of the display element is performed based on the received information.
 前記感圧導電層は、前記第3電極の側および前記表示素子の側のうちの少なくとも一方の側に溝を有する
 請求項1に記載の表示装置。
The display device according to claim 1, wherein the pressure-sensitive conductive layer has a groove on at least one of the third electrode side and the display element side.
 前記第3電極は、前記複数の表示素子のそれぞれに対応する各領域に共通の電極として設けられている
 請求項1に記載の表示装置。
The display device according to claim 1, wherein the third electrode is provided as a common electrode in each region corresponding to each of the plurality of display elements.
 前記第3電極は、電気的に分離された複数のサブ電極を含み、
 前記スイッチにより前記第2の経路が選択されている場合に、前記複数のサブ電極のうちの選択的なサブ電極に対して電圧を印加可能に構成されている
 請求項1に記載の表示装置。
The third electrode includes a plurality of electrically separated sub-electrodes;
The display device according to claim 1, wherein when the second path is selected by the switch, a voltage can be applied to a selective sub-electrode among the plurality of sub-electrodes.
 前記表示素子の光出射側に、複数色のカラーフィルタを含むカラーフィルタ層を備え、
 前記複数のサブ電極はそれぞれ、前記カラーフィルタ層のうちのいずれかのカラーフィルタに対応する領域に設けられている
 請求項9に記載の表示装置。
Provided with a color filter layer including a plurality of color filters on the light emitting side of the display element,
The display device according to claim 9, wherein each of the plurality of sub-electrodes is provided in a region corresponding to any one of the color filter layers.
 前記複数のサブ電極は、全体としてストライプ状を成す
 請求項9に記載の表示装置。
The display device according to claim 9, wherein the plurality of sub-electrodes form a stripe shape as a whole.
 前記表示素子は電気泳動表示素子である
 請求項1に記載の表示装置。
The display device according to claim 1, wherein the display element is an electrophoretic display element.
 前記電気泳動表示素子は、マイクロカップ方式の電気泳動表示素子である
 請求項12に記載の表示装置。
The display device according to claim 12, wherein the electrophoretic display element is a microcup type electrophoretic display element.
 前記電気泳動表示素子は、マイクロカプセル方式の電気泳動表示素子である
 請求項12に記載の表示装置。
The display device according to claim 12, wherein the electrophoretic display element is a microcapsule electrophoretic display element.
PCT/JP2016/067902 2015-07-17 2016-06-16 Display device Ceased WO2017013973A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-142644 2015-07-17
JP2015142644A JP2017026695A (en) 2015-07-17 2015-07-17 Display

Publications (1)

Publication Number Publication Date
WO2017013973A1 true WO2017013973A1 (en) 2017-01-26

Family

ID=57834000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067902 Ceased WO2017013973A1 (en) 2015-07-17 2016-06-16 Display device

Country Status (2)

Country Link
JP (1) JP2017026695A (en)
WO (1) WO2017013973A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254991A (en) * 2018-03-14 2018-07-06 京东方科技集团股份有限公司 Display device of electronic paper and preparation method thereof and driving method
CN113056703A (en) * 2018-11-30 2021-06-29 伊英克公司 Pressure-sensitive writing medium containing electrophoretic material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014380A (en) * 2000-04-27 2002-01-18 Fuji Xerox Co Ltd Image forming device
JP2003270676A (en) * 2002-03-13 2003-09-25 Sharp Corp Display device, electronic information equipment, IC card viewer, control method therefor, settlement processing system, IC card issue control method and personal authentication control method
JP2008180953A (en) * 2007-01-25 2008-08-07 Seiko Epson Corp Display device, display device manufacturing method, and electronic paper
US20110181533A1 (en) * 2010-01-28 2011-07-28 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Electronic paper device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014380A (en) * 2000-04-27 2002-01-18 Fuji Xerox Co Ltd Image forming device
JP2003270676A (en) * 2002-03-13 2003-09-25 Sharp Corp Display device, electronic information equipment, IC card viewer, control method therefor, settlement processing system, IC card issue control method and personal authentication control method
JP2008180953A (en) * 2007-01-25 2008-08-07 Seiko Epson Corp Display device, display device manufacturing method, and electronic paper
US20110181533A1 (en) * 2010-01-28 2011-07-28 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Electronic paper device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108254991A (en) * 2018-03-14 2018-07-06 京东方科技集团股份有限公司 Display device of electronic paper and preparation method thereof and driving method
US10976635B2 (en) 2018-03-14 2021-04-13 Boe Technology Group Co., Ltd. Electronic paper display apparatus and production method and driving method thereof
CN108254991B (en) * 2018-03-14 2021-08-20 京东方科技集团股份有限公司 Electronic paper display device and its manufacturing method and driving method
CN113056703A (en) * 2018-11-30 2021-06-29 伊英克公司 Pressure-sensitive writing medium containing electrophoretic material

Also Published As

Publication number Publication date
JP2017026695A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
CN110520791B (en) Display substrate, driving method thereof, and display device
TWI667524B (en) Writeable display medium, writeable system and method for switching the state of an electrophoretic display
JP4407699B2 (en) Display device and electronic paper
JP5741122B2 (en) Electrophoretic element, display device and electronic device
US10823954B2 (en) Adhesive/sealing material for an electrowetting device
WO2013145914A1 (en) Display device and electronic equipment
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
US20110181532A1 (en) Electronic paper device
US10816791B1 (en) Insulated notch design for pixels in an electrowetting device
US20180246597A1 (en) Writeable electrophoretic display and pen configured to write on electrophoretic display with disappearing ink and electromagnetic sensing
US20110181533A1 (en) Electronic paper device
TWI709889B (en) Writing apparatus
US20110181531A1 (en) Electronic paper device
JP7158584B2 (en) Pressure-sensitive write medium with electrophoretic material
US8705164B2 (en) Display apparatus
WO2017013973A1 (en) Display device
JP5870605B2 (en) Display device, driving method thereof, and electronic apparatus
CN202383397U (en) Double-sided display electronic paper and electronic paper display
WO2016190136A1 (en) Display device
US9910264B1 (en) Contact of spacers to pixel walls in an electrowetting device
WO2016170970A1 (en) Display device and display device manufacturing method
WO2016043057A1 (en) Display apparatus and electronic device
CN103376609A (en) Reflective visual interface device
JP2013205606A (en) Electro-optic device
WO2016208381A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827537

Country of ref document: EP

Kind code of ref document: A1