WO2017071232A1 - 分路送风装置及具有该分路送风装置的冰箱 - Google Patents

分路送风装置及具有该分路送风装置的冰箱 Download PDF

Info

Publication number
WO2017071232A1
WO2017071232A1 PCT/CN2016/085348 CN2016085348W WO2017071232A1 WO 2017071232 A1 WO2017071232 A1 WO 2017071232A1 CN 2016085348 W CN2016085348 W CN 2016085348W WO 2017071232 A1 WO2017071232 A1 WO 2017071232A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
air
baffles
concave
air supply
Prior art date
Application number
PCT/CN2016/085348
Other languages
English (en)
French (fr)
Inventor
费斌
程学丽
纪璇
刘金林
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Priority to US15/771,646 priority Critical patent/US10544980B2/en
Priority to EP16858675.8A priority patent/EP3351878B1/en
Priority to JP2018521425A priority patent/JP6592598B2/ja
Publication of WO2017071232A1 publication Critical patent/WO2017071232A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/047Pressure equalising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation

Definitions

  • the present invention relates to a refrigeration device, and more particularly to a split air supply device and a refrigerator having the same.
  • the requirements for refrigerators have shifted from satisfying low-temperature refrigeration to food preservation performance.
  • the freshness of the food depends to a large extent on the airflow circulation in the storage compartment of the air-cooled refrigerator and the temperature difference between the various parts of the tank.
  • the airflow in the box is reasonable, and the smaller the temperature difference, the better the freshness preservation performance of the refrigerator.
  • the key component that determines whether the airflow circulation of the refrigerator is reasonable is the air duct. It controls the wind direction and flow volume of the refrigerator, which directly determines the refrigeration and fresh-keeping effect of the refrigerator.
  • a single storage room is generally divided into a plurality of refinement storage spaces by a shelf device such as a rack or a drawer, and each storage space is required according to the amount of the stored items.
  • the amount of cold is also different. If the cold air enters the storage room directly from somewhere in the storage room without control, it will cause some storage space to be too cold and some storage space to have insufficient cooling capacity.
  • the evaporator In the current air-cooled refrigerator airway design on the market, the evaporator is placed in a separate housing chamber, and the storage chamber of the evaporator is connected to each storage compartment by a complicated air duct system, and the fan is passed through the evaporator. The generated cold air is delivered to each storage compartment.
  • Control devices (such as single dampers, double dampers, electric dampers, etc.) are provided in the duct to control the opening and closing of the ducts communicating with the respective storage compartments, or to adjust the amount of air entering the compartments.
  • this structure is relatively complicated, the cost is relatively high, it is not convenient for unified control, and the control state is relatively simple.
  • the object of the first aspect of the present invention is to overcome at least one of the defects of the existing air-cooled refrigerator, and to provide a split air supply device for a refrigerator, which has a simple structure and can facilitate the flow path and flow rate of the cold air. Make a unified adjustment.
  • An object of the second aspect of the present invention is to provide a refrigerator having the above-described split air supply device.
  • the invention provides a shunt air supply device comprising:
  • a housing defining a plurality of air flow passages disposed in parallel;
  • each baffle being movably mounted to the housing, configured to completely block, partially or fully conduct a flow passage at different locations;
  • a linkage movably mounted to the housing configured to intermittently move each of the shutters as they move to move each of the flaps during movement from one position to another It remains stationary and each baffle moves or remains stationary as the other one or more baffles move, thereby causing each baffle to adjust the flow of airflow within an airflow passage.
  • each baffle is rotatably mounted within an air flow passage; or each baffle is movably mounted to the housing in a direction perpendicular to the air flow passage.
  • the linkage comprises a plurality of sliders that move synchronously in a direction parallel to the airflow passage; each slider extends in a direction parallel to the airflow passage and has a projection that extends in a direction parallel to the airflow passage Surface;
  • Each of the baffles is in contact with the concavo-convex surface of a slider such that each of the sliders changes in a curved surface of the concavo-convex surface as it moves, such that a baffle is intermittently rotated or moved in a direction perpendicular to the airflow path.
  • the housing includes a base and a plurality of parallel disposed duct walls extending from a surface of the base, each of the two adjacent duct walls defining an air flow passage therebetween.
  • the housing further includes a duct cover mounted to one end of the plurality of duct walls away from the base; and each of the baffles is rotatably mounted to the duct cover.
  • At least one air duct wall on one side of each airflow channel is provided with a sliding slot extending along a length thereof and opening away from the base, and a guiding slot extending along a thickness direction thereof and communicating the sliding slot and the airflow passage, and
  • Each slider is movably mounted in a chute of a duct wall
  • Each of the baffles includes a stud that is inserted into a channel of a duct wall and that is in contact with the concave and convex surface of the slider located in the chute of the duct wall.
  • each of the baffles further includes a baffle portion and a connecting plate portion extending from a surface of the baffle portion and perpendicular to the baffle portion, and
  • each baffle protrudes from the connecting plate portion of the baffle.
  • the linkage further includes two linkage rods respectively fixed to the two ends of the plurality of sliding members to synchronously move the plurality of sliding members.
  • the shunt air supply device further includes:
  • the driving device is configured to drive the gear to rotate.
  • the shunt air supply device further includes:
  • a plurality of elastic members each of the elastic members being configured to urge a baffle to contact the concave and convex surface of one of the sliding members.
  • each baffle is configured to completely block an air flow passage when in contact with the concave surface of a concave-convex surface
  • Each baffle is configured to fully conduct a flow passage when in contact with the convex surface of a concave-convex surface.
  • the plurality of airflow channels include a first airflow channel, two second airflow channels located on opposite sides of the first airflow channel, and two outermost two airflow channels;
  • the plurality of sliding members include a first sliding member, two second sliding members on both sides of the first sliding member, and two outermost two third sliding members;
  • the concave-convex surface of the first sliding member is convex, concave, convex and concave along the flow direction of the airflow in the airflow passage;
  • each of the second sliding members is concave, convex, concave and convex along the flow direction of the airflow in the airflow passage;
  • each of the third sliding members is convex and concave in order along the flow direction of the airflow in the airflow passage.
  • the plurality of airflow channels are symmetrically disposed about a geometric plane of symmetry, and
  • the linkage is also configured to synchronize the movement of the baffles in each of the two airflow passages that are symmetric about the geometric symmetry plane.
  • a refrigerator comprising:
  • the air duct assembly defines a total air supply duct and a plurality of branch air ducts, and the plurality of branch air ducts are configured to respectively enter the airflow flowing out of the air duct assembly into the plurality of storage compartments of the refrigerator, or to make the air flow out Track component
  • the airflow enters the storage compartment from a plurality of locations on the compartment wall of a storage compartment of the refrigerator;
  • the above-mentioned one-way air supply device is disposed in the air duct assembly, and the inlets of the plurality of air flow passages of the branch air supply device are all connected with the total air supply duct, and the outlets of the plurality of air flow passages and the plurality of split air channels respectively The road is connected.
  • the present invention also provides another refrigerator comprising:
  • any of the above-described split air supply devices is disposed in the air supply passage and configured to adjust a flow rate of the air flow flowing through the air supply passage.
  • the split air supply device and the refrigerator of the present invention have a plurality of air flow passages, and each baffle can be intermittently moved by the linkage device to controllably block or conduct the plurality of air flow passages to Achieving the choice of split air ducts, and/or adjusting the airflow flow in each airflow passage, thereby depending on the cooling capacity requirements of different storage compartments or the cooling capacity requirements at different locations of a storage compartment.
  • the cold air is uniformly adjusted and reasonably distributed to enhance the fresh-keeping performance and operating efficiency of the refrigerator.
  • the shunt air supply device of the present invention has a simple, compact structure and a small size, and can be conveniently installed in the air duct assembly.
  • the special structure of the linkage device can make the control of the refrigerator simple, and the selection of the bypass air passage can be realized only by controlling the movement of the linkage device, and/or the adjustment of the airflow flow in each airflow passage.
  • FIG. 1 is a schematic structural view of a shunt air supply device according to an embodiment of the present invention
  • FIG. 2 is a schematic exploded view of a shunt air supply device according to an embodiment of the present invention
  • Figure 3 is a schematic partial structural view of a shunt air supply device according to an embodiment of the present invention.
  • FIG. 4 to FIG. 11 respectively show schematic partial structural views of positions of each baffle when the linkage device is at different positions in the shunt air blowing device according to an embodiment of the present invention
  • Figure 12 is a schematic structural view of a refrigerator in accordance with one embodiment of the present invention.
  • Figure 13 is a schematic structural view showing a branch air supply device installed in the air duct assembly in the refrigerator shown in Figure 12;
  • Figure 14 is a schematic structural view of a refrigerator in accordance with one embodiment of the present invention.
  • Figure 15 is a schematic structural view showing a branch air supply device installed in the air duct assembly in the refrigerator shown in Figure 14;
  • Figure 16 is a schematic structural view of a shunt air supply device mounted to a duct assembly in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a shunt air blowing device 100 according to an embodiment of the present invention
  • FIG. 2 is a schematic exploded view of a shunt air blowing device 100 according to an embodiment of the present invention.
  • the shunting device 100 can include a housing 20, a plurality of baffles 30, and a linkage 40.
  • a plurality of airflow passages 21 disposed in parallel are defined in the housing 20, and each of the airflow passages 21 has an inlet and an outlet.
  • Each baffle 30 is movably mounted to the housing 20 and is configured to completely block, partially or fully conduct a flow passage 21 at different locations.
  • each of the baffles 30 is rotatably mounted in one of the air flow passages 21; or each of the baffles 30 is movably mounted to the housing 20 in a direction perpendicular to the air flow passages 21.
  • the linkage 40 is movably mounted to the housing 20.
  • the linkage 40 can be configured to cause each flapper 30 to move intermittently as it moves to move or retain each flapper 30 during its movement from one position to another. It is stationary and each baffle 30 is moved or held stationary while the other one or more baffles 30 are moving, thereby causing each baffle 30 to adjust the flow of airflow within an airflow passage 21.
  • three airflow passages 21 may be defined within the housing 20, namely a first airflow passage, a second airflow passage, and a third airflow passage, respectively.
  • the number of the baffles 30 may be three, which are a first baffle 31, a second baffle 32, and a third baffle 33, respectively rotatably mounted in the three air flow passages 21.
  • the first flap 31 can be moved and moved to completely block the movement position of the first air passage; the second flap 32 can be moved, and Moving to a position where the second airflow passage is partially turned on; the third flap 33 can be kept stationary.
  • the second baffle 32 can be held stationary to be in a position to partially open the second air flow passage;
  • the third flap 33 moves and moves to a position that completely blocks the movement of the third airflow passage.
  • the linkage device 40 of the split air supply device 100 in the embodiment of the present invention can adjust the flow rate of the airflow in one airflow passage 21 by the plurality of baffles 30, respectively, to controllably distribute the cold air entering the same, and can realize control Opening and closing of the bypass duct 320 communicating with each airflow passage 21 and/or adjusting the amount of airflow in each of the branch ducts 320, thereby satisfying the cooling demand of different storage compartments, or a storage room The cooling demand at different locations of the chamber, or the cooling capacity of different storage spaces in a storage room.
  • the linkage 40 includes a plurality of sliders 41 that move synchronously in a direction parallel to the airflow passage 21.
  • Each of the sliders 41 is extendable in a direction parallel to the air flow path 21, and has a concave-convex surface that is bent and bent in a direction parallel to the air flow path 21.
  • Each of the baffles 30 is in contact with the concave-convex surface of one of the sliders 41 such that each of the sliders 41 is moved by a curved surface of the concave-convex surface thereof, so that one of the baffles 30 is intermittently rotated or perpendicular to the airflow passage. Move in the direction of 21.
  • the shunt air blowing device 100 in the embodiment of the present invention may further include a plurality of elastic members 50, each of which is configured to urge a baffle 30 to abut against the uneven surface of one of the sliders 41.
  • each of the elastic members 50 may be a torsion spring.
  • each of the concave and convex surfaces may have at least one concave surface and at least one convex surface.
  • Each of the baffles 30 is configured to completely conduct an air flow passage 21 when in contact with a convex surface of a concave-convex surface.
  • Each of the baffles 30 is configured to completely block an air flow passage 21 when it comes into contact with the deepest concave surface on a concave-convex surface.
  • Each of the baffles 30 is configured to partially conduct an air flow passage 21 when in contact with a concave surface having a certain depth of a concave-convex surface.
  • each baffle 30 is rotatably mounted within a flow passage 21 .
  • the shunt air blowing device 100 may be disposed in a vertical direction such that each air flow passage 21 extends in a vertical direction.
  • Each baffle 30 is rotatable about its rear end.
  • Each of the sliders 41 can be mounted on the front side wall of one air flow passage 21 with its concave and convex surface facing rearward. The front end of each of the shutters 30 is in contact with the uneven surface of one of the sliders 41.
  • the other end of the shutter 30 can move back and forth in the horizontal direction along the surface curve of the uneven surface, and under the action of the rotating shaft of the shutter 30, the shutter 30 is The horizontal position is turned to the inclined position or the vertical position, or rotated from the inclined position to the horizontal position or the vertical position, or from the vertical position to the inclined position or the horizontal position, so that the shutter 30 completely blocks the airflow at the horizontal position Channel 21, partially turned on at an inclined position
  • the air flow passage 21 completely turns on the air flow passage 21 when in the vertical position.
  • each of the shutters 30 may include a shutter portion, a connecting plate portion extending from one surface of the shutter portion perpendicular to the shutter portion, and a bump with a slider 41 The surface is in contact with the stud 35.
  • the studs 35 of each of the baffles 30 project from the connecting plate portion of the baffle 30.
  • each of the sliders 41 when moved, utilizes a curved surface of its concave-convex surface to cause the projections 35 of one of the shutters 30 to intermittently move, thereby causing the shutters 30 to move intermittently.
  • the linkage 40 can include a plurality of crank rocker mechanisms and a plurality of gear sets.
  • Each of the crank rocker mechanisms drives a baffle 30 to oscillate to completely block, partially or fully conduct a flow passage 21 at different rotational positions.
  • Each gear set includes a driving wheel and a driven wheel fixed to a crank shaft of a crank rocker, and the driving wheel and the driven wheel constitute an incomplete gear mechanism to cause the driven wheel to rotate intermittently, thereby passing the crank rocker mechanism
  • Each baffle 30 is driven to perform intermittent rotation.
  • a drive motor and a linkage shaft can be used to drive multiple drive wheels to rotate synchronously.
  • the linkage 40 when each baffle 30 is movably mounted to the housing 20 in a direction perpendicular to the airflow passage 21, can include a plurality of cams, each cam configured to A baffle 30 is intermittently moved in a direction perpendicular to the air flow path 21. Further, the linkage device 40 can further include a linkage shaft that can be rotated synchronously using a drive motor and a linkage shaft.
  • the housing 20 may include a base 22, and a plurality of parallel disposed air duct walls 23 extending from one surface of the base 22, each adjacent to each other.
  • An air flow passage 21 is defined between the air duct walls 23.
  • the housing 20 of the split air supply device 100 may further include a duct cover 24 installed at one end of the plurality of duct walls 23 away from the base 22.
  • Each of the shutters 30 is rotatably mounted to the duct cover 24, and each of the sliders 41 is slidably mounted to the base 22 or the duct wall 23.
  • at least the air passage wall 23 on one side of each air flow passage 21 is provided with a sliding groove 27 extending along the longitudinal direction thereof and opening away from the base 22 and extending along the thickness direction thereof and communicating with the sliding groove 27 and the air flow passage 21 Guide groove 28.
  • Each of the sliders 41 is movably mounted in the chute 27 of one of the duct walls 23.
  • the boss 35 of each of the shutters 30 is inserted into the guide groove 28 of one of the duct walls 23, and is in contact with the uneven surface of the slider 41 located in the chute 27 of the duct wall 23.
  • the guide groove 28 is a circular arc groove, and the guide groove 28 is configured such that each baffle 30 is in a completely conducting airflow When the passage 21 or partially turns on the air flow passage 21, its end remote from its rotation axis is downstream of the flow direction of the air flow to reduce the resistance of the air flow.
  • the linkage 40 further includes two linkage rods 42 that are respectively fixed to the two ends of the plurality of sliders 41 to synchronize the movement of the plurality of sliders 41.
  • Each of the interlocking levers 42 is located outside one end of the plurality of duct walls 23 away from the base 22 to prevent the duct wall 23 from obstructing the movement of the interlocking lever 42.
  • the shunting device 100 may further include a driving assembly configured to move the plurality of sliders 41 in a direction parallel to the airflow passage 21.
  • the drive assembly may include a rack 61, a gear 62, and a drive 63.
  • the rack 61 extends in a direction parallel to the air flow passage 21 and is fixedly coupled or integrally formed with one of the outermost slide members 41.
  • the driving device 63 can be a stepping motor configured to drive the gear 62 to rotate.
  • the gear 62 can be mounted to the output shaft of the stepper motor and meshed with the rack 61.
  • Each of the teeth on the rack 61 can protrude in a direction parallel to the rotation axis of the shutter 30 so that the stepping motor is located on one side of the duct wall 23, thereby reducing the thickness of the entire bypass air supply device 100.
  • both ends of the slider 41 provided with the rack 61 may be provided with positioning projections to define a stroke in which the plurality of sliders 41 move in a direction parallel to the airflow passage 21.
  • the plurality of gas flow channels 21 are symmetrically disposed about a geometrically symmetric plane, and the linkage 40 is further configured to synchronize the baffles 30 within each of the two gas flow channels 21 that are symmetric about the geometrically symmetric plane. Movement to synchronize the flow of airflow within the two airflow passages 21 for better air supply.
  • the plurality of airflow passages 21 include a first airflow passage, two second airflow passages located on both sides of the first airflow passage, and the outermost two third airflow passages.
  • the first air flow passage can be used to supply air to the lateral sides of the upper portion of the storage compartment, and the two second air flow passages are used to supply air to the lateral sides of the middle portion of the storage compartment, and the two third airflow passages are utilized. Air is blown to the lateral sides of the lower portion of the storage compartment such that the upper, middle, and lower portions of the storage compartment are uniformly cooled and the air passages are not intersected.
  • the number of airflow passages 21, baffles 30, and sliders 41 may each be five.
  • the plurality of air flow passages 21 include a first air flow passage, two second air flow passages on both sides of the first air flow passage, and two outermost two air flow passages.
  • the plurality of baffles 30 include a first baffle 31 located in the first air flow passage, two second baffles 32 respectively located in the two second air flow passages, and a third portion respectively located in the two third air flow passages Baffle 33.
  • the plurality of sliders 41 include a first slider 43, two second sliders 44 on both sides of the first slider 43, and two outermost third sliders 45.
  • the uneven surface of the first slider 43 is a convex surface, a concave surface, a convex surface, and a concave surface in the flow direction of the air flow in the air flow passage 21.
  • Each of the second sliders 44 The concave and convex surfaces are concave, convex, concave and convex in the flow direction of the airflow in the air flow passage 21.
  • the uneven surface of each of the third sliders 45 is convex and concave in order along the flow direction of the airflow in the air flow passage 21.
  • each baffle 30 has only two rotational positions to completely block and fully conduct an air flow passage 21.
  • each of the shutters 30 is configured to completely block one air flow passage 21 when it comes into contact with the concave surface of one concave-convex surface.
  • Each of the baffles 30 is configured to completely conduct an air flow passage 21 when in contact with a convex surface of a concave-convex surface.
  • FIG. 4 to 11 respectively show schematic partial structural views of the position of each baffle 30 when the interlocking device 40 is at different positions in the shunting device 100 according to an embodiment of the present invention, each of which is shown in the figure.
  • the position of the linkage 40 changes as a function of the axis of rotation of the baffle 30.
  • the first flap 31, the second flap 32, and the third flap 33 are respectively coupled to the first slider 43, the second slider 44, and the third slider
  • the convex contact on 45 is such that the first air flow passage, the second air flow passage, and the third air flow passage are both in a fully conductive state.
  • the first flap 31 is in contact with the convex surface on the first slider 43, and the second flap 32 and the third flap 33 are respectively associated with the second slider 44 and The concave surface of the third sliding member 45 is in contact such that the first air flow passage is in a fully conductive state, and the second air flow passage and the third air flow passage are both in a completely blocked state.
  • the second flap 32 is in contact with the convex surface on the second slider 44, and the first flap 31 and the third flap 33 are respectively coupled to the first slider 43 and
  • the concave surface of the third sliding member 45 is in contact such that the second air flow passage is in a fully conductive state, and both the first air flow passage and the third air flow passage are in a completely blocked state.
  • the third flap 33 is in contact with the convex surface on the third slider 45, and the first flap 31 and the second flap 32 are respectively coupled to the first slider 43 and The concave surface of the second sliding member 44 is in contact such that the third air flow passage is in a fully conductive state, and both the first air flow passage and the second air flow passage are in a completely blocked state.
  • the first flap 31 and the third flap 33 are in contact with the convex surfaces on the first slider 43 and the third slider 45, respectively, and the second shutter 32 is The concave surface of the second slider 44 is in contact such that both the first airflow passage and the third airflow passage are in a fully conductive state, and the second airflow passage is in a completely blocked state.
  • the linkage 40 moves to the position shown in FIG. 10
  • the first flap 31 and the first a concave surface contact on a sliding member 43, the second baffle 32 and the third baffle 33 are in contact with the convex surfaces on the second sliding member 44 and the third sliding member 45, respectively, so that the first air flow passage is in a completely blocked state.
  • Both the second airflow passage and the third airflow passage are in a fully conductive state.
  • the linkage 40 is moved to the position shown in FIG. 11, the first flap 31, the second flap 32, and the third flap 33 are respectively coupled to the first slider 43, the second slider 44, and the third slider
  • the concave contact on 45 is such that the first airflow passage, the second airflow passage, and the third airflow passage are both in a completely blocked state.
  • Embodiments of the present invention also provide a refrigerator having one or more storage compartments, each compartment being also partitioned into a plurality of storage spaces by a shelf or a shelf. Further, the refrigerator is also provided with a duct assembly 300 and a shunt air blowing device 100 according to any of the above embodiments provided in the duct assembly 300.
  • a total air supply duct 310 and a plurality of branch air ducts 320 are defined in the air duct assembly 300.
  • the total air supply duct 310 can be in communication with the cooling chamber to receive the airflow cooled by the cooler in the cooling chamber.
  • Each split duct 320 has one or more cold air outlets.
  • the plurality of branch ducts 320 are configured to cause the airflow flowing out of the duct assembly 300 to enter the plurality of storage compartments of the refrigerator, respectively.
  • the inlets of the plurality of air flow passages 21 of the branch air supply device 100 are all connected to the total air supply duct 310, and the outlets of the plurality of air flow passages 21 are respectively communicated with the plurality of branch air passages 320.
  • FIG. 12 is a schematic structural view of a refrigerator according to an embodiment of the present invention
  • FIG. 13 is a schematic structural view of the split air supply device 100 installed in the air duct assembly 300 in the refrigerator shown in FIG.
  • the refrigerator of the embodiment of the present invention may include a refrigerating compartment 210 above, a freezing compartment 220 at the lower side, and a variable greenhouse 230 in the middle.
  • the air duct assembly 300 is used to send the cold air flowing out of the cooling chamber to the refrigerating chamber 210 and the changing chamber 230. That is, the air duct assembly 300 can have two branch air ducts 320 having two air flow passages 21 for controlling the flow of airflow into the refrigerating chamber 210 and the variable greenhouse 230. Further, the air duct assembly 300 may also have a supply air duct that supplies cold air to the freezing compartment 220.
  • FIG. 14 is a schematic structural view of a refrigerator according to an embodiment of the present invention
  • FIG. 15 is a schematic structural view of the air distribution unit 100 installed in the air duct assembly 300 in the refrigerator shown in FIG.
  • the refrigerator of the embodiment of the present invention may include a refrigerating compartment 210 above, a freezing compartment 220 at the lower side, and a variable greenhouse 230 and an ice making compartment 240 in the middle.
  • the air duct assembly 300 is configured to send the cold air flowing out of the cooling chamber to the refrigerating chamber 210, the changing chamber 230, and the ice making chamber 240.
  • the air duct assembly 300 can have three branch air ducts 320 having three air flow passages 21 for controlling access to the refrigerating chamber 210, the variable greenhouse 230, and the ice making chamber 240.
  • the air duct assembly 300 may further have a lifting chamber 220 Air supply duct for cold air.
  • the refrigerator can control the movement of the linkage device 40 according to the temperature detected by the temperature sensor in the refrigerator to achieve corresponding control, so that the cold air can be reasonably distributed to the plurality of storage compartments, thereby enhancing the freshness preservation performance of the refrigerator and operating efficiency.
  • the plurality of split ducts 320 of the duct assembly 300 of the refrigerator are further configured to cause airflow from the duct assembly 300 to be respectively from the chamber wall of a storage compartment of the refrigerator.
  • the storage compartment is accessed at a plurality of locations.
  • FIG 16 is a schematic structural view of a shunt air blowing device 100 mounted to a duct assembly 300, in accordance with one embodiment of the present invention.
  • the refrigerator may include a refrigerating compartment 210 above, a freezing compartment 220 below, and a variable greenhouse 230 in the middle.
  • the air duct assembly 300 is configured to send the cold air flowing out of the cooling chamber to the refrigerating chamber 210.
  • the duct assembly 300 can have a three-component road duct 320 that delivers cold air to the upper, middle, and lower portions of the refrigerating chamber 210, respectively.
  • the branch air duct 320 that sends the cold air to the upper portion of the refrigerating chamber 210 is one, which may be referred to as a first shunt duct 321; and the cold air stream is sent to the shunt duct 320 in the middle of the refrigerating chamber 210.
  • Two which may be referred to as a second branch duct 322, two second branch ducts 322 are located on both sides of the first branch duct 321; a branch that sends the cold air to the lower portion of the refrigerating chamber 210
  • the air duct assembly 300 can have five branch air ducts 320, and the split air supply device 100 has five air flow passages 21, which are respectively a first air flow passage and two first sides on the two sides of the first air flow passage.
  • the two air flow passages, and the outermost two third air flow passages, are used to control the flow rate of the airflow entering the upper, middle, or lower portions of the refrigerating chamber 210.
  • the two sides of the first branch duct 321 have cold air outlets on both sides in the lateral direction so that the upper sides of the refrigerating chamber 210 are uniformly cooled.
  • each of the second branch ducts 322 has a cold air outlet, and the linkage 40 can synchronously move the two flaps 30 located in the two second air passages so that the lateral sides of the middle portion of the refrigerating chamber 210 are subjected to Cold evenly.
  • One side of each of the third branch ducts 323 has a cold air outlet, and the linkage 40 can synchronously move the two flaps 30 located in the two third air passages so that the lateral sides of the lower portion of the refrigerating chamber 210 are subjected to Cold evenly.
  • the refrigerator in this embodiment can control the cold air to flow from the corresponding branch air duct 320 to the position according to whether the cooling capacity at each position of the refrigerator storage compartment is sufficient, so that the cold air can be reasonably distributed to the storage compartment. Different positions enhance the freshness preservation performance and operating efficiency of the refrigerator.
  • the shunt air blowing device 100 can adjust the air volume of the shunt air duct 320, and the shroud air duct 320 is opened in the storage room of the refrigerator where cold air is required, and is closed without cold air. Thereby controlling the constant temperature in the refrigerator, providing an optimal storage environment for the food in the refrigerator, reducing the nutrient loss of the food, and It can reduce the power consumption of the refrigerator and save energy.
  • a blow duct may be defined within the duct assembly 300.
  • the shunting air supply device 100 may be disposed in the air supply passage and configured to adjust a flow rate of the airflow flowing through the air supply passage. That is to say, the refrigerator can realize the adjustment of the airflow flow in a air supply passage by the split air supply device 100 in any of the above embodiments, and has a simple structure and convenient and accurate adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

提供一种分路送风装置(100)及具有该分路送风装置(100)的冰箱,该分路送风装置(100)包括壳体(20),其内限定有多个平行设置的气流通道(21);多个挡板(30),每个挡板(30)可动地安装于壳体(20),配置成在不同的位置处对一个气流通道(21)进行完全阻断、部分导通或完全导通;以及联动装置(40),可动地安装于壳体(20),配置成在其运动时使每个挡板(30)进行间歇性地运动,该分路送风装置(100)和冰箱可根据不同储物间室的冷量需求或者一个储物间室的不同位置处的冷量需求,对冷风进行统一调节。

Description

分路送风装置及具有该分路送风装置的冰箱 技术领域
本发明涉及制冷装置,特别是涉及一种分路送风装置及具有该分路送风装置的冰箱。
背景技术
近年来,随着人们生活水平的提高以及环境意识的增强,对冰箱的要求从满足低温制冷逐渐向食物的保鲜性能转移。对于风冷冰箱,食物的保鲜性能在很大的程度上取决于风冷冰箱储藏室内的气流循环及箱内各个部分之间的温差。箱内气流循环合理,温差越小,则冰箱的保鲜性能越好。而决定冰箱的气流循环是否合理的关键部件就是风道,它控制了冰箱的风向及流量大小,直接决定了冰箱的制冷保鲜效果。进一步地,为优化存储空间,单个储物间室一般会被搁物架或者抽屉等搁物装置分隔为多个细化的储物空间,根据存放物品的多少,每一个储物空间所需要的冷量也是不同的。如果冷风不加控制地直接从储物间室的某处直接进入储物间室内,会造成部分储物空间过冷,部分储物空间冷量不足的问题。
目前市面上的风冷冰箱风路设计中,将蒸发器设置于一个单独的容纳室内,利用复杂的风道系统将蒸发器的容纳室连通于各储物间室,并利用风机将通过蒸发器产生的冷风输送至各储物间室。风道内设置控制装置(如单风门、双风门、电动风门等)以控制与各储物间室连通的风道的开启和关闭,或者调节进入各储物间室内的风量。但是这种结构较为复杂,成本比较高,不便于统一控制,且控制状态比较单一。
此外,现有的风冷冰箱中,对于需要三路及以上的多路送风(如多门冰箱,冷藏室有两个变温室,还有单独的制冰室,就需要3路,4路或者5路的送风)的结构,则需要多个风门分别进行控制,造成冰箱的体积庞大和结构复杂。
发明内容
本发明第一方面的目的旨在克服现有的风冷冰箱的至少一个缺陷,提供一种用于冰箱的分路送风装置,其结构简单,且可方便对冷风的流路和流量 进行统一调节。
本发明第二方面的一个目的是要提供一种具有上述分路送风装置的冰箱。
根据本发明的第一方面,本发明提供了一种分路送风装置,其包括:
壳体,其内限定有多个平行设置的气流通道;
多个挡板,每个挡板可动地安装于壳体,配置成在不同的位置处对一个气流通道进行完全阻断、部分导通或完全导通;以及
联动装置,可动地安装于壳体,配置成在其运动时使每个挡板进行间歇性地运动,以在其由一个位置运动到另一位置的过程中,使每个挡板运动或保持静止,而且使每个挡板在其它的一个或多个挡板运动时,进行运动或保持静止,从而使每个挡板调整一个气流通道内气流的流量。
可选地,每个挡板可转动地安装于一个气流通道内;或每个挡板沿垂直于气流通道的方向可移动地安装于壳体。
可选地,联动装置包括多个滑动件,沿平行于气流通道的方向同步移动;每个滑动件沿平行于气流通道的方向延伸,且具有一沿平行于气流通道的方向弯折延伸的凹凸表面;而且
每个挡板与一个滑动件的凹凸表面接触,以使每个滑动件在移动时,利用其凹凸表面的曲面变化,使得一个挡板进行间歇性地转动或沿垂直于气流通道的方向移动。
可选地,壳体包括基座,以及从基座的一个表面延伸出的多个平行设置的风道壁,每两个相邻的风道壁之间限定出一个气流通道。
可选地,壳体还包括风道盖,安装于多个风道壁的远离基座的一端;且每个挡板可转动地安装于风道盖。
可选地,至少每个气流通道一侧的风道壁上开设有沿其长度方向延伸且开口背离基座的滑槽和沿其厚度方向延伸且连通滑槽和该气流通道的导槽,且
每个滑动件可移动地安装于一个风道壁的滑槽内;
每个挡板包括凸柱,插入一个风道壁的导槽内,且与位于该风道壁的滑槽中的滑动件的凹凸表面接触。
可选地,每个挡板还包括挡板部和从挡板部的一个表面延伸出的、垂直于挡板部的连接板部,且
每个挡板的凸柱从该挡板的连接板部凸伸出。
可选地,联动装置还包括两个联动杆,分别固定于多个滑动件的两端,以使多个滑动件同步运动。
可选地,该分路送风装置还包括:
齿条,沿平行于气流通道的方向延伸,且与最外侧的一个滑动件固定连接或一体成型;
齿轮,与齿条啮合;和
驱动装置,配置带动齿轮转动。
可选地,该分路送风装置还包括:
多个弹性件,每个弹性件配置成促使一个挡板与一个滑动件的凹凸表面接触抵靠。
可选地,每个挡板在与一个凹凸表面的凹面接触时,配置成完全阻断一个气流通道;
每个挡板在与一个凹凸表面的凸面接触时,配置成完全导通一个气流通道。
可选地,多个气流通道包括第一气流通道、位于第一气流通道两侧的两个第二气流通道,以及最外侧的两个第三气流通道;且
多个滑动件包括第一滑动件、位于第一滑动件两侧的两个第二滑动件,以及最外侧的两个第三滑动件;
第一滑动件的凹凸表面沿气流通道内气流的流动方向依次为凸面、凹面、凸面和凹面;
每个第二滑动件的凹凸表面沿气流通道内气流的流动方向依次为凹面、凸面、凹面和凸面;
每个第三滑动件的凹凸表面沿气流通道内气流的流动方向依次为凸面和凹面。
可选地,多个气流通道关于一几何对称面对称设置,且
联动装置还配置成使关于几何对称面对称的每两个气流通道内的挡板同步运动。
根据本发明的第二方面,本发明提供了一种冰箱,其包括:
风道组件,其内限定有总送风道和多个分路风道,多个分路风道配置成使流出风道组件的气流分别进入冰箱的多个储物间室内,或使流出风道组件 的气流分别从冰箱的一个储物间室的间室壁上的多个位置处进入该储物间室;和
上述任一种分路送风装置,设置于风道组件内,分路送风装置的多个气流通道的进口均与总送风道连通,多个气流通道的出口分别与多个分路风道连通。
根据本发明的第二方面,本发明还提供了另一种冰箱,其包括:
风道组件,其内限定有送风通道;和
上述任一种分路送风装置,设置于送风通道内,配置成调节流经送风通道的气流的流量。
本发明的分路送风装置和冰箱中因为具有多个气流通道,且可通过联动装置使每个挡板进行间歇性地运动,对多个气流通道进行可控地阻断或导通,以实现对分路风道的选择,和/或对每个气流通道内气流流量进行调节,从而可根据不同储物间室的冷量需求或者一个储物间室的不同位置处的冷量需求,对冷风进行统一调节和合理地分配,增强冰箱的保鲜性能和运行效率。
进一步地,本发明的分路送风装置的结构简单、紧凑,体积小,可方便地安装于风道组件内。且联动装置的特殊结构,可使冰箱的控制简单,可仅通过控制联动装置的移动就实现对分路风道的选择,和/或对每个气流通道内的气流流量的调节。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的分路送风装置的示意性结构图;
图2是根据本发明一个实施例的分路送风装置的示意性分解图;
图3是根据本发明一个实施例的分路送风装置的示意性局部结构图;
图4至图11分别示出根据本发明实施例的分路送风装置中联动装置处在不同位置处时每个挡板所处位置的示意性局部结构图;
图12是根据本发明一个实施例的冰箱的示意性结构图;
图13是图12所示冰箱中分路送风装置安装于风道组件的示意性结构图;
图14是根据本发明一个实施例的冰箱的示意性结构图;
图15是图14所示冰箱中分路送风装置安装于风道组件的示意性结构图;
图16是根据本发明一个实施例的分路送风装置安装于风道组件的示意性结构图。
具体实施方式
图1是根据本发明一个实施例的分路送风装置100的示意性结构图;图2是根据本发明一个实施例的分路送风装置100的示意性分解图。如图1和图2所示,本发明实施例提供了一种分路送风装置100。该分路送风装置100可包括壳体20、多个挡板30和联动装置40。壳体20内限定有多个平行设置的气流通道21,每个气流通道21具有进口和出口。每个挡板30可动地安装于壳体20,配置成在不同的位置处对一个气流通道21进行完全阻断、部分导通或完全导通。例如,每个挡板30可转动地安装于一个气流通道21内;或每个挡板30沿垂直于气流通道21的方向可移动地安装于壳体20。
联动装置40可动地安装于壳体20。特别地,联动装置40可配置成在其运动时使每个挡板30进行间歇性地运动,以在其由一个位置运动到另一位置的过程中,使每个挡板30进行运动或保持静止,而且使每个挡板30在其它的一个或多个挡板30运动时,进行运动或保持静止,从而使每个挡板30调整一个气流通道21内气流的流量。
例如,在一些实施例中,壳体20内可限定三个气流通道21,分别为第一气流通道、第二气流通道和第三气流通道。挡板30的数量可为三个,分别为第一挡板31、第二挡板32和第三挡板33,分别可转动地安装于三个气流通道21内。联动装置40在初始位置处时,可使三个挡板30完全导通三个气流通道21。在联动装置40由初始位置向第一位置运动的过程中,可使第一挡板31运动,且运动到完全阻断第一气流通道的运动位置处;可使第二挡板32运动,且运动到部分导通第二气流通道的运动位置处;可使第三挡板33保持静止。在联动装置40由第一位置向第二位置运动的过程中,可 使第一挡板31运动,且运动到完部分导通第一气流通道的运动位置处;可使第二挡板32保持静止,以处于部分导通第二气流通道的运动位置处;可使第三挡板33运动,且运动到完全阻挡第三气流通道的运动位置处。
本发明实施例中的分路送风装置100的联动装置40可使多个挡板30分别调整一个气流通道21内气流的流量,以对进入其内的冷风进行可控的分配,可以实现控制与每个气流通道21连通的分路风道320的开闭和/或调节每个分路风道320内的出风风量,进而满足不同储物间室的冷量需求,或者一个储物间室的不同的位置处的冷量需求,或者一个储物间室内不同的储物空间的冷量需求。
在本发明的一些实施例中,联动装置40包括多个滑动件41,沿平行于气流通道21的方向同步移动。每个滑动件41可沿平行于气流通道21的方向延伸,且具有一沿平行于气流通道21的方向弯折延伸的凹凸表面。每个挡板30与一个滑动件41的凹凸表面接触,以使每个滑动件41在移动时,利用其凹凸表面的曲面变化,使得一个挡板30进行间歇性地转动或沿垂直于气流通道21的方向移动。本发明实施例中的分路送风装置100还可包括多个弹性件50,每个弹性件50配置成促使一个挡板30与一个滑动件41的凹凸表面接触抵靠。例如,每个弹性件50可为扭簧。
进一步地,每个凹凸表面可具有至少一个凹面和至少一个凸面。每个挡板30在与一个凹凸表面的凸面接触时,配置成完全导通一个气流通道21。每个挡板30在与一个凹凸表面上深度最深的凹面接触时,配置成完全阻断一个气流通道21。每个挡板30在与一个凹凸表面的具有一定深度的凹面接触时,配置成部分导通一个气流通道21。
具体地,在一些实施例中,每个挡板30可转动地安装于一个气流通道21内。分路送风装置100可沿竖直方向设置,以使每个气流通道21沿竖直方向延伸。每个挡板30可绕其后端转动。每个滑动件41可安装于一个气流通道21的前侧壁上,其凹凸表面朝向后方。每个挡板30的前端与一个滑动件41的凹凸表面接触。当该滑动件41沿竖直方向移动时,挡板30的另一端可随着凹凸表面的面曲线在水平方向上前后移动,且在挡板30的旋转轴的作用下,使挡板30从水平位置转到倾斜位置或竖直位置,或从倾斜位置转动到水平位置或竖直位置,或从竖直位置转动到倾斜位置或水平位置,从而使挡板30在水平位置处完全阻断气流通道21,在倾斜位置处时部分导通 气流通道21,在竖直位置处时完全导通气流通道21。
在本发明的另一些实施例中,每个挡板30可包括挡板部,从挡板部的一个表面延伸出的、垂直于挡板部的连接板部,以及与一个滑动件41的凹凸表面接触的凸柱35。每个挡板30的凸柱35从该挡板30的连接板部凸伸出。在该实施例中,每个滑动件41在移动时,利用其凹凸表面的曲面变化,使得一个挡板30的凸柱35进行间歇性地运动,从而使得该挡板30进行间歇性地运动。
在本发明的一些替代性实施例中,当每个挡板30可转动地安装于一个气流通道21内时,联动装置40可包括多个曲柄摇杆机构和多个齿轮组。每个曲柄摇杆机构带动一个挡板30摆动,以在不同的转动位置处对一个气流通道21进行完全阻断、部分导通或完全导通。每个齿轮组包括主动轮和固定于一个曲柄摇杆的曲柄转轴处的从动轮,且主动轮和从动轮构成不完全齿轮机构,以使从动轮进行间歇性地转动,从而通过曲柄摇杆机构带动每个挡板30进行间歇性的转动。可使用一个驱动电机和联动轴带动多个主动轮同步转动。
在本发明的一些替代性实施例中,当每个挡板30沿垂直于气流通道21的方向可移动地安装于壳体20时,联动装置40可包括多个凸轮,每个凸轮配置成使一个挡板30沿垂直于气流通道21的方向进行间歇性地移动。进一步地,联动装置40还可包括联动轴,可使用一个驱动电机和联动轴带动多个凸轮同步转动。
在本发明的一些实施例中,如图2所示,壳体20可包括基座22,以及从基座22的一个表面延伸出的多个平行设置的风道壁23,每两个相邻的风道壁23之间限定出一个气流通道21。进一步地,分路送风装置100的壳体20还可包括风道盖24,安装于多个风道壁23的远离基座22的一端。
每个挡板30可转动地安装于风道盖24,且每个滑动件41可滑动地安装于基座22或风道壁23。具体地,至少每个气流通道21一侧的风道壁23上开设有沿其长度方向延伸且开口背离基座22的滑槽27和沿其厚度方向延伸且连通滑槽27和该气流通道21的导槽28。每个滑动件41可移动地安装于一个风道壁23的滑槽27内。每个挡板30的凸柱35插入一个风道壁23的导槽28内,且与位于该风道壁23的滑槽27中的滑动件41的凹凸表面接触。导槽28为圆弧槽,且导槽28配置成使每个挡板30处于完全导通气流 通道21或部分导通气流通道21时,其远离其旋转轴线的一端处于气流流动方向的下游,以减小气流流动的阻力。
在本发明的一些实施例中,联动装置40还包括两个联动杆42,分别固定于多个滑动件41的两端,以使多个滑动件41同步运动。每个联动杆42处于多个风道壁23的远离基座22的一端外侧,以防止风道壁23阻碍联动杆42的移动。进一步地,分路送风装置100还可包括驱动组件,其配置成带动多个滑动件41沿平行于气流通道21的方向移动。具体地,该驱动组件可包括齿条61、齿轮62和驱动装置63。齿条61沿平行于气流通道21的方向延伸,且与最外侧的一个滑动件41固定连接或一体成型。驱动装置63可为步进电机,配置成带动齿轮62转动。齿轮62可安装于步进电机的输出轴,且与齿条61啮合。齿条61上的每个齿牙可沿平行于挡板30的旋转轴线的方向突出,以使步进电机位于风道壁23的一侧,从而降低整个分路送风装置100的厚度。进一步地,设置有齿条61的滑动件41的两端还可设置有定位凸起,以限定多个滑动件41沿平行于气流通道21的方向移动的行程。
在本发明的一些实施例中,多个气流通道21关于一几何对称面对称设置,且联动装置40还配置成使关于几何对称面对称的每两个气流通道21内的挡板30同步运动,以使这两个气流通道21内的气流流量同步,从而实现更好的送风。例如,多个气流通道21包括第一气流通道、位于第一气流通道两侧的两个第二气流通道,以及最外侧的两个第三气流通道。可利用第一气流通道向一个储物间室的上部的横向两侧送风,利用两个第二气流通道向该储物间室的中部的横向两侧送风,利用两个第三气流通道向该储物间室的下部的横向两侧送风,以使该储物间室的上部、中部和下部均受冷均匀,且风道无交叉。
在本发明的一些实施例中,气流通道21、挡板30和滑动件41的数量均可以为5个。多个气流通道21包括第一气流通道、位于第一气流通道两侧的两个第二气流通道,以及最外侧的两个第三气流通道。多个挡板30包括位于第一气流通道内的第一挡板31,分别位于两个第二气流通道内的两个第二挡板32,和分别位于两个第三气流通道内的第三挡板33。多个滑动件41包括第一滑动件43、位于第一滑动件43两侧的两个第二滑动件44,以及最外侧的两个第三滑动件45。第一滑动件43的凹凸表面沿气流通道21内气流的流动方向依次为凸面、凹面、凸面和凹面。每个第二滑动件44的 凹凸表面沿气流通道21内气流的流动方向依次为凹面、凸面、凹面和凸面。每个第三滑动件45的凹凸表面沿气流通道21内气流的流动方向依次为凸面和凹面。在该实施例中,如图3所示,每个挡板30仅具有两个转动位置,以完全阻断和完全导通一个气流通道21。也就是说,每个挡板30在与一个凹凸表面的凹面接触时,配置成完全阻断一个气流通道21。每个挡板30在与一个凹凸表面的凸面接触时,配置成完全导通一个气流通道21。
图4至图11分别示出根据本发明实施例的分路送风装置100中联动装置40处在不同位置处时每个挡板30所处位置的示意性局部结构图,图中以每个挡板30的旋转轴线为基准确定联动装置40的位置发生变化。当联动装置40移动到如图4所示位置处时,第一挡板31、第二挡板32和第三挡板33分别与第一滑动件43、第二滑动件44和第三滑动件45上的凸面接触,以使第一气流通道、第二气流通道和第三气流通道均处于完全导通状态。当联动装置40移动到如图5所示位置处时,第一挡板31与第一滑动件43上的凸面接触,第二挡板32和第三挡板33分别与第二滑动件44和第三滑动件45上的凹面接触,以使第一气流通道处于完全导通状态,第二气流通道和第三气流通道均处于完全阻断状态。当联动装置40移动到如图6所示位置处时,第二挡板32与第二滑动件44上的凸面接触,第一挡板31和第三挡板33分别与第一滑动件43和第三滑动件45上的凹面接触,以使第二气流通道处于完全导通状态,第一气流通道和第三气流通道均处于完全阻断状态。当联动装置40移动到如图7所示位置处时,第三挡板33与第三滑动件45上的凸面接触,第一挡板31和第二挡板32分别与第一滑动件43和第二滑动件44上的凹面接触,以使第三气流通道处于完全导通状态,第一气流通道和第二气流通道均处于完全阻断状态。
当联动装置40移动到如图8所示位置处时,第一挡板31和第二挡板32分别与第一滑动件43和第二滑动件44上的凸面接触,第三挡板33与第三滑动件45上的凹面接触,以使第一气流通道和第二气流通道均处于完全导通状态,第三气流通道处于完全阻断状态。当联动装置40移动到如图9所示位置处时,第一挡板31和第三挡板33分别与第一滑动件43和第三滑动件45上的凸面接触,第二挡板32与第二滑动件44上的凹面接触,以使第一气流通道和第三气流通道均处于完全导通状态,第二气流通道处于完全阻断状态。当联动装置40移动到如图10所示位置处时,第一挡板31与第 一滑动件43上的凹面接触,第二挡板32和第三挡板33分别与第二滑动件44和第三滑动件45上的凸面接触,以使第一气流通道处于完全阻断状态,第二气流通道和第三气流通道均处于完全导通状态。当联动装置40移动到如图11所示位置处时,第一挡板31、第二挡板32和第三挡板33分别与第一滑动件43、第二滑动件44和第三滑动件45上的凹面接触,以使第一气流通道、第二气流通道和第三气流通道均处于完全阻断状态。
本发明实施例还提供了一种冰箱,其具有一个或多个储物间室,每个储物间室也可被搁物板或搁物架分隔成多个储物空间。进一步地,该冰箱中也设置有风道组件300和设置于风道组件300内的、上述任一实施例中的分路送风装置100。风道组件300内限定有总送风道310和多个分路风道320。总送风道310可与冷却室连通,以接收经冷却室内的冷却器冷却后的气流。每个分路风道320具有一个或多个冷风出口。且多个分路风道320配置成使流出风道组件300的气流分别进入冰箱的多个储物间室内。分路送风装置100的多个气流通道21的进口均与总送风道310连通,多个气流通道21的出口分别与多个分路风道320连通。
图12是根据本发明一个实施例的冰箱的示意性结构图,图13是图12所示冰箱中分路送风装置100安装于风道组件300的示意性结构图。如图12和图13所示,本发明实施例的冰箱可包括处于上方的冷藏室210、处于下方的冷冻室220以及处于中间的变温室230。其中,风道组件300用于将流出冷却室的冷气流送往冷藏室210和变温室230。也就是说,该风道组件300可具有两个分路风道320,分路送风装置100具有两个气流通道21,用于控制进入冷藏室210和变温室230内的气流的流量。进一步地,该风道组件300还可具有向冷冻室220提供冷风的送风风道。
图14是根据本发明一个实施例的冰箱的示意性结构图,图15是图14所示冰箱中分路送风装置100安装于风道组件300的示意性结构图。如图14和图15所示,本发明实施例的冰箱可包括处于上方的冷藏室210、处于下方的冷冻室220,以及处于中间的变温室230和制冰室240。其中,风道组件300用于将流出冷却室的冷气流送往冷藏室210、变温室230和制冰室240。也就是说,该风道组件300可具有三个分路风道320,分路送风装置100具有三个气流通道21,用于控制进入冷藏室210、变温室230和制冰室240内的气流的流量。进一步地,该风道组件300还可具有向冷冻室220提 供冷风的送风风道。具体地,冰箱可根据冰箱内的温度传感器检测到的温度,控制联动装置40的运动,以实现相应的控制,从而可使冷风被合理分配至多个储物间室,增强了冰箱的保鲜性能和运行效率。
在本发明的另一些实施例中,冰箱的风道组件300的多个分路风道320还配置成使流出风道组件300的气流分别从冰箱的一个储物间室的间室壁上的多个位置处进入该储物间室。
图16是根据本发明一个实施例的分路送风装置100安装于风道组件300的示意性结构图。在该实施例中,冰箱可包括处于上方的冷藏室210、处于下方的冷冻室220以及处于中间的变温室230。其中,风道组件300用于将流出冷却室的冷气流送往冷藏室210。风道组件300可具有三组分路风道320,分别将冷气流送往冷藏室210的上部、中部和下部。具体地,将冷气流送往冷藏室210的上部的分路风道320为一个,可被称为第一分路风道321;将冷气流送往冷藏室210的中部的分路风道320为两个,可被称为第二分路风道322,两个第二分路风道322位于第一分路风道321的两侧;将冷气流送往冷藏室210的下部的分路风道320为两个,可被称为第三分路风道323,位于两个第二分路风道322和第一分路风道321的两侧。也就是说,该风道组件300可具有五个分路风道320,分路送风装置100具有五个气流通道21,分别为第一气流通道、位于第一气流通道两侧的两个第二气流通道,以及最外侧的两个第三气流通道,用于控制进入冷藏室210的上部、中部或下部的气流的流量。进一步地,第一分路风道321的横向两侧均具有冷风出口,以使冷藏室210的上部两侧受冷均匀。每个第二分路风道322的一侧具有冷风出口,联动装置40可使位于两个第二气流通道内的两个挡板30同步运动,以使冷藏室210的中部的横向两侧受冷均匀。每个第三分路风道323的一侧具有冷风出口,联动装置40可使位于两个第三气流通道内的两个挡板30同步运动,以使冷藏室210的下部的横向两侧受冷均匀。
该实施例中的冰箱可根据冰箱储物间室各个位置处的冷量是否充足,控制使冷风从相应的分路风道320流入该位置处,以可使冷风被合理分配至储物间室不同的位置处,增强了冰箱的保鲜性能和运行效率。该分路送风装置100能够实现对分路风道320风量的调节,冰箱的该储物间室内哪里需要冷风就开启那里的分路风道320,不需要冷风就关闭。从而控制冰箱内温度的恒定性,为冰箱内的食物提供最佳的储存环境,减少食物的营养流失,并且 能够减小冰箱的耗电,节约能源。
本发明实施例还提供了另一种冰箱,其包括风道组件300和上述任一实施例中的分路送风装置100。风道组件300内可限定有送风通道。分路送风装置100可设置于送风通道内,配置成调节流经送风通道的气流的流量。也就是说,该冰箱可通过上述任一实施例中的分路送风装置100实现对一个送风通道内气流流量的调节,结构简单,调节方便、准确。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (15)

  1. 一种用于冰箱的分路送风装置,包括:
    壳体,其内限定有多个平行设置的气流通道;
    多个挡板,每个所述挡板可动地安装于所述壳体,配置成在不同的位置处对一个所述气流通道进行完全阻断、部分导通或完全导通;以及
    联动装置,可动地安装于所述壳体,配置成在其运动时使每个所述挡板进行间歇性地运动,以在其由一个位置运动到另一位置的过程中,使每个所述挡板运动或保持静止,而且使每个所述挡板在其它的、一个或多个所述挡板运动时,进行运动或保持静止,从而使每个所述挡板调整一个所述气流通道内气流的流量。
  2. 根据权利要求1所述的分路送风装置,其中
    每个所述挡板可转动地安装于一个所述气流通道内;或
    每个所述挡板沿垂直于所述气流通道的方向可移动地安装于所述壳体。
  3. 根据权利要求2所述的分路送风装置,其中
    所述联动装置包括多个滑动件,沿平行于所述气流通道的方向同步移动;每个所述滑动件沿平行于所述气流通道的方向延伸,且具有一沿平行于所述气流通道的方向弯折延伸的凹凸表面;而且
    每个所述挡板与一个所述滑动件的所述凹凸表面接触,以使每个所述滑动件在移动时,利用其凹凸表面的曲面变化,使得一个所述挡板进行间歇性地转动或沿垂直于所述气流通道的方向移动。
  4. 根据权利要求3所述的分路送风装置,其中
    所述壳体包括基座,以及从所述基座的一个表面延伸出多个平行设置的风道壁,每两个相邻的所述风道壁之间限定出一个所述气流通道。
  5. 根据权利要求4所述的分路送风装置,其中
    所述壳体还包括风道盖,安装于所述多个风道壁的远离所述基座的一端;且
    每个所述挡板可转动地安装于所述风道盖。
  6. 根据权利要求4所述的分路送风装置,其中
    至少每个所述气流通道一侧的风道壁上开设有沿其长度方向延伸且开口背离所述基座的滑槽和沿其厚度方向延伸且连通所述滑槽和该气流通道的导槽,且
    每个所述滑动件可移动地安装于一个所述风道壁的所述滑槽内;
    每个所述挡板包括凸柱,插入一个所述风道壁的所述导槽内,且与位于该风道壁的滑槽中的所述滑动件的凹凸表面接触。
  7. 根据权利要求6所述的分路送风装置,其中
    每个所述挡板还包括挡板部和从所述挡板部的一个表面延伸出的、垂直于所述挡板部的连接板部,且
    每个所述挡板的所述凸柱从该挡板的所述连接板部凸伸出。
  8. 根据权利要求3所述的分路送风装置,其中
    所述联动装置还包括两个联动杆,分别固定于所述多个滑动件的两端,以使所述多个滑动件同步运动。
  9. 根据权利要求8所述的分路送风装置,还包括:
    齿条,沿平行于所述气流通道的方向延伸,且与最外侧的一个所述滑动件固定连接或一体成型;
    齿轮,与所述齿条啮合;和
    驱动装置,配置带动所述齿轮转动。
  10. 根据权利要求3所述的分路送风装置,还包括:
    多个弹性件,每个所述弹性件配置成促使一个所述挡板与一个所述滑动件的凹凸表面接触抵靠。
  11. 根据权利3所述的分路送风装置,其中
    每个所述挡板在与一个所述凹凸表面的凹面接触时,配置成完全阻断一个所述气流通道;
    每个所述挡板在与一个所述凹凸表面的凸面接触时,配置成完全导通一 个所述气流通道。
  12. 根据权利11所述的分路送风装置,其中
    所述多个气流通道包括第一气流通道、位于所述第一气流通道两侧的两个第二气流通道,以及最外侧的两个第三气流通道;且
    所述多个滑动件包括第一滑动件、位于所述第一滑动件两侧的两个第二滑动件,以及最外侧的两个第三滑动件;
    所述第一滑动件的凹凸表面沿所述气流通道内气流的流动方向依次为凸面、凹面、凸面和凹面;
    每个所述第二滑动件的凹凸表面沿所述气流通道内气流的流动方向依次为凹面、凸面、凹面和凸面;
    每个所述第三滑动件的凹凸表面沿所述气流通道内气流的流动方向依次为凸面和凹面。
  13. 根据权利要求1所述的分路送风装置,其中
    所述多个气流通道关于一几何对称面对称设置,且
    所述联动装置还配置成使关于所述几何对称面对称的每两个所述气流通道内的所述挡板同步运动。
  14. 一种冰箱,包括:
    风道组件,其内限定有总送风道和多个分路风道,所述多个分路风道配置成使流出所述风道组件的气流分别进入所述冰箱的多个储物间室内,或使流出所述风道组件的气流分别从所述冰箱的一个储物间室的间室壁上的多个位置处进入该储物间室;和
    权利要求1至13中任一项所述的分路送风装置,设置于所述风道组件内,所述分路送风装置的多个气流通道的进口均与所述总送风道连通,所述多个气流通道的出口分别与所述多个分路风道连通。
  15. 一种冰箱,包括:
    风道组件,其内限定有送风通道;和
    权利要求1至13中任一项所述的分路送风装置,设置于所述送风通道内,配置成调节流经所述送风通道的气流的流量。
PCT/CN2016/085348 2015-10-29 2016-06-08 分路送风装置及具有该分路送风装置的冰箱 WO2017071232A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/771,646 US10544980B2 (en) 2015-10-29 2016-06-08 Branching air supply device and refrigerator with same
EP16858675.8A EP3351878B1 (en) 2015-10-29 2016-06-08 Branching air supply device and refrigerator with same
JP2018521425A JP6592598B2 (ja) 2015-10-29 2016-06-08 分岐送風装置及び当該分岐送風装置を備える冷蔵庫

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510718727.8A CN106196838B (zh) 2015-10-29 2015-10-29 分路送风装置及具有该分路送风装置的冰箱
CN201510718727.8 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017071232A1 true WO2017071232A1 (zh) 2017-05-04

Family

ID=57453077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085348 WO2017071232A1 (zh) 2015-10-29 2016-06-08 分路送风装置及具有该分路送风装置的冰箱

Country Status (5)

Country Link
US (1) US10544980B2 (zh)
EP (1) EP3351878B1 (zh)
JP (1) JP6592598B2 (zh)
CN (1) CN106196838B (zh)
WO (1) WO2017071232A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8997507B2 (en) * 2012-10-22 2015-04-07 Whirlpool Corporation Low energy evaporator defrost
CN106878295A (zh) * 2017-01-24 2017-06-20 南京航空航天大学 用于铁轨探伤的系统及其方法
CN108050751A (zh) * 2017-12-29 2018-05-18 青岛海尔股份有限公司 分路送风装置及冰箱
CN108302874B (zh) * 2017-12-29 2020-04-21 青岛海尔股份有限公司 分路送风装置及冰箱
CN108302875A (zh) * 2017-12-29 2018-07-20 青岛海尔股份有限公司 分路送风装置及冰箱
CN110398117B (zh) * 2018-04-24 2020-11-24 青岛海尔股份有限公司 多路电动风门、速冻盘及冰箱
CN110398123B (zh) * 2018-04-24 2020-08-28 海尔智家股份有限公司 用于冰箱的速冻盘、冰箱及冰箱的控制方法
CN111692797A (zh) * 2019-03-11 2020-09-22 青岛海尔电冰箱有限公司 风冷冰箱
CN112129029B (zh) * 2019-06-25 2022-01-25 重庆海尔制冷电器有限公司 冰箱的风道组件及冰箱
CN113446778A (zh) * 2020-03-27 2021-09-28 海信(山东)冰箱有限公司 冰箱
CN113932526B (zh) * 2020-07-14 2022-11-29 合肥美的电冰箱有限公司 一种制冷设备
CN114061252B (zh) * 2020-07-31 2024-01-09 青岛海尔电冰箱有限公司 风冷冰箱的控制方法与风冷冰箱
JP7466714B2 (ja) 2021-02-12 2024-04-12 三菱電機株式会社 冷蔵庫
CN113375419A (zh) * 2021-07-15 2021-09-10 青岛海尔空调器有限总公司 一种储物装置和空调

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008012A1 (de) * 1989-03-14 1990-09-27 Sharp Kk Lueftungsanordnung fuer ein kuehlgeraet
JPH1172280A (ja) * 1997-08-29 1999-03-16 Sanyo Electric Co Ltd 低温ショーケース
CN1213765A (zh) * 1997-10-02 1999-04-14 三星电子株式会社 具有分配冷气装置的冰箱
CN1215827A (zh) * 1997-08-29 1999-05-05 三星电子株式会社 具有冷空气扩散片的冰箱
US20100107670A1 (en) * 2008-07-09 2010-05-06 Dci Marketing, Inc. Ventilated merchandising system
CN102564011A (zh) * 2010-12-10 2012-07-11 博西华家用电器有限公司 一种冰箱及其间室的送风系统
CN104534780A (zh) * 2014-12-23 2015-04-22 合肥美的电冰箱有限公司 风道组件和冰箱
WO2015089365A2 (en) * 2013-12-12 2015-06-18 Electrolux Home Products, Inc. Movable mullion

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100254409B1 (ko) * 1997-08-29 2000-05-01 구자홍 냉장고의 집중식 냉기공급장치
DE29907267U1 (de) * 1999-04-23 1999-07-15 BSH Bosch und Siemens Hausgeräte GmbH, 81669 München Kühlgerät
JP2005321140A (ja) * 2004-05-07 2005-11-17 Toshiba Corp 冷蔵庫
JP2009097649A (ja) * 2007-10-18 2009-05-07 Mitsubishi Electric Corp ダンパー装置及びそのダンパー装置を用いた冷蔵庫
EP2339275B1 (en) * 2009-12-24 2017-02-08 Panasonic Corporation Refrigerator
EP2527766A1 (de) * 2011-05-23 2012-11-28 Forster Küchen- & Kühltechnik AG Kühlschrank
CN102226621B (zh) * 2011-06-16 2013-04-17 合肥美的荣事达电冰箱有限公司 冰箱
JP2014035096A (ja) * 2012-08-07 2014-02-24 Sharp Corp 冷蔵庫
CN103175365A (zh) * 2013-04-23 2013-06-26 合肥美的荣事达电冰箱有限公司 冰箱
CN104879994B (zh) * 2015-05-21 2018-02-02 青岛海尔股份有限公司 分路送风装置及具有该分路送风装置的冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008012A1 (de) * 1989-03-14 1990-09-27 Sharp Kk Lueftungsanordnung fuer ein kuehlgeraet
JPH1172280A (ja) * 1997-08-29 1999-03-16 Sanyo Electric Co Ltd 低温ショーケース
CN1215827A (zh) * 1997-08-29 1999-05-05 三星电子株式会社 具有冷空气扩散片的冰箱
CN1213765A (zh) * 1997-10-02 1999-04-14 三星电子株式会社 具有分配冷气装置的冰箱
US20100107670A1 (en) * 2008-07-09 2010-05-06 Dci Marketing, Inc. Ventilated merchandising system
CN102564011A (zh) * 2010-12-10 2012-07-11 博西华家用电器有限公司 一种冰箱及其间室的送风系统
WO2015089365A2 (en) * 2013-12-12 2015-06-18 Electrolux Home Products, Inc. Movable mullion
CN104534780A (zh) * 2014-12-23 2015-04-22 合肥美的电冰箱有限公司 风道组件和冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3351878A4 *

Also Published As

Publication number Publication date
CN106196838A (zh) 2016-12-07
JP2018536828A (ja) 2018-12-13
EP3351878B1 (en) 2021-12-15
JP6592598B2 (ja) 2019-10-16
US10544980B2 (en) 2020-01-28
CN106196838B (zh) 2018-02-02
US20180306483A1 (en) 2018-10-25
EP3351878A4 (en) 2018-09-26
EP3351878A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
WO2017071232A1 (zh) 分路送风装置及具有该分路送风装置的冰箱
WO2017152530A1 (zh) 冰箱及用于冰箱的分路送风装置
CN108302874B (zh) 分路送风装置及冰箱
WO2019128718A1 (zh) 分路送风装置及冰箱
WO2019129067A1 (zh) 分路送风装置及冰箱
WO2017152538A1 (zh) 冰箱及用于冰箱的分路送风装置
WO2019128946A1 (zh) 分路送风装置及冰箱
WO2017211073A1 (zh) 离心风机及具有该离心风机的冰箱
WO2017036224A1 (zh) 分路送风装置及具有该分路送风装置的冰箱
WO2019001499A1 (zh) 冰箱
WO2019129072A1 (zh) 分路送风装置及冰箱
CN108253692B (zh) 档位感知装置、分路送风装置及冰箱
CN104990333B (zh) 冰箱
CN106679287A (zh) 冰箱的风量调节装置
CN108302876B (zh) 分路送风装置及冰箱
WO2018108139A1 (zh) 分路送风装置及具有该分路送风装置的冰箱
CN205641739U (zh) 风冷冰箱
CN108302872B (zh) 分路送风装置及冰箱
CN108332489A (zh) 分路送风装置及冰箱
CN209726605U (zh) 送风装置及冰箱
CN212566459U (zh) 一种冰箱风道盖板
CN113945045A (zh) 冰箱
CN115751821A (zh) 冰箱分路送风装置
CN106196836B (zh) 分路送风装置及具有该分路送风装置的冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016858675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018521425

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 15771646

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE