WO2016199618A1 - Display device and electronic apparatus - Google Patents

Display device and electronic apparatus Download PDF

Info

Publication number
WO2016199618A1
WO2016199618A1 PCT/JP2016/065975 JP2016065975W WO2016199618A1 WO 2016199618 A1 WO2016199618 A1 WO 2016199618A1 JP 2016065975 W JP2016065975 W JP 2016065975W WO 2016199618 A1 WO2016199618 A1 WO 2016199618A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
display device
particles
electrophoretic
insulating liquid
Prior art date
Application number
PCT/JP2016/065975
Other languages
French (fr)
Japanese (ja)
Inventor
小林 健
貝野 由利子
綾 首藤
栗原 研一
美成子 渡辺
英之 汲田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016199618A1 publication Critical patent/WO2016199618A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis

Definitions

  • the present technology relates to a display device including an electrophoretic element and an electronic apparatus including the display device.
  • a display various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications.
  • a reflective display is advantageous for reading applications.
  • bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
  • electrophoretic displays utilizing the electrophoretic phenomenon are expected to be promising candidates because of their low power consumption and fast response speed.
  • the display method the following two methods are mainly proposed.
  • the first method is to disperse two kinds of charged particles in an insulating liquid and move the charged particles according to the electric field.
  • the two kinds of charged particles have different optical reflection characteristics and opposite polarities.
  • an image is displayed by changing a distribution state of charged particles according to an electric field.
  • the second method is to disperse charged particles in an insulating liquid and dispose a porous layer (for example, Patent Document 1).
  • a porous layer for example, Patent Document 1
  • charged particles move through the pores of the porous layer according to the electric field.
  • the porous layer includes, for example, a fibrous structure made of a polymer material and non-migrating particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles.
  • the display is switched by moving charged particles through pores according to an electric field.
  • a display memory property is required to hold a display image without the charged particles diffusing even after the application of an electric field is stopped. It wasn't. Further, when the display memory property is improved, there is a problem that the responsiveness is lowered.
  • a display device includes, in an insulating liquid, positive or negatively charged electrophoretic particles and non-electrophoretic particles having light reflectivity different from the electrophoretic particles, and a fibrous structure.
  • the formed porous layer includes a positively charged basic additive and a negatively charged acidic additive in the insulating liquid, and the basic additive and the acidic additive include the migrating particles, More additives with the same charge polarity are added.
  • An electronic apparatus includes the display device according to the embodiment of the present technology.
  • a basic additive that is positively charged and an acidic additive that is negatively charged are added, and the addition amount thereof The amount of the additive having the same charging polarity as that of the migrating particles was increased. Thereby, the internal electric field generated in the electrophoretic element after the applied electric field is stopped is reduced while suppressing the increase in the viscosity of the insulating liquid.
  • a basic additive that is positively charged and an acidic additive that is negatively charged are added in the insulating liquid. Since many additives having the same charging polarity as that of the particles are added, an internal electric field generated in the electrophoretic element after the applied electric field is stopped is suppressed while suppressing an increase in the viscosity of the insulating liquid. Therefore, it is possible to improve display memory performance while maintaining high responsiveness. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
  • FIG. 14 is a perspective view illustrating an appearance of application example 1.
  • FIG. FIG. 5B is a perspective view illustrating another example of the electronic book illustrated in FIG. 5A.
  • 12 is a perspective view illustrating an appearance of application example 2.
  • FIG. It represents the shift of the NMR spectrum of a tertiary alkylamine in the presence of an acidic additive.
  • FIG. 1 illustrates a planar configuration of an electrophoretic element (electrophoretic element 1) according to an embodiment of the present technology
  • FIG. 2 illustrates a cross-sectional configuration of the electrophoretic element 1.
  • the electrophoretic element 1 generates contrast using an electrophoretic phenomenon and is applied to various electronic devices such as a display device.
  • the electrophoretic element 1 includes an electrophoretic particle 20 that is positively or negatively charged and a porous layer 30 having pores 33 in an insulating liquid 10.
  • the insulating liquid 10 further includes an acidic additive 21 ⁇ / b> A and a basic additive 21 ⁇ / b> B, and the amount of each added is the same as the charged polarity of the migrating particles 20 in the insulating liquid 10. It is comprised so that the additive which has may increase. 1 and 2 schematically show the configuration of the electrophoretic element 1, and may differ from actual dimensions and shapes.
  • the insulating liquid 10 is made of, for example, an organic solvent such as paraffin or isoparaffin.
  • an organic solvent such as paraffin or isoparaffin.
  • One type of organic solvent may be used for the insulating liquid 10, or a plurality of types of organic solvents may be used.
  • the refractive index of the insulating liquid 10 is lowered, the difference in refractive index between the insulating liquid 10 and the porous layer 30 is increased, and the reflectance of the porous layer 30 is increased.
  • a coloring agent for example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 10.
  • the electrophoretic particles 20 dispersed in the insulating liquid 10 are one or two or more charged particles, and the charged electrophoretic particles 20 move through the pores 33 according to the electric field.
  • the migrating particles 20 have an arbitrary optical reflection characteristic (light reflectance), and a contrast (CR) is generated due to the difference between the light reflectance of the migrating particles 20 and the light reflectance of the porous layer 30. It has become.
  • the migrating particles 20 may be brightly displayed and the porous layer 30 may be darkly displayed, or the migrating particles 20 may be darkly displayed and the porous layer 30 may be brightly displayed.
  • the electrophoretic particles 20 When the electrophoretic element 1 is viewed from the outside, when the electrophoretic particles 20 are brightly displayed, the electrophoretic particles 20 are visually recognized as, for example, white or a color close to white, and when darkly displayed, for example, the electrophoretic particles 20 are black or black. Visible in close color.
  • the color of the migrating particles 20 is not particularly limited as long as contrast can be generated. For example, it may be red or blue.
  • the migrating particles 20 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One type of these may be used for the electrophoretic particle 20, or two or more types may be used.
  • the migrating particles 20 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes.
  • the particle size of the migrating particles 20 is preferably, for example, 10 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less.
  • organic pigments examples include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments.
  • Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white.
  • the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes.
  • the carbon material is, for example, carbon black.
  • the metal material is, for example, gold, silver or copper.
  • metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide.
  • the polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area
  • the specific material of the migrating particle 20 is selected according to, for example, the role that the migrating particle 20 plays to cause contrast.
  • a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 20.
  • the migrating particles 20 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide.
  • metal oxides such as copper-iron-chromium oxide are used.
  • the migrating particles 20 made of a carbon material exhibit excellent chemical stability, mobility, and light absorption.
  • the content (concentration) of the migrating particles 20 in the insulating liquid 10 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding property and mobility of the migrating particles 20 are ensured. Specifically, when the content of the migrating particles 20 is less than 0.1% by weight, the migrating particles 20 are less likely to shield (conceal) the porous layer 30, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, when the content of the electrophoretic particles 20 is more than 10% by weight, the dispersibility of the electrophoretic particles 20 is lowered, and thus the electrophoretic particles 20 are difficult to migrate and may aggregate.
  • the migrating particles 20 are positively or negatively charged in the insulating liquid 10 and are subjected to a surface treatment in order to improve dispersibility.
  • This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment.
  • long-term dispersion stability of the electrophoretic particles 20 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
  • a material having a functional group capable of being adsorbed on the surface of the migrating particle 20 and a polymerizable functional group (adsorbent material) or the like is used.
  • the adsorbable functional group is determined according to the material for forming the migrating particle 20.
  • the migrating particles 20 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 20 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 20 and grafting it onto the surface (graftable material).
  • the graft material has, for example, a polymerizable functional group and a dispersing functional group.
  • the functional group for dispersion is to disperse the migrating particles 20 in the insulating liquid 10 and retain dispersibility due to the steric hindrance.
  • the insulating liquid 10 is, for example, paraffin, a branched alkyl group or the like can be used as the dispersing functional group.
  • the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
  • a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
  • the migrating particles 20 are easily dispersed and charged in the insulating liquid 10 over a long period of time and are difficult to be adsorbed on the porous layer 30. For this reason, for example, a dispersant is added to the insulating liquid 10.
  • a dispersant and a charge control agent may be used in combination.
  • This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 10 and also causes the electrophoretic particles 20 to move by electrostatic repulsion. It is for dispersing.
  • a dispersing agent include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemical, or Span series manufactured by TCI America, and Hypermer series manufactured by Croda.
  • the acidic additive 21A and the basic additive 21B are added to the insulating liquid 10 so that the additive having the same charging polarity as the charged polarity of the migrating particles 20 is increased. Has been. Although details will be described later, by adding the acidic additive 21A and the basic additive 21B to the insulating liquid 10, diffusion of the migrating particles 20 after the applied electric field is stopped is suppressed.
  • the acidic additive 21A has a so-called surfactant structure composed of a hydrophilic part and a hydrophobic part constituted by polar groups.
  • the polar group include a group having a succinic anhydride structure and a group having a succinic acid structure.
  • the hydrophobic part is composed of, for example, a linear or branched hydrocarbon group having 8 or more carbon atoms. Specific examples include octyl group, nonyl group, decyl group, undecyl group, dodecyl group, vinyl group, allyl group and the like.
  • an alkylene succinic anhydride, succinic acid and a succinic acid derivative for example, sodium di (2-ethylhexyl) sulfosuccinate represented by the following formula (1), (2) or (5); )
  • an alkyl polycarboxylate represented by the formula (4) but not limited thereto.
  • n is about 5 to 30, and R1 and R2 in the formulas (1) and (2) are a hydrogen atom or an alkyl group.
  • Formula (4) has an ester structure in either the main chain or the side chain.
  • either the main chain or the side chain may be a polycarboxylic acid, or may be a compound represented by the formula (6).
  • a primary amine, a secondary amine, or a tertiary amine that is soluble in an organic solvent is preferably used.
  • compounds represented by the following formulas (7) to (11), dimethyldecylamine (DMDA, formula (7)), trioctylamine (TOA, formula (8)), 2-ethylhexylamine (EHA, Examples include formula (9)), OLOA 1200 (formula (10)) having n of about 20 to 25, tripropylamine (TPA, formula (11)), and the like.
  • N-methyldioleylamine N-methyldodecylamine, dimethyldodecylamine, dimethyldecylamine, dimethyloctylamine, dimethyl (2-ethylhexyl) amine, dimethylhexylamine, dimethylcyclohexylamine, dimethylpentylamine, dimethylbutylamine, Dimethylisopropylamine, dimethylethylamine, trioctylamine, tri (2-ethylhexyl) amine, trihexylamine, triamylamine, tripentylamine, tributylamine, di (2-ethylhexyl) amine, 2-ethylhexylamine, dimethylhexylamine And trihexylamine and the like, but are not limited thereto.
  • the basic additive 21B is preferably a tertiary amine among the above amines, and the three substituents of the tertiary amine are preferably as bulky as possible and a group having a large steric hindrance. . Thereby, display memory property can be improved more.
  • the addition amount of the acidic additive 21A and the basic additive 21B is added within a predetermined range depending on the charged polarity of the migrating particles 20. Specifically, when the migrating particles 20 are positively charged, it is preferable to add more basic additive 21B than acidic additive 21A. When the electrophoretic particles 20 are negatively charged, it is preferable to add more acidic additive 21A than basic additive 21B.
  • the acidic additive 21 ⁇ / b> A is negatively charged in the insulating liquid 10
  • the basic additive 21 ⁇ / b> B is positively charged in the insulating liquid 10. That is, in the present embodiment, the acidic additive 21A and the basic additive 21B may be added so as to include a large amount of an additive having the same charging polarity as that of the electrophoretic particle 20 in the insulating liquid 10. preferable.
  • the addition amount ratio between the acidic additive 21A and the basic additive 21B is as follows depending on the charged polarity of the migrating particles 20.
  • the addition amount ratio of the basic additive 32B to the acidic additive 32A is, for example, 3 in terms of molar amount. Larger than 20 and preferably smaller than 20.
  • the additive amount ratio of the acidic additive 32A to the basic additive 32B is, for example, 3 in terms of molar amount. Larger than 20 and preferably smaller than 20.
  • the basic additive 21B is easily charged in the insulating liquid 10, and an increase in the viscosity of the insulating liquid 10 is suppressed.
  • the molecular weights of the acidic additive 21A and the basic additive 21B are preferably as small as possible in order to suppress an increase in the dielectric constant of the electrophoretic element 1, and are preferably smaller than 1000, for example. However, from the viewpoint of volatility, the molecular weight of the acidic additive 21A and the basic additive 21B is preferably at least greater than 100.
  • the porous layer 30 can shield the migrating particles 20 and has a fibrous structure 31 and non-migrating particles 32 held by the fibrous structure 31.
  • the porous layer 30 is a three-dimensional structure (an irregular network structure such as a nonwoven fabric) formed by a fibrous structure 31, and is provided with a plurality of gaps (pores 33).
  • the average pore diameter of the pores 33 is increased, and many pores 33 are provided in the porous layer 30. Thereby, the migrating particles 20 are easily moved via the pores 33, the response speed is improved, and the energy necessary for moving the migrating particles 20 is further reduced.
  • the thickness of such a porous layer 30 is, for example, 5 ⁇ m to 100 ⁇ m.
  • the fibrous structure 31 is a fibrous substance having a sufficient length with respect to the fiber diameter (diameter). For example, a plurality of fibrous structures 31 are assembled and randomly overlapped to form the porous layer 30. One fibrous structure 31 may be entangled randomly to form the porous layer 30. Or the porous layer 30 by the one fibrous structure 31 and the porous layer 30 by the some fibrous structure 31 may be mixed.
  • the fibrous structure 31 extends linearly, for example.
  • the shape of the fibrous structure 31 may be any shape.
  • the fibrous structure 31 may be crimped or bent in the middle. Or the fibrous structure 31 may be branched on the way.
  • the minimum fiber diameter of the fibrous structure 31 is, for example, preferably 500 nm or less, and more preferably 300 nm or less.
  • the average fiber diameter is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, for example, but may be outside the above range. By reducing the average fiber diameter, light is easily diffusely reflected, and the pore diameter of the pores 33 is increased.
  • the fiber diameter is determined so that the fibrous structure 31 can hold the non-migrating particles 32.
  • the average fiber diameter can be measured, for example, by microscopic observation using a scanning electron microscope or the like.
  • the average length of the fibrous structure 31 is arbitrary.
  • the fibrous structure 31 is formed by, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating method. Is done. By using such a method, the fibrous structure 31 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
  • the fibrous structure 31 is formed of at least one of a polymer material and an inorganic material, and is particularly preferably composed of nanofibers.
  • the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter.
  • the contrast of the electrophoretic element 1 can be improved.
  • the fibrous structure 31 made of nanofibers the proportion of the pores 33 in the unit volume increases, and the migrating particles 20 can easily move through the pores 33. Therefore, the energy required for moving the migrating particles 20 can be reduced.
  • the fibrous structure 31 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrostatic spinning method, the fibrous structure 31 having a small fiber diameter can be easily and stably formed.
  • a fibrous structure 31 having a light reflectance different from that of the migrating particles 20 It is preferable to use a fibrous structure 31 having a light reflectance different from that of the migrating particles 20. Thereby, the contrast by the difference in the light reflectance of the porous layer 30 and the migrating particles 20 is easily formed.
  • a fibrous structure 31 that exhibits optical transparency (colorless and transparent) in the insulating liquid 10 may be used.
  • the pore 33 is configured by overlapping a plurality of fibrous structures 31 or entwining one fibrous structure 31.
  • the pores 33 preferably have as large an average pore diameter as possible so that the migrating particles 20 can easily move through the pores 33.
  • the average pore diameter of the pores 33 is, for example, not less than 0.1 ⁇ m and not more than 10 ⁇ m.
  • Non-electrophoretic particles 32 are one or more particles that are fixed to the fibrous structure 31 and do not undergo electrophoresis.
  • the non-migrating particles 32 may be embedded in the held fibrous structure 31 or may be partially exposed from the fibrous structure 31.
  • the non-electrophoretic particles 32 those having a light reflectance different from that of the electrophoretic particles 20 are used.
  • the non-migrating particles 32 can be made of the same material as that of the migrating particles 20. Specifically, when the non-electrophoretic particle 32 (porous layer 30) displays brightly, the material when the electrophoretic particle 20 displays brightly, and when the non-electrophoretic particle 32 displays dark, the electrophoretic particle 20 darkens. Each material for display can be used. When performing a bright display with the porous layer 30, it is preferable that the non-migrating particles 32 be made of a metal oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity.
  • the constituent materials of the non-migrating particles 32 and the migrating particles 20 may be the same or different.
  • the color visually recognized from the outside when the non-electrophoretic particle 32 performs bright display or dark display is the same as that described for the electrophoretic particle 20.
  • Such a porous layer 30 can be formed by the following method, for example. First, for example, a constituent material of the fibrous structure 31 such as a polymer material is dissolved in an organic solvent to prepare a spinning solution. Next, the non-migrating particles 32 are added to the spinning solution and stirred sufficiently to disperse the non-migrating particles 32. Finally, the spinning solution is spun by, for example, an electrostatic spinning method to fix the non-migrating particles 22 to the fibrous structure 31, thereby forming the porous layer 30.
  • the porous layer 30 may be formed by drilling a polymer film using a laser to form the pores 33.
  • the porous layer 30 may be a cloth knitted with synthetic fibers or the like on the porous layer 30 or continuous. A foam porous polymer or the like may be used.
  • the electrophoretic element causes contrast due to the difference between the light reflectance of the migrating particles and the light reflectance of the porous layer.
  • the light reflectance for bright display is higher than the light reflectance for dark display.
  • the display is performed when the migrating particles exhibit the following behavior.
  • the migrating particles move to the corresponding electrode side through the pores of the porous layer within the range of the electric field generated thereby.
  • either bright display or dark display is performed, and an image is displayed.
  • the light reflectance of the non-electrophoretic particles is higher than that of the electrophoretic particles so that the porous layer displays light and the electrophoretic particles display dark.
  • the reflection type display using an electrophoretic element is a low power consumption, a high response speed, and a light weight display quality close to that of paper. Although it is expected as a promising candidate, further reduction of power consumption is desired. As a method for reducing power consumption, an improvement in display memory performance can be mentioned.
  • the electrophoretic element even after the applied electric field (applied electric field) is stopped, the electrophoretic particles remain on the moved electrode side, so that the display image is retained and the display memory property is exhibited.
  • the applied voltage is stopped, diffusion of the electrophoretic particles starts, and a sufficient display memory property cannot be obtained.
  • the basic additive 21B that is positively charged and the acidic additive 21A that is negatively charged are added to the insulating liquid 10, and the addition amount thereof is as follows.
  • the amount of the additive having the same charging polarity as the charging polarity of the electrophoretic particles 20 that are positively or negatively charged is increased.
  • the internal electric field generated in the electrophoretic element 1 after the applied electric field is stopped is reduced while suppressing the increase in the viscosity of the insulating liquid 10.
  • the internal electric field (electric field in the direction opposite to the applied electric field) generated after application of the electric field is alleviated by the movement of the acidic additive 21A and the basic additive 21B having higher mobility than the migrating particles 20, and migration. Diffusion of the particles 20 is suppressed.
  • the acidic additive 21 ⁇ / b> A and the basic additive 21 ⁇ / b> B in the insulating liquid 10 are increased in the number of additives having the same charging polarity as the charging polarity of the migrating particles 20. Were added. Thereby, the internal electric field generated in the electrophoretic element after the applied electric field is stopped is reduced while suppressing the increase in the viscosity of the insulating liquid 10. Therefore, it is possible to improve display memory performance while maintaining high responsiveness.
  • the diffusion of the migrating particles 20 after the applied electric field is stopped is suppressed, so that the white reflectance of the electrophoretic element 1 is improved.
  • FIG. 3 shows an example of a cross-sectional configuration of a display device (display device 2) using the electrophoretic element 1.
  • the display device 2 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information) using an electrophoretic phenomenon, and an electrophoretic element between a driving substrate 40 and a counter substrate 50. 1 is provided. A space between the driving substrate 40 and the counter substrate 50 is adjusted to a predetermined distance by a spacer 60.
  • the drive substrate 40 has, for example, a TFT (Thin Film Transistor) 32, a protective layer 43, a planarization insulating layer 44, and a pixel electrode 45 in this order on one surface of the plate-like member 41.
  • the TFTs 42 and the pixel electrodes 45 are arranged in a matrix or a segment, for example, depending on the pixel arrangement.
  • the plate-like member 41 is made of, for example, an inorganic material, a metal material, a plastic material, or the like.
  • the inorganic materials for example, silicon (Si), silicon oxide (SiO X), silicon nitride (SiN X) or aluminum oxide (AlO x), and the like.
  • Silicon oxide includes glass or spin-on-glass (SOG).
  • the metal material include aluminum (Al), nickel (Ni), and stainless steel
  • examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
  • the plate-like member 41 may be non-light transmissive.
  • the plate-like member 41 may be constituted by a rigid substrate such as a wafer, or may be constituted by a flexible thin layer glass or film. By using a flexible material for the plate-like member 41, a flexible display device 2 can be realized.
  • the TFT 42 is a switching element for selecting a pixel.
  • the TFT 42 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer or an organic TFT using an organic semiconductor layer.
  • the protective layer 43 and the planarization insulating layer 44 are made of an insulating resin material such as polyimide, for example. If the surface of the protective layer 43 is sufficiently flat, the planarization insulating layer 44 can be omitted.
  • the pixel electrode 45 is made of, for example, a metal material such as gold (Au), silver (Ag), or copper (Cu). The pixel electrode 45 is connected to the TFT 42 through a contact hole (not shown) provided in the protective layer 43 and the planarization insulating layer 44.
  • the counter substrate 50 includes, for example, a plate-like member 51 and a counter electrode 52, and the counter electrode 52 is provided on the entire surface of the plate-like member 51 (the surface facing the drive substrate 40).
  • the counter electrode 52 may be arranged in a matrix or a segment like the pixel electrode 45.
  • the plate member 51 is made of the same material as the plate member 41 except that it is light transmissive.
  • a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). (Transparent electrode material) can be used.
  • the light transmittance (transmittance) of the counter electrode 52 is preferably as high as possible. 80% or more. Further, the electric resistance of the counter electrode 52 is preferably as low as possible, for example, 100 ⁇ / ⁇ or less.
  • the electrophoretic element 1 has the same configuration as the electrophoretic element 1 of the above-described embodiment and modification. Specifically, the electrophoretic element 1 includes electrophoretic particles 20 and a porous layer 30 having a plurality of pores 33 in an insulating liquid 10.
  • the insulating liquid 10 is filled in a space between the driving substrate 40 and the counter substrate 50, and the porous layer 30 is supported by a spacer 60, for example.
  • the space filled with the insulating liquid 10 is divided into, for example, a retreat area R1 near the pixel electrode 45 and a display area R2 near the counter electrode 52 with the porous layer 30 as a boundary. .
  • the configurations of the insulating liquid 10, the migrating particles 20, and the porous layer 30 are the same as those described in the above embodiments and the like. Note that, in FIG. 3 and FIG. 4 described later, only a part of the pore 33 is shown in order to simplify the illustrated content.
  • the porous layer 30 may be adjacent to either the pixel electrode 45 or the counter electrode 52, and the retreat area R1 and the display area R2 may not be clearly separated.
  • the migrating particles 20 move toward the pixel electrode 45 or the counter electrode 52 according to the electric field.
  • the thickness of the spacer 60 is, for example, 10 ⁇ m to 100 ⁇ m, and is preferably as thin as possible. Thereby, power consumption can be suppressed.
  • the spacer 60 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 40 and the counter substrate 50.
  • the arrangement shape of the spacer 60 is not particularly limited, but it is preferable that the spacer 60 is provided so as not to disturb the movement of the migrating particles 20 and to uniformly distribute the migrating particles 20.
  • the migrating particles 20 are arranged in the retreat area R1 (FIG. 3). In this case, since the migrating particles 20 are shielded by the porous layer 30 in all the pixels, no contrast is generated when the electrophoretic element 1 is viewed from the counter substrate 50 side (an image is not displayed). Is in a state.
  • the migrating particles 20 are moved from the retreat area R 1 to the porous layer 30 for each pixel. It moves to display area R2 via (pore 33).
  • the contrast is generated when the electrophoretic element 1 is viewed from the counter substrate 50 side. become. Thereby, an image is displayed.
  • the electrophoretic element 1 having a high response speed can display a high-quality image suitable for colorization and moving image display, for example.
  • the display device 2 of the present technology can be applied to electronic devices for various uses, and the type of the electronic device is not particularly limited.
  • This display device 2 can be mounted on, for example, the following electronic devices.
  • the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
  • the electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130.
  • the operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 5A or may be provided on the upper surface as illustrated in FIG. 5B.
  • the display unit 110 includes the display device 2.
  • the display device 2 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 5A and 5B.
  • PDA Personal Digital Assistants
  • FIG. 6 shows the appearance of a tablet personal computer.
  • the tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 2.
  • Example> (Experiment 1-1) Next, an experiment was conducted to verify the interaction between the acidic additive and the basic additive and the action mechanism of each additive in the dispersion medium.
  • Responsiveness and display memory performance of the electrophoretic element are affected by the mobility of the electrophoretic particles passing through the porous layer and the ease of redispersion of the electrophoretic particles from the electrode surface when the applied electric field is erased.
  • development of additives such as dispersion media and electric field compensators, dispersants, charge compensation agents, etc. to be added to the dispersion media is important. In developing these materials, it is important to verify the interaction between migrating particles and additives.
  • the migrating particles are, for example, a magnetic substance mainly composed of a Cu—Fe—Mn composite oxide, a detailed analysis of the NMR spectrum is impossible with a sample solution containing the migrating particles. Therefore, in this experiment, a sample (sample A) using tertiary alkylamine as a basic additive and a sample (sample B) added with succinic acid as an acidic additive together with tertiary alkylamine were prepared. NMR was measured and the interaction between acidic and basic additives was observed.
  • FIG. 7 is an enlarged view of a part of the 1 H-NMR spectrum of Sample A and Sample B. Further, the self-diffusion coefficients of Sample A and Sample B were measured and the results are summarized in Table 3.
  • Tables 1 and 2 summarize the compositions (Table 1) and measurement conditions (Table 2) of Sample A and Sample B.
  • the NMR apparatus used was ECA-500 model manufactured by JEOL, and the probe used was a TH5AT probe.
  • the solvent was an isoparaffin solvent
  • the shim was adjusted by 1 H Selective gradient shimming without magnetic field lock.
  • the PFG-LED + BPPSTE method used here is the BPP method (Bipolar-Pulse-Pair) or LED method (Longitudinal-Eddy-Current-Delay), which suppresses the influence of eddy current on the basic Spin-Echo method, and the lateral relaxation time T 2 Combined with STE method (Stimulated-Echo) which is effective for short-wavelength systems and systems affected by J modulation (for details, see CS Johnson Jr, Prog. NMR. Spectrosc. 1999, 34, 203.) .
  • the sample tube was adjusted to a liquid height of 5 mm using a convection effect removing double tube (5 mm ⁇ ).
  • the self-diffusion coefficient was analyzed based on the Stejskal equation (number (1)) (E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 1965, 42, 288.). The formulas and setting values for each parameter are shown below.
  • the 2.32 ppm signal of Sample A is derived from the proton of the methylene group adjacent to N of the tertiary alkylamine.
  • the methylene group signal of alkylamine a large low magnetic field shift and remarkable broadening were observed in the presence of succinic acid, and in addition, a significant decrease in self-diffusion coefficient was observed. Therefore, when succinic acid coexists with alkylamine, it is presumed that interaction occurs.
  • samples B-1 to B-7 were prepared in which the alkylamine concentration was fixed (1.5 wt%) and the succinic acid concentration was changed from 0 to 6.5 wt%, and the 1 H-NMR spectrum and The self-diffusion coefficient was measured by PFG-NMR.
  • Table 4 summarizes the succinic acid concentration contained in each sample, the low magnetic field shift amount of the N adjacent methylene group in the 1 H-NMR spectrum of the alkylamine, and the value of the self-diffusion coefficient.
  • FIG. 8 shows a part of the 1 H-NMR spectrum of Samples B-1 to B-7 together with Sample A. In addition, the results of NMR measurement after leaving Sample B-3 at 70 ° C. overnight (Sample B-3 ′) are also shown.
  • FIG. 9 shows the relationship between the shift amount of the signal derived from N—CH 2 — of the alkylamine and the succinic acid concentration (mol concentration) in the 1 H-NMR spectrum
  • FIG. It shows the relationship between the decrease in the self-diffusion coefficient and the succinic acid concentration (converted to a molar concentration). From FIG. 9 and FIG. 10, it was found that the tendency changes greatly in the vicinity of the succinic acid concentration of 0.2 mol / L (7 wt%) with respect to the alkylamine concentration of 0.1 mol / L (1.5 wt%).
  • the low magnetic field shift of the signal derived from N—CH 2 — of the alkylamine observed here is presumed to be caused by the tertiary amine of the alkylamine becoming an ammonium ion by the addition of the acid succinic acid. Is done. Specifically, the tertiary amine of the alkylamine becomes an ammonium ion, so that the electron density on the N atom decreases, the adjacent methylene group is shielded, and the signal derived from N-CH2- shifts to a low magnetic field. It is thought that.
  • the succinic acid concentration (relative to the alkylamine) in which the chemical shift amount of the signal derived from N—CH 2 — of the alkylamine in the 1 H-NMR spectrum and the tendency of change in the self-diffusion coefficient of the alkylamine greatly change.
  • a succinic acid weight ratio of 1: 5 and a molar ratio of 1: 2) was found to be the minimum amount of succinic acid necessary for all the alkylamine to ionize.
  • a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution.
  • Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath.
  • the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation.
  • the precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C.
  • black electrophoretic particles coated with a negatively charged dispersing group in the insulating liquid were obtained.
  • polymethyl methacrylate was prepared as a constituent material of the fibrous structure.
  • this polymethyl methacrylate was dissolved in 86 g of N, N′-dimethylformamide, 30 g of titanium oxide having a primary particle size of 250 nm as non-electrophoretic particles was added to 70 g of this solution and mixed by a bead mill.
  • a spinning solution for forming a fibrous structure was obtained.
  • a pixel electrode made of ITO having a predetermined pattern was formed on the driving substrate, spinning was performed using this spinning solution. Specifically, the spinning solution was put into a syringe, and spinning was performed for 1.2 mg / cm 2 on the driving substrate.
  • a porous layer (a fibrous structure holding non-electrophoretic particles) was formed on the drive substrate. Spinning was performed using an electrospinning apparatus (NANON manufactured by MEC Co., Ltd.).
  • the unnecessary porous layer was removed from the driving substrate. Specifically, the porous layer where the pixel electrode is not provided was removed.
  • a counter substrate a counter electrode made of ITO was formed on a plate-like member, a spacer of PET film (30 ⁇ m thick) was placed on the counter substrate, and this was then overlapped with a drive substrate on which a porous layer was formed. At this time, the porous layer was separated from the pixel electrode and the counter electrode by holding the porous layer with the spacer. Next, an insulating liquid in which the migrating particles were dispersed was injected between the driving substrate and the counter substrate. Finally, ultraviolet light was applied to the photocurable resin to complete a display device (Sample 3-1).
  • samples 3-2 to 3-9 having different contents of acidic additive and basic additive were prepared, and the white reflectance (%) and response speed were measured. The results are shown in Table 5 and FIG. Indicated.
  • the addition amount (mol) ratio of the acidic additive to the basic additive is: For example, it is preferably larger than 1.9 and smaller than 33.4, more preferably larger than 3 and smaller than 20. In order to reduce the increase in the dielectric constant of the electrophoretic element, it is preferable that the additive amount be small.
  • Example 2-2 A display device was prepared using the same method as above except that basic additives having various molecular weights were used, and the white reflectance (%) and response speed with respect to the molecular weight of the basic additive were measured. Are shown in Table 6 and FIG. The molecular weight of the acidic additive used for each sample is 310.
  • FIG. 12 and Table 6 show that the response speed decreases as the molecular weight of the basic additive increases.
  • Sample 4-1 using a basic additive having a small molecular weight (less than 100) was difficult to be made into a device.
  • Example 2-3 A display device was prepared using the same method as above except that tertiary amine (sample 5-1), secondary amine (sample 5-2), and primary amine (sample 5-3) were used as basic additives. This was manufactured and the retention time of the white reflectance was measured. The results are shown in Table 7 and FIG. The molecular weight of the basic additive is the same for all samples 5-1 to 5-3 (molecular weight 143).
  • the experiment was carried out using negatively charged migrating particles.
  • Table 8 shown below the positively charged migrating particles have an additive amount ratio between the acidic additive and the basic additive. It can be seen that the display characteristics can be improved by reversing the case of using negatively charged electrophoretic particles.
  • the present technology can also have the following configurations.
  • a porous layer formed of a fibrous structure which includes positively or negatively charged electrophoretic particles in the insulating liquid and non-electrophoretic particles having light reflectivity different from the electrophoretic particles,
  • a positively charged basic additive and a negatively charged acidic additive in the insulating liquid, the basic additive and the acidic additive having the same charging polarity as the migrating particles A display device to which more is added.
  • each of the acidic additive and the basic additive includes a plurality of types.
  • an average fiber diameter of the fibrous structure is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the fibrous structure perform light display.
  • the migrating particles and the non-migrating particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material.
  • a display device is provided, and the display device includes electrophoretic particles charged positively or negatively and non-electrophoretic particles having light reflectivity different from the electrophoretic particles, and a fibrous structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A display device according to one embodiment of the present technology uses an insulating liquid containing: positively or negatively charged migrating particles; and a porous layer formed with a fibrous structure and containing non-migrating particles with a light reflectivity different from the migrating particles. The insulating liquid contains a positively-charged basic additive and a negatively-charged acidic additive, and among the basic additive and the acidic additive, a greater amount of the additive having the same charge polarity as the migrating particles is added.

Description

表示装置および電子機器Display device and electronic device
 本技術は、電気泳動素子を含む表示装置およびこれを備えた電子機器に関する。 The present technology relates to a display device including an electrophoretic element and an electronic apparatus including the display device.
 近年、携帯電話機または携帯情報端末等のモバイル機器の普及に伴い、低消費電力で高品位画質の表示装置(ディスプレイ)に関する需要が高まっている。特に最近では、電子書籍の配信事業が始まり、読書用途に適した表示品位のディスプレイが望まれている。 In recent years, with the widespread use of mobile devices such as mobile phones or personal digital assistants, there is an increasing demand for display devices (displays) with low power consumption and high image quality. In particular, recently, the electronic book distribution business has started, and a display with a display quality suitable for reading applications is desired.
 このようなディスプレイとして、コレステリック液晶ディスプレイ,電気泳動型ディスプレイ,電気酸化還元型ディスプレイおよびツイストボール型ディスプレイ等の様々なディスプレイが提案されているが、読書用途には、反射型のディスプレイが有利である。反射型のディスプレイでは、紙と同様に、外光の反射(散乱)を利用して明表示を行うため、より紙に近い表示品位が得られる。 As such a display, various displays such as a cholesteric liquid crystal display, an electrophoretic display, an electrooxidation reduction display, and a twist ball display have been proposed, but a reflective display is advantageous for reading applications. . In the reflective display, bright display is performed using reflection (scattering) of external light as in the case of paper, so that display quality closer to that of paper can be obtained.
 反射型ディスプレイの中でも、電気泳動現象を利用した電気泳動型ディスプレイは、低消費電力であると共に応答速度が速く、有力候補として期待されている。その表示方法としては、主に以下の2つの方法が提案されている。 Among the reflective displays, electrophoretic displays utilizing the electrophoretic phenomenon are expected to be promising candidates because of their low power consumption and fast response speed. As the display method, the following two methods are mainly proposed.
 第1の方法は、絶縁性液体中に2種類の荷電粒子を分散させ、電界に応じて荷電粒子を移動させるものである。この2種類の荷電粒子は、互いに光学的反射特性が異なり、また、その極性も反対である。この方法では、電界に応じて荷電粒子の分布状態が変化して画像が表示される。 The first method is to disperse two kinds of charged particles in an insulating liquid and move the charged particles according to the electric field. The two kinds of charged particles have different optical reflection characteristics and opposite polarities. In this method, an image is displayed by changing a distribution state of charged particles according to an electric field.
 第2の方法は、絶縁性液体中に荷電粒子を分散させると共に、多孔質層を配置するものである(例えば、特許文献1)。この方法では、電界に応じて、荷電粒子が多孔質層の細孔を経て移動する。多孔質層は、例えば高分子材料からなる繊維状構造体と、この繊維状構造体に保持されると共に、荷電粒子とは光学的反射特性が異なる非泳動粒子とを含んでいる。このような電気泳動型ディスプレイでは、電界に応じて荷電粒子が細孔を経て移動することによって表示の切り替えがなされている。 The second method is to disperse charged particles in an insulating liquid and dispose a porous layer (for example, Patent Document 1). In this method, charged particles move through the pores of the porous layer according to the electric field. The porous layer includes, for example, a fibrous structure made of a polymer material and non-migrating particles that are held by the fibrous structure and have different optical reflection characteristics from the charged particles. In such an electrophoretic display, the display is switched by moving charged particles through pores according to an electric field.
特開2012-22296号公報JP 2012-22296 A
 このような多孔質層と荷電粒子とを含む電気泳動型ディスプレイでは、電界の印加を停止した後も荷電粒子が拡散せずに表示画像を保持する表示メモリ性が求められるが、その特性は十分ではなかった。また、表示メモリ性を向上させた場合には、応答性が低下するという問題があった。 In such an electrophoretic display including a porous layer and charged particles, a display memory property is required to hold a display image without the charged particles diffusing even after the application of an electric field is stopped. It wasn't. Further, when the display memory property is improved, there is a problem that the responsiveness is lowered.
 従って、優れた応答性および高い表示メモリ性を両立することが可能な表示装置および電子機器を提供することが望ましい。 Therefore, it is desirable to provide a display device and an electronic device that can achieve both excellent responsiveness and high display memory performance.
 本技術の一実施形態である表示装置は、絶縁性液体中に、正または負に帯電した泳動粒子と、泳動粒子とは異なる光反射性を有する非泳動粒子を含むと共に、繊維状構造体により形成された多孔質層と、絶縁性液体中において、正に帯電する塩基性添加剤および負に帯電する酸性添加剤とを含むものであり、塩基性添加剤および酸性添加剤は、泳動粒子と同じ帯電極性を有する添加剤の方が多く添加されている。 A display device according to an embodiment of the present technology includes, in an insulating liquid, positive or negatively charged electrophoretic particles and non-electrophoretic particles having light reflectivity different from the electrophoretic particles, and a fibrous structure. The formed porous layer includes a positively charged basic additive and a negatively charged acidic additive in the insulating liquid, and the basic additive and the acidic additive include the migrating particles, More additives with the same charge polarity are added.
 本技術の一実施形態である電子機器は、上記本技術の一実施形態の表示装置を備えたものである。 An electronic apparatus according to an embodiment of the present technology includes the display device according to the embodiment of the present technology.
 本技術の一実施形態である表示装置および一実施形態である電子機器では、絶縁性液体中において、正に帯電する塩基性添加剤および負に帯電する酸性添加剤を添加すると共に、その添加量は、泳動粒子の帯電極性と同じ帯電極性を有する添加剤が多くなるようにした。これにより、絶縁性液体の粘度の上昇を抑えつつ、印加電界停止後に電気泳動素子内に生じる内部電界が緩和される。 In the display device that is one embodiment of the present technology and the electronic device that is one embodiment, in the insulating liquid, a basic additive that is positively charged and an acidic additive that is negatively charged are added, and the addition amount thereof The amount of the additive having the same charging polarity as that of the migrating particles was increased. Thereby, the internal electric field generated in the electrophoretic element after the applied electric field is stopped is reduced while suppressing the increase in the viscosity of the insulating liquid.
 本技術の一実施形態である表示装置および一実施形態である電子機器によれば、絶縁性液体中において、正に帯電する塩基性添加剤および負に帯電する酸性添加剤を添加すると共に、泳動粒子の帯電極性と同じ帯電極性を有する添加剤を多く添加するようにしたので、絶縁性液体の粘度の上昇を抑えつつ、印加電界停止後に電気泳動素子内に生じる内部電界が緩和される。よって、高い応答性を維持しつつ、表示メモリ性を向上させることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the display device that is one embodiment of the present technology and the electronic device that is one embodiment, in the insulating liquid, a basic additive that is positively charged and an acidic additive that is negatively charged are added. Since many additives having the same charging polarity as that of the particles are added, an internal electric field generated in the electrophoretic element after the applied electric field is stopped is suppressed while suppressing an increase in the viscosity of the insulating liquid. Therefore, it is possible to improve display memory performance while maintaining high responsiveness. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本技術の一実施の形態に係る電気泳動素子の構成を表す平面図である。It is a top view showing the composition of the electrophoretic device concerning one embodiment of this art. 図1に示した電気泳動素子の構成を表す断面図である。It is sectional drawing showing the structure of the electrophoretic element shown in FIG. 図1等の電気泳動素子を用いた表示装置の構成を表す断面図である。It is sectional drawing showing the structure of the display apparatus using the electrophoretic element of FIG. 図3に示した表示装置の動作を説明するための断面図である。It is sectional drawing for demonstrating operation | movement of the display apparatus shown in FIG. 適用例1の外観を表す斜視図である。14 is a perspective view illustrating an appearance of application example 1. FIG. 図5Aに示した電子ブックの他の例を表す斜視図である。FIG. 5B is a perspective view illustrating another example of the electronic book illustrated in FIG. 5A. 適用例2の外観を表す斜視図である。12 is a perspective view illustrating an appearance of application example 2. FIG. 酸性添加剤共存下における3級アルキルアミンのNMRスペクトルのシフトを表したものである。It represents the shift of the NMR spectrum of a tertiary alkylamine in the presence of an acidic additive. 酸性添加剤の濃度に対する3級アルキルアミンのNMRスペクトルのシフトを表したものである。It represents the shift of the NMR spectrum of the tertiary alkylamine with respect to the concentration of the acidic additive. 酸性添加剤の濃度とNMRスペクトルのシフト量との関係を表す特性図である。It is a characteristic view showing the relationship between the density | concentration of an acidic additive and the shift amount of a NMR spectrum. 酸性添加剤の濃度と自己拡散係数との関係を表わす特性図である。It is a characteristic view showing the relationship between the density | concentration of an acidic additive and a self-diffusion coefficient. (酸性添加剤/塩基性添加剤)比と、白反射率および応答速度との関係を表す特性図である。It is a characteristic view showing the relationship between (acid additive / basic additive) ratio, white reflectance, and response speed. 添加剤の分子量と、白反射率および応答速度との関係を表す特性図である。It is a characteristic view showing the relationship between the molecular weight of an additive, white reflectance, and response speed. アミンの種類と白反射率の保持率との関係を表す特性図である。It is a characteristic view showing the relationship between the kind of amine and the retention of white reflectance.
 以下、本技術の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.実施の形態(電気泳動素子)
  1-1.基本構成
  1-2.作用・効果
 2.適用例(表示装置、電子機器)
 3.実施例
Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings. The description will be given in the following order.
1. Embodiment (electrophoretic element)
1-1. Basic configuration 1-2. Action / Effect Application examples (display devices, electronic devices)
3. Example
<1.実施の形態>
(1-1.基本構成)
 図1は本技術の一実施の形態に係る電気泳動素子(電気泳動素子1)の平面構成を、図2は電気泳動素子1の断面構成をそれぞれ表したものである。この電気泳動素子1は、電気泳動現象を利用してコントラストを生じさせるものであり、例えば表示装置等の多様な電子機器に適用される。電気泳動素子1は、絶縁性液体10中に、正または負に帯電した泳動粒子20と細孔33を有する多孔質層30とを含んでいる。本実施の形態では、絶縁性液体10中に、さらに酸性添加剤21Aおよび塩基性添加剤21Bを含み、それぞれの添加量は、絶縁性液体10中において、泳動粒子20の帯電極性と同じ帯電極性を有する添加剤が多くなるように構成されている。なお、図1,2は電気泳動素子1の構成を模式的に表したものであり、実際の寸法および形状とは異なる場合がある。
<1. Embodiment>
(1-1. Basic configuration)
FIG. 1 illustrates a planar configuration of an electrophoretic element (electrophoretic element 1) according to an embodiment of the present technology, and FIG. 2 illustrates a cross-sectional configuration of the electrophoretic element 1. The electrophoretic element 1 generates contrast using an electrophoretic phenomenon and is applied to various electronic devices such as a display device. The electrophoretic element 1 includes an electrophoretic particle 20 that is positively or negatively charged and a porous layer 30 having pores 33 in an insulating liquid 10. In the present embodiment, the insulating liquid 10 further includes an acidic additive 21 </ b> A and a basic additive 21 </ b> B, and the amount of each added is the same as the charged polarity of the migrating particles 20 in the insulating liquid 10. It is comprised so that the additive which has may increase. 1 and 2 schematically show the configuration of the electrophoretic element 1, and may differ from actual dimensions and shapes.
 絶縁性液体10は、例えば、パラフィンまたはイソパラフィン等の有機溶媒により構成されている。絶縁性液体10には、1種類の有機溶媒を用いてもよく、あるいは複数種類の有機溶媒を用いるようにしてもよい。絶縁性液体10の粘度および屈折率は、できるだけ低くすることが好ましい。絶縁性液体10の粘度を低くすると泳動粒子20の移動性(応答速度)が向上する。また、これに応じて泳動粒子20の移動に必要なエネルギー(消費電力)は低くなる。絶縁性液体10の屈折率を低くすると、絶縁性液体10と多孔質層30との屈折率の差が大きくなり、多孔質層30の反射率が高くなる。 The insulating liquid 10 is made of, for example, an organic solvent such as paraffin or isoparaffin. One type of organic solvent may be used for the insulating liquid 10, or a plurality of types of organic solvents may be used. It is preferable to make the viscosity and refractive index of the insulating liquid 10 as low as possible. Lowering the viscosity of the insulating liquid 10 improves the mobility (response speed) of the migrating particles 20. In accordance with this, the energy (power consumption) required to move the migrating particles 20 is reduced. When the refractive index of the insulating liquid 10 is lowered, the difference in refractive index between the insulating liquid 10 and the porous layer 30 is increased, and the reflectance of the porous layer 30 is increased.
 絶縁性液体10には、例えば、着色剤,電荷調整剤,分散安定剤,粘度調整剤,界面活性剤または樹脂等を添加するようにしてもよい。 For example, a coloring agent, a charge adjusting agent, a dispersion stabilizer, a viscosity adjusting agent, a surfactant, or a resin may be added to the insulating liquid 10.
 絶縁性液体10中に分散された泳動粒子20は、1または2以上の荷電粒子であり、このような帯電した泳動粒子20が電界に応じ細孔33を経て移動する。泳動粒子20は、任意の光学的反射特性(光反射率)を有しており、泳動粒子20の光反射率と多孔質層30の光反射率との違いによりコントラスト(CR)が生じるようになっている。例えば、泳動粒子20が明表示し、多孔質層30が暗表示するようにしてもよく、泳動粒子20が暗表示し、多孔質層30が明表示するようにしてもよい。 The electrophoretic particles 20 dispersed in the insulating liquid 10 are one or two or more charged particles, and the charged electrophoretic particles 20 move through the pores 33 according to the electric field. The migrating particles 20 have an arbitrary optical reflection characteristic (light reflectance), and a contrast (CR) is generated due to the difference between the light reflectance of the migrating particles 20 and the light reflectance of the porous layer 30. It has become. For example, the migrating particles 20 may be brightly displayed and the porous layer 30 may be darkly displayed, or the migrating particles 20 may be darkly displayed and the porous layer 30 may be brightly displayed.
 外部から電気泳動素子1を見ると、泳動粒子20が明表示する場合には泳動粒子20は、例えば、白色または白色に近い色に視認され、暗表示する場合には、例えば、黒色または黒色に近い色に視認される。このような泳動粒子20の色は、コントラストを生じさせることができれば特に限定されない。例えば、赤色や青色でもかまわない。 When the electrophoretic element 1 is viewed from the outside, when the electrophoretic particles 20 are brightly displayed, the electrophoretic particles 20 are visually recognized as, for example, white or a color close to white, and when darkly displayed, for example, the electrophoretic particles 20 are black or black. Visible in close color. The color of the migrating particles 20 is not particularly limited as long as contrast can be generated. For example, it may be red or blue.
 泳動粒子20は、例えば、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料(樹脂)等の粒子(粉末)により構成されている。泳動粒子20に、これらのうちの1種類を用いてもよく、または2種類以上を用いてもよい。泳動粒子20を、上記粒子を含む樹脂固形分の粉砕粒子またはカプセル粒子等により構成することも可能である。なお、上記炭素材料,金属材料,金属酸化物,ガラスまたは高分子材料に該当する材料は、有機顔料,無機顔料または染料に該当する材料から除く。泳動粒子20の粒径は、例えば10nm以上500nm以下が好ましく、より好ましくは、50nm以上200nm以下である。 The migrating particles 20 are made of particles (powder) such as organic pigments, inorganic pigments, dyes, carbon materials, metal materials, metal oxides, glass, or polymer materials (resins). One type of these may be used for the electrophoretic particle 20, or two or more types may be used. The migrating particles 20 may be composed of pulverized particles or capsule particles of resin solids containing the particles. Note that materials corresponding to the carbon material, metal material, metal oxide, glass, or polymer material are excluded from materials corresponding to organic pigments, inorganic pigments, or dyes. The particle size of the migrating particles 20 is preferably, for example, 10 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less.
 上記の有機顔料は、例えば、アゾ系顔料、メタルコンプレックスアゾ系顔料、ポリ縮合アゾ系顔料、フラバンスロン系顔料、ベンズイミダゾロン系顔料、フタロシアニン系顔料、キナクリドン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料、アントラピリジン系顔料、ピランスロン系顔料、ジオキサジン系顔料、チオインジゴ系顔料、イソインドリノン系顔料、キノフタロン系顔料またはインダンスレン系顔料等である。無機顔料は、例えば、亜鉛華、アンチモン白、鉄黒、硼化チタン、ベンガラ、マピコエロー、鉛丹、カドミウムエロー、硫化亜鉛、リトポン、硫化バリウム、セレン化カドミウム、炭酸カルシウム、硫酸バリウム、クロム酸鉛、硫酸鉛、炭酸バリウム、鉛白またはアルミナホワイト等である。染料は、例えば、ニグロシン系染料、アゾ系染料、フタロシアニン系染料、キノフタロン系染料、アントラキノン系染料またはメチン系染料等である。炭素材料は、例えば、カーボンブラック等である。金属材料は、例えば、金、銀または銅等である。金属酸化物は、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウム、チタン酸カリウム、銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物または銅-鉄-クロム酸化物等である。高分子材料は、例えば、可視光領域に光吸収域を有する官能基が導入された高分子化合物等である。可視光領域に光吸収域を有する高分子化合物であれば、その種類は特に限定されない。 Examples of the organic pigments include azo pigments, metal complex azo pigments, polycondensed azo pigments, flavanthrone pigments, benzimidazolone pigments, phthalocyanine pigments, quinacridone pigments, anthraquinone pigments, and perylene pigments. Perinone pigments, anthrapyridine pigments, pyranthrone pigments, dioxazine pigments, thioindigo pigments, isoindolinone pigments, quinophthalone pigments or indanthrene pigments. Inorganic pigments include, for example, zinc white, antimony white, iron black, titanium boride, bengara, mapico yellow, red lead, cadmium yellow, zinc sulfide, lithopone, barium sulfide, cadmium selenide, calcium carbonate, barium sulfate, lead chromate Lead sulfate, barium carbonate, lead white or alumina white. Examples of the dye include nigrosine dyes, azo dyes, phthalocyanine dyes, quinophthalone dyes, anthraquinone dyes, and methine dyes. The carbon material is, for example, carbon black. The metal material is, for example, gold, silver or copper. Examples of metal oxides include titanium oxide, zinc oxide, zirconium oxide, barium titanate, potassium titanate, copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, and copper-chromium-manganese oxide. Or copper-iron-chromium oxide. The polymer material is, for example, a polymer compound in which a functional group having a light absorption region in the visible light region is introduced. If it is a high molecular compound which has a light absorption area | region in visible region, the kind will not be specifically limited.
 泳動粒子20の具体的な材料は、例えば、泳動粒子20がコントラストを生じさせるために担う役割に応じて選択される。泳動粒子20が明表示する場合、泳動粒子20には例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、チタン酸バリウムまたはチタン酸カリウム等の金属酸化物等が用いられる。泳動粒子20が暗表示する場合、泳動粒子20には例えば、カーボンブラック等の炭素材料または銅-クロム酸化物、銅-マンガン酸化物、銅-鉄-マンガン酸化物、銅-クロム-マンガン酸化物および銅-鉄-クロム酸化物等の金属酸化物等が用いられる。中でも、泳動粒子20には炭素材料を用いることが好ましい。炭素材料からなる泳動粒子20は、優れた化学的安定性、移動性および光吸収性を示す。 The specific material of the migrating particle 20 is selected according to, for example, the role that the migrating particle 20 plays to cause contrast. When the migrating particles 20 display brightly, for example, a metal oxide such as titanium oxide, zinc oxide, zirconium oxide, barium titanate or potassium titanate is used for the migrating particles 20. When the migrating particles 20 are darkly displayed, the migrating particles 20 may be, for example, a carbon material such as carbon black or copper-chromium oxide, copper-manganese oxide, copper-iron-manganese oxide, copper-chromium-manganese oxide. In addition, metal oxides such as copper-iron-chromium oxide are used. Among these, it is preferable to use a carbon material for the migrating particles 20. The migrating particles 20 made of a carbon material exhibit excellent chemical stability, mobility, and light absorption.
 絶縁性液体10中における泳動粒子20の含有量(濃度)は、特に限定されないが、例えば、0.1重量%~10重量%である。この濃度範囲では、泳動粒子20の遮蔽性および移動性が確保される。詳細には、泳動粒子20の含有量が0.1重量%よりも少ないと、泳動粒子20が多孔質層30を遮蔽(隠蔽)しにくくなり、十分にコントラストを生じさせることができない可能性がある。一方、泳動粒子20の含有量が10重量%よりも多いと、泳動粒子20の分散性が低下するため、その泳動粒子20が泳動しにくくなり、凝集する虞がある。 The content (concentration) of the migrating particles 20 in the insulating liquid 10 is not particularly limited, and is, for example, 0.1 wt% to 10 wt%. In this concentration range, the shielding property and mobility of the migrating particles 20 are ensured. Specifically, when the content of the migrating particles 20 is less than 0.1% by weight, the migrating particles 20 are less likely to shield (conceal) the porous layer 30, and there is a possibility that sufficient contrast cannot be generated. is there. On the other hand, when the content of the electrophoretic particles 20 is more than 10% by weight, the dispersibility of the electrophoretic particles 20 is lowered, and thus the electrophoretic particles 20 are difficult to migrate and may aggregate.
 泳動粒子20は、絶縁性液体10中において正または負に帯電すると共に、分散性を向上させるため表面処理が施されている。この表面処理は、例えば、ロジン処理、界面活性剤処理、顔料誘導体処理、カップリング剤処理、グラフト重合処理またはマイクロカプセル化処理等である。特に、グラフト重合処理、マイクロカプセル化処理またはこれらを組み合わせて処理を行うことにより、泳動粒子20の長期間の分散安定性を維持することができる。 The migrating particles 20 are positively or negatively charged in the insulating liquid 10 and are subjected to a surface treatment in order to improve dispersibility. This surface treatment is, for example, rosin treatment, surfactant treatment, pigment derivative treatment, coupling agent treatment, graft polymerization treatment or microencapsulation treatment. In particular, long-term dispersion stability of the electrophoretic particles 20 can be maintained by performing a graft polymerization process, a microencapsulation process, or a combination thereof.
 このような表面処理には、例えば、泳動粒子20の表面に吸着可能な官能基と重合性官能基とを有する材料(吸着性材料)等が用いられる。吸着可能な官能基は、泳動粒子20の形成材料に応じて決定する。例えば、泳動粒子20がカーボンブラック等の炭素材料により構成されている場合には、4-ビニルアニリン等のアニリン誘導体、泳動粒子20が金属酸化物により構成されている場合には、メタクリル酸3-(トリメトキシシリル)プロピル等のオルガノシラン誘導体をそれぞれ吸着することができる。重合性官能基は、例えば、ビニル基、アクリル基、メタクリル基等である。 For such surface treatment, for example, a material having a functional group capable of being adsorbed on the surface of the migrating particle 20 and a polymerizable functional group (adsorbent material) or the like is used. The adsorbable functional group is determined according to the material for forming the migrating particle 20. For example, when the migrating particles 20 are made of a carbon material such as carbon black, an aniline derivative such as 4-vinylaniline, and when the migrating particles 20 are made of a metal oxide, methacrylic acid 3- Organosilane derivatives such as (trimethoxysilyl) propyl can be adsorbed respectively. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group.
 泳動粒子20の表面に重合性官能基を導入し、これにグラフトさせて表面処理を行うようにしてもよい(グラフト性材料)。グラフト性材料は、例えば、重合性官能基と分散用官能基とを有している。分散用官能基は、絶縁性液体10中に泳動粒子20を分散させ、その立体障害により分散性を保持するものである。絶縁性液体10が、例えば、パラフィンである場合には、分散用官能基として分岐状のアルキル基等を用いることができる。重合性官能基は、例えば、ビニル基,アクリル基,メタクリル基等である。グラフト性材料を重合およびグラフトさせるためには、例えば、アゾビスイソブチロニトリル(AIBN)等の重合開始剤を用いればよい A surface treatment may be performed by introducing a polymerizable functional group onto the surface of the migrating particle 20 and grafting it onto the surface (graftable material). The graft material has, for example, a polymerizable functional group and a dispersing functional group. The functional group for dispersion is to disperse the migrating particles 20 in the insulating liquid 10 and retain dispersibility due to the steric hindrance. When the insulating liquid 10 is, for example, paraffin, a branched alkyl group or the like can be used as the dispersing functional group. Examples of the polymerizable functional group include a vinyl group, an acrylic group, and a methacryl group. In order to polymerize and graft the graft material, for example, a polymerization initiator such as azobisisobutyronitrile (AIBN) may be used.
 泳動粒子20は、絶縁性液体10中で長期間に渡って分散および帯電しやすく、また、多孔質層30に吸着しにくいことが好ましい。このため、例えば絶縁性液体10中に分散剤が添加される。分散剤と電荷調整剤とを併用するようにしてもよい。 It is preferable that the migrating particles 20 are easily dispersed and charged in the insulating liquid 10 over a long period of time and are difficult to be adsorbed on the porous layer 30. For this reason, for example, a dispersant is added to the insulating liquid 10. A dispersant and a charge control agent may be used in combination.
 この分散剤または電荷調整剤は、例えば、正、負のどちらか一方、または両方の電荷を有しており、絶縁性液体10中の帯電量を増加させると共に、静電反発により泳動粒子20を分散させるためのものである。このような分散剤として、例えば、Lubrizol社製のSolsperceシリーズ、BYK-Chemic社製のBYKシリーズまたはAnti-Terraシリーズ、あるいはTCI America社製Spanシリーズ、Croda社製Hypermerシリーズ等が挙げられる。 This dispersing agent or charge adjusting agent has, for example, a positive or negative charge, or both, and increases the amount of charge in the insulating liquid 10 and also causes the electrophoretic particles 20 to move by electrostatic repulsion. It is for dispersing. Examples of such a dispersing agent include Solsperce series manufactured by Lubrizol, BYK series or Anti-Terra series manufactured by BYK-Chemical, or Span series manufactured by TCI America, and Hypermer series manufactured by Croda.
 上記泳動粒子20を絶縁性液体10中に分散させる方法の詳細については、「超微粒子の分散技術とその評価~表面処理・微粉砕と気中/液中/高分子中の分散安定化~(サイエンス&テクノロジー社)」等の書籍に掲載されている。 For details on the method of dispersing the migrating particles 20 in the insulating liquid 10, see “Dispersion Technology of Ultrafine Particles and its Evaluation: Surface Treatment / Fine Grinding and Dispersion Stabilization in Air / Liquid / Polymer— Science & Technology)).
 本実施の形態では、上記のように、絶縁性液体10中には酸性添加剤21Aおよび塩基性添加剤21Bが、泳動粒子20の帯電極性と同じ帯電極性を有する添加剤が多くなるように添加されている。詳細は後述するが、絶縁性液体10中に酸性添加剤21Aおよび塩基性添加剤21Bを加えることによって印加電界停止後における泳動粒子20の拡散が抑えられる。 In the present embodiment, as described above, the acidic additive 21A and the basic additive 21B are added to the insulating liquid 10 so that the additive having the same charging polarity as the charged polarity of the migrating particles 20 is increased. Has been. Although details will be described later, by adding the acidic additive 21A and the basic additive 21B to the insulating liquid 10, diffusion of the migrating particles 20 after the applied electric field is stopped is suppressed.
 酸性添加剤21Aは、極性基によって構成された親水部と疎水部とからなる、所謂界面活性剤構造を有する。極性基は、例えば、無水コハク酸構造を有する基やコハク酸構造を有する基が挙げられる。疎水部は、例えば炭素数8以上の直鎖あるいは分岐の炭化水素基からなる。具体的には、例えば、オクチル基,ノニル基,デシル基,ウンデシル基,ドデシル基,ビニル基,アリル基等が挙げられる。具体的には、例えば下記式(1),(2)あるいは(5)で表わされるアルキレンコハク酸無水物、コハク酸およびコハク酸誘導体(例えば、ジ(2-エチルヘキシル)スルホコハク酸ナトリウム;式(3))、あるいは式(4)で表わされるポリカルボン酸アルキル等が挙げられるが、この限りではない。なお、式(1)におけるnは5~30程度であり、式(1),(2)におけるR1,R2は水素原子またはアルキル基である。また、式(4)は主鎖および側鎖のいずれかにエステル構造を有している。あるいは主鎖および側鎖のいずれかがポリカルボン酸でもよく、また、式(6)であらわされる化合物でもよい。 The acidic additive 21A has a so-called surfactant structure composed of a hydrophilic part and a hydrophobic part constituted by polar groups. Examples of the polar group include a group having a succinic anhydride structure and a group having a succinic acid structure. The hydrophobic part is composed of, for example, a linear or branched hydrocarbon group having 8 or more carbon atoms. Specific examples include octyl group, nonyl group, decyl group, undecyl group, dodecyl group, vinyl group, allyl group and the like. Specifically, for example, an alkylene succinic anhydride, succinic acid and a succinic acid derivative (for example, sodium di (2-ethylhexyl) sulfosuccinate represented by the following formula (1), (2) or (5); )) Or an alkyl polycarboxylate represented by the formula (4), but not limited thereto. In the formula (1), n is about 5 to 30, and R1 and R2 in the formulas (1) and (2) are a hydrogen atom or an alkyl group. Formula (4) has an ester structure in either the main chain or the side chain. Alternatively, either the main chain or the side chain may be a polycarboxylic acid, or may be a compound represented by the formula (6).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-I000002
 塩基性添加剤21Bは、例えば、有機溶媒に溶解可能な1級アミン,2級アミンあるいは3級アミンを用いることが好ましい。また、コハク酸イミド構造を有するものを用いてもよい。具体的には、下記式(7)~(11)に示した化合物、ジメチルデシルアミン(DMDA,式(7))、トリオクチルアミン(TOA,式(8))、2-エチルヘキシルアミン(EHA,式(9))、nが20~25程度のOLOA 1200(式(10))およびトリプロピルアミン(TPA,式(11))等が挙げられる。この他、N-メチルジオレイルアミン、N-メチルドデシルアミン、ジメチルドデシルアミン、ジメチルデシルアミン、ジメチルオクチルアミン、ジメチル(2-エチルヘキシル)アミン、ジメチルヘキシルアミン、ジメチルシクロヘキシルアミン、ジメチルペンチルアミン、ジメチルブチルアミン、ジメチルイソプロピルアミン、ジメチルエチルアミン、トリオクチルアミン、トリ(2-エチルヘキシル)アミン、トリヘキシルアミン、トリアミルアミン、トリペンチルアミン、トリブチルアミン、ジ(2-エチルヘキシル)アミン、2-エチルヘキシルアミン、ジメチルヘキシルアミンおよびトリヘキシルアミン等が挙げられるが、この限りではない。 As the basic additive 21B, for example, a primary amine, a secondary amine, or a tertiary amine that is soluble in an organic solvent is preferably used. Moreover, you may use what has a succinimide structure. Specifically, compounds represented by the following formulas (7) to (11), dimethyldecylamine (DMDA, formula (7)), trioctylamine (TOA, formula (8)), 2-ethylhexylamine (EHA, Examples include formula (9)), OLOA 1200 (formula (10)) having n of about 20 to 25, tripropylamine (TPA, formula (11)), and the like. In addition, N-methyldioleylamine, N-methyldodecylamine, dimethyldodecylamine, dimethyldecylamine, dimethyloctylamine, dimethyl (2-ethylhexyl) amine, dimethylhexylamine, dimethylcyclohexylamine, dimethylpentylamine, dimethylbutylamine, Dimethylisopropylamine, dimethylethylamine, trioctylamine, tri (2-ethylhexyl) amine, trihexylamine, triamylamine, tripentylamine, tributylamine, di (2-ethylhexyl) amine, 2-ethylhexylamine, dimethylhexylamine And trihexylamine and the like, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 なお、塩基性添加剤21Bとしては、上記アミン類の中でも、3級アミンであることが好ましく、さらに、3級アミンの3つの置換基はできるだけ嵩高く、立体障害の大きな基であることが好ましい。これにより、表示メモリ性をより向上させることができる。 The basic additive 21B is preferably a tertiary amine among the above amines, and the three substituents of the tertiary amine are preferably as bulky as possible and a group having a large steric hindrance. . Thereby, display memory property can be improved more.
 絶縁性液体10中には、上記酸性添加剤21Aおよび塩基性添加剤21Bをそれぞれ少なくとも1種以上用いることが好ましい。酸性添加剤21Aおよび塩基性添加剤21Bの添加量は、上記のように、泳動粒子20の帯電極性に応じてそれぞれ所定の範囲内で添加されている。具体的には、泳動粒子20が正に帯電している場合には、塩基性添加剤21Bを酸性添加剤21Aよりも多く添加することが好ましい。泳動粒子20が負に帯電している場合には、酸性添加剤21Aを塩基性添加剤21Bよりも多く添加することが好ましい。酸性添加剤21Aは、絶縁性液体10中において負に帯電し、塩基性添加剤21Bは、絶縁性液体10中において正に帯電する。即ち、本実施の形態では、酸性添加剤21Aおよび塩基性添加剤21Bは、絶縁性液体10中において泳動粒子20の帯電極性と同じ帯電極性を有する添加材を多く含むように添加されることが好ましい。 In the insulating liquid 10, it is preferable to use at least one of the acidic additive 21A and the basic additive 21B. As described above, the addition amount of the acidic additive 21A and the basic additive 21B is added within a predetermined range depending on the charged polarity of the migrating particles 20. Specifically, when the migrating particles 20 are positively charged, it is preferable to add more basic additive 21B than acidic additive 21A. When the electrophoretic particles 20 are negatively charged, it is preferable to add more acidic additive 21A than basic additive 21B. The acidic additive 21 </ b> A is negatively charged in the insulating liquid 10, and the basic additive 21 </ b> B is positively charged in the insulating liquid 10. That is, in the present embodiment, the acidic additive 21A and the basic additive 21B may be added so as to include a large amount of an additive having the same charging polarity as that of the electrophoretic particle 20 in the insulating liquid 10. preferable.
 酸性添加剤21Aおよび塩基性添加剤21Bの添加量比は、泳動粒子20の帯電極性に応じて、それぞれ以下のような比率であることが好ましい。泳動粒子20の帯電極性が正である場合には、酸性添加剤32Aに対する塩基性添加剤32Bの添加量比(酸性添加剤32A/塩基性添加剤32B)は、モル量換算において、例えば、3よりも大きく、20よりも小さいことが好ましい。泳動粒子20の帯電極性が負である場合には、塩基性添加剤32Bに対する酸性添加剤32Aの添加量比(塩基性添加剤32B/酸性添加剤32A)は、モル量換算において、例えば、3よりも大きく、20よりも小さいことが好ましい。このような比率とすることにより、塩基性添加剤21Bが絶縁性液体10中で帯電しやすくなると共に、絶縁性液体10の粘度上昇が抑えられる。 It is preferable that the addition amount ratio between the acidic additive 21A and the basic additive 21B is as follows depending on the charged polarity of the migrating particles 20. When the charged polarity of the migrating particles 20 is positive, the addition amount ratio of the basic additive 32B to the acidic additive 32A (acid additive 32A / basic additive 32B) is, for example, 3 in terms of molar amount. Larger than 20 and preferably smaller than 20. When the charged polarity of the migrating particles 20 is negative, the additive amount ratio of the acidic additive 32A to the basic additive 32B (basic additive 32B / acid additive 32A) is, for example, 3 in terms of molar amount. Larger than 20 and preferably smaller than 20. By setting such a ratio, the basic additive 21B is easily charged in the insulating liquid 10, and an increase in the viscosity of the insulating liquid 10 is suppressed.
 酸性添加剤21Aおよび塩基性添加剤21Bの分子量は、電気泳動素子1の誘電率の上昇を抑えるために、できるだけ小さいことが好ましく、それぞれ、例えば、1000よりも小さいことが好ましい。但し、揮発性の面から、酸性添加剤21Aおよび塩基性添加剤21Bの分子量は少なくとも100よりも大きいことが好ましい。 The molecular weights of the acidic additive 21A and the basic additive 21B are preferably as small as possible in order to suppress an increase in the dielectric constant of the electrophoretic element 1, and are preferably smaller than 1000, for example. However, from the viewpoint of volatility, the molecular weight of the acidic additive 21A and the basic additive 21B is preferably at least greater than 100.
 多孔質層30は泳動粒子20を遮蔽可能なものであり、繊維状構造体31および繊維状構造体31に保持された非泳動粒子32を有している。この多孔質層30は、繊維状構造体31により形成された3次元立体構造物(不織布のような不規則なネットワーク構造物)であり、複数の隙間(細孔33)が設けられている。繊維状構造体31により、多孔質層30の3次元立体構造を構成することで、光(外光)が乱反射(多重散乱)し、多孔質層30の反射率が高くなる。従って、多孔質層30の厚みが小さい場合であっても高反射率を得ることができ、電気泳動素子1のコントラストを向上させると共に泳動粒子20の移動に必要なエネルギーを小さくすることができる。また、細孔33の平均孔径が大きくなり、かつ、多くの細孔33が多孔質層30に設けられる。これにより、泳動粒子20が細孔33を経由して移動し易くなり、応答速度が向上すると共に、泳動粒子20を移動させるために必要なエネルギーがより小さくなる。このような多孔質層30の厚みは、例えば、5μm~100μmである。 The porous layer 30 can shield the migrating particles 20 and has a fibrous structure 31 and non-migrating particles 32 held by the fibrous structure 31. The porous layer 30 is a three-dimensional structure (an irregular network structure such as a nonwoven fabric) formed by a fibrous structure 31, and is provided with a plurality of gaps (pores 33). By forming the three-dimensional structure of the porous layer 30 with the fibrous structure 31, light (external light) is irregularly reflected (multiple scattering), and the reflectance of the porous layer 30 is increased. Therefore, even when the thickness of the porous layer 30 is small, a high reflectance can be obtained, the contrast of the electrophoretic element 1 can be improved, and the energy required to move the electrophoretic particles 20 can be reduced. Further, the average pore diameter of the pores 33 is increased, and many pores 33 are provided in the porous layer 30. Thereby, the migrating particles 20 are easily moved via the pores 33, the response speed is improved, and the energy necessary for moving the migrating particles 20 is further reduced. The thickness of such a porous layer 30 is, for example, 5 μm to 100 μm.
 繊維状構造体31は、繊維径(直径)に対して十分な長さを有する繊維状物質である。例えば、複数の繊維状構造体31が集合し、ランダムに重なって多孔質層30を構成する。1つの繊維状構造体31がランダムに絡みあって多孔質層30を構成していてもよい。あるいは、1つの繊維状構造体31による多孔質層30と複数の繊維状構造体31による多孔質層30とが混在していてもよい。 The fibrous structure 31 is a fibrous substance having a sufficient length with respect to the fiber diameter (diameter). For example, a plurality of fibrous structures 31 are assembled and randomly overlapped to form the porous layer 30. One fibrous structure 31 may be entangled randomly to form the porous layer 30. Or the porous layer 30 by the one fibrous structure 31 and the porous layer 30 by the some fibrous structure 31 may be mixed.
 繊維状構造体31は例えば直線状に延在している。繊維状構造体31の形状は、どのようなものであってもよく、例えば、縮れていたり、途中で折れ曲がったりしていてもよい。あるいは、繊維状構造体31は途中で分岐していてもよい。 The fibrous structure 31 extends linearly, for example. The shape of the fibrous structure 31 may be any shape. For example, the fibrous structure 31 may be crimped or bent in the middle. Or the fibrous structure 31 may be branched on the way.
 繊維状構造体31の最小繊維径は、例えば500nm以下であることが好ましく、より好ましくは300nm以下である。平均繊維径は、例えば0.1μm以上10μm以下であることが好ましいが、上記範囲外であってもよい。平均繊維径を小さくすることにより、光が乱反射し易くなり、また、細孔33の孔径が大きくなる。繊維状構造体31が非泳動粒子32を保持できるよう、その繊維径を決定する。平均繊維径は、例えば、走査型電子顕微鏡等を用いた顕微鏡観察により測定することができる。繊維状構造体31の平均長さは任意である。繊維状構造体31は、例えば、相分離法,相反転法,静電(電界)紡糸法,溶融紡糸法,湿式紡糸法,乾式紡糸法,ゲル紡糸法,ゾルゲル法またはスプレー塗布法等により形成される。このような方法を用いることにより、繊維径に対して十分な長さを有する繊維状構造体31を容易に、かつ安定して形成することができる。 The minimum fiber diameter of the fibrous structure 31 is, for example, preferably 500 nm or less, and more preferably 300 nm or less. The average fiber diameter is preferably 0.1 μm or more and 10 μm or less, for example, but may be outside the above range. By reducing the average fiber diameter, light is easily diffusely reflected, and the pore diameter of the pores 33 is increased. The fiber diameter is determined so that the fibrous structure 31 can hold the non-migrating particles 32. The average fiber diameter can be measured, for example, by microscopic observation using a scanning electron microscope or the like. The average length of the fibrous structure 31 is arbitrary. The fibrous structure 31 is formed by, for example, a phase separation method, a phase inversion method, an electrostatic (electric field) spinning method, a melt spinning method, a wet spinning method, a dry spinning method, a gel spinning method, a sol-gel method, or a spray coating method. Is done. By using such a method, the fibrous structure 31 having a sufficient length with respect to the fiber diameter can be easily and stably formed.
 繊維状構造体31は、高分子材料および無機材料の少なくとも一方により形成されており、特に、ナノファイバーにより構成することが好ましい。ここでナノファイバーとは、繊維径が1nm~1000nmであり、長さが繊維径の100倍以上である繊維状物質である。このようなナノファイバーを繊維状構造体31として用いることにより、光が乱反射し易くなり、多孔質層30の反射率をより向上させることができる。即ち、電気泳動素子1のコントラストを向上させることが可能となる。また、ナノファイバーからなる繊維状構造体31では、単位体積中に占める細孔33の割合が大きくなり、細孔33を経由して泳動粒子20が移動し易くなる。従って、泳動粒子20の移動に必要なエネルギーを小さくすることができる。ナノファイバーからなる繊維状構造体31は、静電紡糸法により形成することが好ましい。静電紡糸法を用いることにより繊維径が小さい繊維状構造体31を容易に、かつ安定して形成することができる。 The fibrous structure 31 is formed of at least one of a polymer material and an inorganic material, and is particularly preferably composed of nanofibers. Here, the nanofiber is a fibrous substance having a fiber diameter of 1 nm to 1000 nm and a length of 100 times or more of the fiber diameter. By using such a nanofiber as the fibrous structure 31, light is easily diffusely reflected, and the reflectance of the porous layer 30 can be further improved. That is, the contrast of the electrophoretic element 1 can be improved. Further, in the fibrous structure 31 made of nanofibers, the proportion of the pores 33 in the unit volume increases, and the migrating particles 20 can easily move through the pores 33. Therefore, the energy required for moving the migrating particles 20 can be reduced. The fibrous structure 31 made of nanofibers is preferably formed by an electrostatic spinning method. By using the electrostatic spinning method, the fibrous structure 31 having a small fiber diameter can be easily and stably formed.
 繊維状構造体31には、その光反射率が泳動粒子20の光反射率と異なるものを用いることが好ましい。これにより、多孔質層30と泳動粒子20との光反射率の差によるコントラストが形成され易くなる。絶縁性液体10中で光透過性(無色透明)を示す繊維状構造体31を用いるようにしてもよい。 It is preferable to use a fibrous structure 31 having a light reflectance different from that of the migrating particles 20. Thereby, the contrast by the difference in the light reflectance of the porous layer 30 and the migrating particles 20 is easily formed. A fibrous structure 31 that exhibits optical transparency (colorless and transparent) in the insulating liquid 10 may be used.
 細孔33は、複数の繊維状構造体31が重なり合い、または1つの繊維状構造体31が絡まりあうことにより構成されている。この細孔33は、泳動粒子20が細孔33を経て移動し易いよう、できるだけ大きな平均孔径を有していることが好ましい。細孔33の平均孔径は、例えば、0.1μm以上10μm以下である。 The pore 33 is configured by overlapping a plurality of fibrous structures 31 or entwining one fibrous structure 31. The pores 33 preferably have as large an average pore diameter as possible so that the migrating particles 20 can easily move through the pores 33. The average pore diameter of the pores 33 is, for example, not less than 0.1 μm and not more than 10 μm.
 非泳動粒子32は、繊維状構造体31に固定されており、電気泳動を行わない1または2以上の粒子である。非泳動粒子32は、保持されている繊維状構造体31の内部に埋設されていてもよく、あるいは、繊維状構造体31から部分的に露出していてもよい。 Non-electrophoretic particles 32 are one or more particles that are fixed to the fibrous structure 31 and do not undergo electrophoresis. The non-migrating particles 32 may be embedded in the held fibrous structure 31 or may be partially exposed from the fibrous structure 31.
 非泳動粒子32には、その光反射率が泳動粒子20の光反射率と異なるものを用いる。非泳動粒子32は、上記泳動粒子20と同様の材料により構成することが可能である。詳細には、非泳動粒子32(多孔質層30)が明表示する場合には上記泳動粒子20が明表示する場合の材料、非泳動粒子32が暗表示する場合には上記泳動粒子20が暗表示する場合の材料をそれぞれ用いることができる。多孔質層30により明表示を行うとき、非泳動粒子32を金属酸化物により構成することが好ましい。これにより、優れた化学的安定性、定着性および光反射性を得ることができる。非泳動粒子32、泳動粒子20それぞれの構成材料は同じであってもよく、異なっていてもよい。非泳動粒子32が明表示または暗表示を行うときに外部から視認される色は、上記泳動粒子20について説明したものと同様である。 As the non-electrophoretic particles 32, those having a light reflectance different from that of the electrophoretic particles 20 are used. The non-migrating particles 32 can be made of the same material as that of the migrating particles 20. Specifically, when the non-electrophoretic particle 32 (porous layer 30) displays brightly, the material when the electrophoretic particle 20 displays brightly, and when the non-electrophoretic particle 32 displays dark, the electrophoretic particle 20 darkens. Each material for display can be used. When performing a bright display with the porous layer 30, it is preferable that the non-migrating particles 32 be made of a metal oxide. Thereby, it is possible to obtain excellent chemical stability, fixability and light reflectivity. The constituent materials of the non-migrating particles 32 and the migrating particles 20 may be the same or different. The color visually recognized from the outside when the non-electrophoretic particle 32 performs bright display or dark display is the same as that described for the electrophoretic particle 20.
 このような多孔質層30は、例えば、以下の方法により形成することができる。まず、有機溶剤等に、例えば、高分子材料等の繊維状構造体31の構成材料を溶解させ、紡糸溶液を調製する。次いで、この紡糸溶液に非泳動粒子32を加えて十分に攪拌し、非泳動粒子32を分散させる。最後に、この紡糸溶液から例えば静電紡糸法により紡糸を行って非泳動粒子22を繊維状構造体31に固定し、多孔質層30を形成する。多孔質層30は、高分子フィルムに、レーザを使用して穴開け加工を施して細孔33を形成するようにしてもよく、多孔質層30に合成繊維等により編まれた布、または連泡多孔性高分子等を用いるようにしてもよい。 Such a porous layer 30 can be formed by the following method, for example. First, for example, a constituent material of the fibrous structure 31 such as a polymer material is dissolved in an organic solvent to prepare a spinning solution. Next, the non-migrating particles 32 are added to the spinning solution and stirred sufficiently to disperse the non-migrating particles 32. Finally, the spinning solution is spun by, for example, an electrostatic spinning method to fix the non-migrating particles 22 to the fibrous structure 31, thereby forming the porous layer 30. The porous layer 30 may be formed by drilling a polymer film using a laser to form the pores 33. The porous layer 30 may be a cloth knitted with synthetic fibers or the like on the porous layer 30 or continuous. A foam porous polymer or the like may be used.
 電気泳動素子は、上記のように、泳動粒子の光反射率と多孔質層の光反射率との差によりコントラストを生じさせるものである。具体的には、泳動粒子および多孔質層のうち、明表示する方の光反射率が暗表示する方の光反射率よりも高くなっている。このような表示を行うことにより、明表示がなされる際の光反射率が、多孔質層(3次元立体構造物)による光の乱反射を利用して著しく高くなる。従って、これに応じ、コントラストも著しく向上する。 As described above, the electrophoretic element causes contrast due to the difference between the light reflectance of the migrating particles and the light reflectance of the porous layer. Specifically, among the migrating particles and the porous layer, the light reflectance for bright display is higher than the light reflectance for dark display. By performing such a display, the light reflectance at the time of bright display is remarkably increased by utilizing the irregular reflection of light by the porous layer (three-dimensional structure). Accordingly, the contrast is remarkably improved accordingly.
 電気泳動素子内では、具体的には泳動粒子が下記のような挙動を示すことによって表示がなされる。泳動粒子は、一対の電極間に電圧が印加されると、それによって生じた電界の範囲内で多孔質層の細孔を経て対応する電極側に移動する。泳動粒子の移動した領域、移動しない領域に応じて、明表示および暗表示のうちのどちらか一方がなされ、画像が表示される。なお、非泳動粒子の光反射率を、泳動粒子よりも高くして、多孔質層で明表示し、泳動粒子で暗表示することが好ましい。 In the electrophoretic element, specifically, the display is performed when the migrating particles exhibit the following behavior. When a voltage is applied between the pair of electrodes, the migrating particles move to the corresponding electrode side through the pores of the porous layer within the range of the electric field generated thereby. Depending on the area where the migrating particles have moved or not moved, either bright display or dark display is performed, and an image is displayed. It is preferable that the light reflectance of the non-electrophoretic particles is higher than that of the electrophoretic particles so that the porous layer displays light and the electrophoretic particles display dark.
(1-2.作用・効果)
 電気泳動素子等を用いた反射型のティスプレイは、前述したように低消費電力であると共に応答速度が速く、また軽量且つ紙に近い表示品位から読書用途等に用いられるモバイル機器の表示装置の有力候補として期待されているが、更なる消費電力の低減が望まれている。消費電力を低減する方法としては、表示メモリ性の向上が挙げられる。電気泳動素子は、印加された電界(印加電界)が停止された後も移動した電極側に泳動粒子が留まることによって表示画像が保持され、表示メモリ性が発現する。しかしながら、一般的な電気泳動素子では、印加電圧を停止すると泳動粒子の拡散が始まり、十分な表示メモリ性が得られなかった。
(1-2. Action and effect)
As described above, the reflection type display using an electrophoretic element is a low power consumption, a high response speed, and a light weight display quality close to that of paper. Although it is expected as a promising candidate, further reduction of power consumption is desired. As a method for reducing power consumption, an improvement in display memory performance can be mentioned. In the electrophoretic element, even after the applied electric field (applied electric field) is stopped, the electrophoretic particles remain on the moved electrode side, so that the display image is retained and the display memory property is exhibited. However, in a general electrophoretic element, when the applied voltage is stopped, diffusion of the electrophoretic particles starts, and a sufficient display memory property cannot be obtained.
 このような電気泳動素子では、絶縁性液体中に塩基性の添加剤を過剰に加えると、応答速度は速くなるものの、表示メモリ性は低下する傾向があった。一方、絶縁性液体中に酸性の添加剤を加えると、表示メモリ性は示すものの、泳動素子が繊維状構造体に吸着しやすくなり、応答速度が著しく低下するという傾向があった。また、絶縁性液体中に塩基性の添加剤および酸性の添加剤の両方を同量ずつ加えると、表示メモリ性は向上するものの、応答速度が低下する傾向が観察された。 In such an electrophoretic element, when the basic additive is excessively added to the insulating liquid, the response speed increases, but the display memory property tends to decrease. On the other hand, when an acidic additive is added to the insulating liquid, although the display memory property is exhibited, the electrophoretic element tends to be adsorbed to the fibrous structure, and the response speed tends to be remarkably reduced. Further, when both the basic additive and the acidic additive were added to the insulating liquid in the same amount, the display memory property was improved but the response speed tended to decrease.
 これに対して、本実施の形態の電気泳動素子1では、絶縁性液体10中に正に帯電する塩基性添加剤21Bおよび負に帯電する酸性添加剤21Aを添加すると共に、その添加量が、正または負に帯電する泳動粒子20の帯電極性と同じ帯電極性を有する添加剤の方が多くなるようにした。これにより、絶縁性液体10の粘度の上昇を抑えつつ、印加電界停止後に電気泳動素子1内に生じる内部電界が緩和される。具体的には、電界印加後に生じる内部電界(印加電界とは逆方向の電界)は、泳動粒子20よりも高い移動度を有する酸性添加剤21Aおよび塩基性添加剤21Bの移動によって緩和され、泳動粒子20の拡散が抑制される。 On the other hand, in the electrophoretic element 1 of the present embodiment, the basic additive 21B that is positively charged and the acidic additive 21A that is negatively charged are added to the insulating liquid 10, and the addition amount thereof is as follows. The amount of the additive having the same charging polarity as the charging polarity of the electrophoretic particles 20 that are positively or negatively charged is increased. Thereby, the internal electric field generated in the electrophoretic element 1 after the applied electric field is stopped is reduced while suppressing the increase in the viscosity of the insulating liquid 10. Specifically, the internal electric field (electric field in the direction opposite to the applied electric field) generated after application of the electric field is alleviated by the movement of the acidic additive 21A and the basic additive 21B having higher mobility than the migrating particles 20, and migration. Diffusion of the particles 20 is suppressed.
 以上のように本実施の形態の電気泳動素子1では、絶縁性液体10中に酸性添加剤21Aおよび塩基性添加剤21Bを、泳動粒子20の帯電極性と同じ帯電極性を有する添加剤が多くなるよう添加した。これにより、絶縁性液体10の粘度の上昇を抑えつつ、印加電界停止後に電気泳動素子内に生じる内部電界が緩和される。よって、高い応答性を維持しつつ、表示メモリ性を向上させることが可能となる。 As described above, in the electrophoretic element 1 of the present embodiment, the acidic additive 21 </ b> A and the basic additive 21 </ b> B in the insulating liquid 10 are increased in the number of additives having the same charging polarity as the charging polarity of the migrating particles 20. Were added. Thereby, the internal electric field generated in the electrophoretic element after the applied electric field is stopped is reduced while suppressing the increase in the viscosity of the insulating liquid 10. Therefore, it is possible to improve display memory performance while maintaining high responsiveness.
 また、上記構成とすることにより、印加電界停止後の泳動粒子20の拡散が抑制されるため、電気泳動素子1の白反射率が向上する。 Also, with the above configuration, the diffusion of the migrating particles 20 after the applied electric field is stopped is suppressed, so that the white reflectance of the electrophoretic element 1 is improved.
<2.適用例>
(表示装置)
 次に上記電気泳動素子1の適用例について説明する。電気泳動素子1は、例えば、表示装置に適用される。
<2. Application example>
(Display device)
Next, an application example of the electrophoretic element 1 will be described. The electrophoretic element 1 is applied to a display device, for example.
 図3は、電気泳動素子1を用いた表示装置(表示装置2)の断面構成の一例を表したものである。この表示装置2は、電気泳動現象を利用して画像(例えば文字情報等)を表示する電気泳動型ディスプレイ(いわゆる電子ペーパーディスプレイ)であり、駆動基板40と対向基板50との間に電気泳動素子1が設けられている。駆動基板40と対向基板50との間は、スペーサ60により所定の間隔に調整されている。 FIG. 3 shows an example of a cross-sectional configuration of a display device (display device 2) using the electrophoretic element 1. The display device 2 is an electrophoretic display (so-called electronic paper display) that displays an image (for example, character information) using an electrophoretic phenomenon, and an electrophoretic element between a driving substrate 40 and a counter substrate 50. 1 is provided. A space between the driving substrate 40 and the counter substrate 50 is adjusted to a predetermined distance by a spacer 60.
 駆動基板40は、板状部材41の一方の面に例えば、TFT(Thin Film Transistor)32、保護層43平坦化絶縁層44および画素電極45をこの順に有している。TFT42および画素電極45は、例えば画素配置に応じてマトリクス状またはセグメント状に配置されている。 The drive substrate 40 has, for example, a TFT (Thin Film Transistor) 32, a protective layer 43, a planarization insulating layer 44, and a pixel electrode 45 in this order on one surface of the plate-like member 41. The TFTs 42 and the pixel electrodes 45 are arranged in a matrix or a segment, for example, depending on the pixel arrangement.
 板状部材41は、例えば、無機材料,金属材料またはプラスチック材料等により構成されている。無機材料としては、例えば、ケイ素(Si),酸化ケイ素(SiO),窒化ケイ素(SiN)または酸化アルミニウム(AlO)等が挙げられる。酸化ケイ素には、ガラスまたはスピンオングラス(SOG)等が含まれる。金属材料としては、例えば、アルミニウム(Al)、ニッケル(Ni)またはステンレス等が挙げられ、プラスチック材料としては、例えば、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)またはポリエチルエーテルケトン(PEEK)等が挙げられる。 The plate-like member 41 is made of, for example, an inorganic material, a metal material, a plastic material, or the like. As the inorganic materials, for example, silicon (Si), silicon oxide (SiO X), silicon nitride (SiN X) or aluminum oxide (AlO x), and the like. Silicon oxide includes glass or spin-on-glass (SOG). Examples of the metal material include aluminum (Al), nickel (Ni), and stainless steel, and examples of the plastic material include polycarbonate (PC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethyl ether. Ketone (PEEK) etc. are mentioned.
 表示装置2では、対向基板50側に画像が表示されるため、板状部材41は非光透過性であってもよい。板状部材41を、ウェハ等の剛性を有する基板により構成してもよく、あるいは可撓性を有する薄層ガラスまたはフィルム等により構成してもよい。板状部材41に可撓性材料を用いることにより、フレキシブル(折り曲げ可能)な表示装置2を実現できる。 In the display device 2, since an image is displayed on the counter substrate 50 side, the plate-like member 41 may be non-light transmissive. The plate-like member 41 may be constituted by a rigid substrate such as a wafer, or may be constituted by a flexible thin layer glass or film. By using a flexible material for the plate-like member 41, a flexible display device 2 can be realized.
 TFT42は、画素を選択するためのスイッチング用素子である。TFT42は、チャネル層として無機半導体層を用いた無機TFTでもよいし、有機半導体層を用いた有機TFTでもよい。保護層43および平坦化絶縁層44は、例えば、ポリイミド等の絶縁性樹脂材料により構成されている。保護層43の表面が十分に平坦であれば、平坦化絶縁層44を省略することも可能である。画素電極45は、例えば、金(Au)、銀(Ag)または銅(Cu)等の金属材料により形成されている。画素電極45は、保護層43および平坦化絶縁層44に設けられたコンタクトホール(図示せず)を通じてTFT42に接続されている。 The TFT 42 is a switching element for selecting a pixel. The TFT 42 may be an inorganic TFT using an inorganic semiconductor layer as a channel layer or an organic TFT using an organic semiconductor layer. The protective layer 43 and the planarization insulating layer 44 are made of an insulating resin material such as polyimide, for example. If the surface of the protective layer 43 is sufficiently flat, the planarization insulating layer 44 can be omitted. The pixel electrode 45 is made of, for example, a metal material such as gold (Au), silver (Ag), or copper (Cu). The pixel electrode 45 is connected to the TFT 42 through a contact hole (not shown) provided in the protective layer 43 and the planarization insulating layer 44.
 対向基板50は、例えば板状部材51および対向電極52を有しており、板状部材51の全面(駆動基板40との対向面)に対向電極52が設けられている。対向電極52を、画素電極45と同様に、マトリクス状またはセグメント状に配置するようにしてもよい。 The counter substrate 50 includes, for example, a plate-like member 51 and a counter electrode 52, and the counter electrode 52 is provided on the entire surface of the plate-like member 51 (the surface facing the drive substrate 40). The counter electrode 52 may be arranged in a matrix or a segment like the pixel electrode 45.
 板状部材51は、光透過性であることを除き、板状部材41と同様の材料により構成されている。対向電極52には、例えば、酸化インジウム-酸化スズ(ITO)、酸化アンチモン-酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)またはアルミニウムドープ酸化亜鉛(AZO)等の光透光性導電性材料(透明電極材料)を用いることができる。 The plate member 51 is made of the same material as the plate member 41 except that it is light transmissive. For the counter electrode 52, for example, a light-transmitting conductive material such as indium oxide-tin oxide (ITO), antimony-tin oxide (ATO), fluorine-doped tin oxide (FTO), or aluminum-doped zinc oxide (AZO). (Transparent electrode material) can be used.
 対向基板50側に画像を表示する場合には、対向電極52を介して電気泳動素子1を見ることになるため、対向電極52の光透過性(透過率)は、できるだけ高いことが好ましく、例えば、80%以上である。また、対向電極52の電気抵抗は、できるだけ低いことが好ましく、例えば、100Ω/□以下である。 When displaying an image on the counter substrate 50 side, the electrophoretic element 1 is viewed through the counter electrode 52. Therefore, the light transmittance (transmittance) of the counter electrode 52 is preferably as high as possible. 80% or more. Further, the electric resistance of the counter electrode 52 is preferably as low as possible, for example, 100Ω / □ or less.
 電気泳動素子1は、上記実施の形態および変形例の電気泳動素子1と同様の構成を有している。具体的には、電気泳動素子1は、絶縁性液体10中に、泳動粒子20と、複数の細孔33を有する多孔質層30とを含んでいる。絶縁性液体10は、駆動基板40と対向基板50との間の空間に充填されており、多孔質層30は、例えば、スペーサ60により支持されている。絶縁性液体10が充填されている空間は、例えば、多孔質層30を境界として、画素電極45に近い側の待避領域R1と、対向電極52に近い側の表示領域R2とに区分けされている。絶縁性液体10、泳動粒子20および多孔質層30の構成は、上記実施の形態等で説明したものと同様である。なお、図3および後述の図4では、図示内容を簡略化するために、細孔33の一部だけを示している。 The electrophoretic element 1 has the same configuration as the electrophoretic element 1 of the above-described embodiment and modification. Specifically, the electrophoretic element 1 includes electrophoretic particles 20 and a porous layer 30 having a plurality of pores 33 in an insulating liquid 10. The insulating liquid 10 is filled in a space between the driving substrate 40 and the counter substrate 50, and the porous layer 30 is supported by a spacer 60, for example. The space filled with the insulating liquid 10 is divided into, for example, a retreat area R1 near the pixel electrode 45 and a display area R2 near the counter electrode 52 with the porous layer 30 as a boundary. . The configurations of the insulating liquid 10, the migrating particles 20, and the porous layer 30 are the same as those described in the above embodiments and the like. Note that, in FIG. 3 and FIG. 4 described later, only a part of the pore 33 is shown in order to simplify the illustrated content.
 多孔質層30は、画素電極45および対向電極52のうちのどちらか一方に隣接していてもよく、待避領域R1と表示領域R2とが明確に区切られていなくてもよい。泳動粒子20は、電界に応じて画素電極45または対向電極52に向かって移動する。 The porous layer 30 may be adjacent to either the pixel electrode 45 or the counter electrode 52, and the retreat area R1 and the display area R2 may not be clearly separated. The migrating particles 20 move toward the pixel electrode 45 or the counter electrode 52 according to the electric field.
 スペーサ60の厚みは、例えば10μm~100μmであり、できるだけ、薄くすることが好ましい。これにより、消費電力を抑えることができる。スペーサ60は、例えば、高分子材料等の絶縁性材料により構成され、駆動基板40と対向基板50との間に例えば格子状に設けられている。スペーサ60の配置形状は、特に限定されないが、泳動粒子20の移動を妨げず、かつ、泳動粒子20を均一分布させるように設けることが好ましい。 The thickness of the spacer 60 is, for example, 10 μm to 100 μm, and is preferably as thin as possible. Thereby, power consumption can be suppressed. The spacer 60 is made of, for example, an insulating material such as a polymer material, and is provided, for example, in a lattice shape between the drive substrate 40 and the counter substrate 50. The arrangement shape of the spacer 60 is not particularly limited, but it is preferable that the spacer 60 is provided so as not to disturb the movement of the migrating particles 20 and to uniformly distribute the migrating particles 20.
 初期状態の表示装置2では、泳動粒子20が待避領域R1に配置されている(図3)。この場合には、全ての画素で泳動粒子20が多孔質層30により遮蔽されているため、対向基板50側から電気泳動素子1を見ると、コントラストが生じていない(画像が表示されていない)状態にある。 In the display device 2 in the initial state, the migrating particles 20 are arranged in the retreat area R1 (FIG. 3). In this case, since the migrating particles 20 are shielded by the porous layer 30 in all the pixels, no contrast is generated when the electrophoretic element 1 is viewed from the counter substrate 50 side (an image is not displayed). Is in a state.
 一方、TFT42により画素が選択され、画素電極45と対向電極52との間に電界が印加されると、図4に示したように、画素毎に泳動粒子20が待避領域R1から多孔質層30(細孔33)を経由して表示領域R2に移動する。この場合には、泳動粒子20が多孔質層30により遮蔽されている画素と遮蔽されていない画素とが併存するため、対向基板50側から電気泳動素子1を見ると、コントラストが生じている状態になる。これにより、画像が表示される。 On the other hand, when a pixel is selected by the TFT 42 and an electric field is applied between the pixel electrode 45 and the counter electrode 52, as shown in FIG. 4, the migrating particles 20 are moved from the retreat area R 1 to the porous layer 30 for each pixel. It moves to display area R2 via (pore 33). In this case, since the migrating particles 20 are both shielded by the porous layer 30 and not shielded, the contrast is generated when the electrophoretic element 1 is viewed from the counter substrate 50 side. become. Thereby, an image is displayed.
 この表示装置2によれば、高い応答速度を有する電気泳動素子1により、例えばカラー化や動画表示にも適した高品位な画像を表示できる。 According to the display device 2, the electrophoretic element 1 having a high response speed can display a high-quality image suitable for colorization and moving image display, for example.
(電子機器)
 次に、上記表示装置2の適用例について説明する。
(Electronics)
Next, an application example of the display device 2 will be described.
 本技術の表示装置2は、各種用途の電子機器に適用可能であり、その電子機器の種類は特に限定されない。この表示装置2は、例えば、以下の電子機器に搭載可能である。ただし、以下で説明する電子機器の構成はあくまで一例であるため、その構成は適宜変更可能である。 The display device 2 of the present technology can be applied to electronic devices for various uses, and the type of the electronic device is not particularly limited. This display device 2 can be mounted on, for example, the following electronic devices. However, the configuration of the electronic device described below is merely an example, and the configuration can be changed as appropriate.
(適用例1)
 図5A,5Bは、電子ブックの外観構成を表している。この電子ブックは、例えば、表示部110および非表示部120と、操作部130とを備えている。なお、操作部130は、図5Aに示したように非表示部120の前面に設けられていてもよいし、図5Bに示したように上面に設けられていてもよい。表示部110が表示装置2により構成される。なお、表示装置2は、図5A,5Bに示した電子ブックと同様の構成を有するPDA(Personal Digital Assistants)等に搭載されてもよい。
(Application example 1)
5A and 5B show the external configuration of the electronic book. The electronic book includes, for example, a display unit 110, a non-display unit 120, and an operation unit 130. The operation unit 130 may be provided on the front surface of the non-display unit 120 as illustrated in FIG. 5A or may be provided on the upper surface as illustrated in FIG. 5B. The display unit 110 includes the display device 2. The display device 2 may be mounted on a PDA (Personal Digital Assistants) having the same configuration as the electronic book shown in FIGS. 5A and 5B.
(適用例2)
 図6は、タブレットパーソナルコンピュータの外観を表したものである。このタブレットパーソナルコンピュータは、例えば、タッチパネル部310および筐体320を有しており、タッチパネル部310が上記表示装置2により構成されている。
(Application example 2)
FIG. 6 shows the appearance of a tablet personal computer. The tablet personal computer has, for example, a touch panel unit 310 and a housing 320, and the touch panel unit 310 is configured by the display device 2.
<3.実施例>
(実験1-1)
 次に、酸性添加剤と塩基性添加剤との間の相互作用および分散媒における各添加剤の作用機序を検証する実験を行った。
<3. Example>
(Experiment 1-1)
Next, an experiment was conducted to verify the interaction between the acidic additive and the basic additive and the action mechanism of each additive in the dispersion medium.
 電気泳動素子における応答性および表示メモリ性は、多孔質層を通過する泳動粒子の移動度と、印加電界消去時における電極表面からの泳動粒子の再分散のしやすさに影響される。優れた応答性と高い表示メモリ性とを両立させるためには、泳動粒子の表面修飾に加えて、分散媒および分散媒に加える電界補償剤、分散剤、電荷補償剤等の添加剤の開発が重要である。これらの材料開発においては、泳動粒子と添加剤との間の相互作用の検証が重要である。しかしながら、泳動粒子は、例えば、Cu-Fe-Mn複合酸化物を主成分とした磁性体であるため、これを含むサンプル溶液ではNMRスペクトルの詳細な解析は不可能である。そこで、本実験では、塩基性添加剤として3級アルキルアミンを用いたサンプル(サンプルA)と、3級アルキルアミンと共に、酸性添加剤としてコハク酸を加えたサンプル(サンプルB)を作製してそのNMRを測定し、酸性添加剤と塩基性添加剤との間の相互作用を観察した。図7は、サンプルAおよびサンプルBのH-NMRのスペクトルの一部を拡大して表したものである。また、サンプルAおよびサンプルBにおける自己拡散係数の測定を行いその結果を表3にまとめた。 Responsiveness and display memory performance of the electrophoretic element are affected by the mobility of the electrophoretic particles passing through the porous layer and the ease of redispersion of the electrophoretic particles from the electrode surface when the applied electric field is erased. In order to achieve both excellent responsiveness and high display memory performance, in addition to the surface modification of migrating particles, development of additives such as dispersion media and electric field compensators, dispersants, charge compensation agents, etc. to be added to the dispersion media is important. In developing these materials, it is important to verify the interaction between migrating particles and additives. However, since the migrating particles are, for example, a magnetic substance mainly composed of a Cu—Fe—Mn composite oxide, a detailed analysis of the NMR spectrum is impossible with a sample solution containing the migrating particles. Therefore, in this experiment, a sample (sample A) using tertiary alkylamine as a basic additive and a sample (sample B) added with succinic acid as an acidic additive together with tertiary alkylamine were prepared. NMR was measured and the interaction between acidic and basic additives was observed. FIG. 7 is an enlarged view of a part of the 1 H-NMR spectrum of Sample A and Sample B. Further, the self-diffusion coefficients of Sample A and Sample B were measured and the results are summarized in Table 3.
 表1および表2は、サンプルAおよびサンプルBの組成(表1)および測定条件(表2)をまとめたものである。なお、NMR装置は日本電子製ECA-500型を用い、プローブはTH5ATプローブを用いた。溶媒をイソパラフィン系溶剤とした場合の測定は、磁場ロックを行わず、1H Selective gradient shimmingによりシム調整を行った。 Tables 1 and 2 summarize the compositions (Table 1) and measurement conditions (Table 2) of Sample A and Sample B. The NMR apparatus used was ECA-500 model manufactured by JEOL, and the probe used was a TH5AT probe. When the solvent was an isoparaffin solvent, the shim was adjusted by 1 H Selective gradient shimming without magnetic field lock.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 ここで用いたPFG-LED+BPPSTE法は、基本のSpin-Echo法に渦電流の影響を抑えるBPP法(Bipolar-Pulse-Pair)やLED法(Longitudinal-Eddy-Current-Delay)、横緩和時間T2が短い系やJ変調の影響を受ける系に有効なSTE法(Stimulated-Echo)を組み合わせたものである(詳細は、C. S. Johnson Jr, Prog. NMR. Spectrosc. 1999, 34, 203.を参照)。サンプルチューブは対流効果除去用二重管(5mmφ)を用い、液高5mmに調整した。自己拡散係数はStejskalの式(数(1))に基づいて解析した(E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 1965, 42, 288.)。以下に式と各パラメータの設定値を示す。 The PFG-LED + BPPSTE method used here is the BPP method (Bipolar-Pulse-Pair) or LED method (Longitudinal-Eddy-Current-Delay), which suppresses the influence of eddy current on the basic Spin-Echo method, and the lateral relaxation time T 2 Combined with STE method (Stimulated-Echo) which is effective for short-wavelength systems and systems affected by J modulation (for details, see CS Johnson Jr, Prog. NMR. Spectrosc. 1999, 34, 203.) . The sample tube was adjusted to a liquid height of 5 mm using a convection effect removing double tube (5 mmφ). The self-diffusion coefficient was analyzed based on the Stejskal equation (number (1)) (E. O. Stejskal, J. E. Tanner, J. Chem. Phys. 1965, 42, 288.). The formulas and setting values for each parameter are shown below.
  (数1)
  I(g)=I(0)exp(-(γgδ)2D(Δ-Δ/3))・・・(1)
 
(I:ピーク強度,γ:測定核の磁気回転比(1H),g:FG強度,δ:FGパルス幅,Δ:拡散時間,D:自己拡散係数)
(Equation 1)
I (g) = I (0) exp (− (γgδ) 2 D (Δ−Δ / 3)) (1)

(I: peak intensity, gamma: gyromagnetic ratio of the measurement nuclei (1 H), g: FG strength, [delta]: FG pulse width, delta: diffusion time, D: self-diffusion coefficient)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図7に示した1H-NMRスペクトルのうち、サンプルAの2.32ppmのシグナルは、3級アルキルアミンのNに隣接するメチレン基のプロトンに由来するものである。図7および表3からわかるように、アルキルアミンのメチレン基のシグナルは、コハク酸共存下において大きな低磁場シフトと著しいブロードニングが観測され、加えて自己拡散係数の大幅な減少が観測された。従って、アルキルアミンとのコハク酸が共存すると相互作用が生じていると推察される。 In the 1 H-NMR spectrum shown in FIG. 7, the 2.32 ppm signal of Sample A is derived from the proton of the methylene group adjacent to N of the tertiary alkylamine. As can be seen from FIG. 7 and Table 3, in the methylene group signal of alkylamine, a large low magnetic field shift and remarkable broadening were observed in the presence of succinic acid, and in addition, a significant decrease in self-diffusion coefficient was observed. Therefore, when succinic acid coexists with alkylamine, it is presumed that interaction occurs.
(実験1-2)
 更に、アルキルアミンの濃度を固定(1.5wt%)して、コハク酸の濃度を0~6.5wt%まで変化させたサンプルB-1~B-7を作製し、1H-NMRスペクトルおよびPFG-NMRによる自己拡散係数の測定を行った。表4は、各サンプル中に含まれるコハク酸の濃度と、アルキルアミンのH-NMRスペクトルにおけるN隣接するメチレン基の低磁場シフト量、及び自己拡散係数の値をまとめたものである。図8は、サンプルAと共に、サンプルB-1~B-7のH-NMRスペクトルの一部を表したものである。また、サンプルB-3を70℃で一晩放置したのちNMR測定した結果(サンプルB-3’)も併せて示した。
(Experiment 1-2)
Further, samples B-1 to B-7 were prepared in which the alkylamine concentration was fixed (1.5 wt%) and the succinic acid concentration was changed from 0 to 6.5 wt%, and the 1 H-NMR spectrum and The self-diffusion coefficient was measured by PFG-NMR. Table 4 summarizes the succinic acid concentration contained in each sample, the low magnetic field shift amount of the N adjacent methylene group in the 1 H-NMR spectrum of the alkylamine, and the value of the self-diffusion coefficient. FIG. 8 shows a part of the 1 H-NMR spectrum of Samples B-1 to B-7 together with Sample A. In addition, the results of NMR measurement after leaving Sample B-3 at 70 ° C. overnight (Sample B-3 ′) are also shown.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図8および表4から、コハク酸濃度が0~7wt%までの間では、アルキルアミンのN-CH2-に由来するシグナル(2.28ppm)は徐々に低磁場側にシフトすると共に、アルキルアミンの急激な自己拡散係数の低下が見られた。その一方で、コハク酸濃度が7wt%よりも多くなると、N-CH-に由来するシグナルは2.9ppmでほぼ一定となり、アルキルアミンの自己拡散係数の低下は緩やかになった。また、一晩放置した状態でも、低磁場シフトに変化は見られなかった。このことから、熱処理による履歴はないことがわかる。 From FIG. 8 and Table 4, when the succinic acid concentration is 0 to 7 wt%, the signal (2.28 ppm) derived from N—CH 2 — of the alkylamine is gradually shifted to the lower magnetic field side, and the alkylamine A drastic decrease in self-diffusion coefficient was observed. On the other hand, when the succinic acid concentration was higher than 7 wt%, the signal derived from N—CH 2 — became substantially constant at 2.9 ppm, and the decrease in the self-diffusion coefficient of alkylamine was moderate. In addition, even when left overnight, there was no change in the low magnetic field shift. This shows that there is no history due to heat treatment.
 図9は、1H-NMRスペクトルにおけるアルキルアミンのN-CH-に由来するシグナルのシフト量とコハク酸濃度(mol濃度)との関係を表わしたものであり、図10は、アルキルアミンの自己拡散係数の低下とコハク酸濃度(モル濃度に変換)との関係を表したものである。図9および図10から、アルキルアミン濃度0.1mol/L(1.5wt%)に対して、コハク酸濃度0.2mol/L(7wt%)付近において傾向が大きく変わることがわかった。 FIG. 9 shows the relationship between the shift amount of the signal derived from N—CH 2 — of the alkylamine and the succinic acid concentration (mol concentration) in the 1 H-NMR spectrum, and FIG. It shows the relationship between the decrease in the self-diffusion coefficient and the succinic acid concentration (converted to a molar concentration). From FIG. 9 and FIG. 10, it was found that the tendency changes greatly in the vicinity of the succinic acid concentration of 0.2 mol / L (7 wt%) with respect to the alkylamine concentration of 0.1 mol / L (1.5 wt%).
 ここで観測されたアルキルアミンのN-CH2-に由来するシグナルの低磁場シフトは、アルキルアミンの3級アミンが酸であるコハク酸の添加によりアンモニウムイオンとなったことが原因であると推察される。具体的には、アルキルアミンの3級アミンがアンモニウムイオンになることでN原子上の電子密度が低下し、隣接するメチレン基は脱遮へいされ、N-CH2-に由来するシグナルは低磁場にシフトしたと考えられる。これは、イソパラフィン系溶剤中におけるアルキルアミンとコハク酸は、単独では電気的に中性の状態であるが、両者が共存(相互作用)することで互いに電荷を帯びた状態になっているためと考えられる。これにより、コハク酸は、内部電界補償添加剤として活性な状態となる。低磁場シフトと同時に起こる自己拡散係数の低下は、両者がイオン会合体を形成し、アルキルアミンの見かけの分子半径が大きくなったためと説明できる。 The low magnetic field shift of the signal derived from N—CH 2 — of the alkylamine observed here is presumed to be caused by the tertiary amine of the alkylamine becoming an ammonium ion by the addition of the acid succinic acid. Is done. Specifically, the tertiary amine of the alkylamine becomes an ammonium ion, so that the electron density on the N atom decreases, the adjacent methylene group is shielded, and the signal derived from N-CH2- shifts to a low magnetic field. It is thought that. This is because the alkylamine and succinic acid in the isoparaffinic solvent are in an electrically neutral state by themselves, but they are in a state of being charged with each other due to their coexistence (interaction). Conceivable. Thereby, succinic acid becomes active as an internal electric field compensation additive. The decrease in the self-diffusion coefficient that occurs simultaneously with the low magnetic field shift can be explained by the fact that both formed ion aggregates and the apparent molecular radius of the alkylamine was increased.
 以上のことから、1H-NMRスペクトルにおけるアルキルアミンのN-CH-に由来するシグナルの化学的シフト量およびアルキルアミンの自己拡散係数の変化の傾向が大きく変わるコハク酸の濃度(アルキルアミンに対するコハク酸の重量比1:5、モル比では1:2)は、アルキルアミンが全てイオン化するために必要最低限のコハク酸の量であることがわかった。一方で、余剰のコハク酸の存在はアルキルアミンの自己拡散係数の更なる低下を招いていることもわかった。即ち、電気泳動素子の絶縁性液体に塩基性添加剤および酸性添加剤を添加した際の粘度上昇の原因となっていると推察される。このことは泳動粒子の泳動の特性(応答性)を低下させる原因と考えられる。なお、上記アルキルアミンとコハク酸の重量比は、電気泳動素子のデバイス性能が最適値を示す材料組成の比と概ね一致(アルキルアミン:コハク酸重量比=1:6)するものである。 From the above, the succinic acid concentration (relative to the alkylamine) in which the chemical shift amount of the signal derived from N—CH 2 — of the alkylamine in the 1 H-NMR spectrum and the tendency of change in the self-diffusion coefficient of the alkylamine greatly change. A succinic acid weight ratio of 1: 5 and a molar ratio of 1: 2) was found to be the minimum amount of succinic acid necessary for all the alkylamine to ionize. On the other hand, it was also found that the presence of excess succinic acid caused a further decrease in the self-diffusion coefficient of alkylamine. That is, it is presumed that the viscosity increases when a basic additive and an acidic additive are added to the insulating liquid of the electrophoretic element. This is considered to be a cause of reducing the migration characteristics (responsiveness) of the migrating particles. The weight ratio of the alkylamine and succinic acid is substantially the same as the ratio of the material composition at which the device performance of the electrophoretic element shows the optimum value (alkylamine: succinic acid weight ratio = 1: 6).
(実験2-1)
 次に、本技術の実施例について詳細に説明する。以下の手順により、黒色(暗表示)の泳動粒子および白色(明表示)の多孔質層(粒子含有繊維状構造体)を用いて、表示装置を作製した。
(Experiment 2-1)
Next, embodiments of the present technology will be described in detail. By the following procedure, a display device was manufactured using black (dark display) migrating particles and a white (bright display) porous layer (particle-containing fibrous structure).
 まず、テトラヒドロフラン400mlとメタノール400mlとの混合溶液を調製した後、この溶液に複合酸化物微粒子(銅-鉄-マンガンの酸化物:大日精化工業株式会社製ダイピロキサイドカラーTM9550)50gを加え、超音波浴槽にて超音波攪拌(25℃~35℃で30分間)を行った。次いで、この複合酸化物微粒子の分散液に28%アンモニア水40mlを30分間かけて滴下したのち、テトラヒドロフラン80mlにプレンアクト KR-TTS(味の素ファインテクノ株式会社製)10gを溶解させた溶液を30分間かけて滴下した。続いて、超音波浴槽を60℃まで昇温させ3時間保持したのちこれを室温まで冷却して遠心分離(6000rpmで10分間)およびデカンテーションを行った。続いて、このデカンテーション後の沈殿物をテトラヒドロフランとメタノールとの混合溶媒(体積比1:1)に再分散させ、遠心分離(6000rpmで10分間)およびデカンテーションを行った。この洗浄作業を3回繰り返して得られた沈殿物を70℃の真空オーブンで一晩乾燥させた。これにより、絶縁性液体中において負に帯電する分散基で被覆された黒色の泳動粒子が得られた。 First, a mixed solution of 400 ml of tetrahydrofuran and 400 ml of methanol was prepared, and then 50 g of composite oxide fine particles (copper-iron-manganese oxide: Daipi Seika Kogyo Co., Ltd. Daipyroxide Side Color TM9550) were added to the solution. Ultrasonic stirring (at 25 ° C. to 35 ° C. for 30 minutes) was performed in an ultrasonic bath. Next, 40 ml of 28% ammonia water was added dropwise to the dispersion of the composite oxide fine particles over 30 minutes, and then a solution in which 10 g of Preneact KR-TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.) was dissolved in 80 ml of tetrahydrofuran was applied over 30 minutes. And dripped. Subsequently, the ultrasonic bath was heated to 60 ° C. and held for 3 hours, and then cooled to room temperature, followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. Subsequently, the precipitate after decantation was redispersed in a mixed solvent of tetrahydrofuran and methanol (volume ratio 1: 1), followed by centrifugation (at 6000 rpm for 10 minutes) and decantation. The precipitate obtained by repeating this washing operation three times was dried overnight in a vacuum oven at 70 ° C. As a result, black electrophoretic particles coated with a negatively charged dispersing group in the insulating liquid were obtained.
 泳動粒子を調製した後、絶縁性液体94gに分散剤として長鎖アルキルコハク酸無水物を6g溶解させ溶液Aを調製した。この溶液A9gに上記泳動粒子1gを加え、超音波分散を行った。この分散液を遠心分離(6000rpmで90分間)およびデカンテーションを行ったのち、絶縁性液体に再分散させた。この作業を3回繰り返し、得られた分散液中の泳動粒子成分が10重量%となるように溶液Bを調製した。次いで、溶液B50gに絶縁性液体49.6gに塩基性添加剤アルキルアミンを0.25gおよび酸性添加剤0.12gを加えて攪拌し、泳動粒子と、酸性添加剤および塩基性添加剤とをそれぞれ、0.4mmol(酸性添加剤),1.75mmol(塩基性添加剤)含有する絶縁性液体を得た。 After preparing the migrating particles, 6 g of long-chain alkyl succinic anhydride as a dispersant was dissolved in 94 g of insulating liquid to prepare solution A. 1 g of the migrating particles was added to 9 g of this solution A, and ultrasonic dispersion was performed. This dispersion was centrifuged (at 6000 rpm for 90 minutes) and decanted, and then redispersed in an insulating liquid. This operation was repeated three times, and a solution B was prepared so that the electrophoretic particle component in the obtained dispersion was 10% by weight. Next, 0.25 g of the basic additive alkylamine and 0.12 g of the acidic additive are added to 49.6 g of the insulating liquid in 50 g of the solution B and stirred, and the migrating particles, the acidic additive, and the basic additive are respectively added. , 0.4 mmol (acidic additive) and 1.75 mmol (basic additive) were obtained.
 次に、繊維状構造体の構成材料としてポリメチルメタクリレートを準備した。このポリメチルメタクリレート14gをN,N’-ジメチルホルムアミド86gに溶解させた後、この溶液70gに、非泳動粒子として一次粒径が250nmの酸化チタン30gを加えてビーズミルで混合した。これにより繊維状構造体を形成するための紡糸溶液が得られた。駆動基板に、所定パターンのITOからなる画素電極を形成した後、この紡糸溶液を用いて紡糸を行った。具体的には、紡糸溶液をシリンジに入れ、駆動基板上で1.2mg/cm分の紡糸を行った。以上の工程により、駆動基板上に多孔質層(非泳動粒子を保持した繊維状構造体)を形成した。紡糸は、電界紡糸装置(株式会社メック製NANON)を用いて行った。 Next, polymethyl methacrylate was prepared as a constituent material of the fibrous structure. After 14 g of this polymethyl methacrylate was dissolved in 86 g of N, N′-dimethylformamide, 30 g of titanium oxide having a primary particle size of 250 nm as non-electrophoretic particles was added to 70 g of this solution and mixed by a bead mill. As a result, a spinning solution for forming a fibrous structure was obtained. After a pixel electrode made of ITO having a predetermined pattern was formed on the driving substrate, spinning was performed using this spinning solution. Specifically, the spinning solution was put into a syringe, and spinning was performed for 1.2 mg / cm 2 on the driving substrate. Through the above steps, a porous layer (a fibrous structure holding non-electrophoretic particles) was formed on the drive substrate. Spinning was performed using an electrospinning apparatus (NANON manufactured by MEC Co., Ltd.).
 駆動基板上に多孔質層を形成した後、駆動基板から不要な多孔質層を除去した。具体的には、画素電極が設けられていない部分の多孔質層を除去した。対向基板として、板状部材にITOからなる対向電極を形成し、この対向基板上にPETフィルム(30μm厚)のスペーサを配置した後、これを多孔質層が形成された駆動基板と重ねた。このとき、スペーサにより、多孔質層を保持するようにして、画素電極および対向電極から多孔質層を離間させた。次いで、駆動基板と対向基板との間に、上記泳動粒子が分散した絶縁性液体を注入した。最後に、紫外線光を光硬化性樹脂に照射して、表示デバイスを完成させた(サンプル3-1)。 After forming the porous layer on the driving substrate, the unnecessary porous layer was removed from the driving substrate. Specifically, the porous layer where the pixel electrode is not provided was removed. As a counter substrate, a counter electrode made of ITO was formed on a plate-like member, a spacer of PET film (30 μm thick) was placed on the counter substrate, and this was then overlapped with a drive substrate on which a porous layer was formed. At this time, the porous layer was separated from the pixel electrode and the counter electrode by holding the porous layer with the spacer. Next, an insulating liquid in which the migrating particles were dispersed was injected between the driving substrate and the counter substrate. Finally, ultraviolet light was applied to the photocurable resin to complete a display device (Sample 3-1).
 この他、酸性添加剤および塩基性添加剤の含有量の異なるサンプル3-2~3-9を作製し、白反射率(%)および応答速度を測定し、この結果を表5および図11に示した。 In addition, samples 3-2 to 3-9 having different contents of acidic additive and basic additive were prepared, and the white reflectance (%) and response speed were measured. The results are shown in Table 5 and FIG. Indicated.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 図11および表5から、泳動粒子が絶縁性液体中において負に帯電する場合には、塩基性添加剤に対する酸性添加剤の添加量(mol)比(塩基性添加剤/酸性添加剤)は、例えば、1.9よりも大きく、33.4よりも小さいことが好ましく、より好ましくは、3よりも大きく、20よりも小さい。なお、電気泳動素子の誘電率の上昇を低減するために、添加剤の添加量は、少ない方が好ましい。 From FIG. 11 and Table 5, when the migrating particles are negatively charged in the insulating liquid, the addition amount (mol) ratio of the acidic additive to the basic additive (basic additive / acid additive) is: For example, it is preferably larger than 1.9 and smaller than 33.4, more preferably larger than 3 and smaller than 20. In order to reduce the increase in the dielectric constant of the electrophoretic element, it is preferable that the additive amount be small.
(実験2-2)
 種々の分子量を有する塩基性添加剤を用いた以外は、上記同様の方法を用いて表示デバイスを作製し、塩基性添加剤の分子量に対する白反射率(%)および応答速度を測定し、この結果を表6および図12に示した。なお、各サンプルに用いた酸性添加剤の分子量は310である。
(Experiment 2-2)
A display device was prepared using the same method as above except that basic additives having various molecular weights were used, and the white reflectance (%) and response speed with respect to the molecular weight of the basic additive were measured. Are shown in Table 6 and FIG. The molecular weight of the acidic additive used for each sample is 310.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図12および表6から、塩基性添加剤の分子量が大きくなるにつれて応答速度が低下していくことがわかった。なお、分子量が小さな(100未満)塩基性添加剤を用いたサンプル4-1では、デバイス化が困難であった。 FIG. 12 and Table 6 show that the response speed decreases as the molecular weight of the basic additive increases. Sample 4-1 using a basic additive having a small molecular weight (less than 100) was difficult to be made into a device.
(実験2-3)
 塩基性添加剤として3級アミン(サンプル5-1)、2級アミン(サンプル5-2)および1級アミン(サンプル5-3)を用いた以外は、上記同様の方法を用いて表示デバイスを作製し、白反射率の保持時間を測定し、この結果を表7および図13に示した。なお、塩基性添加剤の分子量は、サンプル5-1~5-3共に同じ(分子量143)である。
(Experiment 2-3)
A display device was prepared using the same method as above except that tertiary amine (sample 5-1), secondary amine (sample 5-2), and primary amine (sample 5-3) were used as basic additives. This was manufactured and the retention time of the white reflectance was measured. The results are shown in Table 7 and FIG. The molecular weight of the basic additive is the same for all samples 5-1 to 5-3 (molecular weight 143).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図13および表7から、塩基性添加剤としては、3級アミンが最も好ましいことがわかった。 From FIG. 13 and Table 7, it was found that tertiary amine is most preferable as the basic additive.
 なお、上記実験2では、負に帯電した泳動粒子を用いて実験を行ったが、以下に示した表8から正に帯電した泳動粒子では、酸性添加物と塩基性添加物との添加量比は、負に帯電した泳動粒子を用いた場合とは逆にすることで表示特性の向上が得られることがわかる。 In Experiment 2, the experiment was carried out using negatively charged migrating particles. However, in Table 8 shown below, the positively charged migrating particles have an additive amount ratio between the acidic additive and the basic additive. It can be seen that the display characteristics can be improved by reversing the case of using negatively charged electrophoretic particles.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 以上、実施の形態および実施例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。 Although the present technology has been described with reference to the embodiments and examples, the present technology is not limited to the above-described embodiments and the like, and various modifications are possible.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 本技術は以下のような構成も取ることができる。
(1)絶縁性液体中に、正または負に帯電した泳動粒子と、前記泳動粒子とは異なる光反射性を有する非泳動粒子を含むと共に、繊維状構造体により形成された多孔質層と、前記絶縁性液体中において、正に帯電する塩基性添加剤および負に帯電する酸性添加剤とを含み、前記塩基性添加剤および前記酸性添加剤は、前記泳動粒子と同じ帯電極性を有する添加剤の方が多く添加されている表示装置。
(2)前記泳動粒子が負に帯電している場合の前記塩基性添加剤に対する前記酸性添加剤のモル比は、3よりも大きく20よりも小さい、前記(1)に記載の表示装置。
(3)前記泳動粒子が正に帯電している場合の前記酸性添加剤に対する前記塩基性添加剤のモル比は、3よりも大きく20よりも小さい、前記(1)に記載の表示装置。
(4)前記塩基性添加剤および前記酸性添加剤の分子量は、100よりも大きく、1000よりも小さい、前記(1)乃至(3)のうちのいずれか1つに記載の表示装置。
(5)前記酸性添加剤は無水コハク酸構造を有する、前記(1)乃至(4)のうちのいずれか1つに記載の表示装置。
(6)前記酸性添加剤はコハク酸構造を有する、前記(1)乃至(4)のうちのいずれか1つに記載の表示装置。
(7)前記塩基性添加剤はアミンである、前記(1)乃至(6)のうちのいずれか1つに記載の表示装置。
(8)前記酸性添加剤および前記塩基性添加剤をそれぞれ複数種類含む、前記(1)乃至(7)のうちのいずれか1つに記載の表示装置。
(9)前記繊維状構造体の平均繊維径は0.1μm以上10μm以下である、前記(1)乃至(8)のうちのいずれか1つに記載の表示装置。
(10)前記繊維状構造体は静電防止法により形成された、前記(1)乃至(9)のうちのいずれか1つに記載の表示装置。
(11)前記非泳動粒子の光反射率は前記泳動粒子の光反射率よりも高く、前記泳動粒子が暗表示、前記非泳動粒子および繊維状構造体が明表示を行う、前記(1)乃至(10)のうちのいずれか1つに記載の表示装置。
(12)前記泳動粒子および前記非泳動粒子は、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスおよび高分子材料のうちの少なくともいずれか1つにより構成されている、前記(1)乃至(11)のうちのいずれか1つに記載の表示装置。
(13)前記繊維状構造体は高分子材料および無機材料の少なくとも一方により形成されている、前記(1)乃至(12)のうちのいずれか1つに記載の表示装置。
(14)表示装置を備え、前記表示装置は、絶縁性液体中に、正または負に帯電した泳動粒子と、前記泳動粒子とは異なる光反射性を有する非泳動粒子を含むと共に、繊維状構造体により形成された多孔質層と、前記絶縁性液体中において、正に帯電する塩基性添加剤および負に帯電する酸性添加剤とを含み、前記塩基性添加剤および前記酸性添加剤は、前記泳動粒子と同じ帯電極性を有する添加剤の方が多く添加されている電子機器。
The present technology can also have the following configurations.
(1) A porous layer formed of a fibrous structure, which includes positively or negatively charged electrophoretic particles in the insulating liquid and non-electrophoretic particles having light reflectivity different from the electrophoretic particles, A positively charged basic additive and a negatively charged acidic additive in the insulating liquid, the basic additive and the acidic additive having the same charging polarity as the migrating particles A display device to which more is added.
(2) The display device according to (1), wherein a molar ratio of the acidic additive to the basic additive when the electrophoretic particles are negatively charged is greater than 3 and less than 20.
(3) The display device according to (1), wherein a molar ratio of the basic additive to the acidic additive when the electrophoretic particles are positively charged is greater than 3 and less than 20.
(4) The display device according to any one of (1) to (3), wherein molecular weights of the basic additive and the acidic additive are larger than 100 and smaller than 1000.
(5) The display device according to any one of (1) to (4), wherein the acidic additive has a succinic anhydride structure.
(6) The display device according to any one of (1) to (4), wherein the acidic additive has a succinic acid structure.
(7) The display device according to any one of (1) to (6), wherein the basic additive is an amine.
(8) The display device according to any one of (1) to (7), wherein each of the acidic additive and the basic additive includes a plurality of types.
(9) The display device according to any one of (1) to (8), wherein an average fiber diameter of the fibrous structure is 0.1 μm or more and 10 μm or less.
(10) The display device according to any one of (1) to (9), wherein the fibrous structure is formed by an antistatic method.
(11) The light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the fibrous structure perform light display. The display device according to any one of (10).
(12) The migrating particles and the non-migrating particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material. The display device according to any one of (1) to (11).
(13) The display device according to any one of (1) to (12), wherein the fibrous structure is formed of at least one of a polymer material and an inorganic material.
(14) A display device is provided, and the display device includes electrophoretic particles charged positively or negatively and non-electrophoretic particles having light reflectivity different from the electrophoretic particles, and a fibrous structure. A porous layer formed by a body, and in the insulating liquid, a positively charged basic additive and a negatively charged acidic additive, the basic additive and the acidic additive, Electronic equipment to which more additives having the same charging polarity as the migrating particles are added.
 本出願は、日本国特許庁において2015年6月11日に出願された日本特許出願番号2015-118106号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-118106 filed on June 11, 2015 at the Japan Patent Office. The entire contents of this application are hereby incorporated by reference. Incorporated into.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (14)

  1.  絶縁性液体中に、
     正または負に帯電した泳動粒子と、
     前記泳動粒子とは異なる光反射性を有する非泳動粒子を含むと共に、繊維状構造体により形成された多孔質層と、
     前記絶縁性液体中において、正に帯電する塩基性添加剤および負に帯電する酸性添加剤とを含み、
     前記塩基性添加剤および前記酸性添加剤は、前記泳動粒子と同じ帯電極性を有する添加剤の方が多く添加されている
     表示装置。
    In insulating liquid,
    Positively or negatively charged migrating particles,
    A non-electrophoretic particle having light reflectivity different from the electrophoretic particle, and a porous layer formed of a fibrous structure;
    In the insulating liquid, including a positively charged basic additive and a negatively charged acidic additive,
    A larger amount of the basic additive and the acidic additive are added to the additive having the same charging polarity as the electrophoretic particles.
  2.  前記泳動粒子が負に帯電している場合の前記塩基性添加剤に対する前記酸性添加剤のモル比は、3よりも大きく20よりも小さい、請求項1に記載の表示装置。 The display device according to claim 1, wherein a molar ratio of the acidic additive to the basic additive when the electrophoretic particles are negatively charged is greater than 3 and less than 20.
  3.  前記泳動粒子が正に帯電している場合の前記酸性添加剤に対する前記塩基性添加剤のモル比は、3よりも大きく20よりも小さい、請求項1に記載の表示装置。 The display device according to claim 1, wherein a molar ratio of the basic additive to the acidic additive when the electrophoretic particles are positively charged is greater than 3 and less than 20.
  4.  前記塩基性添加剤および前記酸性添加剤の分子量は、100よりも大きく、1000よりも小さい、請求項1に記載の表示装置。 The display device according to claim 1, wherein the molecular weight of the basic additive and the acidic additive is larger than 100 and smaller than 1000.
  5.  前記酸性添加剤は無水コハク酸構造を有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the acidic additive has a succinic anhydride structure.
  6.  前記酸性添加剤はコハク酸構造を有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the acidic additive has a succinic acid structure.
  7.  前記塩基性添加剤はアミンである、請求項1に記載の表示装置。 The display device according to claim 1, wherein the basic additive is an amine.
  8.  前記酸性添加剤および前記塩基性添加剤をそれぞれ複数種類含む、請求項1に記載の表示装置。 The display device according to claim 1, comprising a plurality of types of the acidic additive and the basic additive.
  9.  前記繊維状構造体の平均繊維径は0.1μm以上10μm以下である、請求項1に記載の表示装置。 The display device according to claim 1, wherein an average fiber diameter of the fibrous structure is 0.1 μm or more and 10 μm or less.
  10.  前記繊維状構造体は静電防止法により形成された、請求項1に記載の表示装置。 The display device according to claim 1, wherein the fibrous structure is formed by an antistatic method.
  11.  前記非泳動粒子の光反射率は前記泳動粒子の光反射率よりも高く、前記泳動粒子が暗表示、前記非泳動粒子および繊維状構造体が明表示を行う、請求項1に記載の表示装置。 2. The display device according to claim 1, wherein the light reflectance of the non-electrophoretic particles is higher than the light reflectance of the electrophoretic particles, the electrophoretic particles perform dark display, and the non-electrophoretic particles and the fibrous structure perform bright display. .
  12.  前記泳動粒子および前記非泳動粒子は、有機顔料,無機顔料,染料,炭素材料,金属材料,金属酸化物,ガラスおよび高分子材料のうちの少なくともいずれか1つにより構成されている、請求項1に記載の表示装置。 The electrophoretic particles and the non-electrophoretic particles are composed of at least one of an organic pigment, an inorganic pigment, a dye, a carbon material, a metal material, a metal oxide, glass, and a polymer material. The display device described in 1.
  13.  前記繊維状構造体は高分子材料および無機材料の少なくとも一方により形成されている、請求項1に記載の表示装置。 The display device according to claim 1, wherein the fibrous structure is formed of at least one of a polymer material and an inorganic material.
  14.  表示装置を備え、
     前記表示装置は、
     絶縁性液体中に、
     正または負に帯電した泳動粒子と、
     前記泳動粒子とは異なる光反射性を有する非泳動粒子を含むと共に、繊維状構造体により形成された多孔質層と、
     前記絶縁性液体中において、正に帯電する塩基性添加剤および負に帯電する酸性添加剤とを含み、
     前記塩基性添加剤および前記酸性添加剤は、前記泳動粒子と同じ帯電極性を有する添加剤の方が多く添加されている
     電子機器。
     
    A display device,
    The display device
    In insulating liquid,
    Positively or negatively charged migrating particles,
    A non-electrophoretic particle having light reflectivity different from the electrophoretic particle, and a porous layer formed of a fibrous structure;
    In the insulating liquid, including a positively charged basic additive and a negatively charged acidic additive,
    An electronic device in which the basic additive and the acidic additive are added more in the same charge polarity as the migrating particles.
PCT/JP2016/065975 2015-06-11 2016-05-31 Display device and electronic apparatus WO2016199618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-118106 2015-06-11
JP2015118106A JP2017003801A (en) 2015-06-11 2015-06-11 Display device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2016199618A1 true WO2016199618A1 (en) 2016-12-15

Family

ID=57503586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065975 WO2016199618A1 (en) 2015-06-11 2016-05-31 Display device and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2017003801A (en)
WO (1) WO2016199618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932573B2 (en) 2019-01-08 2024-03-19 Schott Ag Element composed of glass displaying reduced electrostatic charging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352054A (en) * 2004-06-09 2005-12-22 Canon Inc Electrophoretic particle and manufacturing method thereof
JP2007121570A (en) * 2005-10-26 2007-05-17 Canon Inc Particle movement type display device
JP2010145615A (en) * 2008-12-17 2010-07-01 Fuji Xerox Co Ltd Display medium, display element, and display apparatus
JP2013130858A (en) * 2011-11-22 2013-07-04 Sony Corp Electrophoretic device, method of manufacturing the same, and display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005352054A (en) * 2004-06-09 2005-12-22 Canon Inc Electrophoretic particle and manufacturing method thereof
JP2007121570A (en) * 2005-10-26 2007-05-17 Canon Inc Particle movement type display device
JP2010145615A (en) * 2008-12-17 2010-07-01 Fuji Xerox Co Ltd Display medium, display element, and display apparatus
JP2013130858A (en) * 2011-11-22 2013-07-04 Sony Corp Electrophoretic device, method of manufacturing the same, and display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932573B2 (en) 2019-01-08 2024-03-19 Schott Ag Element composed of glass displaying reduced electrostatic charging

Also Published As

Publication number Publication date
JP2017003801A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP5884659B2 (en) Electrophoretic element and display device
JP5609700B2 (en) Electrophoretic element and display device
JP5942394B2 (en) Electrophoretic element and display device
JP2012198417A (en) Electrophoretic element, display device, and electronic apparatus
JP6176252B2 (en) Electrophoretic element, display device and electronic apparatus
JP2012203342A (en) Electrophoretic element, display device and electronic apparatus
JP5880295B2 (en) Method for manufacturing electrophoretic element
JP5900179B2 (en) Electrophoretic element and display device
WO2016199618A1 (en) Display device and electronic apparatus
JP5966885B2 (en) Electrophoretic element and display device
JP2012198418A (en) Electrophoretic element, display device, and electronic apparatus
JP2015191037A (en) display device and electronic equipment
JP5942776B2 (en) Electrophoretic element and display device
JP5817464B2 (en) Electrophoretic element and display device
JP2015004914A (en) Display unit and electronic apparatus
JP2012173395A (en) Electrophoretic element and display device
WO2017073169A1 (en) Electrophoresis element, display device, and electronic equipment
WO2017086140A1 (en) Electrophoretic particles and display device
WO2015141303A1 (en) Display device, method for manufacturing display device and electronic device
WO2016114011A1 (en) Display device and electronic device
JP2014209159A (en) Display unit and electronic apparatus
JP2012194366A (en) Electrophoretic element, display device, and electronic apparatus
JP2017003685A (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807325

Country of ref document: EP

Kind code of ref document: A1