WO2017071016A1 - 像素电极及阵列基板 - Google Patents

像素电极及阵列基板 Download PDF

Info

Publication number
WO2017071016A1
WO2017071016A1 PCT/CN2015/097241 CN2015097241W WO2017071016A1 WO 2017071016 A1 WO2017071016 A1 WO 2017071016A1 CN 2015097241 W CN2015097241 W CN 2015097241W WO 2017071016 A1 WO2017071016 A1 WO 2017071016A1
Authority
WO
WIPO (PCT)
Prior art keywords
trunk
electrodes
electrode
pixel electrode
alignment
Prior art date
Application number
PCT/CN2015/097241
Other languages
English (en)
French (fr)
Inventor
郭晋波
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/907,935 priority Critical patent/US10162226B2/en
Publication of WO2017071016A1 publication Critical patent/WO2017071016A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy

Definitions

  • the present invention relates to the field of liquid crystal display, and in particular to a pixel electrode and an array substrate.
  • VA type liquid crystal display has the advantages of large viewing angle, high contrast and no need for friction alignment, and has become a common display mode for large-size TV liquid crystal display devices.
  • the VA type liquid crystal display generally adopts a multi-domain structure to improve the color shift, so that the reliable and stable alignment of the liquid crystal molecules is the basis for the VA type liquid crystal display to correctly display the picture.
  • the alignment of liquid crystal molecules is mainly achieved by the interaction between an electric field and a specially designed pixel electrode.
  • FIG. 1 is a schematic structural view of a pixel electrode of a commonly used VA type liquid crystal display in the prior art.
  • the pixel electrode is composed of a cross-shaped torso electrode and a plurality of branch electrodes intersecting the torso electrode at an angle.
  • the trunk electrode is located at an intermediate position of the pixel electrode, and is mainly used for connecting the branch electrodes, and the width of the trunk electrode is generally larger than the width of the branch electrode to ensure the stability of the structure.
  • the liquid crystal molecules are deflected in the direction of each branch electrode in the direction of each branch electrode by the electric field and the pixel electrode, and from the periphery of the pixel electrode toward the center of the pixel electrode. Since the directions of the respective branch electrodes on the pixel electrode are different, different display domains can be formed.
  • the liquid crystal display having the pixel electrode of the above structure may appear dark when displaying a picture.
  • the deflection angle of the liquid crystal molecules located at the trunk electrode is the same as the deflection angle of the upper and lower polarizers, so the transmittance at the trunk electrode is 0, and dark lines appear in the area around the trunk electrode, which affects the display of the liquid crystal display. effect.
  • the upper and lower substrates are displaced due to the bending, which causes the dark lines to be widened, and the transmittance of the pixel unit is lowered. Macroscopically, dark spots appear in some areas on the liquid crystal display, and the image quality is degraded.
  • One of the technical problems to be solved by the present invention is to improve the structure of the pixel electrode to reduce the generation of dark lines.
  • each alignment region includes two vertically intersecting trunk electrodes and a plurality of branch electrodes: trunk electrodes, respectively The horizontal direction and the vertical direction are disposed, and the trunk electrodes in the vertical direction are located at independent edges of the respective alignment regions; the branch electrodes extend radially from the vertical intersection of the trunk electrodes; wherein, at the trunk electrodes The width of each of the trunk electrodes at the vertical intersection has a maximum value.
  • the trunk electrode in the horizontal direction is disposed at a boundary between the respective alignment regions.
  • no more than two torso electrodes are provided at the interface between the respective alignment regions.
  • the four alignment regions are arranged in the vertical direction.
  • the branch electrodes of the first alignment region and the second alignment region in the vertical direction, and the branch electrodes of the third alignment region and the fourth alignment region are respectively K-shaped.
  • the width of the trunk electrode gradually decreases along the length direction of the trunk electrode.
  • the branch electrodes are disposed in parallel with each other at equal intervals.
  • An embodiment of the present application further provides an array substrate in which a plurality of pixel units are arranged, one pixel electrode is disposed in each pixel unit, the pixel electrode is divided into four alignment regions, and each alignment region includes two a vertically intersecting trunk electrode and a plurality of branch electrodes: trunk electrodes respectively disposed in a horizontal direction and a vertical direction, and the trunk electrodes in a vertical direction are located at independent edges of the respective alignment regions; branch electrodes from the trunk electrodes The vertical intersections extend radially; wherein the width of each of the torso electrodes has a maximum at the vertical intersection of the torso electrodes.
  • the width of the trunk electrode gradually decreases along the length direction of the trunk electrode.
  • the width of the trunk electrode in the horizontal direction is at a position connected to the trunk electrode in the vertical direction. Large, and the width of the trunk electrode in the horizontal direction gradually decreases from both ends toward the middle.
  • the trunk electrode By preferentially setting the trunk electrode to the edge of the pixel electrode and appropriately increasing the size of the trunk electrode at the vertical intersection, the area of the dark region inside the pixel unit is significantly reduced, thereby enhancing the pixel.
  • the penetration rate is beneficial to improve the quality of the display.
  • FIG. 1 is a schematic structural view of a pixel electrode of a prior art VA type liquid crystal display
  • FIGS. 2a-2d are schematic structural views of a pixel electrode according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an alignment area according to an embodiment of the present application.
  • FIG. 4a-4b are schematic views of the contrast of the dark lines, wherein FIG. 4a is a schematic view of the dark lines generated at the edges of the pixel electrodes when the respective trunk electrodes have no width change, and FIG. 4b is a schematic view of the pixel electrodes of the embodiment of the present application. A schematic representation of the dark lines produced at the edges.
  • the structure of the pixel electrode of the embodiment of the present application is as shown in FIG. 2a to FIG. 2d, and the pixel electrode can be further divided into a plurality of alignment regions, and the structure of the alignment region is shown in FIG. 3.
  • the alignment area 30 has a rectangular shape, and two torso electrodes 301 are disposed at the edges thereof, and the two body electrodes 301 vertically intersect at a position of a vertex of the rectangular alignment area 30 for supporting and connecting a plurality of Branch electrode 302.
  • Branch electric The poles 302 extend radially from the perpendicular intersection of the torso electrodes 301 and do not exceed the rectangular area defined by the two torso electrodes 301. It can be understood that the present invention is not limited to the case where the four alignment areas in FIG. 2 are vertically arranged, and it is also possible that a plurality of alignment areas are combined in other common combinations.
  • each of the alignment regions 30 is sequentially adjacent from top to bottom, that is, each of the alignment regions 30 has only an adjacent boundary in the horizontal direction, and has no adjacent boundary in the vertical direction, and the edge of each alignment region 30 along the vertical direction is Independent edge.
  • the trunk electrodes 301 when the trunk electrodes 301 are disposed at the edges of the two adjacent alignment regions 30, they may be combined into one trunk electrode, such as the trunk electrodes 301a and 301b in FIG. 2a, respectively, by the first alignment region and The second alignment region, and the adjacent alignment electrode of the third alignment region and the fourth alignment region are combined.
  • most of the trunk electrodes 301 can be located at the peripheral edges of the constituent pixel electrodes 20 (ie, at the independent edges of the respective alignment regions), such as the trunk electrodes 301c, 301b in FIG. 2a. , 301e and 301f.
  • the pixel electrode 20 when the relatively wide trunk electrode 301 is mostly concentrated at the peripheral edge of the pixel electrode 20, since the trunk electrode 301 distributed inside the pixel electrode 20 is reduced, the pixel electrode can be reduced.
  • the area of the region in which the internal transmittance is 0 increases the aperture ratio of the pixel unit.
  • the trunk electrode 301 is located at the peripheral edge of the pixel electrode 20, the dark region is offset toward the trunk electrode 301 at the peripheral edge of the pixel electrode 20, reducing the area of the dark line inside the pixel electrode 20, which is advantageous for improving the liquid crystal display. The quality of the picture.
  • the size (length) of the pixel electrode 20 in the vertical direction is larger than the dimension (width) thereof in the horizontal direction, and in the embodiment of the present application, there is no edge in the interior of the pixel electrode 20.
  • the trunk electrode 301 in the vertical direction can suppress dark lines more effectively.
  • the trunk electrodes 301a and 301b in the horizontal direction are located inside the pixel electrode 20, in order to increase the aperture ratio of the pixel unit, it is necessary to make the widths of 301a and 301b as small as possible, but This does not affect the stabilization of the pixel electrode 20, and the pixel electrode 20 can still be stabilized by the intersection structures at the trunk electrodes 301a, 301c and 301d, and the trunk electrodes 301b, 301e and 301f at the peripheral edge of the pixel electrode 20. Support.
  • the width of the plurality of torso electrodes 301 at their perpendicular intersection is greater than the width of the remaining portions of the trunk electrodes, that is, the width of each of the trunk electrodes 301 has a maximum at the vertical intersection, as shown by the dotted line in FIG. 2a.
  • the enclosed area is shown.
  • the widths of the respective trunk electrodes are greater than the widths of the remaining portions except their respective intersections.
  • the same structure is also obtained at the intersection of the trunk electrodes 301b, 301e, and 301f.
  • the widths of the trunk electrodes 301a and 301b may not change. Since 301a and 301b are located in the inner region of the pixel electrode 20, as described above, in order to increase the aperture ratio of the pixel unit, the widths of the trunk electrodes 301a and 301b are still mainly reduced in size, and on the basis of this, stability can be ensured. In the case of support, the size of 301a and 301b at the vertical intersection can be appropriately increased.
  • FIG. 4a is a schematic view of the dark lines generated at the edges of the pixel electrodes when the width of the trunk electrodes is not changed
  • FIG. 4b is the dark lines generated at the edges of the pixel electrodes of the embodiment of the present application.
  • the liquid crystal molecules are branched along the electric field.
  • the direction of the electrode 302 is deflected in a direction directed to the perpendicular intersection of the trunk electrode 301 while the darkened region at the peripheral edge of the pixel electrode 20 is compressed to the intersection of the trunk electrode 301, and the range of the darkened region is further narrowed. Therefore, in the embodiment of the present application, since the intensity of the local electric field is enhanced, it is advantageous to reliably align the liquid crystal molecules, and at the same time, the area of the dark region can be reduced, and the image quality of the liquid crystal display can be improved.
  • the widths of the trunk electrodes 301c to 301f are preferably gradually decreased along the longitudinal direction of the trunk electrode, so that the electric field at the peripheral edge of the pixel electrode 20 can be uniformly changed without causing liquid crystal molecules due to the sudden change of the electric field.
  • the orientation is irregular, which in turn creates additional dark areas.
  • the widths of the trunk electrodes 301a and 301b reach a maximum at the junction with the trunk electrodes 301c to 301f, and also gradually decrease in the direction in which they extend.
  • each of the branch electrodes 302 is disposed in an equally spaced and parallel form, and each of the branch electrodes 302 has an angle of 45 degrees or 135 degrees with respect to the horizontal direction. At this time, the transmittance of the pixels can be maximized. It is to be understood that changes and modifications of the above-described corresponding structures are intended to be included within the scope of the appended claims.
  • the branching electrodes of the first alignment region and the second alignment region in the vertical direction are K-shaped, and the third and fourth alignment regions and the fourth The branch electrodes of the alignment regions are also K-shaped.
  • the glyph pixel electrode can significantly increase the aperture ratio of the pixel unit.
  • the structure of the pixel electrode 20 in other embodiments is shown in Figs. 2b to 2d.
  • the trunk electrodes 301c to 301f in the vertical direction are located at the edge of the same side of the pixel electrode 20, and the trunk electrodes 301a and 301b in the horizontal direction are located inside the pixel electrode 20.
  • the respective trunk electrodes 301 on one side of the pixel electrode 20 shown in Fig. 2b are connected in a single body, so that a more stable support can be achieved. It can also be seen from Fig.
  • the trunk electrodes 301a and 301b are located between two adjacent alignment regions, and their widths reach a maximum at the junction with the trunk electrodes 301c to 301f, and also gradually decrease in the direction in which they extend.
  • the trunk electrodes 301c to 301f in the vertical direction are also located at the edge of the same side of the pixel electrode 20, and of the three trunk electrodes 301a, 301b, and 301g in the horizontal direction, only 301g is located inside the pixel electrode 20. .
  • the area of the opaque torso electrode 301 inside the pixel electrode 20 in FIG. 2c is further reduced, which is advantageous for increasing the aperture ratio of the pixel unit.
  • 2c is connected as a whole, and is integrally connected with the trunk electrodes 301a and 301b disposed at the uppermost edge of the pixel electrode 20 and the lowermost edge, respectively.
  • the area of the opaque region inside the pixel electrode 20 is reduced, and a more stable support structure is realized.
  • the vertical intersection of the trunk electrodes 301a and 301c of the first alignment region is located at the top corner of the pixel electrode 20, as shown by the area enclosed by the broken line frame in Fig. 2c, in this embodiment.
  • the width of the trunk electrodes 301a and 301b in the direction in which they extend may be set to have a varying width, or may remain unchanged, and may be adjusted according to actual display effects; and the trunk electrode 301g located between two adjacent alignment regions. Its width reaches a maximum at the junction with the trunk electrodes 301d and 301e, and gradually decreases in the direction in which it extends.
  • the trunk electrode 301g may be disposed in accordance with the treatment of the trunk electrodes 301a and 301b in Fig. 2a with the principle of reducing the size thereof.
  • the structure of the pixel electrode 20 in FIG. 2d can also ensure stable support and increase the aperture ratio of the pixel unit.
  • the description of the main body electrode is similar to that of FIG. 2c, and details are not described herein again.
  • the trunk electrode 301g is located between two adjacent alignment regions, two of which The ends are respectively connected to the trunk electrode 301d on the left side and the trunk electrode 301e on the right end, the width of which is larger at the junction with the trunk electrodes 301d and 301e, and in the direction along which it extends (ie, the horizontal direction in FIG. 2). , gradually decreasing from the ends to the middle.
  • the trunk electrodes 301 are preferentially positioned at the peripheral edge of the pixel electrode 20 on the basis of reducing the area of the opaque region inside the pixel electrode 20. This is advantageous in increasing the aperture ratio of the pixel unit and suppressing the generation of dark lines.
  • no more than two trunk electrodes are disposed adjacent to each of the alignment regions 30 (ie, in the horizontal direction), and there is no trunk electrode in the vertical direction.
  • an array substrate having the above-described pixel electrode structure is also provided. Specifically, a plurality of pixel units are arranged on the array substrate, and one pixel electrode 20 is disposed in each pixel unit, and details are not described herein.
  • the aperture ratio of the pixel unit of the array substrate having the above structure is improved and the liquid crystal molecules can be reliably aligned, the dark lines are reduced, and the display effect is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种像素电极(20)及阵列基板,该像素电极(20)划分为四个配向区域(30),且每个配向区域(30)包括两个分别沿水平方向与垂直方向设置的躯干电极(301),且沿垂直方向的躯干电极(301)位于各配向区域(30)的独立的边缘处;在躯干电极(301)的垂直相交处各躯干电极(301)的宽度具有最大值。该像素电极(20)显著地减少了像素单元内部的暗纹区域的面积,提升像素的穿透率。

Description

像素电极及阵列基板
相关申请的交叉引用
本申请要求享有2015年10月27日提交的名称为“像素电极及阵列基板”的中国专利申请CN201510706723.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示领域,尤其涉及一种像素电极及阵列基板。
背景技术
VA型液晶显示器以其大视野角、高对比度以及无须摩擦配向等优势,成为大尺寸TV用液晶显示设备的常见显示模式。VA型液晶显示器一般采用多畴结构来改善色偏,因此使液晶分子可靠并稳定的配向是VA型液晶显示器能够正确显示画面的基础。目前,液晶分子的配向主要利用电场与经过特殊设计的像素电极之间的相互配合来实现。
图1为现有技术中一种普遍使用的VA型液晶显示器的像素电极的结构示意图。如图所示,该像素电极由十字形的躯干电极以及以一定角度与躯干电极相交的多条分支电极组成。躯干电极位于像素电极的中间位置,主要用于连接各分支电极,且躯干电极的宽度一般大于分支电极的宽度以保证结构的稳固。对该像素电极施加一定的灰阶电压后,液晶分子将在电场和像素电极的共同作用下沿各分支电极的方向,从像素电极的外围向指向像素电极的中心的方向偏转。由于像素电极上的各分支电极方向不同,因而可以形成不同的显示畴。
但具有上述结构的像素电极的液晶显示器在显示画面时会出现暗纹。这是由于位于躯干电极处的液晶分子的偏转角度与上、下偏光片的偏转角度相同,因此躯干电极处的穿透率为0,进而在躯干电极周围区域出现暗纹,影响液晶显示器的显示效果。特别是采用曲面显示时,由于弯曲造成的上下基板错位,将导致暗纹变宽,像素单元的穿透率降低,宏观上表现为液晶显示屏上的某些区域出现暗团,画质下降。
综上,亟需对像素电极的结构进行改进以减少暗纹的产生。
发明内容
本发明所要解决的技术问题之一是对像素电极的结构进行改进以减少暗纹的产生。
为了解决上述技术问题,本申请的实施例首先提供了一种像素电极,划分为四个配向区域,且每个配向区域包括两个垂直相交的躯干电极及多个分支电极:躯干电极,分别沿水平方向与垂直方向设置,且沿垂直方向的所述躯干电极位于各配向区域的独立的边缘处;分支电极,从所述躯干电极的垂直相交处呈放射状延伸;其中,在所述躯干电极的垂直相交处各躯干电极的宽度具有最大值。
优选地,沿水平方向的躯干电极设置于各配向区域之间的交界处。
优选地,设置于各配向区域之间的交界处的躯干电极不多于两个。
优选地,四个配向区域沿垂直方向排列。
优选地,沿垂直方向的第一个配向区域与第二个配向区域的分支电极,以及第三个配向区域与第四个配向区域的的分支电极分别呈K形。
优选地,躯干电极的宽度沿所述躯干电极的长度方向逐渐减小。
优选地,分支电极以等间距相互平行设置。
本申请的实施例还提供了一种阵列基板,排列有多个像素单元,每个像素单元内设置有一个像素电极,所述像素电极划分为四个配向区域,且每个配向区域包括两个垂直相交的躯干电极及多个分支电极:躯干电极,分别沿水平方向与垂直方向设置,且沿垂直方向的所述躯干电极位于各配向区域的独立的边缘处;分支电极,从所述躯干电极的垂直相交处呈放射状延伸;其中,在所述躯干电极的垂直相交处各躯干电极的宽度具有最大值。
优选地,所述躯干电极的宽度沿所述躯干电极的长度方向逐渐减小。
优选地,当一沿水平方向的躯干电极的两端分别与沿垂直方向的躯干电极连接时,该沿水平方向的所述躯干电极的宽度在与沿垂直方向的所述躯干电极连接的位置较大,且该沿水平方向的所述躯干电极的宽度分别从两端向中间处逐渐减小。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
通过将躯干电极优先设置于像素电极的边缘并适当增大躯干电极在垂直相交处的尺寸,显著地减少了像素单元内部的暗纹区域的面积,进而提升了像素的 穿透率,有利于改善显示的画质。
本发明的其他优点、目标,和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书,权利要求书,以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请的技术方案或现有技术的进一步理解,并且构成说明书的一部分。其中,表达本申请实施例的附图与本申请的实施例一起用于解释本申请的技术方案,但并不构成对本申请技术方案的限制。
图1为现有技术的VA型液晶显示器的像素电极的结构示意图;
图2a-图2d为本申请实施例的像素电极的结构示意图;
图3为本申请实施例的配向区域的结构示意图;
图4a-图4b为暗纹的对比示意图,其中,图4a为各躯干电极无宽度变化时在像素电极的边缘处所产生的暗纹的示意图,图4b为采用本申请实施例的像素电极时在其边缘处所产生的暗纹的示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成相应技术效果的实现过程能充分理解并据以实施。本申请实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本发明的保护范围之内。
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如“上”、“下”、“左”、“右”等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
本申请实施例的像素电极的结构如图2a~图2d所示,该像素电极可以进一步划分为多个配向区域,配向区域的结构参见图3。如图3所示,配向区域30呈矩形,在其边缘处设置有两个躯干电极301,且两个躯干电极301垂直相交于矩形配向区域30的顶角的位置,用于支撑以及连接多个分支电极302。分支电 极302从躯干电极301的垂直相交处呈放射状延伸,且不超过由两个躯干电极301所界定的矩形区域。可以理解的是,本发明并不限于图2中四个配向区域垂直排列的情况,还可以是多个配向区域以常见的其他组合形式进行组合。
如图2a所示,在一个像素电极20中沿垂直方向排列有四个上述配向区域30。其中,各配向区域30从上至下依次邻接,即各配向区域30之间仅具有沿水平方向的邻接边界,而不具有沿垂直方向的邻接边界,各配向区域30沿垂直方向的边缘为其独立的边缘。进一步地,当相邻接的两个配向区域30的边缘处均设置有躯干电极301时,可以合并成一个躯干电极,如图2a中的躯干电极301a和301b,分别由第一个配向区域和第二配向区域,以及第三个配向区域和第四个配向区域的相邻接的躯干电极合并而成。各配向区域30采用上述排列后,能够使大部分的躯干电极301位于所组成的像素电极20的外围边缘处(即各配向区域的独立的边缘处),如图2a中的躯干电极301c、301b、301e及301f。
根据前述分析可知,对于像素电极20,当相对较宽的躯干电极301大部分集中于像素电极20的外围边缘处时,由于分布于像素电极20内部的躯干电极301减少了,因而可以减少像素电极20内透射率为0的区域的面积,提高像素单元的开口率。当躯干电极301位于像素电极20的外围边缘处时,暗纹区域会向像素电极20的外围边缘处的躯干电极301偏移,减少像素电极20内部的暗纹的面积,有利于提升液晶显示器显示的画质。另外,从图2a中还可以看出,像素电极20沿垂直方向的尺寸(长度)大于其沿水平方向的尺寸(宽度),而在本申请实施例中,在像素电极20的内部不具有沿垂直方向的躯干电极301,因此能够更加有效地抑制暗纹。
此外,还需要注意的是,在图2a中,由于沿水平方向的躯干电极301a和301b位于像素电极20的内部,为提高像素单元的开口率,需要使301a和301b的宽度尽可能小,但这并不会影响像素电极20的稳固,借助于位于躯干电极301a、301c与301d,以及躯干电极301b、301e与301f在像素电极20的外围边缘处的交叉结构,仍然可以使像素电极20形成稳固的支撑。
在本申请的实施例中,多个躯干电极301在其垂直相交处的宽度大于躯干电极其余部分的宽度,即各躯干电极301的宽度在垂直相交处具有最大值,如图2a中虚线框所围成的区域所示。具体的,在躯干电极301a、301c及301d的垂直相交处,各躯干电极的宽度均大于它们各自的除相交处以外的其余部分的宽度。在躯干电极301b、301e及301f的相交处也具有同样的结构。
需要注意的是,在其他的实施例中,躯干电极301a和301b的宽度也可以不发生变化。由于301a和301b位于像素电极20的内部区域,如前所述,为提高像素单元的开口率,躯干电极301a和301b的宽度仍然以减小其尺寸为主要原则,在此基础上并能够确保稳定支撑的情况下,可适当增大301a和301b在垂直相交处的尺寸。
适当增大躯干电极301在其垂直相交处的宽度可以使产生于像素电极20的外围边缘处的暗纹进一步向多个躯干电极301的垂直相交处收敛,使分布于像素电极20的区域内部的暗纹的面积进一步减少,提高像素的穿透率。如图4所示,图4a为各躯干电极无宽度变化时在像素电极的边缘处所产生的暗纹的示意图,图4b为采用本申请实施例的像素电极时在其边缘处所产生的暗纹的示意图。可以看出,当在像素电极20上施加一定的电压后,由于躯干电极301在垂直相交处的尺寸较大,进而使得该处的电场强度变大,在该电场的作用下,液晶分子沿分支电极302的方向向指向躯干电极301的垂直相交处的方向偏转,同时使像素电极20的外围边缘处的暗纹区域被压缩到躯干电极301的十字交叉处,且暗纹区域的范围进一步缩小。因此,在本申请的实施例中,由于加强了局部电场的强度,所以有利于使液晶分子进行可靠的配向,同时能够缩小暗纹区域的面积,提升液晶显示器的画质。
需要说明的是,躯干电极301c~301f的宽度优选为沿躯干电极的长度方向逐渐减小,这样可以使像素电极20的外围边缘处的电场均匀变化,不会由于电场的突变而使得液晶分子的取向不规则,进而产生附加的暗纹区域。进一步优选的,躯干电极301a和301b的宽度在与躯干电极301c~301f的连接处达到最大值,并同样沿其自身的延伸方向逐渐减小。
分支电极302的具体形式,包括形状、尺寸、各分支电极之间的间隙的宽度以及各分支电极与水平方向的夹角等,可以根据液晶分子的配向要求进行设置,在本申请的实施例中对此不做限定。优选地将各分支电极302设置为等间距且相互平行的形式,且各分支电极302与水平方向的夹角为45度或135度,此时可以使像素的穿透率达到最大值。可以理解的是,在不背离本发明的精神及实质的情况下,上述对应结构的改变和变形均属于本发明的权利要求的保护范围。
另外,从图2a中还可以看出,在像素电极20中,沿垂直方向的第一个配向区域与第二个配向区域的分支电极呈K形,接下来的第三个配向区域与第四个配向区域的的分支电极也呈K形。相较于只能将躯干电极设置于中间位置的“米” 字形像素电极,可以显著地提高像素单元的开口率。
图2b~图2d中示出了其他实施例中的像素电极20的结构形式。在图2b中,沿垂直方向的躯干电极301c~301f位于像素电极20的同一侧的边缘处,沿水平方向的躯干电极301a和301b位于像素电极20的内部。图2b所示的像素电极20的一侧的各躯干电极301连接成一整体,因此可以实现更加稳固的支撑。从图2b中还可以看出,从上至下的第二个配向区域与第三个配向区域之间的分支电极302直接连接在一起,不存在躯干电极301,因此躯干电极301d与301e的交接处的尺寸不发生变化。而在本实施例中,躯干电极301a和301b位于两相邻配向区域之间,其宽度在与躯干电极301c~301f的连接处达到最大值,并同样沿其自身的延伸方向逐渐减小。
在图2c中,沿垂直方向的躯干电极301c~301f同样位于像素电极20的同一侧的边缘处,而沿水平方向的三个躯干电极301a、301b和301g中,仅301g位于像素电极20的内部。相比于前述实施例中像素电极的结构,图2c中的像素电极20的内部的不透光的躯干电极301的面积进一步减小,有利于提高像素单元的开口率。同时,图2c所示的像素电极20的一侧的各躯干电极301连接成一整体,且其与分别设置于像素电极20最上方边缘处与最下方边缘处的躯干电极301a和301b连接成一整体,既减少了像素电极20内部的不透光的区域的面积,又实现了更加稳固的支撑结构。
同样的,由于在第一个配向区域与第二个配向区域,以及第三个配向区域与第四个配向区域之间的分支电极302均各自直接连接在一起,因此在躯干电极301c与301d,以及301e与301f的交接处的尺寸均不发生变化,即不会做加宽处理。另外还需要注意的是,第一个配向区域的躯干电极301a和301c的垂直相交处位于像素电极20的顶角处,如图2c中虚线框所围成的区域所示,在本实施例中,躯干电极301a和301b沿其自身延伸方向上的宽度可以设置为具有变化的宽度,也可以保持不变,可以根据实际的显示效果进行调整;而位于两相邻配向区域之间的躯干电极301g,其宽度在与躯干电极301d和301e的连接处达到最大值,并沿其自身的延伸方向逐渐减小。当然躯干电极301g也可以按照图2a中躯干电极301a及301b的处理方式,以减小其尺寸为主要原则进行设置。在图2d中的像素电极20的结构同样能够保证稳固的支撑以及提高像素单元的开口率,其主要躯干电极的描述与图2c类似,此处不再赘述。
本实施例需要强调的是,位于两相邻配向区域之间的躯干电极301g,其两 端分别与左侧的躯干电极301d和右端的躯干电极301e连接,其宽度在与躯干电极301d和301e的连接处较大,并在沿其自身的延伸方向上(即图2中的水平方向),分别从两端向中间处逐渐减小。
进一步地,在以配向区域30排列形成像素电极20时,以减少像素电极20内部的不透光区域的面积为原则,优先使各躯干电极301位于像素电极20的外围边缘处。这样有利于提高像素单元的开口率,抑制暗纹的产生。具体的,在本申请的各实施例中,设置于各配向区域30之间的邻接处(即沿水平方向)的躯干电极不多于两个,且其内部不存在沿垂直方向的躯干电极。
在本申请的其他实施例中,还提供了一种具有上述像素电极结构的阵列基板。具体的,在阵列基板上排列有多个像素单元,每个像素单元内设置有一个像素电极20,此处不再赘述。具有上述结构的阵列基板的像素单元的开口率得到提高且可以使液晶分子实现可靠配向,并减少暗纹,提升显示的效果。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (13)

  1. 一种像素电极,划分为四个配向区域,且每个配向区域包括两个垂直相交的躯干电极及多个分支电极:
    躯干电极,分别沿水平方向与垂直方向设置,且沿垂直方向的所述躯干电极位于各配向区域的独立的边缘处;
    分支电极,从所述躯干电极的垂直相交处呈放射状延伸;
    其中,在所述躯干电极的垂直相交处各躯干电极的宽度具有最大值。
  2. 根据权利要求1所述的像素电极,其中,沿水平方向的所述躯干电极设置于各配向区域之间的交界处。
  3. 根据权利要求2所述的像素电极,其中,设置于各配向区域之间的交界处的所述躯干电极不多于两个。
  4. 根据权利要求1所述的像素电极,其中,所述四个配向区域沿垂直方向排列。
  5. 根据权利要求4所述的像素电极,其中,在沿垂直方向的第一个配向区域与第二个配向区域,以及第三个配向区域与第四个配向区域之间的交界处分别设置有沿水平方向的躯干电极。
  6. 根据权利要求4所述的像素电极,其中,在沿垂直方向的第二个配向区域与第三个配向区域之间的交界处,以及第一个配向区域与第四个配向区域的独立的边缘处分别设置有沿水平方向的躯干电极。
  7. 根据权利要求4所述的像素电极,其中,沿垂直方向的第一个配向区域与第二个配向区域的分支电极,以及第三个配向区域与第四个配向区域的的分支电极分别呈K形。
  8. 根据权利要求1所述的像素电极,其中,所述躯干电极的宽度沿所述躯干电极的长度方向逐渐减小。
  9. 根据权利要求1所述的像素电极,其中,所述分支电极以等间距相互平行设置。
  10. 根据权利要求9所述的像素电极,其中,所述分支电极与水平方向的夹角为45度或135度。
  11. 一种阵列基板,排列有多个像素单元,每个像素单元内设置有一个像素电极,所述像素电极划分为四个配向区域,且每个配向区域包括两个垂直相交的 躯干电极及多个分支电极:
    躯干电极,分别沿水平方向与垂直方向设置,且沿垂直方向的所述躯干电极位于各配向区域的独立的边缘处;
    分支电极,从所述躯干电极的垂直相交处呈放射状延伸;
    其中,在所述躯干电极的垂直相交处各躯干电极的宽度具有最大值。
  12. 根据权利要求11所述的阵列基板,其中,所述躯干电极的宽度沿所述躯干电极的长度方向逐渐减小。
  13. 根据权利要求12所述的阵列基板,其中,当一沿水平方向的躯干电极的两端分别与沿垂直方向的躯干电极连接时,该沿水平方向的所述躯干电极的宽度在与沿垂直方向的所述躯干电极连接的位置较大,且该沿水平方向的所述躯干电极的宽度分别从两端向中间处逐渐减小。
PCT/CN2015/097241 2015-10-27 2015-12-14 像素电极及阵列基板 WO2017071016A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,935 US10162226B2 (en) 2015-10-27 2015-12-14 Pixel electrode and array substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510706723.8 2015-10-27
CN201510706723.8A CN105158995B (zh) 2015-10-27 2015-10-27 像素电极及阵列基板

Publications (1)

Publication Number Publication Date
WO2017071016A1 true WO2017071016A1 (zh) 2017-05-04

Family

ID=54799893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097241 WO2017071016A1 (zh) 2015-10-27 2015-12-14 像素电极及阵列基板

Country Status (3)

Country Link
US (1) US10162226B2 (zh)
CN (1) CN105158995B (zh)
WO (1) WO2017071016A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10712596B2 (en) * 2013-08-02 2020-07-14 Samsung Display Co., Ltd. Liquid crystal display
TW201734605A (zh) * 2016-03-18 2017-10-01 友達光電股份有限公司 陣列基板以及曲面液晶顯示面板
KR102510428B1 (ko) * 2016-05-03 2023-03-15 삼성디스플레이 주식회사 표시 장치 및 그 제조방법
KR102498495B1 (ko) * 2016-05-03 2023-02-10 삼성디스플레이 주식회사 액정 표시 장치
CN107728385B (zh) * 2017-10-10 2020-07-07 南京中电熊猫液晶显示科技有限公司 液晶面板及其光配向方法
WO2020044557A1 (ja) * 2018-08-31 2020-03-05 堺ディスプレイプロダクト株式会社 液晶表示パネル
CN109143696A (zh) * 2018-10-08 2019-01-04 惠科股份有限公司 一种像素结构及显示装置
CN109557731B (zh) * 2018-12-24 2022-04-01 惠科股份有限公司 阵列基板、显示面板及显示器
JP7311401B2 (ja) * 2019-11-15 2023-07-19 スタンレー電気株式会社 液晶素子、照明装置
CN111308803B (zh) * 2020-03-12 2021-10-08 深圳市华星光电半导体显示技术有限公司 阵列基板
CN114063353B (zh) * 2020-07-29 2023-11-28 京东方科技集团股份有限公司 阵列基板、液晶显示面板及液晶显示装置
CN114764204A (zh) 2021-01-13 2022-07-19 京东方科技集团股份有限公司 显示面板及电子设备
CN115308954A (zh) * 2022-10-12 2022-11-08 广州华星光电半导体显示技术有限公司 阵列基板、液晶显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133619A (ja) * 2004-11-08 2006-05-25 Sharp Corp 液晶表示装置及びその製造方法
CN101086592A (zh) * 2006-06-06 2007-12-12 爱普生映像元器件有限公司 液晶装置及电子设备
US20090002588A1 (en) * 2007-06-27 2009-01-01 Samsung Electronics Co., Ltd. Display device and method of manufacturing the same
CN102023420A (zh) * 2009-09-16 2011-04-20 三星电子株式会社 液晶显示器
US20110141414A1 (en) * 2008-08-20 2011-06-16 Sharp Kabushiki Kaisha Liquid crystal display device
US20120133872A1 (en) * 2010-11-29 2012-05-31 Young-Gu Kim Liquid crystal display panel with unit pixels having slits in pixel electrode and photo alignment layers
US20130208225A1 (en) * 2012-02-09 2013-08-15 Samsung Display Co., Ltd. Liquid crystal display

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW588171B (en) * 2001-10-12 2004-05-21 Fujitsu Display Tech Liquid crystal display device
JP2007301201A (ja) 2006-05-12 2007-11-22 Samii Kk 遊技機
CN101398587B (zh) * 2007-09-29 2011-02-16 北京京东方光电科技有限公司 水平电场型液晶显示装置的像素结构
JP5121529B2 (ja) * 2008-03-27 2013-01-16 株式会社ジャパンディスプレイウェスト 液晶表示装置及び電子機器
US8760479B2 (en) * 2008-06-16 2014-06-24 Samsung Display Co., Ltd. Liquid crystal display
KR20120083163A (ko) * 2011-01-17 2012-07-25 삼성전자주식회사 액정 표시 장치
KR101830274B1 (ko) * 2011-01-28 2018-02-21 삼성디스플레이 주식회사 액정 표시 장치
WO2013054828A1 (ja) * 2011-10-11 2013-04-18 シャープ株式会社 液晶表示装置
CN102998860B (zh) * 2012-12-14 2015-09-16 京东方科技集团股份有限公司 像素电极结构、阵列基板、液晶显示面板及驱动方法
KR102070436B1 (ko) * 2013-07-02 2020-01-29 삼성디스플레이 주식회사 액정 표시 장치
KR102069821B1 (ko) * 2013-07-03 2020-01-28 삼성디스플레이 주식회사 액정 표시 장치
US10712596B2 (en) * 2013-08-02 2020-07-14 Samsung Display Co., Ltd. Liquid crystal display
KR102242229B1 (ko) * 2014-07-29 2021-04-21 삼성디스플레이 주식회사 액정표시장치
KR102259511B1 (ko) * 2015-02-24 2021-06-04 삼성디스플레이 주식회사 액정표시장치
KR102266942B1 (ko) * 2015-05-20 2021-06-18 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133619A (ja) * 2004-11-08 2006-05-25 Sharp Corp 液晶表示装置及びその製造方法
CN101086592A (zh) * 2006-06-06 2007-12-12 爱普生映像元器件有限公司 液晶装置及电子设备
US20090002588A1 (en) * 2007-06-27 2009-01-01 Samsung Electronics Co., Ltd. Display device and method of manufacturing the same
US20110141414A1 (en) * 2008-08-20 2011-06-16 Sharp Kabushiki Kaisha Liquid crystal display device
CN102023420A (zh) * 2009-09-16 2011-04-20 三星电子株式会社 液晶显示器
US20120133872A1 (en) * 2010-11-29 2012-05-31 Young-Gu Kim Liquid crystal display panel with unit pixels having slits in pixel electrode and photo alignment layers
US20130208225A1 (en) * 2012-02-09 2013-08-15 Samsung Display Co., Ltd. Liquid crystal display

Also Published As

Publication number Publication date
US10162226B2 (en) 2018-12-25
CN105158995B (zh) 2018-03-02
CN105158995A (zh) 2015-12-16
US20180157075A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017071016A1 (zh) 像素电极及阵列基板
US7834969B2 (en) Multi-domain vertical alignment liquid crystal display panel
US9377653B2 (en) PVA pixel electrode and liquid crystal display apparatus using the same
WO2016106884A1 (zh) 像素单元结构及显示装置
US9442333B2 (en) Pixel electrode, array substrate and display device
WO2017063243A1 (zh) 一种电极结构以及液晶显示面板
WO2017063222A1 (zh) 一种像素电极结构及液晶显示面板
CN104914630B (zh) 阵列基板、显示面板以及显示装置
US8963174B2 (en) TFT-LCD array substrate and display device
CN105137674A (zh) 像素电极及阵列基板
WO2020164200A1 (zh) 像素电极
CN103543563A (zh) 一种高开口光配向像素结构
US8537315B2 (en) Liquid crystal display having alignment areas and electrode areas with particular boundaries and openings
WO2016138721A1 (zh) 液晶屏及显示装置
TW201816491A (zh) 顯示面板
US10877323B2 (en) Pixel electrode
CN106526988B (zh) 显示器阵列基板画素结构及其应用的显示设备
WO2017150262A1 (ja) 液晶表示装置
JP6816943B2 (ja) 液晶表示装置
TWI548922B (zh) 具穩定視角維持率之顯示面板
US20190086743A1 (en) Liquid crystal display panel and pixel unit thereof
CN108181766A (zh) 液晶显示装置
JP5886056B2 (ja) 液晶表示装置
WO2017124790A1 (zh) 像素结构、显示面板及显示装置
CN103941486A (zh) 一种边缘场开关模式液晶显示器及彩膜基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14907935

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907077

Country of ref document: EP

Kind code of ref document: A1