WO2017070929A1 - 惯性测量单元及应用该惯性测量单元的可移动装置 - Google Patents

惯性测量单元及应用该惯性测量单元的可移动装置 Download PDF

Info

Publication number
WO2017070929A1
WO2017070929A1 PCT/CN2015/093350 CN2015093350W WO2017070929A1 WO 2017070929 A1 WO2017070929 A1 WO 2017070929A1 CN 2015093350 W CN2015093350 W CN 2015093350W WO 2017070929 A1 WO2017070929 A1 WO 2017070929A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
measurement unit
inertial measurement
rubber sleeve
body portion
Prior art date
Application number
PCT/CN2015/093350
Other languages
English (en)
French (fr)
Inventor
潘国秀
王永根
于云
张鹏
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201910321144.XA priority Critical patent/CN110017835A/zh
Priority to PCT/CN2015/093350 priority patent/WO2017070929A1/zh
Priority to CN201580067013.3A priority patent/CN107003133B/zh
Publication of WO2017070929A1 publication Critical patent/WO2017070929A1/zh
Priority to US15/964,828 priority patent/US10788508B2/en
Priority to US17/020,128 priority patent/US11408905B2/en
Priority to US17/818,354 priority patent/US11821908B2/en
Priority to US18/514,822 priority patent/US20240085447A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/006Details of instruments used for thermal compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/166Mechanical, construction or arrangement details of inertial navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices

Definitions

  • the present invention relates to an inertial measurement unit, and more particularly to an inertial measurement unit and a movable device using the inertial measurement unit.
  • consumer-grade UAVs use consumer-grade MEMS (Micro-electromechanical systems) sensors
  • MEMS Micro-electromechanical systems
  • these sensors have large temperature drifts and usually require temperature correction.
  • temperature drift correction over the full temperature range, it is time consuming and labor intensive, and the production efficiency is extremely low.
  • due to the ever-changing ambient temperature it is difficult to ensure that such sensors operate in a stable and optimal performance state.
  • An inertial measurement unit includes one or more sensors and an insulation system for providing a preset temperature to the one or more sensors, the insulation system comprising a thermally conductive body and a plurality of heating sources, The one or more sensors are disposed on the heat-conducting and heat-insulating body, and the heat-insulating system generates heat by using the plurality of heat sources, and transmits heat generated by the plurality of heat sources to the heat-conducting body One or more sensors are provided to maintain the predetermined temperature around the one or more sensors.
  • the inertial measurement unit further includes a circuit board assembly including a body portion and an extension extending from a side of the body portion.
  • the main body portion is a hollow frame formed by connecting a plurality of flexible circuit boards and a rigid circuit board.
  • the thermally conductive body is a polyhedral frame of high thermal conductivity, the shape of which corresponds to the body portion of the inertial measurement unit to be received in the body portion of the inertial measurement unit.
  • the plurality of heating sources are disposed on the circuit board assembly and electrically connected to the circuit board assembly, and the plurality of heating sources are distributed on sidewalls of the thermally conductive and thermally insulating body.
  • the plurality of heating sources are distributed on opposite sidewalls of the heat-conducting heat-insulating body, and one or more sidewalls of the heat-conducting heat-insulating body are provided with grooves, such that the one Or a plurality of sensors are embedded in the heat-conducting body in a recess on one or more side walls adjacent to the two side walls of the plurality of heat sources.
  • a plurality of heating sources on the opposite sidewalls of the thermally conductive body are evenly distributed around the respective sidewalls.
  • the thermally conductive body is made of a high thermal conductivity metal material
  • the inertial measurement unit further includes a heat conductive member, the plurality of heat sources and the heat conductive body and the one or The heat conducting member is filled between the plurality of sensors and the thermally conductive body to conduct heat.
  • the heat conducting member is an insulating thermally conductive silicone.
  • the main body portion of the circuit board assembly covers the heat-conducting and heat-insulating main body, so that the plurality of heating sources are in contact with the heat-conducting member fixed on the side wall of the heat-conducting and heat-insulating main body in advance.
  • the two sidewalls of the thermally conductive body are evenly distributed to conduct heat to the thermally conductive body.
  • the thermally conductive body is a hexahedron frame
  • the heat retention system further includes a plurality of heat insulation panels, the plurality of heat insulation panels including a first heat insulation panel disposed in a first direction and a second a heat insulation board and a second heat insulation board and a third heat insulation board disposed along a second direction perpendicular to the first direction, the first heat insulation board and the second heat insulation board cooperate with each other to be in the first side
  • the body portion of the inertial measurement unit is clamped upward, and the third heat shield cooperates with the four heat shields to clamp the body portion of the inertial measurement unit in a second direction.
  • the first heat insulation panel comprises a rectangular bottom plate and first and second side walls extending vertically downward from two opposite sides of the rectangular bottom plate;
  • the plate includes a rectangular bottom plate and third and fourth side walls extending vertically upward from two opposite sides of the rectangular floor;
  • the third heat insulation plate includes a rectangular bottom plate and two from the rectangular bottom plate a first stop portion and a second stop portion extending perpendicularly to the left of the middle portion of the opposite side, and the third heat insulating plate includes a rectangular bottom plate and a central portion perpendicular to the two opposite sides of the rectangular bottom plate A third stop portion and a fourth stop portion are formed to extend leftward.
  • a sum of a width of the first side wall, a width of the third side wall, and a width of the first stop portion is substantially equal to a length of the main body portion along the first direction, and The sum of the length of the first stop portion and the length of the third stop portion is substantially equal to the length of the body portion in the second direction.
  • the inertial measurement unit further includes a first rubber sleeve, a second rubber sleeve and a cover body, the first rubber sleeve is sleeved on the first heat insulation board, and the second rubber sleeve is sleeved On the second heat insulation board; the cover body sleeves the first rubber sleeve, the second rubber sleeve and the main body portion to be integrated into one body.
  • the top wall of the first rubber sleeve has a grid shape
  • the bottom of the inner wall of the second rubber sleeve has a grid shape
  • the first rubber sleeve comprises a rectangular colloidal substrate and four sidewalls extending vertically downward from four sides of the colloidal substrate;
  • the second rubber sleeve comprises a rectangular colloid a substrate and four sidewalls extending vertically upward from four sides of the colloidal substrate;
  • the cover body includes a rectangular substrate and four sidewalls extending vertically downward from four sides of the rectangular substrate .
  • a gap is formed on each of the four side walls of the cover, and an opening is provided on one of the side walls of the cover such that the extension of the inertial measurement unit is The opening extends.
  • the present invention also provides a movable device having the above inertial measurement unit.
  • An inertial measurement unit includes a circuit board assembly including a main body portion, and the inertial measurement unit further includes a vibration damping sleeve for being sleeved on the main body portion to clamp the Main body.
  • the damper sleeve includes a first rubber sleeve and a second rubber sleeve, and the first rubber sleeve and the second rubber sleeve are respectively sleeved at two opposite ends of the main body portion.
  • the bottom wall of the second rubber sleeve has a grid shape
  • the top of the inner wall of the first rubber sleeve has a grid shape
  • the inertial measurement unit further includes a cover that fits the damper sleeve and the body portion together to be integrated.
  • the main body portion of the circuit board assembly is a hollow rectangular frame formed by connecting a plurality of flexible circuit boards and a rigid circuit board; and the first rubber sleeve includes a rectangular colloidal substrate and The four sides of the colloidal substrate extend vertically downwards to form four sidewalls; the second rubber sleeve comprises a rectangular colloidal substrate and four sidewalls extending vertically from four sides of the colloidal substrate And the cover body comprises a rectangular substrate and four side walls extending vertically downward from four sides of the rectangular substrate.
  • the circuit board assembly further includes an extension portion extending from a side of the main body portion, and an opening of one of the side walls of the cover body is provided to cause the inertia The extension of the measuring unit projects from the opening.
  • a gap is formed on each of the four side walls of the cover.
  • the inertial measurement unit further includes a plurality of thermal insulation panels, the plurality of thermal insulation panels including a first thermal insulation panel and a second thermal insulation panel disposed along the first direction and along the first direction a second heat insulation panel and a third heat insulation panel disposed in a second direction, wherein the first heat insulation panel and the second heat insulation panel cooperate to sandwich the inertial measurement unit in the first direction
  • the main body portion, the third heat insulation panel and the four heat insulation panels cooperate to sandwich the main body portion of the inertial measurement unit in a second direction.
  • the first rubber sleeve is sleeved on the first heat insulation board
  • the second rubber sleeve is sleeved on the second heat insulation board
  • the present invention also provides a movable device having the above inertial measurement unit.
  • the inertial measurement unit of the present invention can efficiently and stably heat the interior of the inertial measurement unit, effectively solving the low efficiency and poor temperature control effect of the prior art constant temperature heating system. And the effects of adhesion stress and other shortcomings.
  • the thermal insulation system of the inertial measurement unit can ensure that the sensor of the inertial measurement unit operates in a stable and optimal performance state, and the sensor can exhibit better performance under any external environment.
  • FIG. 1 is an exploded perspective view of an inertial measurement unit in a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the position of a heating source and a sensor of the inertial measurement unit of the present invention.
  • FIG 3 is a schematic view showing the assembly of an inertial measurement unit in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of an inertial measurement unit in a second embodiment of the present invention.
  • Inertial measurement unit 100 Board assembly 101 Main body 1010 Extension 1011 sensor 102 Groove 103 Thermal insulation body 201 Heat conductive member 202 Heating source 203 First insulation board 304a First side wall 305a Second side wall 306a Second insulation board 304b Third side wall 305b Fourth side wall 306b Third insulation board 304c First stop 305c Second stop 306c Fourth insulation board 304d Third stop 305d Fourth stop 306d Cover 401 Damping sleeve 402 First rubber sleeve 402a Second rubber sleeve 402b Opening 403 gap 404 fastener 501
  • FIG. 1 is an exploded perspective view of the inertial measurement unit 100 of the first embodiment of the present invention.
  • the inertial measurement unit 100 includes at least one or more sensors 102 (only two are shown), a circuit board assembly 101, a thermally conductive body 201, a heat conductive member 202, and a plurality of heating sources 203.
  • the heat-conducting and heat-insulating main body 201, the heat-conducting member 202, and the plurality of heating sources 203 are used as an insulation system of the inertial measurement unit 100 for providing a preset temperature to the sensor 102.
  • the senor 102 can be a motion sensor (eg, a speed sensor, such as a MEMS accelerometer) and/or an attitude sensor (eg, a two-axis/three-axis gyroscope) or the like.
  • the sensor 102 includes two accelerometers and two gyroscopes.
  • the circuit board assembly 101 includes a body portion 1010 and an extension portion 1011.
  • the extension portion 1011 extends from one side of the main body portion 1010.
  • the main body portion 1010 is formed by connecting a plurality of flexible circuit boards and a plurality of rigid circuit boards. The two adjacent rigid circuit boards are electrically connected by the flexible circuit board.
  • the main body portion 1010 can be folded and enclosed to form a hollow.
  • the rigid circuit board is a PCB board.
  • various electronic components that implement various functions of the inertial measurement unit 100 may be disposed on the inner surface of the main body portion 1010.
  • the main body portion 1010 is described by taking a rectangular frame as an example.
  • the senor 102 may be located on the main body portion 1010 of the circuit board assembly 101 (for example, a rigid circuit board located on the main body portion 1010) and electrically connected to the circuit board assembly 101. And can be disposed in the thermal insulation body 201. Referring to FIG. 2, the sensor 102 is located on an inner surface of the body portion 1010 of the circuit board assembly 101.
  • the extension 1011 is for electrically connecting the sensor 102 to an external component (not shown) for transmitting signals and/or electrical energy between the sensor 102 and the external component.
  • the extending portion 1011 is a flexible circuit board, and the external component can be conveniently connected.
  • the inertial measurement unit 100 further includes various functional components (not shown) such as a controller and at least one temperature sensor.
  • the controller may be located within the body portion 1010 of the circuit board assembly 101, and the temperature sensor may be located within one of the sensors 102, such as within at least one of the gyroscopes.
  • the controller may also be outside the main body portion 1010 of the circuit board assembly 101 and electrically connected through the extension portion 1011 of the circuit board assembly 101 to electrically connect the controller to the temperature sensor. .
  • the temperature sensor is configured to sense an internal temperature of the inertial measurement unit 100, and when the temperature is less than a certain threshold, the controller controls the plurality of heating sources 203 to generate heat, and passes through the thermal insulation body 201 Performing heat conduction with the heat conducting member 202 (eg, conducting the heat to the sensor 102) to ensure that the internal temperature of the inertial measurement unit 100 is maintained in a constant temperature environment, that is, the sensor 102 is secured. In a constant temperature environment, after performing temperature calibration at this single constant temperature point, the sensor can perform better under any external environment.
  • the thermally conductive body 201 is a polyhedral frame of high thermal conductivity, the shape of which corresponds to the shape of the body portion 1010 (eg, the same or similar) to be received in the body portion 1010.
  • a groove 103 may be formed in each side wall of the heat-conducting and heat-insulating main body 201.
  • the thermally conductive body 201 when the sensor 102 or other electronic components are not disposed at the position of the main body portion 1010 corresponding to one or more sidewalls of the thermally conductive body 201, the thermally conductive body 201 One or more side walls may also not have a recess 103.
  • the thermally conductive body 201 can be made of a metal material having good thermal conductivity, such as aluminum, magnesium, silver, iron, or the like. In other preferred embodiments, the thermally conductive body 201 can also be made of a non-metallic material (for example, an insulating material) having good thermal conductivity. In the preferred embodiment, the thermally conductive and thermally insulated body 201 is exemplified by a hexahedron metal frame, as shown in FIG.
  • the heat conducting member 202 may be filled with a thermal conductive silicone of any shape and thickness between the plurality of heating sources 203 and the thermally conductive body 201, and between the sensor 102 and the thermally conductive body 201.
  • the heat conducting member 202 is an insulating thermal silica gel.
  • the heat conducting member 202 can also be other heat conducting members having high thermal conductivity, high bonding properties, and non-conductive properties.
  • the heat of the heat source 203 can be conducted to the heat-conducting and thermally insulating body 201 by the heat-conducting member 202, and at the same time, the heat source 203 and the heat-conducting and heat-insulating body 201 are insulated from each other.
  • the heat may be transmitted from the thermally conductive body 201 to the sensor 102 by the heat conducting member 202, and at the same time, the heat conducting body 201 and the sensor 102 may be insulated from each other.
  • the heat conducting and heat insulating body 201 and the heat conducting member 202 serve as a heat conducting layer of the inertial measuring unit 100.
  • the heat of the plurality of heating sources 203 is conducted to the sensor 102 through the thermally conductive body 201 and the heat conducting member 202 to maintain a preset temperature around the sensor 102.
  • the thermally conductive body 201 is not made of a metal material, for example, made of an insulating material having good thermal conductivity, the heat conducting member 202 may be omitted.
  • the plurality of heating sources 203 are distributed on the heat-conducting and thermally insulating body 201 for generating heat.
  • the plurality of heating sources 203 may be disposed on the inner surface of the main body portion 1010 of the circuit board assembly 101 (for example, a rigid circuit board disposed on the main body portion 1010). Positioned and electrically connected to the circuit board assembly 101. Referring to FIG. 2, the plurality of heating sources 203 may be symmetrically distributed on opposite side walls of the main body portion 1010.
  • the heat-conducting member 202 may be fixed on the side wall of the heat-conducting and heat-insulating main body 201 in advance.
  • the plurality of heating sources 203 are brought into contact with the heat-conducting member 202 to be distributed on two opposite sides of the heat-conducting and heat-insulating main body 201.
  • the side walls for the side walls where the plurality of heating sources 203 are located, hereinafter referred to simply as "heating side walls").
  • the heat generated by the plurality of heat sources 203 can be conducted to the thermally conductive body 201 by the heat conductive member 202.
  • the plurality of heating sources 203 may be a plurality of heating resistors. In other embodiments, the plurality of heating sources 203 can be any heat source capable of providing heat. The number of the plurality of heating sources 203 may be set according to the actual structure of the inertial measurement unit 100.
  • a plurality of heating sources on two opposite sidewalls of the heat-conducting and heat-insulating main body 201 are evenly distributed on respective sides.
  • Four heat sources 203 are respectively disposed on opposite sidewalls of the heat-conducting and heat-insulating main body 201, and the four heat sources 203 are symmetrically arranged on both sides of the respective sidewalls. It can be understood that in other embodiments, the four heating sources 203 are not symmetrically arranged in pairs.
  • the shape of the heat conducting member 202 filled between the plurality of heating sources 203 and the heat-conducting and thermally insulating body 201 may be a hollow polygon, and The heat source 203 is in contact, and the heat generated by the heat source 203 is conducted to the heat-conducting and thermally insulating body 201.
  • the heat conducting member 202 is disposed in a hollow shape, so that the electronic components on the main body portion 1010 of the circuit board assembly 101 can pass through the heat conducting member 202.
  • the sensor 102 may be located at a preset position on the body portion 1010 of the circuit board assembly 101. So that when the main body portion 1010 of the circuit board assembly 101 covers the heat-conducting and thermally insulating main body 201, the sensor 102 can be disposed on the heat-conducting and thermally insulating main body 201. Preferably, the sensor 102 can be embedded. And a recess 103 in a sidewall of the thermally conductive body 201 adjacent to two opposite heating sidewalls of the plurality of heating sources 203.
  • the heat-conducting body 201 of the hexahedron As an example, referring to FIG. 1, there are four side walls adjacent to the two opposite heating sidewalls of the plurality of heating sources 203, that is, there may be four sensors 102.
  • the recesses 103 can be respectively embedded in the above-mentioned four side walls adjacent to the two first pair of heating sidewalls.
  • the sensor 102 can include a first accelerometer, a second accelerometer, a first gyroscope, and a second gyroscope.
  • the sensor 102 which can be embedded in the sidewall of the heat-conducting and thermally insulating body 201, is a first accelerometer, and the second accelerometer can be embedded in the recess 103 of the bottom surface of the heat-conducting and thermally insulating body 201;
  • the sensor 102 embedded in the top surface groove 103 of the thermal insulation body 201 is a first gyroscope, and the second gyroscope can be embedded on the thermal insulation main body 201 and the first accelerometer. Located in the groove 103 on the opposite side wall of the side wall.
  • the side of the sensor 102 is adjacent to the two opposite heating sides, it can be ensured that the heat generated by the plurality of heating sources 203 is efficiently and uniformly transmitted to the recess 103 accommodating the sensor 102. Inside the side wall. By arranging the sensor 102 in the recess 103, the structure of the inertial measurement unit 100 can be made more compact, contributing to a reduction in volume.
  • the heat generated by the plurality of heat sources 203 can be conducted to the heat-conducting and thermally insulating body 201 via the heat-conducting member 202 via the heat-conducting member 202, and is conducted to the side where the sensor 102 is embedded via the heat-conducting body 201
  • the wall conducts heat to the sensor 102 via the heat conductive member 202.
  • the controller of the inertial measurement unit 100 controls the plurality of heating
  • the source 203 generates heat and finally conducts heat generated by the plurality of heat sources 203 to the sensor 102 efficiently and uniformly through a heat conduction path such as "heat source - heat conductive member - heat conductive heat retaining body - heat conductive member - sensor". Therefore, the sensor 102 is constructed to have a constant temperature environment, and after performing temperature correction at the single constant temperature point, the sensor 102 can exhibit better performance under any external environment.
  • the inertial measurement unit 100 may further include a first heat insulation board 304a, a second heat insulation board 304b, a third heat insulation board 304c, and a fourth heat insulation board 304d.
  • the plurality of heat insulation panels are used to cover the sensor 102, the plurality of heat sources 203, the heat and heat insulation body 201, and the main body portion 1010 of the circuit board assembly 101.
  • the number of the plurality of heat insulation panels is provided for the structure in which the main body portion 1010 is a rectangular frame. In other preferred embodiments, the number of the plurality of heat shields may be correspondingly set according to the shape of the body portion 1010.
  • the first heat insulation board 304a, the second heat insulation board 304b, the third heat insulation board 304c, and the fourth heat insulation board 304d are used as a peripheral heat insulation layer for covering the heat insulation layer.
  • the main body 201 and the circuit board assembly 101 further ensure a constant temperature inside the inertial measurement unit 100.
  • the first heat insulation board 304a and the second heat insulation board 304b are disposed along the first direction (as shown in the y direction as shown), and cooperate to clamp the inertia in the first direction.
  • the third heat insulation board 304c and the fourth heat insulation board 304d are disposed along the second direction (disposed in the x direction as shown), and cooperate with each other to clamp the inertial measurement unit 100 in the second direction.
  • the circuit board assembly 101 wherein the first direction and the second direction are perpendicular to each other.
  • the clamping of the circuit board assembly 101 by the first heat insulation board 304a, the second heat insulation board 304b, the third heat insulation board 304c, and the fourth heat insulation board 304d may completely cover the inertial measurement unit The body portion 1010 of 100.
  • the heat insulation board can isolate the intrusion of external heat; when the outside temperature is low, the heat insulation board functions as a heat preservation to avoid heat loss inside the inertial measurement unit 100.
  • the first heat shield 304a includes a rectangular bottom plate and a first side wall 305a and a second side wall 306a extending vertically downward from opposite sides of the rectangular bottom plate.
  • the width of the first sidewall 305a is the same as the width of the second sidewall 306a. In other preferred embodiments, the width of the first sidewall 305a may also be different from the width of the second sidewall 306a.
  • the second heat insulation panel 304b includes a rectangular bottom plate and a third side wall 305b and a fourth side wall 306b extending vertically from opposite sides of the rectangular bottom plate.
  • the width of the third side wall 305b is the same as the width of the fourth side wall 306b.
  • the width of the third sidewall 305b may also be different from the width of the fourth sidewall 306b.
  • the first sidewall 305a, the second sidewall 306a, the third sidewall 305b, and the fourth sidewall 306b may have the same width.
  • the third heat insulation panel 304c includes a rectangular bottom plate and a first stop portion 305c and a second stop portion 306c extending perpendicularly from the middle of the opposite sides of the rectangular bottom plate.
  • the width of the first stop portion 305c is the same as the width of the second stop portion 306c. In other preferred embodiments, the width of the first stopping portion 305c may also be different from the width of the second stopping portion 306c.
  • the fourth heat insulation panel 304d includes a rectangular bottom plate and a third stop portion 305d and a fourth stop portion 306d extending from the middle of the opposite sides of the rectangular bottom plate vertically extending to the left (in the figure, due to being blocked) Not shown).
  • the width of the third stopper portion 305d is the same as the width of the fourth stopper portion 306d, and the width of the third stopper portion 305d is the same as the length of the fourth stopper portion 306d. In other preferred embodiments, the width/length of the third stopping portion 305d may also be different from the width/length of the fourth stopping portion 306d. In an embodiment, the first stop portion 305c, the second stop portion 306c, the third stop portion 305d, and the fourth stop portion 306d may have the same width.
  • the width of the first side wall 305a, the width of the third side wall 305b, and the width of the first stop portion 305c or the third stop portion 305d are substantially equal to or slightly larger than the main body portion.
  • the length of the 1010 in the first direction, and the length of the first stop portion 305c and the length of the third stop portion 305d are substantially equal to or slightly larger than the length of the main body portion 1010 in the second direction, so that The circuit board assembly 101 is better wrapped.
  • FIG. 3 there is shown a schematic view of the assembly of the inertial measurement unit in the preferred embodiment of the present invention.
  • the first and second heat insulation boards 304a and 304b and the third and fourth heat insulation boards 304c and 304d are separated from the inertial measurement unit 100 by using a plurality of fasteners 501.
  • the circuit board assembly 101 and the thermally conductive body 201 are fastened together.
  • the plurality of fasteners 501 can be locking screws.
  • the plurality of fasteners 501 can be other locking members that fasten the inertial measurement unit 100.
  • the corresponding side faces of the circuit board assembly 101 and the heat-conducting and heat-insulating main body 201 also have corresponding two or more screw holes, so that the locking screws are locked through the screw holes.
  • the two screw holes may be disposed on a pair of corner lines of the rectangular bottom plate of each of the heat insulation boards.
  • the inertial measurement unit 100 described above may be applied to a mobile device such as a car, a ship, an unmanned aerial vehicle, or the like.
  • FIG. 4 is an exploded perspective view of the inertial measurement unit in the second embodiment of the present invention.
  • the inertial measurement unit 100 in the second embodiment further includes a cover 401 and a damper sleeve 402 as compared with the first embodiment.
  • the inertia measurement unit 100 may also omit the thermally conductive body 201, the heat conducting member 202, and the plurality of heating sources 203.
  • the damper sleeve 402 is made of a material that is soft in texture but high in toughness, and can improve the vibration damping effect of the inertial measurement unit 100.
  • the damper sleeve 402 can include a first rubber sleeve 402a and a second rubber sleeve 402b.
  • the first rubber sleeve 402a includes a rectangular colloidal substrate and four side walls extending vertically downward from four sides of the colloidal substrate, that is, a shape similar to a rectangular cover.
  • the second rubber sleeve 402b includes a rectangular colloidal substrate and four side walls extending vertically from four sides of the colloidal substrate, and the shape is similar to a rectangular cover.
  • the shape of the colloidal substrate of the first rubber sleeve 402a and the second rubber sleeve 402b may be set to be sleeved on the main body portion 1010 according to the actual shape of the main body portion 1010. The shape on it can be.
  • the first rubber sleeve 402a may be sleeved on the first heat insulation board 304a.
  • the second rubber sleeve 402b is sleeved on the second heat insulation board 304b.
  • the cover body 401 can be sleeved on the first rubber sleeve 402a and the second rubber sleeve 402b to seal the first rubber sleeve 402a and the second rubber sleeve 402b.
  • the inertial measurement units 100 are nested together to be integrated into one unit.
  • the sleeve 402b can completely enclose the circuit board assembly 101 of the inertial measurement unit 100, insulate the intrusion of external heat and avoid loss of heat inside the inertial measurement unit 100.
  • the bottom of the inner wall of the second rubber sleeve 402b and the top of the inner wall of the first rubber sleeve 402a are in a grid shape, the mesh is relatively soft, and the mesh can be deformed.
  • the cover body 401 includes a rectangular substrate and four side walls extending vertically downward from four sides of the rectangular substrate. The four side walls are each provided with a notch 404 for more conveniently arranging the cover 401 on the damper sleeve 402 or removing the cover 401 from the damper sleeve 402.
  • one of the side walls of the cover body 401 is provided with an opening 403 such that the extension portion 1011 of the inertial measurement unit 100 protrudes from the opening 403.
  • the sleeve 402b can not only ensure the constant temperature inside the inertial measurement unit 100, but also further improve the vibration damping effect of the inertial measurement unit 100.
  • a length of the cover body 401 along a first direction (in the y direction as shown, that is, a direction perpendicular to the first heat shield 304a) and the body portion 1010 of the inertial measurement unit 100
  • the lengths of the first direction are the same, which can also improve the assembly accuracy of the inertial measurement unit 100.
  • first rubber sleeve 402a and the second rubber sleeve 402b may be respectively sleeved at two opposite ends of the main body portion 1010 to sandwich the main body portion 1010. Between the first rubber sleeve 402a and the second rubber sleeve 402b. In an embodiment, the first rubber sleeve 402a and the second rubber sleeve 402b may directly abut each other to completely cover the main body portion 1010. In other embodiments, the first rubber sleeve 402a is spaced apart from the second rubber sleeve 402b by a certain distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Gyroscopes (AREA)

Abstract

一种惯性测量单元(100),其包括传感器(102)、导热保温主体(201)以及多个加热源(203),所述传感器(102)设置于所述导热保温主体(201)上;所述惯性测量单元(100)利用多个加热源(203)产生热量,并通过所述导热保温主体(201)将所述多个加热源(203)所产生的热量传导至所述传感器(102),使所述传感器(102)周围维持预设的温度。

Description

惯性测量单元及应用该惯性测量单元的可移动装置 技术领域
本发明涉及一种惯性测量单元,尤其涉及一种惯性测量单元及应用该惯性测量单元的可移动装置。
背景技术
目前,消费级无人机的应用越来越广泛。由于消费级无人机上使用的是消费级的MEMS(Micro-electromechanical systems,微机电系统)传感器,该类传感器各项特性温漂较大,通常需要进行温度校正。然而,如果对MEMS传感器进行全温度范围的温漂校正,费时费力,且生产效率极低。另外,由于环境温度千变万化,很难保证该类传感器工作在一个稳定且最佳的性能状态。
发明内容
鉴于以上内容,有必要提供一种具有恒温加热功能的惯性测量单元。
此外,还有必要提供一种应用该惯性测量单元的可移动装置。
一种惯性测量单元,包括一个或多个传感器以及保温系统,所述保温系统用于为所述一个或多个传感器提供预设的温度,所述保温系统包括导热保温主体及多个加热源,所述一个或多个传感器设置于所述导热保温主体上,所述保温系统利用所述多个加热源产生热量,并通过所述导热保温主体将所述多个加热源产生的热量传导至所述一个或多个传感器,使所述一个或多个传感器周围维持所述预设的温度。
在一实施例中,所述惯性测量单元还包括电路板组件,该电路板组件包括主体部和延伸部,该延伸部自所述主体部的一侧延伸而出。
在一实施例中,所述主体部为多个柔性电路板与刚性电路板连接形成的中空的框体。
在一实施例中,所述导热保温主体为高导热率的多面体框架,其形状与所述惯性测量单元的主体部相对应,以容置于所述惯性测量单元的主体部。
在一实施例中,所述多个加热源设置在所述电路板组件上并与所述电路板组件电性连接,所述多个加热源分布在所述导热保温主体的侧壁上。
在一实施例中,所述多个加热源分布在所述导热保温主体相对的两个侧壁上,以及所述导热保温主体的一个或多个侧壁上开设有凹槽,使得所述一个或多个传感器嵌置于所述导热保温主体上与所述多个加热源所在两个侧壁相邻的一个或多个侧壁上的凹槽内。
在一实施例中,所述导热保温主体两个相对侧壁上的多个加热源均匀分布于各自所在侧壁的四周。
在一实施例中,所述导热保温主体由高导热率的金属材料制成,所述惯性测量单元还包括导热件,所述多个加热源与所述导热保温主体之间及所述一个或多个传感器与所述导热保温主体之间均填充所述导热件进行导热。
在一实施例中,所述导热件为绝缘的导热硅胶。
在一实施例中,所述电路板组件的主体部包覆所述导热保温主体,使得所述多个加热源通过预先固定于所述导热保温主体的侧壁上的导热件与所述接触,以均匀地分布于所述导热保温主体相对的两个侧壁上,以将热量传导至所述导热保温主体。
在一实施例中,所述导热保温主体为六面体框架,以及所述保温系统还包括多个隔热板,所述多个隔热板包括沿第一方向设置的第一隔热板与第二隔热板以及沿与所述第一方向垂直的第二方向设置的第二隔热板和第三隔热板,所述第一隔热板与第二隔热板相互配合以在第一方向上夹持所述惯性测量单元的所述主体部,所述第三隔热板与所述四隔热板相互配合以在第二方向上夹持所述惯性测量单元的所述主体部。
在一实施例中,所述第一隔热板包括一个矩形底板及自该矩形底板的两个相对侧边垂直向下延伸形成的第一侧壁和第二侧壁;所述第二隔热板包括一个矩形底板及自该矩形地板的两个相对侧边垂直向上延伸形成的第三侧壁和第四侧壁;所述第三隔热板包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向左延伸形成的第一止挡部和第二止挡部,以及所述第三隔热板包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向左延伸形成的第三止挡部和第四止挡部。
在一实施例中,所述第一侧壁的宽度、所述第三侧壁的宽度以及所述第一止挡部的宽度之和大致等于所述主体部沿第一方向的长度,以及所述第一止挡部的长度与所述第三止挡部的长度之和大致等于所述主体部沿第二方向的长度。
在一实施例中,所述惯性测量单元还包括第一胶套、第二胶套和罩体,所述第一胶套套设在所述第一隔热板上,所述第二胶套套设在所述第二隔热板上;所述罩体将所述第一胶套、第二胶套及所述主体部套在一起以整合为一个整体。
在一实施例中,所述第一胶套的内壁顶部呈网格状,以及所述第二胶套的内壁底部呈网格状。
在一实施例中,所述第一胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向下延伸形成的四个侧壁;所述第二胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向上延伸形成的四个侧壁;以及所述罩体包括一个矩形基板及自该矩形基板的四个侧边垂直向下延伸形成的四个侧壁。
在一实施例中,所述罩体的四个侧壁上均设置有一个缺口,以及所述罩体的其中一个侧壁上设有一开口以使得所述惯性测量单元的所述延伸部由该开口伸出。
本发明还提供一种具有上述惯性测量单元的可移动装置。
一种惯性测量单元,包括电路板组件,该电路板组件包括主体部,以及该惯性测量单元还包括减振套,所述减振套用于套设在所述主体部上,以夹持所述主体部。
在一实施例中,所述减振套包括第一胶套与第二胶套,所述第一胶套与第二胶套分别套设于所述主体部的两个相对的端部。
在一实施例中,所述第二胶套的内壁底部呈网格状,以及所述第一胶套的内壁顶部呈网格状。
在一实施例中,所述惯性测量单元还包括罩体,所述罩体将所述减振套和所述主体部套在一起以整合为一个整体。
在一实施例中,所述电路板组件的所述主体部为多个柔性电路板与刚性电路板连接形成的中空的矩形框体;以及所述第一胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向下延伸形成的四个侧壁;所述第二胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向上延伸形成的四个侧壁,及所述罩体包括一个矩形基板及自该矩形基板的四个侧边垂直向下延伸形成的四个侧壁。
在一实施例中,所述电路板组件还包括延伸部,该延伸部自所述主体部的一侧延伸而出,以及所述罩体的其中一个侧壁上设有一开口以使得所述惯性测量单元的所述延伸部由该开口伸出。
在一实施例中,所述罩体的四个侧壁上均设置有一个缺口。
在一实施例中,所述惯性测量单元还包括多个隔热板,所述多个隔热板包括沿第一方向设置的第一隔热板与第二隔热板以及沿与第一方向垂直的第二方向设置的第二隔热板和第三隔热板,所述第一隔热板与第二隔热板相互配合以在第一方向上夹持所述惯性测量单元的所述主体部,所述第三隔热板与所述四隔热板相互配合以在第二方向上夹持所述惯性测量单元的所述主体部。
在一实施例中,所述第一胶套套设在所述第一隔热板上,所述第二胶套套设在所述第二隔热板上。
本发明还提供一种具有上述惯性测量单元的可移动装置。
与现有技术相比较,本发明所述的惯性测量单元可以高效、稳定地对所述惯性测量单元的内部进行恒温加热,有效地解决现有技术中恒温加热系统效率低,温控效果差,和附着应力影响等缺点。利用所述惯性测量单元的保温系统可以保证所述该惯性测量单元的传感器工作在一个稳定且最佳的性能状态,且使的所述传感器在任何外界环境下都能表现出较好的性能。
附图说明
图1为本发明第一实施例中惯性测量单元的分解示意图。
图2为本发明惯性测量单元的加热源及传感器的位置示意图。
图3为本发明较佳实施例中惯性测量单元的装配示意图。
图4为本发明第二实施例中惯性测量单元的分解示意图。
主要元件符号说明
惯性测量单元 100
电路板组件 101
主体部 1010
延伸部 1011
传感器 102
凹槽 103
导热保温主体 201
导热件 202
加热源 203
第一隔热板 304a
第一侧壁 305a
第二侧壁 306a
第二隔热板 304b
第三侧壁 305b
第四侧壁 306b
第三隔热板 304c
第一止挡部 305c
第二止挡部 306c
第四隔热板 304d
第三止挡部 305d
第四止挡部 306d
罩体 401
减振套 402
第一胶套 402a
第二胶套 402b
开口 403
缺口 404
紧固件 501
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,是本发明第一实施例的惯性测量单元100的分解示意图。所述惯性测量单元100至少包括一个或多个传感器102(图中仅示出两个)、电路板组件101、导热保温主体201、导热件202、及多个加热源203。其中,所述导热保温主体201、所述导热件202、所述多个加热源203作为所述惯性测量单元100的保温系统,用于为所述传感器102提供预设的温度。
在一实施例中,所述传感器102可以是运动传感器(例如,速度传感器、如MEMS加速度计)及/或姿态传感器(例如,两轴/三轴陀螺仪)等。在本较佳实施例中,所述传感器102包括两个加速度计和两个陀螺仪。
所述电路板组件101包括主体部1010和延伸部1011。该延伸部1011自所述主体部1010的一侧延伸而出。所述主体部1010由多个柔性电路板与多个刚性电路板连接形成,相邻的两个刚性电路板之间通过所述柔性电路板电连接,所述主体部1010可折叠围合形成中空的框体。在本实施例中,所述刚性电路板为PCB板。在一实施例中,所述主体部1010的内表面上还可以设置有实现所述惯性测量单元100的各类功能的各种电子元件。在本较佳实施例中,所述主体部1010以矩形框体为例进行说明。
在本较佳实施例中,所述传感器102可以位于所述电路板组件101的主体部1010(例如,位于所述主体部1010的刚性电路板)上并与所述电路板组件101电性连接,且可以设置于所述导热保温主体201内。参阅图2所示,所述传感器102位于所述电路板组件101的主体部1010的内表面上。
所述延伸部1011用于将所述传感器102与外部元件(图未示)电连接,以在所述传感器102与所述外部元件之间传输信号及/或电能。本实施方式中,所述延伸部1011为柔性电路板,能够方便实现连接所述外部元件。
应说明的是,所述惯性测量单元100还包括控制器及至少一个温度传感器等各类功能元器件(未示出)。在本较佳实施例中,所述控制器可以位于所述电路板组件101的主体部1010内,以及所述温度传感器可以位于其中一个传感器102内,例如位于其中至少一个陀螺仪内。此外,所述控制器也可以处于所述电路板组件101的主体部1010外,并通过所述电路板组件101的延伸部1011电连接,以使所述控制器与所述温度传感器电性连接。所述温度传感器用于感测所述惯性测量单元100的内部温度,当温度小于某一阈值时,所述控制器会控制所述多个加热源203产生热量,并通过所述导热保温主体201与所述导热件202进行热量传导(例如,将所述热量传导至所述传感器102),以保证所述惯性测量单元100的内部温度维持在一个恒定的温度环境中,即保证所述传感器102处于一个恒定的温度环境中,以在此单一恒温点下进行温度校正后,可以使传感器在任何外界环境下都能表现出较好的性能。
在一实施方式中,所述导热保温主体201为高导热率的多面体框架,其形状与所述主体部1010的形状相对应(例如相同或相似),以容置于所述主体部1010。在一实施例中,为了使得当所述电路板组件101的主体部1010包覆所述导热保温主体201后,所述电路板组件101内表面上的传感器102和其他电子元件能够嵌置于所述导热保温主体201内,所述导热保温主体201的每个侧壁上可以均开设凹槽103。在其他较佳实施例中,当所述导热保温主体201的一个或多个侧壁所对应的所述主体部1010的位置上没有设置所述传感器102或其他电子元件时,该导热保温主体201的一个或多个侧壁也可以不开设凹槽103。
在一较佳实施方式中,所述导热保温主体201可以采用导热性能好的金属材料制成,如铝、镁、银、铁等金属。在其他较佳实施例中,所述导热保温主体201也可以采用导热性能良好的非金属材料(例如,绝缘材料)制成。在本较佳实施例中,所述导热保温主体201以六面体的金属框架为例进行说明,参见图1所示。
所述导热件202可以是任意形状和厚度的导热硅胶填充在所述多个加热源203与所述导热保温主体201之间,以及所述传感器102与所述导热保温主体201之间。本较佳实施例中,所述导热件202为绝缘的导热硅胶。在其他较佳实施例中,所述导热件202也可以是其他具有高导热效果、高粘结性能及不导电特性的导热件。利用所述导热件202可以将所述加热源203的热量传导至所述导热保温主体201,且同时将所述加热源203与所述导热保温主体201之间绝缘设置。利用所述导热件202可以将上述热量从所述导热保温主体201传导至所述传感器102,且同时可以将所述导热保温主体201与所述传感器102之间绝缘设置。其中,所述导热保温主体201与所述导热件202作为所述惯性测量单元100的导热层。通过所述导热保温主体201及所述导热件202将所述多个加热源203的热量传导至所述传感器102,使所述传感器102周围维持预设的温度。
应说明的是,当所述导热保温主体201不是采用金属材料制成时,例如由导热性能良好的绝缘材料制成,可以省略所述导热件202。
所述多个加热源203分布于所述导热保温主体201上,用于产生热量。在本较佳实施例中,所述多个加热源203可以设置于所述电路板组件101的主体部1010(例如,设置于所述主体部1010的刚性电路板)内表面上的多个预设位置处,并与所述电路板组件101电性连接。参见图2所示,所述多个加热源203可以对称地分布在所述主体部1010内相对的两个侧壁上。
在一实施方式中,当所述导热保温主体201为金属制成的多面体框架时,所述导热件202可以预先固定在所述导热保温主体201的侧壁上。当所述电路板组件101的主体部1010包覆所述导热保温主体201时,使得所述多个加热源203与所述导热件202接触,以分布于所述导热保温主体201相对的两个侧壁(针对所述多个加热源203所在的侧壁,以下简称为“加热侧壁”)上。利用所述导热件202可以将所述多个加热源203产生的热量传导至所述导热保温主体201。
在一实施例中,所述多个加热源203可以是多个加热电阻。在其他实施例中,所述多个加热源203可以是能够提供热量的任意热源。所述多个加热源203的数量可以根据所述惯性测量单元100的实际结构而设置。
参见图1所示,当所述电路板组件101的主体部1010包覆所述导热保温主体201后,所述导热保温主体201两个相对侧壁上的多个加热源均匀分布于各自所在侧壁的四周。所述导热保温主体201相对的两个侧壁上分别分布有四个加热源203,该四个加热源203两两对称地布置于各自所在侧壁的四周。可以理解的是,在其他实施例中,该四个加热源203并非要两两对称设置。相应地,根据所述多个加热源203的上述分布,所述多个加热源203与所述导热保温主体201之间所填充的导热件202的形状可以为中空的多边形,以与所述多个加热源203接触,将加热源203产生的热量传导至所述导热保温主体201。其中,将所述导热件202设置为中空的形状也可以使得所述电路板组件101的主体部1010上的电子元件可以穿过该导热件202。
在本较佳实施例中,为了使得所述多个加热源203能够均匀地将热量传送至所述传感器102,所述传感器102可以位于所述电路板组件101的主体部1010上的预设位置处,以使得当所述电路板组件101的主体部1010包覆所述导热保温主体201时,所述传感器102能够设置于所述导热保温主体201上,优选地,所述传感器102能够嵌置于所述导热保温主体201上的与所述多个加热源203所在的两个相对加热侧壁相邻的一个侧壁上的凹槽103内。以六面体的所述导热保温主体201为例,参阅图1所示,与所述多个加热源203所在两个相对加热侧壁相邻的侧壁有四个,即,可以有四个传感器102能够分别嵌置于上述与所述两个先对加热侧壁相邻的四个侧壁上的凹槽103内。
在本较佳实施例中,所述传感器102可以包括第一加速度计、第二加速度计、第一陀螺仪及第二陀螺仪。图1中所示可以嵌置于所述导热保温主体201侧壁上的传感器102为第一加速度计,第二加速度计可以嵌置于所述导热保温主体201的底面的凹槽103内;图1中所示嵌置于所述导热保温主体201顶面凹槽103内的传感器102为第一陀螺仪,第二陀螺仪可以嵌置于所述导热保温主体201上与所述第一加速度计所在侧壁相对的侧壁上的凹槽103内。由于所述传感器102所在的侧面与所述两个相对的加热侧面相邻,可以保证所述多个加热源203所产生的热量高效且均匀地传导至容置所述传感器102的凹槽103的侧壁内。通过将所述传感器102设置于所述凹槽103内,可以使的所述惯性测量单元100的结构更为紧凑,有助于减小体积。
利用所述导热件202可以将所述多个加热源203所产生的热量经由导热件202传导至所述导热保温主体201,经由所述导热保温主体201传导至所述传感器102所嵌置的侧壁,再经由导热件202将热量传导至所述传感器102。在一较佳实施方式中,当所述惯性测量单元100的温度传感器所述惯性测量单元100内部的温度小于一预设温度阈值时,所述惯性测量单元100的控制器控制所述多个加热源203产生热量,并通过“加热源-导热件-导热保温主体-导热件-传感器”这样的热量传导路径,最终将所述多个加热源203产生的热量高效均匀地传导至所述传感器102,以为所述传感器102营造一个恒定的温度环境,以在此单一恒温点下进行温度校正后,可以使传感器102在任何外界环境下都能表现出较好的性能。
为了使本发明更加完善,所述惯性测量单元100还可以进一步地包括第一隔热板304a、第二隔热板304b、第三隔热板304c以及第四隔热板304d。上述多个隔热板用于包覆所述传感器102、所述多个加热源203、所述导热保温主体201以及电路板组件101的主体部1010。
应说明的是,所述多个隔热板的数量是针对所述主体部1010为矩形框体的结构而设置。在其他较佳实施例中,所述多个隔热板的数量可以根据所述主体部1010的形状进行相应设置。在本较佳实施例中,所述第一隔热板304a、第二隔热板304b、第三隔热板304c以及第四隔热板304d作为外围保温层,用来包覆所述导热保温主体201与所述电路板组件101,以进一步地保证所述惯性测量单元100内部温度的恒定。在一实施例中,所述第一隔热板304a与第二隔热板304b沿第一方向设置(如图所示沿y方向设置),相互配合以在第一方向上夹持所述惯性测量单元100的所述电路板组件101。所述第三隔热板304c与第四隔热板304d沿第二方向设置(如图所示沿x方向设置),相互配合以在第二方向上夹持所述惯性测量单元100的所述电路板组件101,其中第一方向与第二方向相互垂直。利用所述第一隔热板304a、第二隔热板304b、第三隔热板304c以及第四隔热板304d对所述电路板组件101的夹持,可以完全包覆所述惯性测量单元100的主体部1010。当外界温度较高时,上述隔热板能够隔绝外部热量的侵入;当外界温度较低时,上述隔热板起到保温的作用,避免所述惯性测量单元100内部热量的散失。
在一实施例中,所述第一隔热板304a包括一个矩形底板及自该矩形底板的两个相对侧边垂直向下延伸形成的第一侧壁305a和第二侧壁306a。该第一侧壁305a的宽度与所述第二侧壁306a的宽度相同。在其他较佳实施例中,该第一侧壁305a的宽度也可以与所述第二侧壁306a的宽度不同。所述第二隔热板304b包括一个矩形底板及自该矩形底板的两个相对侧边垂直向上延伸形成的第三侧壁305b和第四侧壁306b。该第三侧壁305b的宽度与所述第四侧壁306b的宽度相同。在其他较佳实施例中,该第三侧壁305b的宽度也可以与所述第四侧壁306b的宽度不同。在一实施例中,所述第一侧壁305a、第二侧壁306a、第三侧壁305b及第四侧壁306b的宽度可以相同。
所述第三隔热板304c包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向右延伸形成的第一止挡部305c和第二止挡部306c。该第一止挡部305c的宽度与所述第二止挡部306c的宽度相同。在其他较佳实施例中,该第一止挡部305c的宽度也可以与所述第二止挡部306c的宽度不同。所述第四隔热板304d包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向左延伸形成的第三止挡部305d和第四止挡部306d(图中由于被遮挡未示出)。该第三止挡部305d的宽度与所述第四止挡部306d的宽度相同,以及所述第三止挡部305d的宽度与所述第四止挡部306d的长度相同。在其他较佳实施例中,该第三止挡部305d的宽度/长度也可以与所述第四止挡部306d的宽度/长度不相同。在一实施例中,所述第一止挡部305c、第二止挡部306c、第三止挡部305d及第四止挡部306d的宽度可以相同。
其中,所述第一侧壁305a的宽度、所述第三侧壁305b的宽度以及所述第一止挡部305c或第三止挡部305d的宽度之和大致等于或略大于所述主体部1010沿第一方向的长度,以及所述第一止挡部305c的长度与第三止挡部305d的长度之和大致等于或略大于所述主体部1010沿第二方向上的长度,这样可以更好地包覆所述电路板组件101。
参见图3,是本发明较佳实施例中惯性测量单元的装配示意图。在一实施例中,利用多个紧固件501将所述第一隔热板304a与第二隔热板304b与第三隔热板304c与第四隔热板304d与所述惯性测量单元100的电路板组件101及所述导热保温主体201紧固为一体。在本较佳实施例中,所述多个紧固件501可以为锁紧螺丝。在另一较佳实施例中,所述多个紧固件501可以为其他紧固所述惯性测量单元100的锁紧件。
应说明的是,利用锁紧螺丝将所述多个隔热板、电路板组件101及所述导热保温主体201锁固时,所述各隔热板的矩形底板上设置有两个或多个螺孔,对应地,所述电路板组件101及所述导热保温主体201相对应的侧面上也具有相应的两个或多个螺孔,使得所述锁紧螺丝穿过螺孔进行锁固。参阅图1及图2所示,所述两个螺孔可以设置于所述各隔热板的矩形底板的一对角线上。
在一实施例中,上述惯性测量单元100可以应用于可移动设备上,例如汽车、轮船、无人飞行器等。
参阅图4所示,图4为本发明第二实施例中惯性测量单元的分解示意图。与第一实施例相比,第二实施例中的所述惯性测量单元100中进一步地包括罩体401及减振套402。在所述第二实施例中,所述惯性测量单元100也可以省略所述导热保温主体201、所述导热件202、及所述多个加热源203。
在一实施例中,所述减振套402由质地柔软但韧度高的材料制成,可以提高所述惯性测量单元100的减振效果。在本较佳实施例中,所述减振套402可以包括第一胶套402a及第二胶套402b。在一实施例中,所述第一胶套402a包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向下延伸形成的四个侧壁,即形状类似于一个矩形盖体。所述第二胶套402b包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向上延伸形成的四个侧壁,其形状也类似于一个矩形盖体。在其他较佳实施例中,所述第一胶套402a和所述第二胶套402b的胶体基板的形状可以根据所述主体部1010的实际形状而设置成能够套设于所述主体部1010上的形状即可。所述第一胶套402a可以套设在所述第一隔热板304a上。所述第二胶套402b套设在所述第二隔热板304b上。
在一实施例中,所述罩体401可以套设于所述第一胶套402a及所述第二胶套402b上,以将所述第一胶套402a、所述第二胶套402b以及所述惯性测量单元100套在一起以整合为一个整体。利用所述第一隔热板304a、第二隔热板304b、第三隔热板304c、第四隔热板304d、所述罩体401、所述第一胶套402a及所述第二胶套402b可以完全包覆所述惯性测量单元100的所述电路板组件101,隔绝外部热量的侵入以及避免所述惯性测量单元100内部热量的散失。
在一实施例中,所述第二胶套402b内壁底部以及所述第一胶套402a内壁顶部均呈网格状,网格比较柔软,且网格之间可形变。所述罩体401包括一个矩形基板及自该矩形基板的四个侧边垂直向下延伸形成的四个侧壁。该四个侧壁均设置有一个缺口404以更方便地将所述罩体401套设于所述减振套402上或将所述罩体401从所述减振套402上取下。在一实施方式中,所述罩体401的其中一个侧壁设有一开口403以使得所述惯性测量单元100的延伸部1011由该开口403伸出。利用所述第一隔热板304a、第二隔热板304b、第三隔热板304c、第四隔热板304d、所述罩体401、所述第一胶套402a及所述第二胶套402b不仅可以保证所述惯性测量单元100内部温度的恒定,还可以进一步地提高所述惯性测量单元100的减振效果。
应说明的是,为了保证所述第一胶套402a和所述第二胶套402b在振动的过程中不与所述惯性测量单元100相脱离,以及更好地定位所述惯性测量单元100,所述罩体401的沿第一方向(如图所示沿y方向,也即垂直于所述第一隔热板304a的方向)的长度与所述惯性测量单元100的所述主体部1010沿所述第一方向的长度相同,这样也可以提高所述惯性测量单元100的装配精度。
在另一较佳实施例中,所述第一胶套402a与所述第二胶套402b可以分别套设于所述主体部1010的两个相对的端部,以将所述主体部1010夹在所述第一胶套402a与所述第二胶套402b之间。在一实施例中,所述第一胶套402a与所述第二胶套402b可以直接相互抵接,以完全包覆住所述主体部1010。在其他实施例中,所述第一胶套402a与所述第二胶套402b相隔一定距离。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (52)

  1. 一种惯性测量单元,包括一个或多个传感器以及保温系统,所述保温系统用于为所述一个或多个传感器提供预设的温度,其特征在于:所述保温系统包括导热保温主体及多个加热源,所述一个或多个传感器设置于所述导热保温主体上,所述保温系统利用所述多个加热源产生热量,并通过所述导热保温主体将所述多个加热源产生的热量传导至所述一个或多个传感器,使所述一个或多个传感器周围维持所述预设的温度。
  2. 如权利要求1所述的惯性测量单元,其特征在于,所述惯性测量单元还包括电路板组件,该电路板组件包括主体部和延伸部,该延伸部自所述主体部的一侧延伸而出。
  3. 如权利要求2所述的惯性测量单元,其特征在于,所述主体部为多个柔性电路板与刚性电路板连接形成的中空的框体。
  4. 如权利要求3所述的惯性测量单元,其特征在于,所述导热保温主体为高导热率的多面体框架,其形状与所述惯性测量单元的主体部相对应,以容置于所述惯性测量单元的主体部。
  5. 如权利要求4所述的惯性测量单元,其特征在于,所述多个加热源设置在所述电路板组件上并与所述电路板组件电性连接,所述多个加热源分布在所述导热保温主体的侧壁上。
  6. 如权利要求5所述的惯性测量单元,其特征在于,所述多个加热源分布在所述导热保温主体相对的两个侧壁上,以及所述导热保温主体的一个或多个侧壁上开设有凹槽,使得所述一个或多个传感器嵌置于所述导热保温主体上与所述多个加热源所在两个侧壁相邻的一个或多个侧壁上的凹槽内。
  7. 如权利要求6所述的惯性测量单元,其特征在于,所述导热保温主体两个相对侧壁上的多个加热源均匀分布于各自所在侧壁的四周。
  8. 如权利要求4所述的惯性测量单元,其特征在于,所述导热保温主体由高导热率的金属材料制成,所述惯性测量单元还包括导热件,所述多个加热源与所述导热保温主体之间及所述一个或多个传感器与所述导热保温主体之间均填充所述导热件进行导热。
  9. 如权利要求8所述的惯性测量单元,其特征在于,所述导热件为绝缘的导热硅胶。
  10. 如权利要求8所述的惯性测量单元,其特征在于,所述电路板组件的主体部包覆所述导热保温主体,使得所述多个加热源通过预先固定于所述导热保温主体的侧壁上的导热件与所述接触,以均匀地分布于所述导热保温主体相对的两个侧壁上,以将热量传导至所述导热保温主体。
  11. 如权利要求4所述的惯性测量单元,其特征在于,所述导热保温主体为六面体框架,以及所述保温系统还包括多个隔热板,所述多个隔热板包括沿第一方向设置的第一隔热板与第二隔热板以及沿与所述第一方向垂直的第二方向设置的第二隔热板和第三隔热板,所述第一隔热板与第二隔热板相互配合以在第一方向上夹持所述惯性测量单元的所述主体部,所述第三隔热板与所述四隔热板相互配合以在第二方向上夹持所述惯性测量单元的所述主体部。
  12. 如权利要求11所述的惯性测量单元,其特征在于,所述第一隔热板包括一个矩形底板及自该矩形底板的两个相对侧边垂直向下延伸形成的第一侧壁和第二侧壁;所述第二隔热板包括一个矩形底板及自该矩形地板的两个相对侧边垂直向上延伸形成的第三侧壁和第四侧壁;所述第三隔热板包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向左延伸形成的第一止挡部和第二止挡部,以及所述第三隔热板包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向左延伸形成的第三止挡部和第四止挡部。
  13. 如权利要求12所述的惯性测量单元,其特征在于,所述第一侧壁的宽度、所述第三侧壁的宽度以及所述第一止挡部的宽度之和大致等于所述主体部沿第一方向的长度,以及所述第一止挡部的长度与所述第三止挡部的长度之和大致等于所述主体部沿第二方向的长度。
  14. 如权利要求11所述的惯性测量单元,其特征在于,所述惯性测量单元还包括第一胶套、第二胶套和罩体,所述第一胶套套设在所述第一隔热板上,所述第二胶套套设在所述第二隔热板上;所述罩体将所述第一胶套、第二胶套及所述主体部套在一起以整合为一个整体。
  15. 如权利要求14所述的惯性测量单元,其特征在于,所述第一胶套的内壁顶部呈网格状,以及所述第二胶套的内壁底部呈网格状。
  16. 如权利要求14所述的惯性测量单元,其特征在于,所述第一胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向下延伸形成的四个侧壁;所述第二胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向上延伸形成的四个侧壁;以及所述罩体包括一个矩形基板及自该矩形基板的四个侧边垂直向下延伸形成的四个侧壁。
  17. 如权利要求16所述的惯性测量单元,其特征在于,所述罩体的四个侧壁上均设置有一个缺口,以及所述罩体的其中一个侧壁上设有一开口以使得所述惯性测量单元的所述延伸部由该开口伸出。
  18. 一种可移动装置,该可移动装置包括惯性测量单元,该惯性测量单元具有一个或多个传感器以及保温系统,所述保温系统用于为所述一个或多个传感器提供预设的温度,其特征在于:所述保温系统包括导热保温主体及多个加热源,所述一个或多个传感器设置于所述导热保温主体上;所述保温系统利用所述多个加热源产生热量,并通过所述导热保温主体将所述多个加热源产生的热量传导至所述一个或多个传感器,使所述一个或多个传感器周围维持所述预设的温度。
  19. 如权利要求18所述的可移动装置,其特征在于,所述惯性测量单元还包括电路板组件,该电路板组件包括主体部和延伸部,该延伸部自所述主体部的一侧延伸而出。
  20. 如权利要求19所述的可移动装置,其特征在于,所述主体部为多个柔性电路板与刚性电路板连接形成的中空的框体。
  21. 如权利要求19所述的可移动装置,其特征在于,所述导热保温主体为高导热率的多面体框架,其形状与所述惯性测量单元的主体部相对应,以容置于所述惯性测量单元的主体部。
  22. 如权利要求21所述的可移动装置,其特征在于,所述多个加热源设置在所述电路板组件上并与所述电路板组件电性连接,所述多个加热源分布在所述导热保温主体的侧壁上。
  23. 如权利要求22所述的可移动装置,其特征在于,所述多个加热源分布在所述导热保温主体相对的两个侧壁上,以及所述导热保温主体的一个或多个侧壁上开设有凹槽,使得所述一个或多个传感器嵌置于所述导热保温主体上与所述多个加热源所在两个侧壁相邻的一个或多个侧壁上的凹槽内。
  24. 如权利要求23所述的可移动装置,其特征在于,所述导热保温主体两个相对侧壁上的多个加热源均匀分布于各自所在侧壁的四周。
  25. 如权利要求21所述的可移动装置,其特征在于,所述导热保温主体由高导热率的金属材料制成,所述惯性测量单元还包括导热件,所述多个加热源与所述导热保温主体之间及所述一个或多个传感器与所述导热保温主体之间均填充所述导热件进行导热。
  26. 如权利要求25所述的可移动装置,其特征在于,所述导热件为绝缘的导热硅胶。
  27. 如权利要求25所述的可移动装置,其特征在于,所述电路板组件的主体部包覆所述导热保温主体,使得所述多个加热源通过预先固定于所述导热保温主体的侧壁上的导热件与所述接触,以均匀地分布于所述导热保温主体相对的两个侧壁上,以将热量传导至所述导热保温主体。
  28. 如权利要求21所述的可移动装置,其特征在于,所述导热保温主体为六面体框架,以及所述保温系统还包括多个隔热板,所述多个隔热板包括沿第一方向设置的第一隔热板与第二隔热板以及沿与所述第一方向垂直的第二方向设置的第二隔热板和第三隔热板,所述第一隔热板与第二隔热板相互配合以在第一方向上夹持所述惯性测量单元的所述主体部,所述第三隔热板与所述四隔热板相互配合以在第二方向上夹持所述惯性测量单元的所述主体部。
  29. 如权利要求28所述的可移动装置,其特征在于,所述第一隔热板包括一个矩形底板及自该矩形底板的两个相对侧边垂直向下延伸形成的第一侧壁和第二侧壁;所述第二隔热板包括一个矩形底板及自该矩形地板的两个相对侧边垂直向上延伸形成的第三侧壁和第四侧壁;所述第三隔热板包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向左延伸形成的第一止挡部和第二止挡部,以及所述第三隔热板包括一个矩形底板及自该矩形底板的两个相对侧边的中部垂直向左延伸形成的第三止挡部和第四止挡部。
  30. 如权利要求29所述的可移动装置,其特征在于,所述第一侧壁的宽度、所述第三侧壁的宽度以及所述第一止挡部的宽度之和大致等于所述主体部沿第一方向的长度,以及所述第一止挡部的长度与所述第三止挡部的长度之和大致等于所述主体部沿第二方向的长度。
  31. 如权利要求28所述的可移动装置,其特征在于,所述惯性测量单元还包括第一胶套、第二胶套和罩体,所述第一胶套套设在所述第一隔热板上,所述第二胶套套设在所述第二隔热板上;所述罩体将所述第一胶套、第二胶套及所述主体部套在一起以整合为一个整体。
  32. 如权利要求31所述的可移动装置,其特征在于,所述第一胶套的内壁顶部呈网格状,以及所述第二胶套的内壁底部呈网格状。
  33. 如权利要求31所述的可移动装置,其特征在于,所述第一胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向下延伸形成的四个侧壁;所述第二胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向上延伸形成的四个侧壁;以及所述罩体包括一个矩形基板及自该矩形基板的四个侧边垂直向下延伸形成的四个侧壁。
  34. 如权利要求33所述的可移动装置,其特征在于,所述罩体的四个侧壁上均设置有一个缺口,以及所述罩体的其中一个侧壁上设有一开口以使得所述惯性测量单元的所述延伸部由该开口伸出。
  35. 一种惯性测量单元,包括电路板组件,其特征在于,该电路板组件包括主体部,以及该惯性测量单元还包括减振套,所述减振套用于套设在所述主体部上,以夹持所述主体部。
  36. 如权利要求35所述的惯性测量单元,其特征在于,所述减振套包括第一胶套与第二胶套,所述第一胶套与第二胶套分别套设于所述主体部的两个相对的端部。
  37. 如权利要求36所述的惯性测量单元,其特征在于,所述第二胶套的内壁底部呈网格状,以及所述第一胶套的内壁顶部呈网格状。
  38. 如权利要求36所述的惯性测量单元,其特征在于,所述惯性测量单元还包括罩体,所述罩体将所述减振套和所述主体部套在一起以整合为一个整体。
  39. 如权利要求38所述的惯性测量单元,其特征在于,所述电路板组件的所述主体部为多个柔性电路板与刚性电路板连接形成的中空的矩形框体,以及所述第一胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向下延伸形成的四个侧壁;所述第二胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向上延伸形成的四个侧壁;及所述罩体包括一个矩形基板及自该矩形基板的四个侧边垂直向下延伸形成的四个侧壁。
  40. 如权利要求39所述的惯性测量单元,所述电路板组件还包括延伸部,该延伸部自所述主体部的一侧延伸而出,以及所述罩体的其中一个侧壁上设有一开口以使得所述惯性测量单元的所述延伸部由该开口伸出。
  41. 如权利要求39所述的惯性测量单元,其特征在于,所述罩体的四个侧壁上均设置有一个缺口。
  42. 如权利要求36所述的惯性测量单元,其特征在于,所述惯性测量单元还包括多个隔热板,所述多个隔热板包括沿第一方向设置的第一隔热板与第二隔热板以及沿与第一方向垂直的第二方向设置的第二隔热板和第三隔热板,所述第一隔热板与第二隔热板相互配合以在第一方向上夹持所述惯性测量单元的所述主体部,所述第三隔热板与所述四隔热板相互配合以在第二方向上夹持所述惯性测量单元的所述主体部。
  43. 如权利要求42所述的惯性测量单元,其特征在于,所述第一胶套套设在所述第一隔热板上,所述第二胶套套设在所述第二隔热板上。
  44. 一种可移动装置,该可移动装置具有惯性测量单元,该惯性量测单元包括电路板组件,其特征在于,该电路板组件包括主体部,以及该惯性测量单元包括一个或多个传感器以及电路板组件,其特征在于,该电路板组件包括主体部,以及该惯性测量单元还包括减振套,所述减振套用于套设在所述主体部上,以夹持所述主体部。
  45. 如权利要求44所述的可移动装置,其特征在于,所述减振套包括第一胶套与第二胶套,所述第一胶套与第二胶套分别套设于所述主体部的两个相对的端部。
  46. 如权利要求45所述的可移动装置,其特征在于,所述第二胶套的内壁底部呈网格状,以及所述第一胶套的内壁顶部呈网格状。
  47. 如权利要求45所述的可移动装置,其特征在于,所述惯性测量单元还包括罩体,所述罩体将所述减振套和所述主体部套在一起以整合为一个整体。
  48. 如权利要求47所述的可移动装置,其特征在于,所述电路板组件的所述主体部为多个柔性电路板与刚性电路板连接形成的中空的矩形框体,以及所述第一胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向下延伸形成的四个侧壁;所述第二胶套包括一个矩形的胶体基板及自该胶体基板的四个侧边垂直向上延伸形成的四个侧壁;及所述罩体包括一个矩形基板及自该矩形基板的四个侧边垂直向下延伸形成的四个侧壁。
  49. 如权利要求48所述的可移动装置,其特征在于,所述电路板组件还包括延伸部,该延伸部自所述主体部的一侧延伸而出,以及所述罩体的其中一个侧壁上设有一开口以使得所述惯性测量单元的所述延伸部由该开口伸出。
  50. 如权利要求48所述的可移动装置,其特征在于,所述罩体的四个侧壁上均设置有一个缺口。
  51. 如权利要求45所述的可移动装置,其特征在于,所述惯性测量单元还包括多个隔热板,所述多个隔热板包括沿第一方向设置的第一隔热板与第二隔热板以及沿与第一方向垂直的第二方向设置的第二隔热板和第三隔热板,所述第一隔热板与第二隔热板相互配合以在第一方向上夹持所述惯性测量单元的所述主体部,所述第三隔热板与所述四隔热板相互配合以在第二方向上夹持所述惯性测量单元的所述主体部。
  52. 如权利要求51所述的可移动装置,其特征在于,所述第一胶套套设在所述第一隔热板上,所述第二胶套套设在所述第二隔热板上。
PCT/CN2015/093350 2015-10-30 2015-10-30 惯性测量单元及应用该惯性测量单元的可移动装置 WO2017070929A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201910321144.XA CN110017835A (zh) 2015-10-30 2015-10-30 惯性测量单元及应用该惯性测量单元的可移动装置
PCT/CN2015/093350 WO2017070929A1 (zh) 2015-10-30 2015-10-30 惯性测量单元及应用该惯性测量单元的可移动装置
CN201580067013.3A CN107003133B (zh) 2015-10-30 2015-10-30 惯性测量单元及应用该惯性测量单元的可移动装置
US15/964,828 US10788508B2 (en) 2015-10-30 2018-04-27 Inertial measurement unit and movable device using the same
US17/020,128 US11408905B2 (en) 2015-10-30 2020-09-14 Inertial measurement unit and movable device using the same
US17/818,354 US11821908B2 (en) 2015-10-30 2022-08-08 Inertial measurement unit and movable device using the same
US18/514,822 US20240085447A1 (en) 2015-10-30 2023-11-20 Inertial measurement unit and movable device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093350 WO2017070929A1 (zh) 2015-10-30 2015-10-30 惯性测量单元及应用该惯性测量单元的可移动装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/964,828 Continuation US10788508B2 (en) 2015-10-30 2018-04-27 Inertial measurement unit and movable device using the same

Publications (1)

Publication Number Publication Date
WO2017070929A1 true WO2017070929A1 (zh) 2017-05-04

Family

ID=58629700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093350 WO2017070929A1 (zh) 2015-10-30 2015-10-30 惯性测量单元及应用该惯性测量单元的可移动装置

Country Status (3)

Country Link
US (4) US10788508B2 (zh)
CN (2) CN107003133B (zh)
WO (1) WO2017070929A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113837B2 (en) 2015-11-03 2018-10-30 N2 Imaging Systems, LLC Non-contact optical connections for firearm accessories
CN113942646A (zh) * 2017-06-27 2022-01-18 深圳市大疆创新科技有限公司 无人机
CN107628261B (zh) * 2017-09-20 2024-04-05 歌尔科技有限公司 一种imu气压计组件及无人机
US10753709B2 (en) 2018-05-17 2020-08-25 Sensors Unlimited, Inc. Tactical rails, tactical rail systems, and firearm assemblies having tactical rails
US11079202B2 (en) 2018-07-07 2021-08-03 Sensors Unlimited, Inc. Boresighting peripherals to digital weapon sights
US10645348B2 (en) 2018-07-07 2020-05-05 Sensors Unlimited, Inc. Data communication between image sensors and image displays
US10742913B2 (en) 2018-08-08 2020-08-11 N2 Imaging Systems, LLC Shutterless calibration
US10921578B2 (en) 2018-09-07 2021-02-16 Sensors Unlimited, Inc. Eyecups for optics
US11122698B2 (en) 2018-11-06 2021-09-14 N2 Imaging Systems, LLC Low stress electronic board retainers and assemblies
US10801813B2 (en) 2018-11-07 2020-10-13 N2 Imaging Systems, LLC Adjustable-power data rail on a digital weapon sight
US10796860B2 (en) 2018-12-12 2020-10-06 N2 Imaging Systems, LLC Hermetically sealed over-molded button assembly
US11143838B2 (en) 2019-01-08 2021-10-12 N2 Imaging Systems, LLC Optical element retainers
US11754351B2 (en) * 2019-09-12 2023-09-12 Honeywell International Inc. Sensor thermal management and stabilization utilizing variable conductance
CN111656141A (zh) * 2019-10-29 2020-09-11 深圳市大疆创新科技有限公司 一种无人控制机器人的惯性传感器加热方法
CN110986933A (zh) * 2019-12-13 2020-04-10 武汉迈普时空导航科技有限公司 一种基于eps泡沫的imu减震隔热装置及制备方法
CN111426317B (zh) * 2020-04-08 2022-06-17 深圳市道通智能航空技术股份有限公司 一种惯性测量模块、减震系统以及无人机
CN113741577A (zh) * 2020-05-28 2021-12-03 阿里巴巴集团控股有限公司 温度控制装置、系统和电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109889A (ja) * 1996-06-20 1998-01-16 Tamagawa Seiki Co Ltd 慣性センサ装置
US7040922B2 (en) * 2003-06-05 2006-05-09 Analog Devices, Inc. Multi-surface mounting member and electronic device
CN101025635A (zh) * 2007-03-07 2007-08-29 北京航空航天大学 一种适用于光纤陀螺惯性测量组合的全数字温控装置
CN201116875Y (zh) * 2007-11-26 2008-09-17 山西科泰微技术有限公司 微机械惯性导航装置
CN202074979U (zh) * 2010-08-09 2011-12-14 汪滔 一种微型惯性检测装置
CN202274882U (zh) * 2011-09-02 2012-06-13 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
CN103034265A (zh) * 2012-12-11 2013-04-10 北京兴华机械厂 强制均温和半导体制冷片调温的惯性仪表测试用温控仪
CN103412592A (zh) * 2013-07-26 2013-11-27 北京航天控制仪器研究所 一种惯性测量系统三级温控系统
CN204730844U (zh) * 2015-07-06 2015-10-28 极翼机器人(上海)有限公司 无人飞行器惯性测量模块

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020135414A1 (en) * 2001-02-13 2002-09-26 Mccall Hiram Acceleration signal amplifier with signal centering control technology
JP2005308689A (ja) * 2004-04-26 2005-11-04 Denso Corp 物理量センサ
US8474614B2 (en) * 2007-03-14 2013-07-02 BBY Solutions Protective container for a flat screen monitor
US7872473B2 (en) * 2007-08-07 2011-01-18 The United States of America as represented by the Secretary of Commerce, the National Institute of Standards and Technology Compact atomic magnetometer and gyroscope based on a diverging laser beam
CN102121829B (zh) * 2010-08-09 2013-06-12 汪滔 一种微型惯性测量系统
CN102424196B (zh) * 2011-08-19 2017-02-01 美盈森集团股份有限公司 小型电脑组机包装箱
CN202272361U (zh) * 2011-08-29 2012-06-13 法科达拉泡沫材料(上海)有限公司 多功能缓冲电脑包装装置
CN103171831A (zh) * 2011-12-20 2013-06-26 松下电器研究开发(苏州)有限公司 冰箱用包装结构
KR101351424B1 (ko) * 2012-09-12 2014-01-15 한국표준과학연구원 초전도 가속도계, 가속도 측정 장치, 및 가속도 측정 방법
US9804840B2 (en) 2013-01-23 2017-10-31 International Business Machines Corporation Vector Galois Field Multiply Sum and Accumulate instruction
CN104417831B (zh) * 2013-08-22 2018-10-12 青岛海尔洗衣机有限公司 一种复合底衬包装及采用其的洗衣机包装结构
CN203952612U (zh) * 2014-06-09 2014-11-26 戴志杰 足跟缓冲垫
CN204426727U (zh) * 2014-12-31 2015-07-01 昆山腾飞内衣有限公司 一种网格罩杯文胸
CN204694263U (zh) * 2015-05-27 2015-10-07 深圳市道通智能航空技术有限公司 一种惯性测量装置
CN104913778A (zh) * 2015-07-06 2015-09-16 极翼机器人(上海)有限公司 独立无人飞行器惯性测量装置
CN104931054A (zh) * 2015-07-06 2015-09-23 极翼机器人(上海)有限公司 惯性测量减振器及无人飞行器惯性测量模块
US10845375B2 (en) * 2016-02-19 2020-11-24 Agjunction Llc Thermal stabilization of inertial measurement units

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109889A (ja) * 1996-06-20 1998-01-16 Tamagawa Seiki Co Ltd 慣性センサ装置
US7040922B2 (en) * 2003-06-05 2006-05-09 Analog Devices, Inc. Multi-surface mounting member and electronic device
CN101025635A (zh) * 2007-03-07 2007-08-29 北京航空航天大学 一种适用于光纤陀螺惯性测量组合的全数字温控装置
CN201116875Y (zh) * 2007-11-26 2008-09-17 山西科泰微技术有限公司 微机械惯性导航装置
CN202074979U (zh) * 2010-08-09 2011-12-14 汪滔 一种微型惯性检测装置
CN202274882U (zh) * 2011-09-02 2012-06-13 深圳市大疆创新科技有限公司 一种无人飞行器惯性测量模块
CN103034265A (zh) * 2012-12-11 2013-04-10 北京兴华机械厂 强制均温和半导体制冷片调温的惯性仪表测试用温控仪
CN103412592A (zh) * 2013-07-26 2013-11-27 北京航天控制仪器研究所 一种惯性测量系统三级温控系统
CN204730844U (zh) * 2015-07-06 2015-10-28 极翼机器人(上海)有限公司 无人飞行器惯性测量模块

Also Published As

Publication number Publication date
US20220390479A1 (en) 2022-12-08
US20240085447A1 (en) 2024-03-14
US10788508B2 (en) 2020-09-29
CN107003133B (zh) 2019-05-31
CN107003133A (zh) 2017-08-01
US20180246135A1 (en) 2018-08-30
US11408905B2 (en) 2022-08-09
US20200408795A1 (en) 2020-12-31
US11821908B2 (en) 2023-11-21
CN110017835A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2017070929A1 (zh) 惯性测量单元及应用该惯性测量单元的可移动装置
WO2018053873A1 (zh) 电子调速器及具有该电子调速器的云台、无人飞行器
WO2019117464A1 (ko) 배터리 팩
CN205175415U (zh) 惯性测量单元及应用该惯性测量单元的可移动装置
WO2021203992A1 (zh) 一种惯性测量模块及无人机
WO2017070911A1 (zh) 飞行控制装置以及具有该飞行控制装置的无人机
WO2018049614A1 (zh) 电池及其组装方法,以及使用该电池的无人飞行器
KR20080031669A (ko) 가열된 압력 변환기용 열 장착 플레이트
CN103575388A (zh) 红外传感器
WO2017091948A1 (zh) 电池容纳装置及无人飞行器、电子装置
WO2018133277A1 (zh) 热管理结构及使用热管理结构的无人机
WO2020085706A1 (ko) 연결 부재로 연결된 복수의 회로 기판 사이에 상 변환 물질이 충진된 전자 장치
JP2017125753A (ja) 電子デバイス、電子機器および移動体
GB2614793A (en) Processor heat dissipation in a stacked PCB configuration
WO2019117436A1 (ko) 배터리 팩
JP2022036477A (ja) 慣性センサー装置、及び慣性計測ユニット
WO2018018637A1 (zh) 散热器、无人飞行器和可移动设备
CN216721932U (zh) 一种防水电动车控制器
US20230048524A1 (en) Sensor apparatus
WO2014129705A1 (ko) 서버 방열시스템
US4312131A (en) Accurate level sensor
WO2015174698A1 (ko) 발열량 측정 장치 및 발열량 측정 방법
WO2020133356A1 (zh) 隔离减振装置及三轴陀螺仪
CN219779165U (zh) 电池系统及车辆
WO2023158117A1 (ko) 전지 모듈 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906992

Country of ref document: EP

Kind code of ref document: A1