WO2017071289A1 - 喷气增焓空调系统 - Google Patents

喷气增焓空调系统 Download PDF

Info

Publication number
WO2017071289A1
WO2017071289A1 PCT/CN2016/088434 CN2016088434W WO2017071289A1 WO 2017071289 A1 WO2017071289 A1 WO 2017071289A1 CN 2016088434 W CN2016088434 W CN 2016088434W WO 2017071289 A1 WO2017071289 A1 WO 2017071289A1
Authority
WO
WIPO (PCT)
Prior art keywords
conditioning system
air
jet
electronic expansion
air conditioning
Prior art date
Application number
PCT/CN2016/088434
Other languages
English (en)
French (fr)
Inventor
李宏伟
许永锋
张光鹏
梁伯启
蒋运鹏
卜其辉
董世龙
吴晓鸿
Original Assignee
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520844824.7U external-priority patent/CN205102288U/zh
Priority claimed from CN201510712925.3A external-priority patent/CN105240957B/zh
Application filed by 广东美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Priority to JP2018513715A priority Critical patent/JP2018516355A/ja
Priority to MX2017015002A priority patent/MX2017015002A/es
Priority to US15/502,018 priority patent/US10260780B2/en
Priority to EP16826276.4A priority patent/EP3187789A4/en
Priority to BR112017002132-3A priority patent/BR112017002132B1/pt
Publication of WO2017071289A1 publication Critical patent/WO2017071289A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • F25B1/08Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure using vapour under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the invention relates to the field of vapor compression refrigeration and air conditioning, and in particular to a jet enhanced air conditioning system.
  • the present invention aims to solve at least one of the above technical problems in the prior art to some extent.
  • the present invention provides a jet-enhanced air-conditioning system having the advantages of good heating effect and high system energy efficiency.
  • the invention also proposes another jet-enhanced air-conditioning system, which has the advantages of good heating effect and high system energy efficiency.
  • a jet-enhanced air conditioning system includes: a jet compressor having an exhaust port, a return air port, and an injection port; a reversing assembly having a first valve a port to the fourth valve port, the first valve port being in communication with one of the second valve port and the third valve port, the fourth valve port and the other of the second valve port and the third valve port a first valve port connected to the exhaust port, the fourth valve port being connected to the air return port; a first outdoor heat exchanger, the first end of the first outdoor heat exchanger The second valve port is connected to the second outdoor heat exchanger, and the second outdoor heat exchanger includes a first heat exchange flow path and a second heat exchange flow path that exchange heat with each other, the first heat exchange flow path a main electronic expansion valve assembly is connected in series between the first end of the first outdoor heat exchanger and the second end of the first outdoor heat exchanger, and the second end of the first heat exchange flow path is connected to the indoor unit system, and the second exchange An outlet of the heat
  • a jet-enhanced air-conditioning system is provided with a reasonable sum of a diameter of a main electronic expansion valve assembly and
  • the ratio DB of the auxiliary electronic expansion valve assembly can greatly improve the heating effect and system energy efficiency, making the flow matching of the system more reasonable, and avoiding the large amount of refrigerant used in the system for overcooling and spraying, and avoiding the amount of injection. If it is too large, the system has a risk of liquid hammer, which not only improves the comfort of the user, but also improves the reliability of the system.
  • the value of the DB ranges from 1 ⁇ DB ⁇ 1.5; when the rating of the air-conditioning system is increased The cooling capacity is 3.6 kW to 5 kWh, and the value of the DB is 1 ⁇ DB ⁇ 2; when the rated cooling capacity of the air blasting air conditioning system is 5 kW to 12 kW, the value of the DB The range is 1.5 ⁇ DB ⁇ 2; when the rated cooling capacity of the jet-enhanced air-conditioning system is 12 kW to 16 kW, the value of the DB is 1.5 ⁇ DB ⁇ 2.2; when the jet-enhanced air conditioning system The rated cooling capacity is 16 kW to 20 kWh, and the DB has a value range of 1.5 ⁇ DB ⁇ 2.5; when the rated cooling capacity of the jet-enhanced air conditioning system is 20 kW to 25 kW, the DB The
  • the ratio SL of the total cross-sectional area of the main electronic expansion valve assembly to the sum of the cross-sectional areas of the auxiliary electronic expansion valve assembly ranges from 1 ⁇ SL ⁇ 16.
  • the value of the SL when the rated cooling capacity of the jet-enhanced air conditioning system is less than 3.6 kW, the value of the SL ranges from 1 ⁇ SL ⁇ 1.5; when the air-jet enhanced air conditioning system The rated cooling capacity is 3.6 kW to 5 kWh, the value of the SL is 1 ⁇ SL ⁇ 2; when the rated cooling capacity of the air-conditioning system is 5 kW to 12 kW, the SL is taken The value ranges from 1 ⁇ SL ⁇ 2.5; when the rated cooling capacity of the air-jet enhanced air conditioning system is 12 kW to 16 kW, the value of the SL ranges from 1 ⁇ SL ⁇ 3; The rated cooling capacity of the system is 16 kW to 20 kWh, the value of the SL is 1 ⁇ SL ⁇ 4; when the rated cooling capacity of the air-conditioning system is 20 kW to 25 kW, the SL The value ranges from 1 ⁇ SL ⁇ 5; when the rated cooling capacity of the air-
  • the main electronic expansion valve assembly is a main electronic expansion valve or a plurality of main electronic expansion valves connected in parallel.
  • a jet-enhanced air conditioning system further includes a gas-liquid separator, an inlet of the gas-liquid separator being connected to the fourth valve port, a gas outlet of the gas-liquid separator and the back The ports are connected.
  • an outlet of the second heat exchange passage is connected to the gas return port, an outlet of the second heat exchange stream path and the injection port and/or the second exchange
  • a shut-off valve is connected in series between the outlet of the heat flow path and the gas return port.
  • a jet-enhanced air conditioning system includes: a jet compressor having an exhaust port, a return air port, and an injection port; a reversing assembly having a first valve a port to the fourth valve port, the first valve port being in communication with one of the second valve port and the third valve port, the fourth valve port and the other of the second valve port and the third valve port a first valve port connected to the exhaust port, the fourth valve port being connected to the air return port; a first outdoor heat exchanger, the first end of the first outdoor heat exchanger The second valve port is connected to the second outdoor heat exchanger, and the second outdoor heat exchanger includes a first heat exchange flow path and a second heat exchange flow path that exchange heat with each other, the first heat exchange flow path a main electronic expansion valve assembly is connected between the first end of the first outdoor heat exchanger and the second end of the first outdoor heat exchanger, and the second end of the first heat exchange flow path is connected to the indoor unit system, the second heat exchange An outlet of the flow path is
  • the heating effect and the system energy efficiency can be greatly improved, so that the system
  • the flow matching is more reasonable, and at the same time, it can avoid the large amount of refrigerant used in the system for overcooling and spraying, and avoid the risk of liquid shock caused by the excessive injection amount, thereby not only improving the comfort of the user, but also improving the system.
  • the reliability of the work is more reasonable, and at the same time, it can avoid the large amount of refrigerant used in the system for overcooling and spraying, and avoid the risk of liquid shock caused by the excessive injection amount, thereby not only improving the comfort of the user, but also improving the system. The reliability of the work.
  • the value of the SL ranges from 1 ⁇ SL ⁇ 1.5; when the air-conditioning system of the air-conditioning system is rated The cooling capacity is 3.6 kW to 5 kWh, the value of the SL is 1 ⁇ SL ⁇ 2; when the rated cooling capacity of the air-jet blasting air conditioning system is 5 kW to 12 kW, the value of the SL The range is 1 ⁇ SL ⁇ 2.5; when the rated cooling capacity of the jet-enhanced air-conditioning system is 12 kW to 16 kW, the value of the SL ranges from 1 ⁇ SL ⁇ 3; when the jet-enhanced air-conditioning system The rated cooling capacity is 16 kW to 20 kWh, the SL value ranges from 1 ⁇ SL ⁇ 4; when the rated cooling capacity of the air blasting air conditioning system is 20 kW to 25 kW, the SL The
  • the primary electronic expansion valve assembly is a primary electronic expansion valve or a plurality of parallel connected primary electronic expansion valves.
  • the jet-enhanced air conditioning system further includes a gas-liquid separator, an inlet of the gas-liquid separator being connected to the fourth valve port, a gas outlet of the gas-liquid separator and the The air return port is connected.
  • an outlet of the second heat exchange passage is connected to the gas return port, an outlet of the second heat exchange stream path and the injection port and/or the second A shut-off valve is connected in series between the outlet of the heat exchange flow path and the gas return port.
  • FIG. 1 is a schematic structural view of a jet-enhanced air conditioning system according to an embodiment of the present invention.
  • first heat exchange passage 41 a first heat exchange passage 41, a first end 411 of the first heat exchange passage, and a second end 412 of the first heat exchange passage
  • auxiliary electronic expansion valve a first end 61 of the auxiliary electronic expansion valve, a second end 62 of the auxiliary electronic expansion valve,
  • FIG. 1 is composed of an outdoor unit and an indoor unit, wherein the indoor unit may be one or more.
  • a jet-enhanced air-conditioning system 100 includes: a jet compressor 1, a reversing assembly 2, a first outdoor heat exchanger 3, a second outdoor heat exchanger 4, and auxiliary electronic expansion. Valve assembly.
  • the jet compressor 1 has an exhaust port 13, a return port 12, and an injection port 11, and the reversing assembly 2 has a first port port 21 to a fourth port port 24, and a first port port 21 and a second port port 22 And communicating with one of the third valve ports 23, the fourth valve port 24 is in communication with the other of the second valve port 22 and the third valve port 23, the first valve port 21 is connected to the exhaust port 13, the fourth valve The port 24 is connected to the air return port 12.
  • the reversing assembly 2 can be a four-way valve. Of course, it can be understood that the reversing assembly 2 can also be other structures as long as the commutation can be achieved.
  • the first valve port 21 When the air-filled air conditioning system 100 is cooled, the first valve port 21 is in communication with the second valve port 22, and the third valve port 23 is in communication with the fourth valve port 24.
  • the jet boosting air conditioning system 100 When the jet boosting air conditioning system 100 is heating, the first valve port 21 is in communication with the third valve port 23, and the second valve port 22 is in communication with the fourth valve port 24.
  • the first end 31 of the first outdoor heat exchanger is connected to the second valve port 22, and the second outdoor heat exchanger 4 includes a first heat exchange passage 41 and a second heat exchange passage 42 that exchange heat with each other, the first exchange
  • a main electronic expansion valve assembly (such as the main electronic expansion valve 5 shown in FIG. 1) is connected in series between the first end 411 of the heat flow path and the second end 32 of the first outdoor heat exchanger, the first heat exchange flow path
  • the second end 412 is connected to the indoor unit system, and the outlet 422 of the second heat exchange passage is connected to the injection port 11, whereby the evaporative cooling of the outlet 422 of the second heat exchange passage can be performed at low temperature heating.
  • the agent is injected into the injection port 11 of the jet compressor 1, thereby increasing the system low temperature heat generation.
  • a first end of the auxiliary electronic expansion valve assembly (such as the first end 61 of the auxiliary electronic expansion valve shown in Figure 1) is coupled to the inlet 421 of the second heat exchange passage, the second end of the auxiliary electronic expansion valve assembly (e.g. The second end 62) of the auxiliary electronic expansion valve shown in Figure 1 is coupled to the second end 412 of the first heat exchange passage or the second end of the auxiliary electronic expansion valve assembly is coupled to the primary electronic expansion valve assembly and the first exchange Between the heat flow paths 41.
  • the air-filled air conditioning system 100 is cooled
  • the main electronic expansion valve assembly for example, the main electronic expansion valve 5 shown in FIG. 1
  • the refrigerant enters the first heat exchange passage 41
  • the refrigerant discharged from the first heat exchange passage 41 and throttled and reduced by the auxiliary electronic expansion valve assembly enters the second heat exchange passage 42, and thus the first heat exchange passage 41 and the second heat exchange passage
  • the second end of the auxiliary electronic expansion valve assembly When the second end of the auxiliary electronic expansion valve assembly is coupled to the second end 412 of the first heat exchange passage, when the jet boosting air conditioning system 100 is heating, a portion of the refrigerant flowing from the indoor unit passes through the auxiliary electronic expansion valve assembly After the throttle is depressurized, it enters the second heat exchange passage 42 and another portion of the refrigerant flowing out of the indoor unit directly enters the first heat exchange passage 41, so the first heat exchange passage 41 and the second heat exchange There is a temperature difference between the flow paths 42 and heat exchange is performed between the first heat exchange passage 41 and the second heat exchange passage 42.
  • the refrigerant discharged from the first heat exchange passage 41 is throttled and depressurized by the main electronic expansion valve assembly, and is discharged into the first outdoor heat exchanger 3.
  • the second end of the auxiliary electronic expansion valve assembly When the second end of the auxiliary electronic expansion valve assembly is connected between the main electronic expansion valve assembly and the first heat exchange flow path 41, when the air-filled air conditioning system 100 is heated, the refrigerant flowing out of the indoor unit enters the first exchange In the heat flow path 41, a part of the refrigerant discharged from the first heat exchange passage 41 is throttled and reduced by the auxiliary electronic expansion valve unit, and then enters the second heat exchange passage 42. Therefore, the first heat exchange passage 41 and There is a temperature difference between the second heat exchange passages 42 and heat exchange is performed between the first heat exchange passages 41 and the second heat exchange passages 42. Another portion of the refrigerant discharged from the first heat exchange passage 41 is throttled and depressurized by the main electronic expansion valve assembly and discharged into the first outdoor heat exchanger 3.
  • the ratio DB of the sum of the diameters of the main electronic expansion valve assembly and the sum of the diameters of the auxiliary electronic expansion valve assemblies is 1 ⁇ DB ⁇ 7. It should be noted that the diameter refers to the radius of the valve core of the electronic expansion valve.
  • the sum of the diameters of the main electronic expansion valve assemblies refers to the plurality of main electronic expansion valves 5 The sum of the calibers.
  • the auxiliary electronic expansion valve assembly includes a plurality of auxiliary electronic expansion valves
  • the sum of the diameters of the auxiliary electronic expansion valve assemblies refers to the sum of the diameters of the plurality of auxiliary electronic expansion valves 6. Therefore, the ratio of the sum of the diameters of the main electronic expansion valve assembly and the sum of the diameters of the auxiliary electronic expansion valve assemblies can be reasonably set, so that the flow distribution of the system is reasonable.
  • the heating effect and the system energy efficiency can be greatly improved, so that the system The flow matching is more reasonable, and it can also avoid causing a large amount of refrigerant in the system to be used for supercooling and spraying, and avoiding the risk of liquid shock caused by the excessive injection amount, thereby not only improving the comfort of the user, but also providing High system reliability.
  • the value of DB ranges from 1 ⁇ DB ⁇ 1.5; when the rated cooling capacity of the air-conditioning system 100 is 3.6 kW to 5 kWh, DB value range is 1 ⁇ DB ⁇ 2; when the jet cooling air conditioning system 100 rated cooling capacity is 5 kW to 12 kW, DB value range is 1.5 ⁇ DB ⁇ 2; When the rated cooling capacity of the air-jet air conditioning system 100 is 12 kW to 16 kW, the value of DB is 1.5 ⁇ DB ⁇ 2.2; when the rated cooling capacity of the air-conditioning system 100 is 16 kW to 20 kW, The value of DB ranges from 1.5 ⁇ DB ⁇ 2.5; when the rated cooling capacity of the air-conditioning system 100 is 20 kW to 25 kW, the value of DB ranges from 1.5 ⁇ DB ⁇ 3; when the air-conditioning system 100 The rated cooling capacity
  • the value of DB is 1.5.
  • ⁇ DB ⁇ 4 when the jet-enhanced air conditioning system 100 has a rated cooling capacity of 45 kW to 67.5 kW DB has a value range of 2 ⁇ DB ⁇ 4; when the rated cooling capacity of the air-conditioning system 100 is 67.5 kW to 78 kW, the value of DB ranges from 2.2 ⁇ DB ⁇ 4; The rated cooling capacity of 100 is 78 kW to 90 kWh, and the range of DB is 2.2 ⁇ DB ⁇ 4.5.
  • the jet-enhanced air-conditioning system 100 corresponds to a suitable DB value in a certain numerical range of cooling capacity, which can prevent a large amount of refrigerant in the system from being used for supercooling and spraying, and avoid heating due to less refrigerant circulation of the system.
  • the effect is worse, the system energy efficiency is lower, or the injection volume is too large, which causes the system to have a liquid hammer risk, thereby improving the system heating effect and system energy efficiency.
  • the ratio SL of the sum of the cross-sectional areas of the main electronic expansion valve assembly to the sum of the cross-sectional areas of the auxiliary electronic expansion valve assemblies ranges from 1 ⁇ SL ⁇ 16. Therefore, the purpose of further greatly improving the heating effect and the system energy efficiency can be achieved by reasonably setting the ratio SL of the sum of the sectional areas of the main electronic expansion valve assembly and the sum of the sectional areas of the auxiliary electronic expansion valve assemblies.
  • the cross-sectional area refers to the cross-sectional area of the valve core of the electronic expansion valve.
  • the sum of the cross-sectional areas of the main electronic expansion valve assembly refers to a plurality of main electronic components.
  • the sum of the sectional areas of the auxiliary electronic expansion valve assemblies refers to the sum of the sectional areas of the plurality of auxiliary electronic expansion valves 6.
  • the value of SL ranges from 1 ⁇ SL ⁇ 1.5; when the rated cooling capacity of the air-conditioning system 100 is 3.6 kW to 5 kWh The value range of SL is 1 ⁇ SL ⁇ 2; when the rated cooling capacity of the air-conditioning system 100 is 5 kW to 12 kW, the range of SL is 1 ⁇ SL ⁇ 2.5; The rated cooling capacity of 100 is 12 kW to 16 kWh, and the value of SL is 1 ⁇ SL ⁇ 3.
  • the range of SL is 1 ⁇ SL ⁇ 4; when the rated cooling capacity of the air-conditioning system 100 is 20 kW to 25 kW, the value of SL ranges from 1 ⁇ SL ⁇ 5; when the rated cooling capacity of the air-conditioning system 100 is 19 From kilowatts to 33.5 kWh, SL has a value range of 1.5 ⁇ SL ⁇ 6; when the jet-enhanced air-conditioning system 100 has a rated cooling capacity of 33.5 kW to 45 thousand For watt hours, SL has a value range of 2 ⁇ SL ⁇ 8; when the rated cooling capacity of the air-conditioning system 100 is 45 kW to 67.5 kW, the value of SL ranges from 3 ⁇ SL ⁇ 15; The rated cooling capacity of the air conditioning system 100 is 67.5 kW to 78 kWh, and the value of SL ranges from 3.5 ⁇ SL ⁇ 4; when the rated cooling capacity of the air-conditioning system 100 is 20 kW to 25
  • the jet-enhanced air-conditioning system 100 corresponds to a suitable SL value in a certain numerical range of cooling capacity, which can further prevent a large amount of refrigerant in the system from being used for supercooling and spraying, thereby avoiding a system due to a small amount of refrigerant circulation of the system.
  • the thermal effect is worse, the system energy efficiency is lower, or the injection volume is too large, which causes the system to have a liquid hammer risk, thereby further improving the system heating effect and system energy efficiency.
  • the primary electronic expansion valve assembly is a primary electronic expansion valve 5 or a plurality of primary electronic expansion valves 5 connected in parallel.
  • the main electronic expansion valve assembly is a main electronic expansion valve 5, thereby facilitating the control of the entire air conditioning system, and adjusting the flow rate of the main electronic expansion valve assembly by adjusting its diameter or cross-sectional area. .
  • the diversity of adjustment of the main electronic expansion valve assembly can be increased, for example, one, two or more main electronic expansion valves 5 can be adjusted to achieve
  • the main electronic expansion valve assembly is adjusted in flow rate, and one or more of the plurality of parallel main electronic expansion valves 5 can be closed, and the rest can be opened for use.
  • the opening can be turned off. The remaining main electronic expansion valve 5 is used to achieve normal operation of the system.
  • the outlet 422 of the second heat exchange passage is connected to the return port 12, the outlet 422 of the second heat exchange passage and the injection port 11 and/or the outlet of the second heat exchange path
  • a shut-off valve (not shown) is connected in series between the 422 and the return port 12.
  • the second heat exchange passage 42 is connected to the injection port 11 and the return port 12, and the shutoff valve may be disposed between the second heat exchange passage 42 and the injection port 11, or may be disposed in the second heat exchange passage 42.
  • the air return port 12 may be provided at the same time.
  • shut-off valve function of the shut-off valve is to turn on or off the medium in the pipeline, so that the second heat exchange passage 42 and the injection port 11 and/or the second heat exchange passage 42 can be controlled according to requirements.
  • the refrigerant is turned on and off between the air return ports 12. For example, when only the outlet 422 of the second heat exchange passage is communicated with the return port 12, it may function as a supercooling.
  • the jet boosting air conditioning system 100 further includes a gas-liquid separator 7, the inlet of the gas-liquid separator 7 being connected to the fourth valve port 24, and the gas outlet of the gas-liquid separator 7 being connected to the gas return port 12.
  • the gas-liquid separator 7 can function as a gas-liquid separation, thereby ensuring that only the gaseous refrigerant can be returned to the jet compressor 1, further preventing the liquid-jet phenomenon of the jet compressor 1.
  • FIG. 1 is composed of an outdoor unit and an indoor unit, wherein the indoor unit may be one or more.
  • a jet-enhanced air-conditioning system 100 includes a jet compressor 1, a reversing unit 2, a first outdoor heat exchanger 3, a second outdoor heat exchanger 4, and an auxiliary electronic expansion valve. Component.
  • the jet compressor 1 has an exhaust port 13, a return air port 12, and an injection port 11, and the reversing assembly 2 has a first valve port 21 to a fourth valve port 24, a first valve port 21 and a second valve port 22, and One of the third valve ports 23 communicates, the fourth valve port 24 communicates with the other of the second valve port 22 and the third valve port 23, the first valve port 21 is connected to the exhaust port 13, and the fourth valve port 24 is connected to the air return port 12.
  • the reversing assembly 2 can be a four-way valve. Of course, it can be understood that the reversing assembly 2 can also be other structures as long as the commutation can be achieved.
  • the first valve port 21 When the air-filled air conditioning system 100 is cooled, the first valve port 21 is in communication with the second valve port 22, and the third valve port 23 is in communication with the fourth valve port 24.
  • the jet boosting air conditioning system 100 When the jet boosting air conditioning system 100 is heating, the first valve port 21 is in communication with the third valve port 23, and the second valve port 22 is in communication with the fourth valve port 24.
  • the first end 31 of the first outdoor heat exchanger is connected to the second valve port 22, and the second outdoor heat exchanger 4 includes a first heat exchange passage 41 and a second heat exchange passage 42 that exchange heat with each other, the first exchange A main electronic expansion valve assembly is connected in series between the first end 411 of the heat flow path and the second end 32 of the first outdoor heat exchanger, and the second end 412 of the first heat exchange flow path is connected to the indoor unit system, and the second exchange
  • the outlet 422 of the heat flow path is connected to the injection port 11, whereby the evaporated refrigerant of the outlet 422 of the second heat exchange passage can be injected into the injection port 11 of the jet compressor 1 at the time of low-temperature heating, thereby Increase system low temperature heat.
  • a first end of the auxiliary electronic expansion valve assembly (such as the first end 61 of the auxiliary electronic expansion valve shown in Figure 1) is coupled to the inlet 421 of the second heat exchange passage, the second end of the auxiliary electronic expansion valve assembly (e.g. The second end 62) of the auxiliary electronic expansion valve shown in Figure 1 is coupled to the second end 412 of the first heat exchange passage or the second end of the auxiliary electronic expansion valve assembly is coupled to the primary electronic expansion valve assembly and the first exchange Between the heat flow paths 41.
  • the second end of the auxiliary electronic expansion valve assembly When the second end of the auxiliary electronic expansion valve assembly is connected to the second end 412 of the first heat exchange passage, when the jet-enhanced air-conditioning system 100 is cooled, the refrigerant after the main electronic expansion valve assembly is throttled and depressurized enters In the first heat exchange passage 41, the refrigerant discharged from the first heat exchange passage 41 and throttled down by the auxiliary electronic expansion valve assembly enters the second heat exchange passage 42, so the first heat exchange flow There is a temperature difference between the road 41 and the second heat exchange passage 42 and heat exchange is performed between the first heat exchange passage 41 and the second heat exchange passage 42.
  • the second end of the auxiliary electronic expansion valve assembly When the second end of the auxiliary electronic expansion valve assembly is coupled to the second end 412 of the first heat exchange passage, when the jet boosting air conditioning system 100 is heating, a portion of the refrigerant flowing from the indoor unit passes through the auxiliary electronic expansion valve assembly After the throttle is depressurized, it enters the second heat exchange passage 42 and another portion of the refrigerant flowing out of the indoor unit directly enters the first heat exchange passage 41, so the first heat exchange passage 41 and the second heat exchange There is a temperature difference between the flow paths 42 and heat exchange is performed between the first heat exchange passage 41 and the second heat exchange passage 42.
  • the refrigerant discharged from the first heat exchange passage 41 is throttled and depressurized by the main electronic expansion valve assembly, and is discharged into the first outdoor heat exchanger 3.
  • the second end of the auxiliary electronic expansion valve assembly When the second end of the auxiliary electronic expansion valve assembly is connected between the main electronic expansion valve assembly and the first heat exchange flow path 41, when the air-filled air conditioning system 100 is heated, the refrigerant flowing out of the indoor unit enters the first exchange In the heat flow path 41, a part of the refrigerant discharged from the first heat exchange passage 41 is throttled and reduced by the auxiliary electronic expansion valve unit, and then enters the second heat exchange passage 42. Therefore, the first heat exchange passage 41 and There is a temperature difference between the second heat exchange passages 42 and heat exchange is performed between the first heat exchange passages 41 and the second heat exchange passages 42. Another portion of the refrigerant discharged from the first heat exchange passage 41 is throttled and depressurized by the main electronic expansion valve assembly and discharged into the first outdoor heat exchanger 3.
  • the ratio SL of the sum of the cross-sectional areas of the main electronic expansion valve assembly and the total cross-sectional area of the auxiliary electronic expansion valve assembly ranges from 1 ⁇ SL ⁇ 16. It should be noted that the cross-sectional area refers to the cross-sectional area of the valve core of the electronic expansion valve. When the main electronic expansion valve assembly includes a plurality of main electronic expansion valves, the total cross-sectional area of the main electronic expansion valve assembly refers to a plurality of main electronic expansions. The sum of the cross-sectional areas of the valves 5.
  • the sum of the sectional areas of the auxiliary electronic expansion valve assemblies refers to the sum of the sectional areas of the plurality of auxiliary electronic expansion valves 6. Therefore, the ratio of the cross-sectional area of the main electronic expansion valve assembly to the sum of the cross-sectional areas of the auxiliary electronic expansion valve assembly can be reasonably set, so that the flow distribution of the system is reasonable, thereby achieving the effects of greatly improving the heating effect and the system energy efficiency.
  • the air-jet enhanced air conditioning system 100 of the embodiment of the present invention by appropriately setting the ratio SL of the cross-sectional area sum of the electronic expansion valve assembly and the total sectional area of the auxiliary electronic expansion valve assembly, the heating effect and the system energy efficiency can be greatly improved, so that the system The flow matching is more reasonable, and it can also avoid causing a large amount of refrigerant in the system to be used for supercooling and spraying, and avoiding the risk of liquid shock caused by the excessive injection amount, thereby not only improving the comfort of the user but also improving the comfort.
  • the reliability of the system work by appropriately setting the ratio SL of the cross-sectional area sum of the electronic expansion valve assembly and the total sectional area of the auxiliary electronic expansion valve assembly.
  • the value of SL when the rated cooling capacity of the air-filled air conditioning system 100 is less than 3.6 kW, the value of SL ranges from 1 ⁇ SL ⁇ 1.5; when the rated cooling capacity of the air-conditioning system 100 is 3.6 kW to 5 kWh, the value of SL is 1 ⁇ SL ⁇ 2; when the rated cooling capacity of the air-conditioning system 100 is 5 kW to 12 kW, the value of SL ranges from 1 ⁇ SL ⁇ 2.5; When the rated cooling capacity of the air-conditioning system 100 is from 12 kW to 16 kW, the value of SL ranges from 1 ⁇ SL ⁇ 3; when the rated cooling capacity of the air-conditioning system 100 is 16 kW to 20 kW, SL ranges from 1 ⁇ SL ⁇ 4; when the rated cooling capacity of the air-conditioning system 100 is 20 kW to 25 kW, the value of SL ranges from 1 ⁇ SL ⁇ 5; when the air-conditioning system 100 The
  • the jet-enhanced air-conditioning system 100 corresponds to a suitable SL value in a certain numerical range of cooling capacity, which can prevent a large amount of refrigerant in the system from being used for supercooling and injection, and avoid heating due to less refrigerant circulation of the system.
  • the effect is worse, the system energy efficiency is lower, or the injection volume is too large, which causes the system to have a liquid hammer risk, thereby improving the system heating effect and system energy efficiency.
  • the main electronic expansion valve assembly is a main electronic expansion valve 5 or a plurality of main electronic expansion valves 5 connected in parallel.
  • the main electronic expansion valve assembly is a main electronic expansion valve 5, thereby facilitating control of the entire air conditioning system, and the flow rate of the main electronic expansion valve assembly can be achieved by adjusting the diameter or cross-sectional area thereof. Adjustment.
  • the main electronic expansion valve assembly is a plurality of parallel main electronic expansion valves 5, the diversity of adjustment of the main electronic expansion valve assembly can be increased.
  • one, two or more of these may be adjusted to achieve primary electronic expansion valve assembly flow, while one or more of the plurality of parallel primary electronic expansion valves 5 may be closed, the remainder may be opened for use, when in use When the main electronic expansion valve 5 is blocked, the remaining main electronic expansion valves 5 in the closed state can be opened to achieve normal operation of the system.
  • the outlet 422 of the second heat exchange passage is connected to the return port 12, the outlet 422 of the second heat exchange passage and the injection port 11 and/or the outlet of the second heat exchange path
  • a shut-off valve is connected in series between the 422 and the return port 12. That is, the second heat exchange passage 42 is connected to the injection port 11 and the return port 12, and the shutoff valve may be disposed between the second heat exchange passage 42 and the injection port 11, or may be disposed in the second heat exchange flow. Between the road 42 and the return port 12, it is also possible to be disposed between the second heat exchange passage 42 and the injection port 11 and between the second heat exchange passage 42 and the return port 12.
  • shut-off valve function of the shut-off valve is to turn on or off the medium in the pipeline, so that the second heat exchange passage 42 and the injection port 11 and/or the second heat exchange passage 42 can be controlled according to requirements.
  • the refrigerant is turned on and off between the air return ports 12. For example, when only the outlet 422 of the second heat exchange passage is communicated with the return port 12, it may function as a supercooling.
  • the jet-enhanced air conditioning system 100 further includes a gas-liquid separator 7, the inlet of the gas-liquid separator 7 is connected to the fourth valve port 24, and the gas outlet of the gas-liquid separator 7 It is connected to the air return port 12.
  • the gas-liquid separator 7 can function as a gas-liquid separation, thereby ensuring that only the gaseous refrigerant can be returned to the jet compressor 1, further preventing the liquid-jet phenomenon of the jet compressor 1.
  • the air-jet augmentation air-conditioning system 100 in accordance with one embodiment of the present invention is briefly described below with reference to FIG. 1, which is intended to be illustrative only and is not to be construed as limiting the invention.
  • a jet-enhanced air-conditioning system 100 includes: a jet compressor 1, a reversing assembly 2, a first outdoor heat exchanger 3, a second outdoor heat exchanger 4, and a main electronic An expansion valve 5, an auxiliary electronic expansion valve 6, and a gas-liquid separator 7.
  • the jet compressor 1 has an exhaust port 13, a return air port 12, and an injection port 11, and the reversing assembly 2 has a first valve The port 21, the second valve port 22, the third valve port 23 and the fourth valve port 24, the first valve port 21 communicates with one of the second valve port 22 and the third valve port 23, and the fourth valve port 24 and the second valve port The other of the two valve ports 22 and the third valve port 23 is in communication.
  • the second outdoor heat exchanger 4 has a first heat exchange passage 41 and a second heat exchange passage 42 having an inlet 421 and an outlet 422.
  • the first end 31 of the first outdoor heat exchanger is coupled to the second valve port 22, and the second end 32 of the first outdoor heat exchanger is coupled to the first end 51 of the main electronic expansion valve
  • the second end 52 of the main electronic expansion valve is connected to the first end 411 of the first heat exchange passage, and the second end 412 of the first heat exchange passage is connected to the indoor unit.
  • the outlet 422 of the second heat exchange passage is connected to the injection port 11 of the jet compressor 1
  • the inlet 421 of the second heat exchange passage is connected to the first end 61 of the auxiliary electronic expansion valve, and the second end 62 of the auxiliary electronic expansion valve It is connected to the second end 412 of the first heat exchange flow path.
  • the first valve port 21 is connected to the exhaust port 13
  • the fourth valve port 24 is connected to the air return port 12
  • a gas-liquid separator 7 is disposed in the flow path of the fourth valve port 24 and the air return port 12.
  • the flow rate of the refrigerant in the system flow path can be adjusted by adjusting the diameter or cross-sectional area of the main electronic expansion valve 5 and the auxiliary electronic expansion valve 6, thereby improving the heating effect and system energy efficiency of the system. , thereby improving user comfort.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature is “below” and “below” the second feature And “below” may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种喷气增焓空调系统(100),包括依次连接的喷气压缩机(1)、换向组件(2)、第一室外换热器(3)和第二室外换热器(4),换向组件(2)具有四个阀口,第二室外换热器(4)包括相互换热的第一换热流路(41)和第二换热流路(42),第一换热流路(41)的第一端(411)与第一室外换热器(3)的第二端(32)之间串联有主电子膨胀阀组件,第一换热流路(41)的第二端(412)与室内机系统相连,第二换热流路(42)的出口(422)与喷气压缩机(1)的喷射口(11)相连;还包括辅助电子膨胀阀组件,辅助电子膨胀阀组件的第一端(61)与第二换热流路(42)的入口(421)相连,辅助电子膨胀阀组件的第二端(62)连接至第一换热流路(41)的第二端(412)或者主电子膨胀阀组件和第一换热流路(41)之间;主电子膨胀阀组件与辅助电子膨胀阀组件的口径总和之比为1≤DB≤7,或者其截面积总和之比为1≤SL≤16。该空调系统的制热效果好,系统能效高。

Description

喷气增焓空调系统 技术领域
本发明涉及蒸汽压缩式制冷空调领域,尤其是涉及一种喷气增焓空调系统。
背景技术
相关技术中指出,空调系统使用越来越广泛,且越来越普遍适用于各种办公、住宅等场所,人们对空调舒适性的要求也越来越高,尤其是越来越重视低室外温度制热所带来的舒适性。然而,尽管随着空调技术的不断进步,大部分空调在低温制热或制热水时,仍不可避免的会出现制热效果随着室外温度的降低而大幅下降的情况,从而导致室内温度偏低或出水温度偏低,进而降低了空调使用的舒适性。
发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。
有鉴于此,本发明提出一种喷气增焓空调系统,所述喷气增焓空调系统具有制热效果好,系统能效高的优点。
本发明还提出另一种喷气增焓空调系统,所述喷气增焓空调系统具有制热效果好,系统能效高的优点。
根据本发明第一方面实施例的喷气增焓空调系统,包括:喷气压缩机,所述喷气压缩机具有排气口、回气口和喷射口;换向组件,所述换向组件具有第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述回气口相连;第一室外换热器,所述第一室外换热器的第一端与所述第二阀口相连;第二室外换热器,所述第二室外换热器包括相互换热的第一换热流路和第二换热流路,所述第一换热流路的第一端与所述第一室外换热器的第二端之间串联有主电子膨胀阀组件,所述第一换热流路的第二端与室内机系统相连,所述第二换热流路的出口与所述喷射口相连;辅助电子膨胀阀组件,所述辅助电子膨胀阀组件的第一端与所述第二换热流路的入口相连,所述辅助电子膨胀阀组件的第二端连接至所述第一换热流路的第二端或者所述辅助电子膨胀阀组件的第二端连接至所述主电子膨胀阀组件和所述第一换热流路之间;其中所述主电子膨胀阀组件的口径总和与所述辅助电子膨胀阀组件的口径总和之比DB的取值范围为1≤DB≤7。
根据本发明实施例的喷气增焓空调系统,通过合理设置主电子膨胀阀组件的口径总和与 辅助电子膨胀阀组件的口径总和之比DB,可以大幅提升制热效果和系统能效,使得系统的流量匹配更加合理,同时还可以避免导致系统大量制冷剂用于过冷及喷射,避免由于喷射量过大而导致系统有液击风险,从而不但可以提高用户使用的舒适性,而且还可以提高系统工作的可靠性。
根据本发明的一些实施例,当所述喷气增焓空调系统的额定制冷量为小于3.6千瓦时,所述DB的取值范围为1≤DB≤1.5;当所述喷气增焓空调系统的额定制冷量为3.6千瓦至5千瓦时,所述DB的取值范围为1≤DB≤2;当所述喷气增焓空调系统的额定制冷量为5千瓦至12千瓦时,所述DB的取值范围为1.5≤DB≤2;当所述喷气增焓空调系统的额定制冷量为12千瓦至16千瓦时,所述DB的取值范围为1.5≤DB≤2.2;当所述喷气增焓空调系统的额定制冷量为16千瓦至20千瓦时,所述DB的取值范围为1.5≤DB≤2.5;当所述喷气增焓空调系统的额定制冷量为20千瓦至25千瓦时,所述DB的取值范围为1.5≤DB≤3;当所述喷气增焓空调系统的额定制冷量为25千瓦至33.5千瓦时,所述DB的取值范围为1.5≤DB≤3.5;当所述喷气增焓空调系统的额定制冷量为33.5千瓦至45千瓦时,所述DB的取值范围为1.5≤DB≤4;当所述喷气增焓空调系统的额定制冷量为45千瓦至67.5千瓦时,所述DB的取值范围为2≤DB≤4;当所述喷气增焓空调系统的额定制冷量为67.5千瓦至78千瓦时,所述DB的取值范围为2.2≤DB≤4;当所述喷气增焓空调系统的额定制冷量为78千瓦至90千瓦时,所述DB的取值范围为2.2≤DB≤4.5。
根据本发明的一些实施例,所述主电子膨胀阀组件的截面积总和与所述辅助电子膨胀阀组件的截面积总和之比SL的取值范围为1≤SL≤16。
在本发明的一些实施例中,当所述喷气增焓空调系统的额定制冷量为小于3.6千瓦时,所述SL的取值范围为1≤SL≤1.5;当所述喷气增焓空调系统的额定制冷量为3.6千瓦至5千瓦时,所述SL的取值范围为1≤SL≤2;当所述喷气增焓空调系统的额定制冷量为5千瓦至12千瓦时,所述SL的取值范围为1≤SL≤2.5;当所述喷气增焓空调系统的额定制冷量为12千瓦至16千瓦时,所述SL的取值范围为1≤SL≤3;当所述喷气增焓空调系统的额定制冷量为16千瓦至20千瓦时,所述SL的取值范围为1≤SL≤4;当所述喷气增焓空调系统的额定制冷量为20千瓦至25千瓦时,所述SL的取值范围为1≤SL≤5;当所述喷气增焓空调系统的额定制冷量为25千瓦至33.5千瓦时,所述SL的取值范围为1.5≤SL≤6;当所述喷气增焓空调系统的额定制冷量为33.5千瓦至45千瓦时,所述SL的取值范围为2≤SL≤8;当所述喷气增焓空调系统的额定制冷量为45千瓦至67.5千瓦时,所述SL的取值范围为3≤SL≤15;当所述喷气增焓空调系统的额定制冷量为67.5千瓦至78千瓦时,所述SL的取值范围为3.5≤SL≤16;当所述喷气增焓空调系统的额定制冷量为78千瓦至90千瓦时,所述SL的取值范围为4≤SL≤16。
根据本发明的一些实施例,所述主电子膨胀阀组件为一个主电子膨胀阀或者多个并联连接的主电子膨胀阀。
根据本发明的一些实施例,喷气增焓空调系统还包括气液分离器,所述气液分离器的入口与所述第四阀口相连,所述气液分离器的气体出口与所述回气口相连。
根据本发明的一些实施例,所述第二换热流路的出口与所述回气口相连,所述第二换热流路的出口与所述喷射口之间和/或所述第二换热流路的出口与所述回气口之间串联有截断阀。
根据本发明第二方面实施例的喷气增焓空调系统,包括:喷气压缩机,所述喷气压缩机具有排气口、回气口和喷射口;换向组件,所述换向组件具有第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述回气口相连;第一室外换热器,所述第一室外换热器的第一端与所述第二阀口相连;第二室外换热器,所述第二室外换热器包括相互换热的第一换热流路和第二换热流路,所述第一换热流路的第一端与所述第一室外换热器的第二端之间串联主电子膨胀阀组件,所述第一换热流路的第二端与室内机系统相连,所述第二换热流路的出口与所述喷射口相连;辅助电子膨胀阀组件,所述辅助电子膨胀阀组件的第一端与所述第二换热流路的入口相连,所述辅助电子膨胀阀组件的第二端连接至所述第一换热流路的第二端或者所述辅助电子膨胀阀组件的第二端连接至所述主电子膨胀阀组件和所述第一换热流路之间;其中所述主电子膨胀阀组件的截面积总和与所述辅助电子膨胀阀组件的截面积总和之比SL的取值范围为1≤SL≤16。
根据本发明实施例的喷气增焓空调系统,通过合理设置电子膨胀阀组件的截面积总和与辅助电子膨胀阀组件的截面积总和之比SL,可以大幅提升制热效果和系统能效,使得系统的流量匹配更加合理,同时还可以避免导致系统大量制冷剂用于过冷及喷射,避免由于喷射量过大而导致系统有液击风险,从而不但可以提高用户使用的舒适性,而且还可以提高系统工作的可靠性。
根据本发明的一些实施例,当所述喷气增焓空调系统的额定制冷量为小于3.6千瓦时,所述SL的取值范围为1≤SL≤1.5;当所述喷气增焓空调系统的额定制冷量为3.6千瓦至5千瓦时,所述SL的取值范围为1≤SL≤2;当所述喷气增焓空调系统的额定制冷量为5千瓦至12千瓦时,所述SL的取值范围为1≤SL≤2.5;当所述喷气增焓空调系统的额定制冷量为12千瓦至16千瓦时,所述SL的取值范围为1≤SL≤3;当所述喷气增焓空调系统的额定制冷量为16千瓦至20千瓦时,所述SL的取值范围为1≤SL≤4;当所述喷气增焓空调系统的额定制冷量为20千瓦至25千瓦时,所述SL的取值范围为1≤SL≤5;当所述喷气增焓空 调系统的额定制冷量为25千瓦至33.5千瓦时,所述SL的取值范围为1.5≤SL≤6;当所述喷气增焓空调系统的额定制冷量为33.5千瓦至45千瓦时,所述SL的取值范围为2≤SL≤8;当所述喷气增焓空调系统的额定制冷量为45千瓦至67.5千瓦时,所述SL的取值范围为3≤SL≤15;当所述喷气增焓空调系统的额定制冷量为67.5千瓦至78千瓦时,所述SL的取值范围为3.5≤SL≤16;当所述喷气增焓空调系统的额定制冷量为78千瓦至90千瓦时,所述SL的取值范围为4≤SL≤16。
在本发明的一些实施例中,所述主电子膨胀阀组件为一个主电子膨胀阀或者多个并联连接主电子膨胀阀。
在本发明的一些实施例中,喷气增焓空调系统还包括气液分离器,所述气液分离器的入口与所述第四阀口相连,所述气液分离器的气体出口与所述回气口相连。
在本发明的一些实施例中,所述第二换热流路的出口与所述回气口相连,所述第二换热流路的出口与所述喷射口之间和/或所述第二换热流路的出口与所述回气口之间串联有截断阀。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是根据本发明实施例的喷气增焓空调系统的结构示意图。
附图标记:
喷气增焓空调系统100,
喷气压缩机1,
喷射口11,回气口12,排气口13,
换向组件2,
第一阀口21,第二阀口22,第三阀口23,第四阀口24,
第一室外换热器3,
第一室外换热器的第一端31,第一室外换热器的第二端32,
第二室外换热器4,
第一换热流路41,第一换热流路的第一端411,第一换热流路的第二端412,
第二换热流路42,第二换热流路的入口421,第二换热流路的出口422,
主电子膨胀阀5,
主电子膨胀阀的第一端51,主电子膨胀阀的第二端52,
辅助电子膨胀阀6,
辅助电子膨胀阀的第一端61,辅助电子膨胀阀的第二端62,
气液分离器7。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考图1详细描述根据本发明第一方面实施例的喷气增焓空调系统100,喷气增焓空调系统100由室外机和室内机组成,其中室内机可以为一个或者多个。
如图1所示,根据本发明实施例的喷气增焓空调系统100,包括:喷气压缩机1、换向组件2、第一室外换热器3、第二室外换热器4和辅助电子膨胀阀组件。
具体而言,喷气压缩机1具有排气口13、回气口12和喷射口11,换向组件2具有第一阀口21至第四阀口24,第一阀口21与第二阀口22和第三阀口23中的其中一个连通,第四阀口24与第二阀口22和第三阀口23中的另一个连通,第一阀口21与排气口13相连,第四阀口24与回气口12相连。换向组件2可以为四通阀,当然可以理解的是,换向组件2还可以为其他结构,只要能够实现换向即可。
当喷气增焓空调系统100制冷时,第一阀口21与第二阀口22连通,第三阀口23与第四阀口24连通。当喷气增焓空调系统100制热时,第一阀口21与第三阀口23连通,第二阀口22与第四阀口24连通。
第一室外换热器的第一端31与第二阀口22相连,第二室外换热器4包括相互换热的第一换热流路41和第二换热流路42,第一换热流路的第一端411与第一室外换热器的第二端32之间串联有主电子膨胀阀组件(例如图1中所示的主电子膨胀阀5),第一换热流路的第二端412与室内机系统相连,第二换热流路的出口422与喷射口11相连,由此可以在低温制热时,将第二换热流路的出口422的蒸发后的制冷剂喷射到喷气压缩机1的喷射口11中,从而增加系统低温制热量。
辅助电子膨胀阀组件的第一端(例如图1中所示的辅助电子膨胀阀的第一端61)与第二换热流路的入口421相连,辅助电子膨胀阀组件的第二端(例如图1中所示的辅助电子膨胀阀的第二端62)连接至第一换热流路的第二端412或者辅助电子膨胀阀组件的第二端连接至主电子膨胀阀组件和第一换热流路41之间。
当辅助电子膨胀阀组件的第二端(例如图1中所示的辅助电子膨胀阀的第二端62)连接至第一换热流路的第二端412时,喷气增焓空调系统100制冷时,经过主电子膨胀阀组件(例如图1中所示的主电子膨胀阀5)节流降压后的制冷剂进入到第一换热流路41中, 从第一换热流路41排出并经过辅助电子膨胀阀组件节流降压后的制冷剂进入到第二换热流路42内,因此第一换热流路41和第二换热流路42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。
当辅助电子膨胀阀组件的第二端连接至第一换热流路的第二端412时,喷气增焓空调系统100制热时,从室内机流出的制冷剂的一部分经过辅助电子膨胀阀组件节流降压后进入到第二换热流路42中,从室内机流出的另一部分制冷剂直接进入到第一换热流路41中,因此第一换热流路41和第二换热流路42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。从第一换热流路41排出的制冷剂经过主电子膨胀阀组件节流降压后排入到第一室外换热器3中。
当辅助电子膨胀阀组件的第二端连接至主电子膨胀阀组件和第一换热流路41之间,喷气增焓空调系统100制冷时,经过主电子膨胀阀组件节流降压后的一部分制冷剂进入到第一换热流路41中,经过主电子膨胀阀组件节流降压后的另一部分制冷剂再次经过辅助电子膨胀阀组件节流降压后进入到第二换热流路42内,因此第一换热流路41和第二换热流路42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。
当辅助电子膨胀阀组件的第二端连接至主电子膨胀阀组件和第一换热流路41之间,喷气增焓空调系统100制热时,从室内机流出的制冷剂进入到第一换热流路41中,从第一换热流路41排出的一部分制冷剂经过辅助电子膨胀阀组件节流降压后进入到第二换热流路42内,因此第一换热流路41和第二换热流路42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。从第一换热流路41排出的另一部分制冷剂经过主电子膨胀阀组件节流降压后排入到第一室外换热器3中。
由此可知通过设置辅助电子膨胀阀组件,使得第一换热流路41和第二换热流路42之间存在温差以进行换热。
其中主电子膨胀阀组件的口径总和与辅助电子膨胀阀组件的口径总和之比DB的取值范围为1≤DB≤7。需要说明的是,口径指的是电子膨胀阀的阀芯的半径,当主电子膨胀阀组件包括多个主电子膨胀阀时,主电子膨胀阀组件的口径总和是指多个主电子膨胀阀5的口径之和。当辅助电子膨胀阀组件包括多个辅助电子膨胀阀时,辅助电子膨胀阀组件的口径总和是指多个辅助电子膨胀阀6的口径之和。由此可以通过合理设置主电子膨胀阀组件的口径总和与辅助电子膨胀阀组件的口径总和的比值DB,使得系统的流量分配合理。
根据本发明实施例的喷气增焓空调系统100,通过合理设置主电子膨胀阀组件的口径总和与辅助电子膨胀阀组件的口径总和之比DB,可以大幅提升制热效果和系统能效,使得系统的流量匹配更加合理,同时还可以避免导致系统大量制冷剂用于过冷及喷射,避免由于喷射量过大而导致系统有液击风险,从而不但可以提高用户使用的舒适性,而且还可以提 高系统工作的可靠性。
在本发明的一些实施例中,当喷气增焓空调系统100的额定制冷量为小于3.6千瓦时,DB的取值范围为1≤DB≤1.5;当喷气增焓空调系统100的额定制冷量为3.6千瓦至5千瓦时,DB的取值范围为1≤DB≤2;当喷气增焓空调系统100的额定制冷量为5千瓦至12千瓦时,DB的取值范围为1.5≤DB≤2;当喷气增焓空调系统100的额定制冷量为12千瓦至16千瓦时,DB的取值范围为1.5≤DB≤2.2;当喷气增焓空调系统100的额定制冷量为16千瓦至20千瓦时,DB的取值范围为1.5≤DB≤2.5;当喷气增焓空调系统100的额定制冷量为20千瓦至25千瓦时,DB的取值范围为1.5≤DB≤3;当喷气增焓空调系统100的额定制冷量为25千瓦至33.5千瓦时,DB的取值范围为1.5≤DB≤3.5;当喷气增焓空调系统100的额定制冷量为33.5千瓦至45千瓦时,DB的取值范围为1.5≤DB≤4;当喷气增焓空调系统100的额定制冷量为45千瓦至67.5千瓦时,DB的取值范围为2≤DB≤4;当喷气增焓空调系统100的额定制冷量为67.5千瓦至78千瓦时,DB的取值范围为2.2≤DB≤4;当喷气增焓空调系统100的额定制冷量为78千瓦至90千瓦时,DB的取值范围为2.2≤DB≤4.5。
由此可以保证喷气增焓空调系统100在特定数值范围的制冷量时对应合适的DB值,可以防止系统大量制冷剂用于过冷及喷射,避免由于系统制冷剂循环量偏少而导致制热效果变差,系统能效变低,或者喷射量过大而导致系统有液击风险,从而提高系统的制热效果和系统能效。
在本发明的一些实施例中,主电子膨胀阀组件的截面积总和与辅助电子膨胀阀组件的截面积总和之比SL的取值范围为1≤SL≤16。由此可以通过合理设置主电子膨胀阀组件的截面积总和与辅助电子膨胀阀组件的口截面积总和的比值SL来实现进一步大幅提升制热效果和系统能效的目的。需要说明的是,截面积指的是电子膨胀阀的阀芯的截面积,当主电子膨胀阀组件包括多个主电子膨胀阀时,主电子膨胀阀组件的口截面积总和是指多个主电子膨胀阀5的截面积之和。当辅助电子膨胀阀组件包括多个辅助电子膨胀阀时,辅助电子膨胀阀组件的截面积总和是指多个辅助电子膨胀阀6的截面积之和。
具体地,当喷气增焓空调系统100的额定制冷量为小于3.6千瓦时,SL的取值范围为1≤SL≤1.5;当喷气增焓空调系统100的额定制冷量为3.6千瓦至5千瓦时,SL的取值范围为1≤SL≤2;当喷气增焓空调系统100的额定制冷量为5千瓦至12千瓦时,SL的取值范围为1≤SL≤2.5;当喷气增焓空调系统100的额定制冷量为12千瓦至16千瓦时,SL的取值范围为1≤SL≤3;当喷气增焓空调系统100的额定制冷量为16千瓦至20千瓦时,SL的取值范围为1≤SL≤4;当喷气增焓空调系统100的额定制冷量为20千瓦至25千瓦时,SL的取值范围为1≤SL≤5;当喷气增焓空调系统100的额定制冷量为25千瓦至33.5千瓦时,SL的取值范围为1.5≤SL≤6;当喷气增焓空调系统100的额定制冷量为33.5千瓦至45千 瓦时,SL的取值范围为2≤SL≤8;当喷气增焓空调系统100的额定制冷量为45千瓦至67.5千瓦时,SL的取值范围为3≤SL≤15;当喷气增焓空调系统100的额定制冷量为67.5千瓦至78千瓦时,SL的取值范围为3.5≤SL≤16;当喷气增焓空调系统100的额定制冷量为78千瓦至90千瓦时,SL的取值范围为4≤SL≤16。
由此可以保证喷气增焓空调系统100在特定数值范围的制冷量时对应合适的SL值,可以进一步防止系统大量制冷剂用于过冷及喷射,避免由于系统制冷剂循环量偏少而导致制热效果变差,系统能效变低,或者喷射量过大而导致系统有液击风险,从而进一步提高系统的制热效果和系统能效。
在本发明的一些实施例中,主电子膨胀阀组件为一个主电子膨胀阀5或者多个并联连接的主电子膨胀阀5。例如,如图1所示,主电子膨胀阀组件为一个主电子膨胀阀5,由此可以便于整个空调系统的控制,只要调节其口径或截面积就可以实现主电子膨胀阀组件的流量的调节。当主电子膨胀阀组件为多个并联的主电子膨胀阀5时,可以增加主电子膨胀阀组件的调节的多样性,例如,可以调节其中的一个、两个或多个主电子膨胀阀5来实现主电子膨胀阀组件流量的调节,同时多个并联的主电子膨胀阀5中的一个或多个可以关闭,其余可以打开使用,当使用中的主电子膨胀阀5堵塞时,可以打开处于关闭状态的其余主电子膨胀阀5以实现系统的正常运行。
在本发明的一些实施例中,第二换热流路的出口422与回气口12相连,第二换热流路的出口422与喷射口11之间和/或第二换热流路的出口422与回气口12之间串联有截断阀(图未示出)。换言之,第二换热流路42与喷射口11和回气口12相连,且截断阀可以设在第二换热流路42与喷射口11之间,也可以设在第二换热流路42与回气口12之间,还可以同时设在第二换热流路42与喷射口11之间和第二换热流路42与回气口12之间。需要说明的是,截断阀的作用是接通或截断管路中的介质,由此可以根据需求控制第二换热流路42与喷射口11之间和/或第二换热流路42与回气口12之间的制冷剂的通断。例如,当只使得第二换热流路的出口422与回气口12连通时,可以起到过冷的作用。
参照图1,喷气增焓空调系统100还包括气液分离器7,气液分离器7的入口与第四阀口24相连,气液分离器7的气体出口与回气口12相连。其中气液分离器7可以起到气液分离作用,从而保证了只有气态的制冷剂可以回流到喷气压缩机1中,进一步避免喷气压缩机1产生液击现象。
下面参考图1描述根据本发明第二方面实施例的喷气增焓空调系统100,喷气增焓空调系统100由室外机和室内机组成,其中室内机可以为一个或者多个。
如图1所示,根据本发明实施例的喷气增焓空调系统100,包括喷气压缩机1、换向组件2、第一室外换热器3、第二室外换热器4、辅助电子膨胀阀组件。
具体地,喷气压缩机1具有排气口13、回气口12和喷射口11,换向组件2具有第一阀口21至第四阀口24,第一阀口21与第二阀口22和第三阀口23中的其中一个连通,第四阀口24与第二阀口22和第三阀口23中的另一个连通,第一阀口21与排气口13相连,第四阀口24与回气口12相连。换向组件2可以为四通阀,当然可以理解的是,换向组件2还可以为其他结构,只要能够实现换向即可。
当喷气增焓空调系统100制冷时,第一阀口21与第二阀口22连通,第三阀口23与第四阀口24连通。当喷气增焓空调系统100制热时,第一阀口21与第三阀口23连通,第二阀口22与第四阀口24连通。
第一室外换热器的第一端31与第二阀口22相连,第二室外换热器4包括相互换热的第一换热流路41和第二换热流路42,第一换热流路的第一端411与第一室外换热器的第二端32之间串联有主电子膨胀阀组件,第一换热流路的第二端412与室内机系统相连,第二换热流路的出口422与喷射口11相连,由此可以在低温制热时,将第二换热流路的出口422的蒸发后的制冷剂喷射到喷气压缩机1的喷射口11中,从而增加系统低温制热量。
辅助电子膨胀阀组件的第一端(例如图1中所示的辅助电子膨胀阀的第一端61)与第二换热流路的入口421相连,辅助电子膨胀阀组件的第二端(例如图1中所示的辅助电子膨胀阀的第二端62)连接至第一换热流路的第二端412或者辅助电子膨胀阀组件的第二端连接至主电子膨胀阀组件和第一换热流路41之间。
当辅助电子膨胀阀组件的第二端连接至第一换热流路的第二端412时,喷气增焓空调系统100制冷时,经过主电子膨胀阀组件节流降压后的制冷剂进入到第一换热流路41中,从第一换热流路41排出并经过辅助电子膨胀阀组件节流降压后的制冷剂进入到第二换热流路42内,因此第一换热流路41和第二换热流路42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。
当辅助电子膨胀阀组件的第二端连接至第一换热流路的第二端412时,喷气增焓空调系统100制热时,从室内机流出的制冷剂的一部分经过辅助电子膨胀阀组件节流降压后进入到第二换热流路42中,从室内机流出的另一部分制冷剂直接进入到第一换热流路41中,因此第一换热流路41和第二换热流路42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。从第一换热流路41排出的制冷剂经过主电子膨胀阀组件节流降压后排入到第一室外换热器3中。
当辅助电子膨胀阀组件的第二端连接至主电子膨胀阀组件和第一换热流路41之间,喷气增焓空调系统100制冷时,经过主电子膨胀阀组件节流降压后的一部分制冷剂进入到第一换热流路41中,经过主电子膨胀阀组件节流降压后的另一部分制冷剂再次经过辅助电子膨胀阀组件节流降压后进入到第二换热流路42内,因此第一换热流路41和第二换热流路 42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。
当辅助电子膨胀阀组件的第二端连接至主电子膨胀阀组件和第一换热流路41之间,喷气增焓空调系统100制热时,从室内机流出的制冷剂进入到第一换热流路41中,从第一换热流路41排出的一部分制冷剂经过辅助电子膨胀阀组件节流降压后进入到第二换热流路42内,因此第一换热流路41和第二换热流路42之间存在温差,第一换热流路41和第二换热流路42之间进行换热。从第一换热流路41排出的另一部分制冷剂经过主电子膨胀阀组件节流降压后排入到第一室外换热器3中。
由此可知通过设置辅助电子膨胀阀组件,使得第一换热流路41和第二换热流路42之间存在温差以进行换热。
其中主电子膨胀阀组件的截面积总和与辅助电子膨胀阀组件的截面积总和之比SL的取值范围为1≤SL≤16。需要说明的是,截面积指的是电子膨胀阀的阀芯的截面积,当主电子膨胀阀组件包括多个主电子膨胀阀时,主电子膨胀阀组件的截面积总和是指多个主电子膨胀阀5的截面积之和。当辅助电子膨胀阀组件包括多个辅助电子膨胀阀时,辅助电子膨胀阀组件的截面积总和是指多个辅助电子膨胀阀6的截面积之和。由此可以通过合理设置主电子膨胀阀组件的截面积总和与辅助电子膨胀阀组件的截面积总和的比值SL,使得系统的流量分配合理,从而达到大幅提升制热效果和系统能效的效果。
根据本发明实施例的喷气增焓空调系统100,通过合理设置电子膨胀阀组件的截面积总和与辅助电子膨胀阀组件的截面积总和之比SL,可以大幅提升制热效果和系统能效,使得系统的流量匹配更加合理,同时还可以避免导致系统大量制冷剂用于过冷及喷射,避免由于喷射量过大而导致系统有液击风险,从而不但可以提高用户使用的舒适性,而且还可以提高系统工作的可靠性。
在本发明的一些实施例中,当喷气增焓空调系统100的额定制冷量为小于3.6千瓦时,SL的取值范围为1≤SL≤1.5;当喷气增焓空调系统100的额定制冷量为3.6千瓦至5千瓦时,SL的取值范围为1≤SL≤2;当喷气增焓空调系统100的额定制冷量为5千瓦至12千瓦时,SL的取值范围为1≤SL≤2.5;当喷气增焓空调系统100的额定制冷量为12千瓦至16千瓦时,SL的取值范围为1≤SL≤3;当喷气增焓空调系统100的额定制冷量为16千瓦至20千瓦时,SL的取值范围为1≤SL≤4;当喷气增焓空调系统100的额定制冷量为20千瓦至25千瓦时,SL的取值范围为1≤SL≤5;当喷气增焓空调系统100的额定制冷量为25千瓦至33.5千瓦时,SL的取值范围为1.5≤SL≤6;当喷气增焓空调系统100的额定制冷量为33.5千瓦至45千瓦时,SL的取值范围为2≤SL≤8;当喷气增焓空调系统100的额定制冷量为45千瓦至67.5千瓦时,SL的取值范围为3≤SL≤15;当喷气增焓空调系统100的额定制冷量为67.5千瓦至78千瓦时,SL的取值范围为3.5≤SL≤16;当喷气增焓空调 系统100的额定制冷量为78千瓦至90千瓦时,SL的取值范围为4≤SL≤16。
由此可以保证喷气增焓空调系统100在特定数值范围的制冷量时对应合适的SL值,可以防止系统大量制冷剂用于过冷及喷射,避免由于系统制冷剂循环量偏少而导致制热效果变差,系统能效变低,或者喷射量过大而导致系统有液击风险,从而提高系统的制热效果和系统能效。
在本发明的一些实施例中,主电子膨胀阀组件为一个主电子膨胀阀5或者多个并联连接主电子膨胀阀5。例如,在图1的示例中,主电子膨胀阀组件为一个主电子膨胀阀5,由此可以便于整个空调系统的控制,只要调节其口径或截面积就可以实现主电子膨胀阀组件的流量的调节。当主电子膨胀阀组件为多个并联的主电子膨胀阀5时,可以增加主电子膨胀阀组件的调节的多样性。例如,可以调节其中的一个、两个或多个来实现主电子膨胀阀组件流量,同时多个并联的主电子膨胀阀5中的一个或多个可以关闭,其余可以打开使用,当使用中的主电子膨胀阀5堵塞时,可以打开处于关闭状态的其余主电子膨胀阀5以实现系统的正常运行。
在本发明的一些实施例中,第二换热流路的出口422与回气口12相连,第二换热流路的出口422与喷射口11之间和/或第二换热流路的出口422与回气口12之间串联有截断阀。也就是说,第二换热流路42与喷射口11和回气口12相连,且截断阀可以设在第二换热流路42与喷射口11之间,也可以设在第二换热流路42与回气口12之间,还可以同时设在第二换热流路42与喷射口11之间和第二换热流路42与回气口12之间。需要说明的是,截断阀的作用是接通或截断管路中的介质,由此可以根据需求控制第二换热流路42与喷射口11之间和/或第二换热流路42与回气口12之间的制冷剂的通断。例如,当只使得第二换热流路的出口422与回气口12连通时,可以起到过冷的作用。
在本发明的一些实施例中,参照图1,喷气增焓空调系统100还包括气液分离器7,气液分离器7的入口与第四阀口24相连,气液分离器7的气体出口与回气口12相连。其中气液分离器7可以起到气液分离作用,从而保证了只有气态的制冷剂可以回流到喷气压缩机1中,进一步避免喷气压缩机1产生液击现象。
下面参考图1简要描述根据本发明一个具体实施例的喷气增焓空调系统100,下述描述只是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1所示,根据本发明实施例的喷气增焓空调系统100,包括:喷气压缩机1、换向组件2、第一室外换热器3、第二室外换热器4、一个主电子膨胀阀5、一个辅助电子膨胀阀6和气液分离器7。
具体地,喷气压缩机1具有排气口13、回气口12和喷射口11,换向组件2具有第一阀 口21、第二阀口22、第三阀口23和第四阀口24,第一阀口21与第二阀口22和第三阀口23中的一个连通,第四阀口24与第二阀口22和第三阀口23中的另一个连通。第二室外换热器4具有第一换热流路41和第二换热流路42,第二换热流路42具有入口421和出口422。
在喷气增焓空调系统100中,第一室外换热器的第一端31与第二阀口22相连,第一室外换热器的第二端32与主电子膨胀阀的第一端51相连,主电子膨胀阀的第二端52与第一换热流路的第一端411相连,第一换热流路的第二端412与室内机相连。第二换热流路的出口422与喷气压缩机1的喷射口11相连,第二换热流路的入口421与辅助电子膨胀阀的第一端61相连,辅助电子膨胀阀的第二端62与第一换热流路的第二端412相连。第一阀口21与排气口13相连,第四阀口24与回气口12相连,并且在第四阀口24与回气口12的流路中设置有气液分离器7。
在喷气增焓空调系统100运行中,可以通过调节主电子膨胀阀5和辅助电子膨胀阀6的口径或截面积来调节系统流路中制冷剂的流量,从而提高系统的制热效果和系统能效,进而提高用户的舒适性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方” 和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种喷气增焓空调系统,其特征在于,包括:
    喷气压缩机,所述喷气压缩机具有排气口、回气口和喷射口;
    换向组件,所述换向组件具有第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述回气口相连;
    第一室外换热器,所述第一室外换热器的第一端与所述第二阀口相连;
    第二室外换热器,所述第二室外换热器包括相互换热的第一换热流路和第二换热流路,所述第一换热流路的第一端与所述第一室外换热器的第二端之间串联有主电子膨胀阀组件,所述第一换热流路的第二端与室内机系统相连,所述第二换热流路的出口与所述喷射口相连;
    辅助电子膨胀阀组件,所述辅助电子膨胀阀组件的第一端与所述第二换热流路的入口相连,所述辅助电子膨胀阀组件的第二端连接至所述第一换热流路的第二端或者所述辅助电子膨胀阀组件的第二端连接至所述主电子膨胀阀组件和所述第一换热流路之间;
    其中所述主电子膨胀阀组件的口径总和与所述辅助电子膨胀阀组件的口径总和之比DB的取值范围为1≤DB≤7。
  2. 根据权利要求1所述的喷气增焓空调系统,其特征在于,
    当所述喷气增焓空调系统的额定制冷量为小于3.6千瓦时,所述DB的取值范围为1≤DB≤1.5;
    当所述喷气增焓空调系统的额定制冷量为3.6千瓦至5千瓦时,所述DB的取值范围为1≤DB≤2;
    当所述喷气增焓空调系统的额定制冷量为5千瓦至12千瓦时,所述DB的取值范围为1.5≤DB≤2;
    当所述喷气增焓空调系统的额定制冷量为12千瓦至16千瓦时,所述DB的取值范围为1.5≤DB≤2.2;
    当所述喷气增焓空调系统的额定制冷量为16千瓦至20千瓦时,所述DB的取值范围为1.5≤DB≤2.5;
    当所述喷气增焓空调系统的额定制冷量为20千瓦至25千瓦时,所述DB的取值范围为1.5≤DB≤3;
    当所述喷气增焓空调系统的额定制冷量为25千瓦至33.5千瓦时,所述DB的取值范围为1.5≤DB≤3.5;
    当所述喷气增焓空调系统的额定制冷量为33.5千瓦至45千瓦时,所述DB的取值范围为1.5≤DB≤4;
    当所述喷气增焓空调系统的额定制冷量为45千瓦至67.5千瓦时,所述DB的取值范围为2≤DB≤4;
    当所述喷气增焓空调系统的额定制冷量为67.5千瓦至78千瓦时,所述DB的取值范围为2.2≤DB≤4;
    当所述喷气增焓空调系统的额定制冷量为78千瓦至90千瓦时,所述DB的取值范围为2.2≤DB≤4.5。
  3. 根据权利要求1或2所述的喷气增焓空调系统,其特征在于,所述主电子膨胀阀组件的截面积总和与所述辅助电子膨胀阀组件的截面积总和之比SL的取值范围为1≤SL≤16。
  4. 根据权利要求3所述的喷气增焓空调系统,其特征在于,当所述喷气增焓空调系统的额定制冷量为小于3.6千瓦时,所述SL的取值范围为1≤SL≤1.5;
    当所述喷气增焓空调系统的额定制冷量为3.6千瓦至5千瓦时,所述SL的取值范围为1≤SL≤2;
    当所述喷气增焓空调系统的额定制冷量为5千瓦至12千瓦时,所述SL的取值范围为1≤SL≤2.5;
    当所述喷气增焓空调系统的额定制冷量为12千瓦至16千瓦时,所述SL的取值范围为1≤SL≤3;
    当所述喷气增焓空调系统的额定制冷量为16千瓦至20千瓦时,所述SL的取值范围为1≤SL≤4;
    当所述喷气增焓空调系统的额定制冷量为20千瓦至25千瓦时,所述SL的取值范围为1≤SL≤5;
    当所述喷气增焓空调系统的额定制冷量为25千瓦至33.5千瓦时,所述SL的取值范围为1.5≤SL≤6;
    当所述喷气增焓空调系统的额定制冷量为33.5千瓦至45千瓦时,所述SL的取值范围为2≤SL≤8;
    当所述喷气增焓空调系统的额定制冷量为45千瓦至67.5千瓦时,所述SL的取值范围为3≤SL≤15;
    当所述喷气增焓空调系统的额定制冷量为67.5千瓦至78千瓦时,所述SL的取值范围为3.5≤SL≤16;
    当所述喷气增焓空调系统的额定制冷量为78千瓦至90千瓦时,所述SL的取值范围为4≤SL≤16。
  5. 根据权利要求1-4中任一项所述的喷气增焓空调系统,其特征在于,所述主电子膨胀阀组件为一个主电子膨胀阀或者多个并联连接的主电子膨胀阀。
  6. 根据权利要求1-5中任一项所述的喷气增焓空调系统,其特征在于,还包括气液分离器,所述气液分离器的入口与所述第四阀口相连,所述气液分离器的气体出口与所述回气口相连。
  7. 根据权利要求1-6中任一项所述的喷气增焓空调系统,其特征在于,所述第二换热流路的出口与所述回气口相连,所述第二换热流路的出口与所述喷射口之间和/或所述第二换热流路的出口与所述回气口之间串联有截断阀。
  8. 一种喷气增焓空调系统,其特征在于,包括:
    喷气压缩机,所述喷气压缩机具有排气口、回气口和喷射口;
    换向组件,所述换向组件具有第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述回气口相连;
    第一室外换热器,所述第一室外换热器的第一端与所述第二阀口相连;
    第二室外换热器,所述第二室外换热器包括相互换热的第一换热流路和第二换热流路,所述第一换热流路的第一端与所述第一室外换热器的第二端之间串联主电子膨胀阀组件,所述第一换热流路的第二端与室内机系统相连,所述第二换热流路的出口与所述喷射口相连;
    辅助电子膨胀阀组件,所述辅助电子膨胀阀组件的第一端与所述第二换热流路的入口相连,所述辅助电子膨胀阀组件的第二端连接至所述第一换热流路的第二端或者所述辅助电子膨胀阀组件的第二端连接至所述主电子膨胀阀组件和所述第一换热流路之间;
    其中所述主电子膨胀阀组件的截面积总和与所述辅助电子膨胀阀组件的截面积总和之比SL的取值范围为1≤SL≤16。
  9. 根据权利要求8所述的喷气增焓空调系统,其特征在于,当所述喷气增焓空调系统的额定制冷量为小于3.6千瓦时,所述SL的取值范围为1≤SL≤1.5;
    当所述喷气增焓空调系统的额定制冷量为3.6千瓦至5千瓦时,所述SL的取值范围为1≤SL≤2;
    当所述喷气增焓空调系统的额定制冷量为5千瓦至12千瓦时,所述SL的取值范围为1≤SL≤2.5;
    当所述喷气增焓空调系统的额定制冷量为12千瓦至16千瓦时,所述SL的取值范围为1≤SL≤3;
    当所述喷气增焓空调系统的额定制冷量为16千瓦至20千瓦时,所述SL的取值范围为 1≤SL≤4;
    当所述喷气增焓空调系统的额定制冷量为20千瓦至25千瓦时,所述SL的取值范围为1≤SL≤5;
    当所述喷气增焓空调系统的额定制冷量为25千瓦至33.5千瓦时,所述SL的取值范围为1.5≤SL≤6;
    当所述喷气增焓空调系统的额定制冷量为33.5千瓦至45千瓦时,所述SL的取值范围为2≤SL≤8;
    当所述喷气增焓空调系统的额定制冷量为45千瓦至67.5千瓦时,所述SL的取值范围为3≤SL≤15;
    当所述喷气增焓空调系统的额定制冷量为67.5千瓦至78千瓦时,所述SL的取值范围为3.5≤SL≤16;
    当所述喷气增焓空调系统的额定制冷量为78千瓦至90千瓦时,所述SL的取值范围为4≤SL≤16。
  10. 根据权利要求8或9所述的喷气增焓空调系统,其特征在于,所述主电子膨胀阀组件为一个主电子膨胀阀或者多个并联连接主电子膨胀阀。
  11. 根据权利要求8-10中任一项所述的喷气增焓空调系统,其特征在于,还包括气液分离器,所述气液分离器的入口与所述第四阀口相连,所述气液分离器的气体出口与所述回气口相连。
  12. 根据权利要求8-11中任一项所述的喷气增焓空调系统,其特征在于,所述第二换热流路的出口与所述回气口相连,所述第二换热流路的出口与所述喷射口之间和/或所述第二换热流路的出口与所述回气口之间串联有截断阀。
PCT/CN2016/088434 2015-10-27 2016-07-04 喷气增焓空调系统 WO2017071289A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018513715A JP2018516355A (ja) 2015-10-27 2016-07-04 蒸気噴射増エンタルピー空気調和システム
MX2017015002A MX2017015002A (es) 2015-10-27 2016-07-04 Asistema mejorado de aire acondicionado por inyeccion de vapor.
US15/502,018 US10260780B2 (en) 2015-10-27 2016-07-04 Enhanced vapor injection air conditioning system
EP16826276.4A EP3187789A4 (en) 2015-10-27 2016-07-04 Enhanced vapor injection air conditioning system
BR112017002132-3A BR112017002132B1 (pt) 2015-10-27 2016-07-04 Sistema de ar condicionado de injeção de vapor aperfeiçoado

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510712925.3 2015-10-27
CN201520844824.7 2015-10-27
CN201520844824.7U CN205102288U (zh) 2015-10-27 2015-10-27 喷气增焓空调系统
CN201510712925.3A CN105240957B (zh) 2015-10-27 2015-10-27 喷气增焓空调系统

Publications (1)

Publication Number Publication Date
WO2017071289A1 true WO2017071289A1 (zh) 2017-05-04

Family

ID=58631265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088434 WO2017071289A1 (zh) 2015-10-27 2016-07-04 喷气增焓空调系统

Country Status (5)

Country Link
US (1) US10260780B2 (zh)
EP (1) EP3187789A4 (zh)
JP (1) JP2018516355A (zh)
MX (1) MX2017015002A (zh)
WO (1) WO2017071289A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449186A (zh) * 2017-08-04 2017-12-08 珠海格力电器股份有限公司 电子膨胀阀组件及空调系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801740B2 (en) * 2018-08-31 2020-10-13 Gree Electric Appliances, Inc. Of Zhuhai Embedded type air conditioner outdoor unit and an air conditioner
EP3859230A4 (en) * 2018-09-25 2022-05-04 Toshiba Carrier Corporation REFRIGERATING CYCLE DEVICE
JP7224486B2 (ja) * 2019-11-01 2023-02-17 三菱電機株式会社 冷凍サイクル装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122000A1 (de) * 2001-05-05 2002-11-07 Obrist Engineering Gmbh Lusten Thermische Kreislaufanlage
CN1482425A (zh) * 2002-09-13 2004-03-17 Lg������ʽ���� 使用多压缩机的热泵型空调系统的线性膨胀阀的控制方法
JP2004177067A (ja) * 2002-11-29 2004-06-24 Hitachi Home & Life Solutions Inc ヒートポンプ式空気調和機
US20040134217A1 (en) * 2003-01-09 2004-07-15 Satoshi Itoh Air conditioner with dehumidifying and heating operation
CN103712370A (zh) * 2013-12-23 2014-04-09 南京迪泽尔空调设备有限公司 一种空气源热泵系统
WO2014203500A1 (ja) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 空気調和機
CN104848578A (zh) * 2015-04-29 2015-08-19 广东美的制冷设备有限公司 空调器及空调器的控制方法
CN105240957A (zh) * 2015-10-27 2016-01-13 广东美的暖通设备有限公司 喷气增焓空调系统
CN205102288U (zh) * 2015-10-27 2016-03-23 广东美的暖通设备有限公司 喷气增焓空调系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771721B2 (ja) * 2005-03-16 2011-09-14 三菱電機株式会社 空気調和装置
JP4920432B2 (ja) * 2007-01-23 2012-04-18 三菱電機株式会社 空気調和システム
JP2008215697A (ja) * 2007-03-02 2008-09-18 Mitsubishi Electric Corp 空気調和装置
JP5357418B2 (ja) 2007-11-22 2013-12-04 三菱重工業株式会社 ヒートポンプ式空気調和機
JP5277854B2 (ja) * 2008-10-14 2013-08-28 ダイキン工業株式会社 空気調和装置
CN104254743B (zh) 2012-04-27 2016-04-27 三菱电机株式会社 空气调节装置
CN202813914U (zh) 2012-07-12 2013-03-20 秦皇岛长丰太和新能源有限公司 一种超低温空气源热泵机组系统
JP2014119221A (ja) * 2012-12-18 2014-06-30 Daikin Ind Ltd 冷凍装置
KR102163859B1 (ko) 2013-04-15 2020-10-12 엘지전자 주식회사 공기조화기 및 그 제어방법
CN203586601U (zh) 2013-09-27 2014-05-07 深圳麦克维尔空调有限公司 一种喷气增焓型空调装置
WO2015132967A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 冷凍サイクル装置
KR102242777B1 (ko) 2014-03-20 2021-04-20 엘지전자 주식회사 공기조화기
CN204154013U (zh) 2014-09-24 2015-02-11 广东欧科空调制冷有限公司 一种变频低温强热空调系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10122000A1 (de) * 2001-05-05 2002-11-07 Obrist Engineering Gmbh Lusten Thermische Kreislaufanlage
CN1482425A (zh) * 2002-09-13 2004-03-17 Lg������ʽ���� 使用多压缩机的热泵型空调系统的线性膨胀阀的控制方法
JP2004177067A (ja) * 2002-11-29 2004-06-24 Hitachi Home & Life Solutions Inc ヒートポンプ式空気調和機
US20040134217A1 (en) * 2003-01-09 2004-07-15 Satoshi Itoh Air conditioner with dehumidifying and heating operation
WO2014203500A1 (ja) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 空気調和機
CN103712370A (zh) * 2013-12-23 2014-04-09 南京迪泽尔空调设备有限公司 一种空气源热泵系统
CN104848578A (zh) * 2015-04-29 2015-08-19 广东美的制冷设备有限公司 空调器及空调器的控制方法
CN105240957A (zh) * 2015-10-27 2016-01-13 广东美的暖通设备有限公司 喷气增焓空调系统
CN205102288U (zh) * 2015-10-27 2016-03-23 广东美的暖通设备有限公司 喷气增焓空调系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449186A (zh) * 2017-08-04 2017-12-08 珠海格力电器股份有限公司 电子膨胀阀组件及空调系统

Also Published As

Publication number Publication date
US20170276407A1 (en) 2017-09-28
MX2017015002A (es) 2018-08-15
JP2018516355A (ja) 2018-06-21
BR112017002132A2 (pt) 2017-11-21
EP3187789A4 (en) 2018-03-21
US10260780B2 (en) 2019-04-16
EP3187789A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
WO2016188295A1 (zh) 热回收多联机的室外机及热回收多联机
WO2015158174A1 (zh) 制冷装置
CN105240957B (zh) 喷气增焓空调系统
WO2017071289A1 (zh) 喷气增焓空调系统
CN107178833B (zh) 热回收外机系统和空调系统
WO2015158138A1 (zh) 制冷装置
WO2017215281A1 (zh) 空调电路板降温装置
WO2016000656A1 (zh) 空调系统
CN205351844U (zh) 冷暖型空调系统和单冷型空调系统
WO2022068950A1 (zh) 房间温度调节装置
WO2018076934A1 (zh) 空调及其制冷系统
CN107089113A (zh) 车辆空调设备及具有其的车辆
CN205102288U (zh) 喷气增焓空调系统
CN206861943U (zh) 热气旁通除霜结构、空调室外机及空调器
CN201992898U (zh) 一种用于空调系统的双温冷水机组
CN206606030U (zh) 车辆空调设备及具有其的车辆
CN104879950A (zh) 空调一体机系统及其控制方法
WO2017012382A1 (zh) 多联机室外机和具有其的多联机
CN102022856A (zh) 制冷、制热、生活热水多功能一体机
WO2021012332A1 (zh) 一种可全热回收并精确调节热回收量的空调系统
CN204254925U (zh) 换热系统及具有其的空调器
CN217686006U (zh) 节流换热器和空调器
KR100953766B1 (ko) 히트 펌프
CN106871496A (zh) 室内换热器和空调器
WO2021047158A1 (zh) 空调器及其控制方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016826276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016826276

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15502018

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002132

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16826276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017002132

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170201

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/015002

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2018513715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE