WO2017070915A1 - 飞轮装置 - Google Patents

飞轮装置 Download PDF

Info

Publication number
WO2017070915A1
WO2017070915A1 PCT/CN2015/093317 CN2015093317W WO2017070915A1 WO 2017070915 A1 WO2017070915 A1 WO 2017070915A1 CN 2015093317 W CN2015093317 W CN 2015093317W WO 2017070915 A1 WO2017070915 A1 WO 2017070915A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
blocks
wheel
magnetic
flywheel device
Prior art date
Application number
PCT/CN2015/093317
Other languages
English (en)
French (fr)
Inventor
林高合
王世宏
Original Assignee
林高合
王世宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林高合, 王世宏 filed Critical 林高合
Priority to PCT/CN2015/093317 priority Critical patent/WO2017070915A1/zh
Publication of WO2017070915A1 publication Critical patent/WO2017070915A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/31Flywheels characterised by means for varying the moment of inertia

Definitions

  • the present invention relates to a flywheel device, and more particularly to a flywheel device having an unequal weight configuration in a radial direction.
  • the flywheel device 9 includes a wheel 91 having a shaft hole 92 in the center thereof for coupling a rotating shaft ( The figure is not shown).
  • the flywheel device 9 can be rotated by the rotating shaft, wherein the weight distribution of the wheel 91 in the radial direction of the rotating shaft is equal, and when the wheel 91 rotates, a tendency to rotate around the rotating shaft is generated. This allows the flywheel device 9 to provide a torque.
  • the weight distribution of the wheel 91 in the radial direction of the rotating shaft cannot be completely equal. Once the position of the center of gravity of the wheel 91 has an error, it deviates from the center of the shaft hole 92, and the wheel 91 is in the wheel 91. When the rotation is performed, an eccentric action is caused, so that the wheel 91 is unbalancedly rotated, and it is easy to derive axial pinching or vibration, and the torque that the flywheel device 9 can provide is reduced. In other words, the flywheel device 9 cannot provide a constant and stable torque, causing the rotating shaft to consume higher power to maintain the rotational speed of the flywheel device 9.
  • the wheel 91 is a solid disc, so that the axial section of the wheel 91 will be rectangular, that is, the effective cross-sectional area of the axial section of the wheel 91 is large, so that it has a large wind resistance.
  • the coefficient thus hinders the rotation of the wheel 91. Accordingly, the torque output of the flywheel device 9 may be further reduced by the fact that the wheel 91 has a large drag coefficient.
  • the prior art flywheel device 9 does have a need for improvement.
  • the present invention provides a flywheel device that divides a wheel into eight blocks in a circumferential direction and provides a groove in each of the blocks so that each block has a different weight to ensure the wheel Ability to balance rotation.
  • the flywheel device of the present invention comprises: a wheel disc having a shaft joint portion at the center thereof, and the wheel disc is divided into a first block, an eighth block and a third block in a circumferential direction. a fourth block, a ninth block, a second block, a seventh block and a sixth block, each of the blocks being provided with a groove, and each of the blocks has a groove
  • the volumes are all unequal, so that the weight ratio of the first block, the second block, the third block, the fourth block, the sixth block, the seventh block, the eighth block, and the ninth block are formed. 1:2:3:4:6:7:8:9.
  • flywheel device as described above, wherein the first block, the eighth block, the third block, the fourth block, the ninth block, the second block, the seventh block, and the sixth block
  • the circumferential direction divides the wheel into eight quarters that are radially arranged.
  • the flywheel device as described above, wherein the wheel has opposite surfaces in an axial direction of the shaft portion, the grooves of each block are blind grooves, and the grooves of each block It is disposed on the two surfaces at the same time.
  • the flywheel device as described above, wherein the wheel disc is further divided into an outer ring portion and a central portion in a radial direction of the shaft portion, the central portion being coupled to the shaft portion, the outer ring portion surrounding the a central portion, and a groove of each of the blocks is disposed at the central portion.
  • the flywheel device as described above further comprising an auxiliary rotation module, the auxiliary rotation module comprising a base, an adjusting member and a magnetic member, the adjusting member being disposed on the base, the magnetic member being combined with the adjusting member
  • the magnetic member has a magnetic surface away from the base, the adjusting member is configured to adjust the angle of the magnetic surface and the base to be slightly adjusted, and the outer circumference of each of the blocks is respectively combined with a magnet, each of the magnets having A magnetic surface away from the wheel, and the magnetic faces of each of the magnets have the same polarity as the magnetic faces of the magnetic member.
  • a flywheel device as described above, wherein, when the magnetic member is not subjected to an external force, the magnetic surface of the magnetic member faces the outer circumference of the wheel, and when one of the magnets rotates close to the magnetic member, the magnetic member will face The magnet is deflected in the opposite direction such that the magnetic face of the magnetic member forms an angle with the base.
  • the flywheel device of the present invention can provide grooves having unequal volumes in each of the blocks, so that each block has a different weight, so that each block of the wheel can be rotated.
  • the moment of inertia is different.
  • the wheel can be rotated and balanced by the rotating shaft, so that the wheel can be balancedly rotated without deriving axial deflection or vibration. In other cases, it has the effect of increasing the torque output of the flywheel device.
  • Figure 1 Appearance of a prior art flywheel device.
  • Fig. 2 is a schematic view showing the appearance of a first embodiment of the present invention.
  • Figure 3 is a cross-sectional view of the first embodiment of the present invention taken along line I-I of Figure 2;
  • Figure 4 is a schematic view showing the appearance of a second embodiment of the present invention.
  • Fig. 5 is a schematic view showing the appearance of a third embodiment of the present invention.
  • Fig. 6 is a schematic view showing the use of the third embodiment of the present invention.
  • Fig. 7 is a schematic view showing the use of the eighth block of the roulette of the third embodiment of the present invention in proximity to the magnetic member.
  • Fig. 8 is a view showing the use of the eighth block of the wheel of the third embodiment of the present invention rotated to the position of the auxiliary rotary module.
  • Figure 9 is a schematic view showing the use of the eighth block of the wheel disc of the third embodiment of the present invention away from the auxiliary rotary mold.
  • the flywheel device includes a wheel 1 having a shaft portion 10 in the center thereof, and the wheel 1 can be along a circumferential direction ( For example, clockwise or counterclockwise, it is divided into eight blocks, which are a first block 11, an eighth block 18, a third block 13, a fourth block 14, and a ninth. Block 19, a second block 12, a seventh block 17, and a sixth block 16.
  • the shaft joint 10 may be a shaft hole or a one-way bearing for coupling a rotating shaft.
  • the shaft joint 10 may be an axle, and the axle may be coupled to a rotating shaft via a transmission device such as a coupling.
  • the invention is not limited thereto.
  • the wheel 1 is circular, and the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 divide the wheel 1 into eight radially arranged Equally divided.
  • the first to fourth blocks 11, 12, 13, 14 are respectively provided with a groove 111, 121, 131, 141.
  • the sixth to ninth blocks 16, 17, 18, 19 are also respectively provided with a groove
  • the grooves 161, 171, 181, 191, and the volumes of the grooves of each block are not equal, such that the first, second, third, fourth, sixth, seventh, eighth and ninth regions
  • the weight ratio of the blocks 11, 12, 13, 14, 16, 17, 18, 19 forms 1:2:3:4:6:7:8:9.
  • the volume of the groove 111 of the first block 11 is the largest, and the volume of the groove 121 of the second block 12 is second, followed by the third, fourth, sixth, and seventh.
  • the grooves 131, 141, 161, 171, 181 of the eighth block 13, 14, 16, 17, 18, the volume of the groove 191 of the ninth block 19 is the smallest.
  • the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 will form eight blocks having different weights, and by design,
  • the volumes of the grooves 111, 121, 131, 141, 161, 171, 181, 191 of the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 have With a suitable difference, the weight ratio of the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 can be made 1:2:3:4:6 :7:8:9, which is understood by those skilled in the art.
  • FIG. 3 is a cross-sectional view of the flywheel device of the first embodiment taken along line II of FIG. 2, and the wheel 1 has an axial direction X of the shaft portion 10.
  • the two surfaces 1a and 1b are opposite to each other, wherein the grooves of each block may be blind grooves, and the grooves of each block may be disposed on one surface of the wheel 1; or, each of the blocks
  • the grooves can be simultaneously provided on the two surfaces 1a, 1b of the wheel 1. For example, as shown in FIG.
  • the groove 111 of the first block 11 is symmetrically disposed on the two surfaces 1a, 1b of the wheel 1; likewise, the other seven zones
  • the grooves of the block are also symmetrically disposed on the two surfaces 1a, 1b of the wheel 1.
  • the grooves of each of the blocks may also be through grooves extending through the two surfaces 1a, 1b, and the invention is not limited thereto.
  • the shaft portion 10 can be coupled to a rotating shaft, and the rotating shaft is driven by a power source (for example, a motor), so that the wheel 1 can be subjected to the The rotating shaft drives and rotates.
  • a power source for example, a motor
  • the wheel 1 is The sum of the weights of any two opposing blocks in the radial direction of the joint portion 10 is equal.
  • the weight ratio of the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 form 1:2:3:4:6 :7:8:9, and the first and ninth blocks 11, 19, the second and eighth blocks 12, 18, the third and seventh blocks 13, 17 and the fourth and sixth
  • the blocks 14, 16 are respectively opposed in the radial direction of the shaft joint portion 10. Therefore, if the sum of the weights of the first and ninth blocks 11, 19 is W, the second and eighth blocks 12, 18. The sum of the weights of the third and seventh blocks 13, 17 and the fourth and sixth blocks 14, 16 is W. Furthermore, referring to FIG.
  • the first block 11 and the two blocks have a total weight of 1.5 W; the third block 13 and The sum of the weights on the two sides (the eighth and fourth blocks 18, 14) is 1.5 W; the ninth block 19 and the blocks on both sides (fourth and second blocks 14, 12) The sum of the weights is 1.5W; and the sum of the weights of the seventh block 17 and its two sides (the eighth and sixth blocks 12, 16) is also 1.5W.
  • the sum of the weights of the first block 11, the third block 13, the ninth block 19, and the seventh block 17 which are respectively 90 degrees apart in the circumferential direction and their respective two sides are equal.
  • the first embodiment is equalized by the sum of the weights of the two blocks which are opposite to each other in the radial direction of the shaft portion 10, and the first difference of 90 degrees in the circumferential direction, respectively.
  • the sum of the weights of the block 11, the third block 13, the ninth block 19 and the seventh block 17 and the blocks on the respective two sides thereof are equal, so that the wheel 1 can be rotated by the rotating shaft and rotated. Balanced effect.
  • the respective blocks of the wheel 1 are in rotation The moment of inertia is different.
  • the weight of the ninth block 19 is greater than the weight of the second block 12 adjacent thereto, so that the ninth block 19 has a higher moment of inertia when When the ninth block 19 is rotated toward the position of the second block 12, the ninth block 19 can force the second block 12 to rotate together, so that the wheel 1 can be stably rotated.
  • the rotation process of the ninth block 19 and the second block 12 is analyzed by the traveling wave function, the forward wave of the ninth block 19 is larger than the received wave of the second block 12, so the ninth The block 19 is capable of stably rotating toward the position of the second block 12. Similar effects are also present in other blocks of the wheel 1 .
  • the first embodiment of the flywheel device of the present invention utilizes the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 to have different weights, so that the wheel The moments of inertia of the respective blocks of the disk 1 are different during the rotation, and by properly arranging the blocks, the disk 1 can be rotated and balanced by the rotation axis.
  • the wheel 91 of the flywheel device 9 of the prior art described above it is necessary to uniformly distribute the weight in the radial direction, which is easily affected by the process tolerance, so that the position of the center of gravity of the wheel 91 is in error, and thus the wheel 91 is rotated.
  • the first embodiment of the flywheel device of the present invention has different weights for each block of the wheel 1, in other words, the weight of each block of the wheel 1 has been The difference is pre-existing, thus making the wheel 1 less susceptible to process tolerances. Accordingly, the wheel 1 of the first embodiment of the flywheel device of the present invention is less prone to eccentricity when rotated, and the wheel 1 can be balancedly rotated without deriving axial deflection or vibration, etc., so that the flywheel device can continue It provides stable torque and has the effect of increasing the torque output of the flywheel device.
  • the first embodiment of the flywheel device of the present invention utilizes the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 also respectively providing a groove 111, 121, 131, 141, 161, 171, 181, 191 for the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17 18, 19 form eight blocks of different weights.
  • Opening a groove in each block of the wheel 1 can reduce the effective cross-sectional area of the axial section of the wheel 1, in other words, forming a rectangular shape in comparison with the axial section of the wheel 91 of the prior art flywheel device 9,
  • the first embodiment of the invention of the flywheel device utilizes the groove provided in the wheel 1 to reduce the effective sectional area of the wheel 1 to reduce the drag coefficient of the wheel 1, and has the effect of further increasing the torque output of the flywheel device.
  • FIGS. 1 and 2 together with a rotation radius r of 180 mm and a total weight of 30 kg.
  • the wheel 1 was tested and a wheel 91 of a prior art flywheel device 9 having a radius of curvature r' of 180 mm and a total weight of 30 kg was used as a control.
  • the rotation of the wheel 1 is driven by a motor using a product of a frame number 132M/rated voltage of 220V/horsepower of 10HP/output of 7.5kW, which consumes 1.18 kW of power to drive the wheel.
  • the disk 1 is rotated at 1800 rpm; in contrast, the motor consumes 1.4 kW of power to drive the disk 91 of the prior art flywheel device 9 to rotate at 1800 rpm.
  • the energy consumed by the wheel 1 of the first embodiment of the flywheel device of the present invention during the rotation process is significantly lower, which is sufficient to display the phase of the wheel 1
  • the wheel 91 of the flywheel device 9 of the prior art can be rotated relatively stably. Therefore, the first embodiment of the flywheel device of the present invention can continuously and stably provide the torsion force, and has the effect of improving the torque output of the flywheel device.
  • the wheel 1 is divided into eight blocks along the circumferential direction, which are a first block 11, an eighth block 18, a third block 13, and a fourth block. 14.
  • the weight ratio of the nine blocks 16, 17, 18, 19 forms 1:2:3:4:6:7:8:9.
  • the wheel 1 is circular, and therefore, the person skilled in the art to which the present invention pertains can be known from the first embodiment.
  • the wheel 1 can also be divided into eight blocks along the circumferential direction, respectively.
  • Block 11, a sixth block 16, a seventh block 17, a second block 12, a ninth block 19, a fourth block 14, a third block 13, and an eighth block Block 18, the form of the disc 1 also falls within the scope of this first embodiment.
  • FIG. 4 it is a second embodiment of the flywheel device of the present invention, which is different from the first embodiment in that the wheel 1 is further divided into an outer ring in the radial direction of the shaft portion 10. a portion 1c and a central portion 1d connected to the shaft portion 10, the outer ring portion 1c surrounding the central portion 1d, and the first to fourth blocks 11, 12, 13, 14 and the sixth to The grooves 111, 121, 131, 141, 161, 171, 181, 191 of the ninth block 16, 17, 18, 19 are provided in the central portion 1d.
  • the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 do not have any grooves in the outer ring portion 1c, so that the roulette
  • the periphery of the periphery 1 is heavier, and the center of the wheel 1 (near the center portion 1d) is lighter in weight, and the rotation stability of the wheel 1 can be further improved.
  • the flywheel device further includes an auxiliary rotation module 2, and the auxiliary rotation module 2 includes a base 21, an adjustment member 22, and a magnetic member 23 is disposed on the base 21, the magnetic member 23 is coupled to the adjusting member 22, and the magnetic member 23 has a distance away from the base 21 A magnetic face 231.
  • the outer circumferences of the first to fourth blocks 11, 12, 13, 14 and the sixth to ninth blocks 16, 17, 18, 19 of the wheel 1 are respectively coupled with a magnet 3, each of which has A magnetic surface 31 away from the wheel 1 and the magnetic surface 31 of each of the magnets 3 have the same polarity as the magnetic surface 231 of the magnetic member 23 (for example, the same N pole).
  • the adjusting member 22 can be an adjustment structure such as a pivot, a slide or a spring, so that the angle of the magnetic surface 231 and the base 21 can be slightly adjusted.
  • the magnetic surface 231 of the magnetic member 23 is preferably oriented toward the outer circumference of the wheel 1.
  • the wheel 1 is still rotated by the rotating shaft, and the auxiliary rotating module 2 is used to assist the rotation of the wheel 1. More specifically, taking the position of the eighth block 18 of the wheel 1 toward the auxiliary rotation module 2 as an example, please refer to FIG. 7, when the eighth block 18 is rotated close to the magnetic member 23, A repulsive force is generated between the magnet 3 combined with the outer periphery of the eighth block 18 and the magnetic member 23. Since the magnetic member 23 is coupled to the adjusting member 22, the magnetic member 23 is slightly affected by the repulsive force. The direction opposite to the magnet 3 is deflected such that the magnetic surface 231 of the magnetic member 23 forms an angle ⁇ with the base 21. At this time, the contact area of the magnetic surface 31 of the magnet 3 and the magnetic surface 231 of the magnetic member 23 is reduced, so that the repulsive force does not hinder the rotation of the wheel 1.
  • the eighth block 18 when the eighth block 18 is continuously rotated to the position of the auxiliary rotation module 2, the contact area between the magnetic surface 31 of the magnet 3 and the magnetic surface 231 of the magnetic member 23 will change. Large, and the magnetic surface 231 of the magnetic member 23 forms an angle ⁇ with the base 21, so that the repulsive force generated between the magnet 3 and the magnetic member 23 can assist the eighth block 18 along the same The direction of rotation is pushed to assist the eighth block 18 to continue to rotate in a direction away from the auxiliary rotation module 2. Finally, referring to FIG. 9, after the eighth block 18 is continuously rotated away from the auxiliary rotating module 2, since the magnetic member 23 is no longer subjected to any external force, the magnetic surface 231 of the magnetic member 23 will be restored. The outer circumference of the wheel 1.
  • the third embodiment of the flywheel device of the present invention can assist the rotation of the wheel 1 by adding the auxiliary rotation module 2, ensuring that the wheel 1 can be stably rotated.
  • the flywheel device of each embodiment of the present invention can divide the wheel 1 into eight blocks in a circumferential direction, and each block has a different weight, so that each of the disks 1 can be made.
  • the moment of inertia of the block is different during the rotation, and at the same time, by properly arranging the blocks, the wheel 1 can be rotated and balanced by the rotating shaft, so that the wheel 1 can be balancedly rotated. It does not derive axial deflection or vibration, and does have the effect of increasing the torque output of the flywheel device.
  • the flywheel device of each embodiment of the present invention is provided with a recess in each block of the wheel 1 so that each block is formed to have a different weight. Opening a groove in each block of the wheel 1 can reduce the effective sectional area of the axial section of the wheel 1 to reduce the drag coefficient of the wheel 1, and indeed has the effect of further increasing the torque output of the flywheel device. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种飞轮装置,用以解决现有飞轮装置运转时稳定性不佳的问题。该飞轮装置包含一个轮盘,该轮盘中央设有一个轴接部,且该轮盘沿一个圆周方向区分为一个第一区块、一个第八区块、一个第三区块、一个第四区块、一个第九区块、一个第二区块、一个第七区块及一个第六区块,各该区块分别设有一个凹槽,且各该区块的凹槽的容积均不相等,使该第一区块、第二区块、第三区块、第四区块、第六区块、第七区块、第八区块及第九区块的重量比形成1:2:3:4:6:7:8:9。

Description

飞轮装置 技术领域
本发明是关于一种飞轮装置,尤其是一种于径向方向上具有不均等的重量配置的飞轮装置。
背景技术
请参照图1所示的一种现有技术的飞轮装置9,该飞轮装置9包含一轮盘91,该轮盘91中央开设一轴孔92,该轮盘92用以供结合一转动轴(图未绘示)。该飞轮装置9可以受该转动轴带动而旋转,其中,该轮盘91于该转动轴的径向方向上的重量分布均等,在该轮盘91转动时,将产生环绕该转动轴旋转的趋向,使得该飞轮装置9能够提供一扭力(torque)。
技术问题
然而,受到制程公差影响,该轮盘91于该转动轴的径向方向上的重量分布无法完全均等,一旦该轮盘91的重心位置存在误差而偏离该轴孔92中心,在该轮盘91转动时将会产生偏心作用,致使该轮盘91形成不平衡的旋转,容易衍生轴向偏转(pitching)或震动(vibration)等情形,进而导致该飞轮装置9所能够提供的扭力随之下降。换言之,该飞轮装置9无法持续且稳定地提供扭力,造成该转动轴必须消耗更高的动力来维持该飞轮装置9的转速。
再者,该轮盘91为实心圆盘,因此该轮盘91的轴向截面将形成长方形,亦即,该轮盘91的轴向截面的有效截面积较大,使其具有较大的风阻系数,因而阻碍该轮盘91转动。据此,受到该轮盘91具有较大的风阻系数影响,该飞轮装置9的扭力输出可能会进一步降低。
有鉴于此,现有技术的飞轮装置9确实仍有加以改善的必要。
技术解决方案
本发明提供一种飞轮装置,借助将一个轮盘沿一个圆周方向区分为八个区块,并且于各该区块设置一个凹槽,使各该区块具有不同的重量,以确保该轮盘能够平衡的旋转。
本发明的飞轮装置包含:一个轮盘,该轮盘中央设有一个轴接部,且该轮盘沿一个圆周方向区分为一个第一区块、一个第八区块、一个第三区块、一个第四区块、一个第九区块、一个第二区块、一个第七区块及一个第六区块,各该区块分别设有一个凹槽,且各该区块的凹槽的容积均不相等,使该第一区块、第二区块、第三区块、第四区块、第六区块、第七区块、第八区块及第九区块的重量比形成1:2:3:4:6:7:8:9。
如上所述的飞轮装置,其中,该第一区块、第八区块、第三区块、第四区块、第九区块、第二区块、第七区块及第六区块沿该圆周方向将该轮盘划分为放射状排列的八等分。
如上所述的飞轮装置,其中,该轮盘于该轴接部之径向方向上相对的任二区块的重量总和相等。
如上所述的飞轮装置,其中,该第一区块、第三区块、第九区块及第七区块与其各自二侧的区块的重量总和相等。
如上所述的飞轮装置,其中,该轮盘于该轴接部的一个轴向方向上具有呈相对的二个表面,各该区块的凹槽为盲槽,且各该区块的凹槽同时设置于该二个表面。
如上所述的飞轮装置,其中,该轮盘于该轴接部的径向方向上另区分为一个外环部及一个中央部,该中央部连接于该轴接部,该外环部环绕该中央部,且各该区块的凹槽设置于该中央部。
如上所述的飞轮装置,其中,另包含一个辅助转动模块,该辅助转动模块包含一个基座、一个调整件及一个磁性件,该调整件设置于该基座,该磁性件结合该调整件,该磁性件具有远离该基座的一个磁性面,该调整件用以使该磁性面与该基座的角度能够被略微调整,且各该区块的外周缘分别结合一个磁铁,各该磁铁具有远离该轮盘的一个磁性面,且各该磁铁的磁性面与该磁性件的磁性面具有相同的极性。
如上所述的飞轮装置,其中,当该磁性件未承受外力时,该磁性件的磁性面朝向该轮盘的外周缘,且当其中一个磁铁旋转接近该磁性件时,该磁性件将朝向与该磁铁相反的方向偏转,使得该磁性件的磁性面与该基座间形成一个夹角。
据由前述结构,本发明的飞轮装置可在各该区块设置容积均不相等的的凹槽,使各该区块具有不同的重量,即可使该轮盘的各个区块在旋转过程中的转动惯量不同,同时,通过适当排列各该区块可以使该轮盘受该转动轴带动而旋转时达到转动平衡的效果,使得该轮盘能够平衡的旋转而不会衍生轴向偏转或震动等情形,具有提升飞轮装置的扭力输出的功效。
附图说明
图1:一种现有技术的飞轮装置的外观图。
图2:本发明第一实施例的外观图示意图。
图3:本发明第一实施例沿第2图的剖线I-I的剖视示意图。
图4:本发明第二实施例的外观图示意图。
图5:本发明第三实施例的外观图示意图。
图6:本发明第三实施例的使用情形示意图。
图7:本发明第三实施例的轮盘的第八区块旋转接近磁性件的使用情形示意图。
图8:本发明第三实施例的轮盘的第八区块旋转至辅助转动模块的位置的使用情形示意图。
图9:本发明第三实施例的轮盘的第八区块远离该辅助转动模的使用情形示意图。
本发明
1 轮盘 10 轴接部
11 第一区块 111 凹槽
12 第二区块 121 凹槽
13 第三区块 131 凹槽
14 第四区块 141 凹槽
16 第六区块 161 凹槽
17 第七区块 171 凹槽
18 第八区块 181 凹槽
19 第九区块 191 凹槽
1a 表面 1b 表面
1c 外环部 1d 中央部
2 辅助转动模块
21 基座 22 调整件
23 磁性件 231 磁性面
3 磁铁 31 磁性面
X 轴向方向 W 重量
r 旋转半径 θ 夹角
现有技术
9 飞轮装置
91 轮盘 92 轴孔
r’ 旋转半径。
本发明的最佳实施方式
为让本发明的上述及其他目的、特征及优点能更明显易懂,下文特举本发明的较佳实施例,并配合所附图式,作详细说明如下:
请参照图2所示,是本发明飞轮装置第一实施例,该飞轮装置包含一个轮盘1,该轮盘1中央设有一个轴接部10,且该轮盘1可以沿一圆周方向(例如:顺时针方向或逆时针方向)区分为八个区块,分别为一个第一区块11、一个第八区块18、一个第三区块13、一个第四区块14、一个第九区块19、一个第二区块12、一个第七区块17及一个第六区块16。其中,该轴接部10可以为轴孔或单向轴承,用以结合一转动轴;或者,该轴接部10可以为轮轴,所述轮轴可以经由连轴器等传动装置接合于一转动轴,本发明并不以此为限。该轮盘1为圆形,且该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19将该轮盘1划分为放射状排列的八等分。该第一至第四区块11、12、13、14分别设有一凹槽111、121、131、141,同理,该第六至第九区块16、17、18、19亦分别设有一凹槽161、171、181、191,且各该区块的凹槽的容积均不相等,使得该第一、第二、第三、第四、第六、第七、第八及第九区块11、12、13、14、16、17、18、19的重量比形成1:2:3:4:6:7:8:9。
更详言之,该第一区块11的凹槽111的容积最大,该第二区块12的凹槽121的容积次之,接着依序为该第三、第四、第六、第七及第八区块13、14、16、17、18的凹槽131、141、161、171、181,该第九区块19的凹槽191的容积则最小。据此,该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19将形成具有不同重量的八个区块,且通过设计,使该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19的凹槽111、121、131、141、161、171、181、191的容积具有适当差值,即可使该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19的重量比形成1:2:3:4:6:7:8:9,为本领域技术人员所能理解实施者。
其中,请一并参照图3所示,是该第一实施例的飞轮装置沿图2的剖线I-I的剖视示意图,该轮盘1于该轴接部10的一轴向方向X上具有呈相对的二表面1a、1b,其中,各该区块的凹槽可以为盲槽,且各该区块的凹槽可以设置于该轮盘1的其中一表面;或者,各该区块的凹槽可以同时设置于该轮盘1的二表面1a、1b。举例而言,如图3所示,在本实施例中,该第一区块11的凹槽111呈对称状地设置于该轮盘1的二表面1a、1b;同样地,其它七个区块的凹槽亦呈对称状地设置于该轮盘1的二表面1a、1b。但是,各该区块的凹槽也可以为贯穿该二表面1a、1b的穿槽,本发明并不加以限制。
借助上述结构,本发明飞轮装置第一实施例实际使用时,该轴接部10可供结合一转动轴,该转动轴受一动力源(例如:马达)驱动,使该轮盘1可以受该转动轴带动而旋转。注意到,虽然该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19为具有不同重量的八个区块,然而该轮盘1于该轴接部10的径向方向上相对的任二区块的重量总和均相等。更详言之,已知该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19的重量比形成1:2:3:4:6:7:8:9,且该第一及第九区块11、19、该第二及第八区块12、18、该第三及第七区块13、17与该第四及第六区块14、16分别于该轴接部10的径向方向上相对,因此,若该第一及第九区块11、19的重量总和为W,则该第二及第八区块12、18、该第三及第七区块13、17与该第四及第六区块14、16的重量总和均为W。再者,请续参照图2所示,该第一区块11及其二侧的区块(第六及第八区块16、18)的重量总和为1.5W;该第三区块13及其二侧的区块(第八及第四区块18、14)的重量总和为1.5W;该第九区块19及其二侧的区块(第四及第二区块14、12)的重量总和为1.5W;且该第七区块17及其二侧的区块(第八二及第六区块12、16)的重量总和同样为1.5W。换言之,于该圆周方向上分别相差90°的第一区块11、第三区块13、第九区块19及第七区块17与其各自二侧的区块的重量总和均相等。
据此,该第一实施例借助使该轮盘1于该轴接部10的径向方向上相对的任二区块的重量总和相等,并且使于该圆周方向上分别相差90°的第一区块11、第三区块13、第九区块19及第七区块17与其各自二侧的区块的重量总和均相等,可以使该轮盘1受该转动轴带动而旋转时达到转动平衡的效果。其中,由于该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19具有不同重量,因此该轮盘1的各个区块在旋转过程中的转动惯量不同。以该轮盘1朝向该圆周方向旋转为例,该第九区块19的重量大于与其相邻的第二区块12的重量,使该第九区块19具有较高的转动惯量,当该第九区块19朝向该第二区块12的位置旋转时,该第九区块19能够迫使该第二区块12一并转动,使得该轮盘1能够稳定旋转。换言之,若将该第九区块19与第二区块12的转动过程以行进波函数分析时,该第九区块19的前进波大于该第二区块12地接收波,因此该第九区块19能够稳定朝向该第二区块12的位置旋转。类似的效应亦存在于该轮盘1的其它区块。
由此可知,本发明飞轮装置第一实施例利用该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19具有不同重量,使该轮盘1的各个区块在旋转过程中的转动惯量不同,并且通过适当排列各该区块可以使该轮盘1受该转动轴带动而旋转时达到转动平衡的效果。相较前述现有技术的飞轮装置9的轮盘91需要于径向方向上使重量形成均等分布,容易受到到制程公差影响使该轮盘91的重心位置存在误差,因而在该轮盘91旋转时衍生轴向偏转(pitching)或震动(vibration)等情形,本发明飞轮装置第一实施例使该轮盘1的各个区块具有不同重量,换言之,该轮盘1的各个区块的重量已预先存在差值,因此使该轮盘1不易受到制程公差影响。据此,本发明飞轮装置第一实施例的轮盘1在转动时不易产生偏心作用,该轮盘1能够平衡的旋转而不会衍生轴向偏转或震动等情形,使得该飞轮装置的能够持续且稳定地提供扭力,具有提升飞轮装置的扭力输出的功效。
再者,请续参照图3所示,本发明飞轮装置第一实施例借助于该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19亦分别设置一凹槽111、121、131、141、161、171、181、191,使该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19形成具有不同重量的八个区块。于该轮盘1的各个区块开设凹槽将可缩减该轮盘1的轴向截面的有效截面积,换言之,相较现有技术飞轮装置9的轮盘91的轴向截面形成长方形,本发明飞轮装置第一实施例利用于该轮盘1设置凹槽,能够缩减该轮盘1的有效截面积,以降低该轮盘1的风阻系数,具有近一步提升飞轮装置的扭力输出的功效。
为了凸显本发明飞轮装置第一实施例相较现有技术飞轮装置9确实具有较高的扭力输出,请一并参照图1及2所示,以旋转半径r为180mm且总重量为30kg的一轮盘1进行测试,并且采用旋转半径r’为180mm且总重量同样为30kg的现有技术飞轮装置9的轮盘91作为对照。以一马达作为动力源驱动该轮盘1旋转,该马达采用东元电机公司框号132M/额定电压220V/马力10HP/输出功率7.5kW的产品,该马达需消耗1.18kW的功率来带动该轮盘1以1800rpm的转速旋转;相对地,该马达需消耗1.4kW的功率才能带动现有技术的飞轮装置9的轮盘91以1800rpm的转速旋转。由此可知,在旋转半径r、r’及总重量相等的条件下,本发明飞轮装置第一实施例的轮盘1在旋转过程中所消耗的能量明显较低,足以显示该轮盘1相较现有技术的飞轮装置9的轮盘91能够较为稳定地旋转,因此本发明飞轮装置第一实施例能够持续且稳定地提供扭力,确实具有提升飞轮装置的扭力输出的功效。
根据上述第一实施例可知该轮盘1沿该圆周方向区分为八个区块,分别为一个第一区块11、一个第八区块18、一个第三区块13、一个第四区块14、一个第九区块19、一个第二区块12、一个第七区块17及一个第六区块16,该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19的重量比形成1:2:3:4:6:7:8:9。然而,该轮盘1为圆形,因此本发明所属领域中具有通常知识者根据该第一实施例可知,该轮盘1亦可沿该圆周方向区分为八个区块,分别为一个第一区块11、一个第六区块16、一个第七区块17、一个第二区块12、一个第九区块19、一个第四区块14、一个第三区块13及一个第八区块18,所述形式的轮盘1同样属于该第一实施例的范畴。
请参照图4所示,是本发明飞轮装置第二实施例,与前述第一实施例相异之处在于:该轮盘1于该轴接部10的径向方向上另区分为一外环部1c及一中央部1d,该中央部1d连接于该轴接部10,该外环部1c环绕该中央部1d,且第一至第四区块11、12、13、14与第六至第九区块16、17、18、19的凹槽111、121、131、141、161、171、181、191设置于该中央部1d。借此,该第一至第四区块11、12、13、14与第六至第九区块16、17、18、19于该外环部1c不会开设任何凹槽,使得该轮盘1的外围(邻近该外环部1c)的重量较重,且该轮盘1的中央(邻近该中央部1d)的重量较轻,能够进一步提升该轮盘1的旋转稳定性。
请参照图5所示,是本发明飞轮装置第三实施例,在本实施例中,该飞轮装置另包含一辅助转动模块2,该辅助转动模块2包含一个基座21、一个调整件22及一个磁性件23,该调整件22设置于该基座21,该磁性件23结合该调整件22,该磁性件23具有远离该基座21 一磁性面231。此外,该轮盘1的第一至第四区块11、12、13、14与第六至第九区块16、17、18、19的外周缘分别结合一磁铁3,各该磁铁3具有远离该轮盘1的一磁性面31,且各该磁铁3的磁性面31与该磁性件23的磁性面231具有相同的极性(例如:同为N极)。该调整件22可以为枢轴、滑座或弹簧等调整构造,用以使该磁性面231与该基座21的角度能够被略微调整。其中,当该磁性件23未承受外力时,该磁性件23的磁性面231较佳朝向该轮盘1的外周缘。
请参照图6所示,该第三实施例实际使用时,该轮盘1仍然受该转动轴带动而旋转,该辅助转动模块2用以辅助该轮盘1旋转。更详言之,以该轮盘1的第八区块18朝向该辅助转动模块2的位置旋转为例,请参照图7所示,该当该第八区块18旋转接近该磁性件23时,该第八区块18的外周缘所结合的磁铁3与该磁性件23之间将产生一斥力,由于该磁性件23结合于该调整件22,因此该磁性件23受到该斥力影响将略微朝向与该磁铁3相反的方向偏转,使得该磁性件23的磁性面231与该基座21间形成一夹角θ。此时,该磁铁3的磁性面31与该磁性件23的磁性面231的接触面积将会缩小,因此该斥力不会对该轮盘1的转动造成阻碍。
接着,请参照图8所示,当该第八区块18持续旋转至该辅助转动模块2的位置时,该磁铁3的磁性面31与该磁性件23的磁性面231的接触面积将会变大,且该磁性件23的磁性面231与该基座21间形成一夹角θ,因此该磁铁3与该磁性件23之间所产生的斥力能够辅助将该第八区块18沿着其旋转方向推动,以辅助该第八区块18继续朝向远离该辅助转动模块2的方向旋转。最后,请参照图9所示,当该第八区块18持续旋转而远离该辅助转动模块2后,由于该磁性件23不再承受任何外力,故该磁性件23的磁性面231将恢复朝向该轮盘1的外周缘。本发明飞轮装置第三实施例借助增设该辅助转动模块2,能够辅助该轮盘1旋转,确保该轮盘1能够稳定地旋转。
综上所述,本发明各实施例的飞轮装置借助将一轮盘1沿一圆周方向区分为八个区块,并且使各该区块具有不同的重量,即可使该轮盘1的各个区块在旋转过程中的转动惯量不同,同时,通过适当排列各该区块可以使该轮盘1受该转动轴带动而旋转时达到转动平衡的效果,使得该轮盘1能够平衡的旋转而不会衍生轴向偏转或震动等情形,确实具有提升飞轮装置的扭力输出的功效。
另一方面,本发明各实施例的飞轮装置于该轮盘1的各个区块分别设置一凹槽,使各该区块形成具有不同的重量。于该轮盘1之各个区块开设凹槽将可缩减该轮盘1的轴向截面的有效截面积,以降低该轮盘1的风阻系数,确实具有近一步提升飞轮装置的扭力输出的功效。
虽然本发明已利用上述较佳实施例揭示,然其并非用以限定本发明,任何熟习此技艺者在不脱离本发明的精神和范围之内,相对上述实施例进行各种更动与修改仍属本发明所保护的技术范畴,因此本发明的保护范围当视申请专利范围所界定的为准。

Claims (8)

  1. 一种飞轮装置,其特征在于包含:
    一个轮盘,该轮盘中央设有一个轴接部,且该轮盘沿一个圆周方向区分为一个第一区块、一个第八区块、一个第三区块、一个第四区块、一个第九区块、一个第二区块、一个第七区块及一个第六区块,各该区块分别设有一个凹槽,且各该区块的凹槽的容积均不相等,使该第一区块、第二区块、第三区块、第四区块、第六区块、第七区块、第八区块及第九区块的重量比形成1:2:3:4:6:7:8:9。
  2. 如权利要求1所述的飞轮装置,其特征在于,其中,该第一区块、第八区块、第三区块、第四区块、第九区块、第二区块、第七区块及第六区块沿该圆周方向将该轮盘划分为放射状排列的八等分。
  3. 如权利要求2所述的飞轮装置,其特征在于,其中,该轮盘于该轴接部的径向方向上相对的任二区块的重量总和相等。
  4. 如权利要求2所述的飞轮装置,其特征在于,其中,该第一区块、第三区块、第九区块及第七区块与其各自二侧的区块的重量总和相等。
  5. 如权利要求1所述的飞轮装置,其特征在于,其中,该轮盘于该轴接部的一个轴向方向上具有呈相对的二个表面,各该区块的凹槽为盲槽,且各该区块的凹槽同时设置于该二个表面。
  6. 如权利要求1所述的飞轮装置,其特征在于,其中,该轮盘于该轴接部的径向方向上另区分为一个外环部及一个中央部,该中央部连接于该轴接部,该外环部环绕该中央部,且各该区块的凹槽设置于该中央部。
  7. 如权利要求1所述的飞轮装置,其特征在于,其中,另包含一个辅助转动模块,该辅助转动模块包含一个基座、一个调整件及一个磁性件,该调整件设置于该基座,该磁性件结合该调整件,该磁性件具有远离该基座的一个磁性面,该调整件用以使该磁性面与该基座的角度能够被略微调整,且各该区块的外周缘分别结合一个磁铁,各该磁铁具有远离该轮盘的一个磁性面,且各该磁铁的磁性面与该磁性件的磁性面具有相同的极性。
  8. 如权利要求7所述的飞轮装置,其特征在于,其中,当该磁性件未承受外力时,该磁性件的磁性面朝向该轮盘的外周缘,且当其中一个磁铁旋转接近该磁性件时,该磁性件将朝向与该磁铁相反的方向偏转,使得该磁性件的磁性面与该基座间形成一个夹角。
PCT/CN2015/093317 2015-10-30 2015-10-30 飞轮装置 WO2017070915A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093317 WO2017070915A1 (zh) 2015-10-30 2015-10-30 飞轮装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093317 WO2017070915A1 (zh) 2015-10-30 2015-10-30 飞轮装置

Publications (1)

Publication Number Publication Date
WO2017070915A1 true WO2017070915A1 (zh) 2017-05-04

Family

ID=58629734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093317 WO2017070915A1 (zh) 2015-10-30 2015-10-30 飞轮装置

Country Status (1)

Country Link
WO (1) WO2017070915A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150856A (ja) * 1997-08-05 1999-02-23 Akio Fujii 分割式フライホイール
CN2381840Y (zh) * 1999-08-17 2000-06-07 上海交通大学 离心式转动惯量自适应飞轮
CN102359542A (zh) * 2011-10-27 2012-02-22 南京工程学院 一种高速非完全内平衡变惯量飞轮
CN102518746A (zh) * 2012-01-10 2012-06-27 南京工程学院 一种直槽高速内平衡变惯量飞轮
CN104389947A (zh) * 2014-11-19 2015-03-04 青岛海之冠汽车配件制造有限公司 一种转动惯量可调的飞轮
CN104896007A (zh) * 2015-04-02 2015-09-09 国电联合动力技术有限公司 一种传动系统扭振减振方法及其应用
WO2015135209A1 (zh) * 2014-03-14 2015-09-17 林高合 飞轮装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150856A (ja) * 1997-08-05 1999-02-23 Akio Fujii 分割式フライホイール
CN2381840Y (zh) * 1999-08-17 2000-06-07 上海交通大学 离心式转动惯量自适应飞轮
CN102359542A (zh) * 2011-10-27 2012-02-22 南京工程学院 一种高速非完全内平衡变惯量飞轮
CN102518746A (zh) * 2012-01-10 2012-06-27 南京工程学院 一种直槽高速内平衡变惯量飞轮
WO2015135209A1 (zh) * 2014-03-14 2015-09-17 林高合 飞轮装置
CN104389947A (zh) * 2014-11-19 2015-03-04 青岛海之冠汽车配件制造有限公司 一种转动惯量可调的飞轮
CN104896007A (zh) * 2015-04-02 2015-09-09 国电联合动力技术有限公司 一种传动系统扭振减振方法及其应用

Similar Documents

Publication Publication Date Title
WO1992017931A1 (fr) Rotor pour moteur synchrone
US20070262666A1 (en) Power generating systems
WO2019051967A1 (zh) 一种折叠式构件及柔性显示装置
JP6202354B2 (ja) 磁束集中型ポールピースを有するマグネチックギア
WO2015088076A1 (ko) 복수의 보조동력 구조를 갖는 발전겸용 전동수단을 갖는 바퀴
WO2004022988A1 (ja) 磁気軸受装置
WO2019019243A1 (zh) 一种车载飞轮电池用交直流五自由度双球面混合磁轴承
WO2017070915A1 (zh) 飞轮装置
WO2023284866A1 (zh) 磁浮重力补偿装置和微动台
TWM602178U (zh) 對開式鉸鏈
Huang et al. An axial cycloidal magnetic gear that minimizes the unbalanced radial force
WO2008062701A1 (fr) Rotor et dispositif rotatif
JPH11230255A (ja) イナーシャダンパ
TWI546469B (zh) 飛輪裝置
WO2012094836A1 (zh) 一种永磁悬浮轴承及其安装结构
US20140203678A1 (en) Magnetic coupling
WO2023246049A1 (zh) 惯量调节机构及电机
WO2012171180A1 (zh) 一种全电动车轮总成
TWM599501U (zh) 防震磁浮節能式發電裝置
WO2020147117A1 (zh) 具有栅栏式定子的外盘式马达
TWM569522U (zh) Weight reduction permanent magnet motor rotor structure
TWI719892B (zh) 防震磁浮節能式發電裝置
TWM299230U (en) Structure for adjusting balance of fan
TW201328133A (zh) 磁性聯軸器與軸向氣隙永磁馬達之整合裝置
JP2019017188A (ja) 磁気ギア装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906978

Country of ref document: EP

Kind code of ref document: A1