WO2019019243A1 - 一种车载飞轮电池用交直流五自由度双球面混合磁轴承 - Google Patents

一种车载飞轮电池用交直流五自由度双球面混合磁轴承 Download PDF

Info

Publication number
WO2019019243A1
WO2019019243A1 PCT/CN2017/099222 CN2017099222W WO2019019243A1 WO 2019019243 A1 WO2019019243 A1 WO 2019019243A1 CN 2017099222 W CN2017099222 W CN 2017099222W WO 2019019243 A1 WO2019019243 A1 WO 2019019243A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
radial
axial
rotor
radial stator
Prior art date
Application number
PCT/CN2017/099222
Other languages
English (en)
French (fr)
Inventor
张维煜
杨恒坤
朱熀秋
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to CH00973/18A priority Critical patent/CH713941B1/de
Publication of WO2019019243A1 publication Critical patent/WO2019019243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing
    • F16C32/0491Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing with electromagnets acting in axial and radial direction, e.g. with conical magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0421Passive magnetic bearings with permanent magnets on one part attracting the other part for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention relates to a non-mechanical contact magnetic suspension bearing, in particular to an AC/DC five-degree-of-freedom hybrid magnetic bearing, which is suitable for magnetic suspension support of a vehicle flywheel battery of an electric vehicle.
  • the vehicle flywheel battery utilizes the magnetic inertia support and the flywheel's rotational inertia to achieve energy storage. It has the advantages of high charging efficiency, large specific power, small quality, no pollution and long life.
  • the existing flywheel battery usually adopts an electromagnetic-permanent hybrid electric bearing as a support of the flywheel rotor, and realizes floating of five degrees of freedom in radial and axial directions.
  • the stator of such a hybrid magnetic bearing has a cylindrical structure, and the corresponding rotor also has a cylindrical shape.
  • the magnetic bearing adopting this structure can ensure the stable suspension operation of the flywheel battery, but when the flywheel battery is disturbed by the outside, the gyro effect is inevitably caused.
  • the flywheel shaft is subjected to a large gyro moment in the restraining direction, so that the flywheel shaft or the magnetic bearing is subjected to a large additional pressure, so the existing It is difficult to avoid the occurrence of the gyro effect in the magnetic bearing structure.
  • the existing magnetic bearing in the axial control design is usually realized by adding a thrust plate to the rotor.
  • This design not only increases the quality of the rotor but also increases the friction of the rotating shaft when the flywheel battery is running at high speed. And windage loss; in addition, the thrust disk increases the circumferential speed of the rotor, limiting the maximum speed of the rotor.
  • the object of the present invention is to solve the problems of the weight of the rotor and the gyroscopic effect existing in the magnetic bearing for the existing flywheel battery, and to provide an AC/DC for a car flywheel battery which is compact, small in size, light in weight and capable of suppressing the gyro effect.
  • the AC/DC five-degree-of-freedom double spherical hybrid magnetic bearing for a vehicle-mounted flywheel battery is realized by the following technical solution: the outer coaxial sleeve of the rotor has an axial stator and a radial stator, and the radial stator is integrally connected by the yoke portion.
  • the upper and lower radial stators are coaxially arranged, the upper and lower yoke portions form a radial stator pole cavity, and the upper end of the upper radial stator yoke portion and the lower end of the lower radial stator yoke portion are uniformly arranged in the circumferential direction with three radial stator poles, each The inner end surfaces of the radial stator poles are all concave spherical surfaces, and each radial stator pole is wound with a radial control coil; the middle of the rotor is an intermediate cylinder, and the upper and lower ends are the same upper end cylinders and The lower end cylinder, the upper and lower ends of the middle cylinder are respectively the upper connecting body connecting the upper end cylinder and the lower connecting body connecting the lower end cylinder, the side walls of the upper and lower end cylinders are convex spherical surfaces; the upper and lower radial stators Each concave spherical surface of the inner end of the pole directly
  • the opposite surface of the stator and rotor of the double spherical hybrid magnetic bearing of the invention adopts a spherical structure, which can effectively reduce the axial dimension of the magnetic bearing.
  • the electromagnetic force will point to the center of the rotor.
  • the spherical structure of the stator and the rotor can also eliminate the generation of the gyro effect.
  • the spherical structure is more conducive to multi-dimensional motion, which is more conducive to spatial positioning and work.
  • the spherical structure makes the air gap magnetic field distribution more uniform and symmetrical, and is convenient for the rotor. Control and analysis.
  • the invention fully utilizes the radial stator space of the magnetic bearing, and installs the permanent magnets in the upper radial stator cavity and the lower radial stator cavity respectively, thereby reducing the axial dimension of the magnetic bearing and greatly inhibiting the rotor. Gyro effect, and the structure is further compact.
  • the invention adopts a rotor structure without a thrust plate in the axial control, which reduces the quality of the rotor, reduces the friction and windage loss of the rotating shaft, is more conducive to the high-speed operation of the rotor, and improves the axial control precision. .
  • the axial coil of the present invention has a large space, so that a large axial bearing capacity can be achieved.
  • the invention adopts a five-degree-of-freedom integrated structure, has high integration degree, shortens the length of the shaft, reduces the volume of the flywheel battery, and saves materials.
  • Figure 1 is a cross-sectional view showing the internal structure of the present invention
  • Figure 2 is a plan view of the present invention
  • Figure 3 is a partial structural view of the radial stator of Figure 1;
  • Figure 4 is a perspective view of the rotor structure of Figure 1;
  • Figure 5 is an assembled structural view of the radial stator of Figure 3 and the rotor of Figure 4;
  • Figure 6 is a perspective structural view of the axial stator of Figure 1;
  • Figure 7 is an assembled structural view of the axial stator of Figure 6 and the rotor of Figure 4;
  • Figure 8 is a front elevational view showing the assembly structure of the radial stator, the radial control coil, the axial stator, and the annular permanent magnet of Figure 1;
  • Figure 9 is a schematic diagram of static passive suspension of the present invention.
  • Figure 10 is a schematic diagram of radial two-degree-of-freedom balance control of the present invention.
  • Figure 11 is a schematic diagram of a radial rotation two-degree-of-freedom balance control of the present invention.
  • Figure 12 is a schematic diagram of axial single degree of freedom balance control of the present invention.
  • lower radial stator pole 91, 92, 93. lower radial coil; Spherical surface; 711. upper convex spherical surface; 751. lower convex spherical surface; 811. concave spherical surface.
  • a rotor 7 having an axial stator 5 and a radial stator coaxially disposed outside the rotor 7.
  • the radial stator is composed of an upper radial stator 1 and a lower radial stator 8, and the upper radial stator 1 and the lower radial stator 8 are coaxially arranged in the axial direction of the rotor 7.
  • the yoke portions of the upper radial stator 1 and the lower radial stator 8 are coaxially arranged up and down along the axial direction of the rotor 7, and the upper and lower yoke portions are integrally connected, and the upper and lower yoke portions form a hollow cylinder, and the inner cavity of the hollow cylinder That is, the radial stator cavity 16 is.
  • the upper end surface of the upper radial stator 1 is flush with the upper end surface of the rotor 7, and the lower end surface of the lower radial stator 8 is flush with the lower end surface of the rotor 7.
  • the upper end of the yoke portion of the upper radial stator 1 and the lower end of the yoke portion of the lower radial stator 8 are each uniformly arranged in the circumferential direction with three radial stator poles, respectively three upper radial stators
  • the poles 11, 12, 13 and the three lower radial stator poles 81, 82, 83, the three upper radial stator poles 11, 12, 13 and the three lower radial stator poles 81, 82, 83 are identical in shape, The top and bottom projections overlap.
  • the upper end faces of the three upper radial stator poles 11, 12, 13 are flush with the upper end faces of the yoke portions of the upper radial stator 1, the lower end faces of the three lower radial stator poles 81, 82, 83 and the lower radial stator 8
  • the lower end surface of the yoke is flush.
  • Radial control coils are wound around each radial stator pole, respectively upper upper radial control coils 21, 22, 23 and lower radial coils 91, 92, 93, six identical radial control coils one-to-one correspondence
  • the upper radial stator poles 11, 12, 13 and the lower radial stator poles 81, 82, 83 are wound.
  • the inner ends of the three upper radial stator poles 11, 12, 13 and the three lower radial stator poles 81, 82, 83 each have a pole piece with a concave spherical surface.
  • FIG. 3 only the upper radial stator pole 11 and the lower radial stator pole 81 are illustrated as follows: the pole shoe surface of the upper radial stator pole 11 is machined as an upper concave spherical surface 111, and the lower radial stator pole 81 is pole-shaped. The surface of the shoe is machined into a concave spherical surface 811.
  • the rotor 7 is vertically symmetrical in the axial direction, and the middle is an intermediate cylinder 73.
  • the upper and lower ends are the same hollow cylinders, respectively being the upper end cylinder 71 and the lower end cylinder 75.
  • the upper and lower ends of the intermediate cylinder 73 are respectively an upper connecting body 72 that connects the upper end cylindrical body 71 and a lower connecting body 74 that connects the lower end cylindrical body 75.
  • the side walls of the upper end cylinder 71 and the lower end cylinder 75 have a convex spherical surface structure, the side wall of the upper end cylinder 71 is an upper convex spherical surface 711, and the side wall of the lower end cylindrical body 75 is a lower convex spherical surface 751.
  • the outer diameter of the entire rotor 7 is gradually increased from the middle to the both ends in the axial direction, and the outer diameter of the intermediate cylinder 73 is smaller than the outer diameters of the upper connecting body 72 and the lower connecting body 74, and the upper connecting body 72 and the lower connecting body 74 are The outer diameter is equal to the outer diameters of the upper and lower end faces of the upper end cylinder 71 and the lower end cylinder 75.
  • the convex spherical surface of the cylinder 71 and the lower end cylinder 75 maintains a radial air gap of 0.5 mm between the concave spherical surface and the convex spherical surface, and the concave spherical surface and the convex spherical surface have the same thickness in the axial direction.
  • the upper concave spherical surface 211 of the upper radial stator pole 11 and the upper convex spherical surface 711 of the rotor 7 are radially matched.
  • a 0.5 mm radial gap is left between the two; the concave spherical surface 811 of the lower radial stator pole 81 and the lower convex spherical surface 751 of the rotor 7 are radially matched, leaving a radial gap of 0.5 mm therebetween.
  • an axially fixed disk-shaped axial stator 5 is located in the radial stator pole cavity 16, and the axial stator 5 is axially located in the upper radial direction.
  • the coils 21, 22, 23 and the lower radial coils 91, 92, 93 are controlled and are not in contact with the radial control coils.
  • the axial stator 5 is composed of an upper axial stator 51 and a lower axial stator 52.
  • the upper axial stator 51 and the lower axial stator 52 have the same structure and are all disc-shaped, and are coaxially up and down along the axial direction of the intermediate cylinder 73. Arrangement.
  • a disc-shaped magnetic isolation aluminum ring 42 is fixedly superposed between the upper axial stator 51 and the lower axial stator 52, and the outer diameters of the upper axial stator 51, the lower axial stator 52 and the magnetic isolation aluminum ring 42 are both
  • the radial stator cavities 16 have the same inner diameter and are each fixedly coupled to the inner wall of the radial stator cavities 16.
  • the inner cavity of the upper axial stator 51, the lower axial stator 52 and the magnetic isolation aluminum ring 42 form an axial stator cavity 17, and an axial control coil 6 is coaxially fixed in the axial stator cavity 17 by a bobbin, and is axially controlled.
  • the coil 6 abuts against the inner wall of the axial stator cavity 17, and is sleeved outside the intermediate cylinder 73, leaving a gap with the intermediate cylinder 73.
  • the upper axial stator 51 and the lower axial stator 52 of the axial stator 5 are each axially supported by a large disc 53, an intermediate annular body 54, and a small circular disk 55.
  • the magnetic isolation aluminum ring 42 is laminated between the upper and lower two large discs 53.
  • the inner and outer diameters of the magnetic isolation aluminum ring 42 are equal to the inner and outer diameters of the large disc 53.
  • the end surface of the large disc 53 is connected to the small disc 55 via the intermediate annular body 54, and the inner diameter of the intermediate annular body 54 is equal to the large circle.
  • the inner diameter of the disk 53, the outer diameter of the intermediate annular body 54 is equal to the outer diameter of the small disk 55 but much smaller than the outer diameter of the large disk 53, and the inner diameter of the small disk 55 is smaller than the inner diameter of the large disk 53, so that it is small
  • a step is formed between the outer wall of the disc 55 and the outer wall of the large disc 53 with a radial gap.
  • the upper end surface of the small disc 55 of the upper axial stator 51 is spaced from the upper radial stator poles 11, 12, 13 by an axial distance from the lower end surface of the small disc 55 of the lower axial stator 52, and the lower radial stator pole 81, The axial distances of 82 and 83 are equal.
  • the axial control coil 6 abuts against the inner walls of the two intermediate toroids 54 and the two large discs 53. When the axial control coil 6 is energized, an axially controlled magnetic field can be generated in the toroidal body 54.
  • the upper end surface of the small disc 55 of the upper axial stator 51 and the lower end surface of the upper connecting body 72 of the rotor 7 maintain an axial air gap of 0.5 mm in the axial direction.
  • the inner diameter of the small disc 55 of the upper axial stator 51 is equal to the outer diameter of the upper connecting body 72 of the rotor 7.
  • the lower end surface of the small disc 55 of the lower axial stator 52 and the upper end surface of the lower connecting body 74 of the rotor 7 maintain an axial air gap of 0.5 mm in the axial direction, and the small disc 55 of the lower axial stator 52
  • the inner diameter is equal to the outer diameter of the lower connecting body 74 of the rotor 7.
  • annular permanent magnet which is an upper annular permanent magnet
  • an annular permanent magnet is attached to each of the upper side of the large disc 53 of the upper axial stator 51 and the lower side of the large disc 53 of the lower axial stator 52.
  • 31 and the lower annular permanent magnet 32, the upper annular permanent magnet 31 and the lower annular permanent magnet 32 have the same structure, are made of high-performance rare earth material NdFeB, and are all axially magnetized, the upper annular permanent magnet 31 and the lower annular permanent The magnetization direction of the magnets 32 is opposite, and the S poles of the permanent magnets face each other.
  • the annular permanent magnet is tightly laminated between the axial stator 5 and the radial stator pole, and the upper annular permanent magnet 31 is laminated between the large disc 53 of the upper axial stator 51 and the upper radial stator poles 11, 12, 13.
  • the lower annular permanent magnet 32 is laminated between the lower axial stator 52 and the lower radial stator poles 81, 82, 83.
  • the inner diameters of the upper annular permanent magnet 31 and the lower annular permanent magnet 32 are larger than the outer diameter of the small circular disk 55, so that a certain amount is left between the annular permanent magnet and the intermediate annular body 54 and the small circular disk 55 of the axial stator 5.
  • the radial clearance ensures that the axial magnetic circuit in the axial stator 5 is not affected by the annular permanent magnet.
  • a magnetically-discriminated aluminum ring which is simultaneously fixedly nested on the outer wall of the annular permanent magnet and the inner wall of the radial stator cavity shaft 16.
  • the upper annular permanent magnet 31 is covered with an upper magnetic isolation aluminum ring 41
  • the lower annular permanent magnet 32 is covered with a lower magnetic isolation aluminum ring 43
  • the upper magnetic isolation aluminum ring 41 and the lower magnetic isolation aluminum ring 43 have the same structure, axial height and
  • the upper annular permanent magnet 31 and the lower annular permanent magnet 32 are equal.
  • the upper magnetic isolation aluminum ring 41 and the lower magnetic isolation aluminum ring 43 are first tightly fitted on the outer walls of the upper annular permanent magnet 31 and the lower annular permanent magnet 32 by an interference fit, and then by cold pressure welding and the radial stator cavity shaft.
  • the inner wall of 16 is tightly connected.
  • the annular permanent magnet and the magnetic isolation aluminum ring and the upper radial control coils 21, 22, 23 and the lower radial coils 91, 92, 93 do not contact each other and do not dry.
  • the static passive suspension of the rotor 7, the radial two-degree-of-freedom balance, and the radial torsion can be realized.
  • the axial control coil is composed of a direct current and an axial stator to form an electromagnet.
  • the radial control coils placed on the upper and lower sets of three-pole radial spherical stators are connected to AC three-phase power, and the precise control of the four degrees of freedom in the radial direction is realized by changing the magnitude of the control coil current. details as follows:
  • the bias magnetic flux generated by the upper annular permanent magnet 31 and the lower annular permanent magnet 32 is indicated by a broken line and an arrow in Fig. 10, and the bias magnetic flux generated by the upper annular permanent magnet 31 is derived from The N pole of the upper annular permanent magnet 31 starts to pass through the upper radial stator pole 11, and then passes through the radial air gap, the upper convex spherical surface 711 of the rotor 7, the upper connecting body 72 of the rotor 7, the axial air gap, and the axial stator 5 The upper axial stator 51 is finally returned to the S pole of the upper permanent magnet 31.
  • the bias magnetic flux generated by the lower annular permanent magnet 32 passes through the lower radial stator pole 81 from the N pole of the lower annular permanent magnet 32, and then passes through the radial air gap, the lower convex spherical surface 751 of the rotor 7, and the rotor 7 in sequence.
  • the upper radial control coils 21, 22, 23 are energized with the lower radial control coils 91, 92, 93, and the resulting control flux is as shown in FIG.
  • the bias magnetic flux generated by the upper annular permanent magnet 31 and the lower annular permanent magnet 32 is indicated by a broken line and an arrow in FIG. 10, passing through the upper radial stator poles 11, 13 and the lower radial stator.
  • the bias magnetic flux in the poles 81, 83 is opposite in direction to the control flux, and the total flux is weakened.
  • the bias magnetic flux in the upper radial stator pole 22 and the lower radial stator pole 82 are the same in the direction of the control magnetic flux, so that the total magnetic flux is enhanced, so that the single magnetic flux in the radial direction in the negative direction of the Y-axis is strengthened, and the rotor 7 is subjected to The magnetic pull forces F1 and F2 in the negative Y direction return to the equilibrium position.
  • the control magnetic flux generated by energizing the upper radial control coils 21, 22, 23 is as shown by the thick solid line and the arrow in FIG.
  • the bias magnetic flux generated by the permanent magnet 31 and the lower annular permanent magnet 32 is as indicated by a broken line and an arrow in FIG. 11, and it can be seen that the bias magnetic flux and the control magnetic flux in the upper radial stator poles 21, 23 are opposite in direction.
  • the total magnetic flux in the upper radial stator poles 21, 23 is weakened, and the rotor bias magnetic flux and the control magnetic flux direction in the upper radial stator pole 22 are the same, the total magnetic flux is enhanced, and the rotor 7 is subjected to the Y negative direction. Magnetic pull force F1.
  • the bias magnetic flux in the lower radial stator poles 81, 83 is in the same direction as the control magnetic flux, and the total magnetic flux in the lower radial stator poles 81, 83 is enhanced.
  • the biasing magnetic flux and the control magnetic flux are opposite in direction by the lower radial stator pole 82, and the total magnetic flux is weakened, and the rotor 7 is subjected to the magnetic pulling forces F3 and F4 of the lower radial stator poles 81 and 83, and the resultant magnetic pulling force F2 is directed to Y.
  • the rotor 7 is subjected to a recovery torsional moment to return the rotor 7 to the equilibrium position.
  • the axial control coil 6 is connected with direct current.
  • the upper shaft is changed.
  • the axial air gap flux between the stator 51 and the rotor 7 and the axial air gap flux between the lower axial stator 52 and the rotor 7 generate a magnetic attraction at the axial air gap to return the rotor 7 Axial reference balance position.
  • the axial control flux generated by the axial control coil 6 loading the axial control current is as shown by the thick solid line and the arrow in FIG.
  • the generated bias magnetic flux is as shown by the broken line and the arrow in FIG. 12, and it can be seen that the axial air gap flux direction between the upper axial stator 51 and the rotor 7 is opposite, and the lower axial stator 52 and the rotor 7 pass through.
  • the axial air gap flux directions are the same, and the resultant air gap flux between the upper axial stator 51 and the rotor 7 is smaller than the resultant air gap flux between the lower axial stator 52 and the rotor 7.
  • the resultant electromagnetic force F Z received by the rotor 7 is downward, and the rotor 7 is pulled back to the axial equilibrium position, so that one degree of freedom in the axial direction is controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种车载飞轮电池用交直流五自由度双球面混合磁轴承,径向定子由轭部连为一体的上、下部径向定子(1、8)同轴布置组成,上部径向定子(1)轭部上端和下部径向定子(8)轭部下端各自沿圆周方向均匀布置三个径向定子极(11、12、13、81、82、83),每个径向定子极(11、12、13、81、82、83)内端表面均为凹球面(211、811),转子(7)的中间圆柱体(73)上下两端分别是连接上端柱体(71)的上连接体(72)和连接下端柱体(75)的下连接体(74),上、下端柱体(71、75)的侧壁均为凸球面(711、751);每个凹球面(211、811)上下对应地正对着凸球面(711、751),中间圆柱体(73)外嵌套轴向定子(5),上部轴向定子(51)上侧和下部轴向定子(52)的下侧各装有环形永磁体(31、32);上、下部径向定子(1、8)和转子(7)相对面都采用球面结构,能够消除陀螺效应的产生,当磁轴承的转子(7)发生偏转或偏移时,电磁力会指向转子(7)球心,降低定子磁极对转子(7)产生的干扰力矩。

Description

一种车载飞轮电池用交直流五自由度双球面混合磁轴承 技术领域
本发明涉及非机械接触磁悬浮轴承,特指一种交直流五自由度混合磁轴承,适用于电动汽车的车载飞轮电池的磁悬浮支承。
背景技术
目前,制约电动汽车发展的主要难题是车载动力电池的性能。车载飞轮电池是利用磁悬浮支承和飞轮的旋转惯量来实现能量存储的,其具有充电效率高、比功率大、质量小、无污染和寿命长等优势。现有飞轮电池通常是采用电磁-永磁混合型磁轴承作为飞轮转子的支承,实现径向和轴向五个自由度的悬浮。这种混合型磁轴承的定子是圆柱形结构,相应的转子也采用圆柱形。采用这种结构的磁轴承虽能保证飞轮电池的稳定悬浮运行,但当飞轮电池受到外界干扰时,不可避免会引起陀螺效应。由于车载飞轮电池装置在车辆启动、急停、转弯等动作时,都会引起飞轮轴在约束方向上受到很大的陀螺力矩,从而使飞轮轴或磁轴承受到很大的附加压力,因此现有的磁轴承结构很难避免陀螺效应的产生。另外,现有磁轴承在轴向控制的设计上,通常通过在转子上加装推力盘来实现,这样的设计不但加重了转子的质量而且在飞轮电池高速运转时也加大了旋转轴的摩擦和风阻损失;此外,推力盘会增加转子圆周线速度,限制了转子的最高转速。
发明内容
本发明的目的是为了解决现有飞轮电池用磁轴承存在的转子质量加重、易产生陀螺效应等问题,提出一种结构紧凑、体积小、质量轻且能抑制陀螺效应的车载飞轮电池用交直流五自由度双球面混合磁轴承。
本发明一种车载飞轮电池用交直流五自由度双球面混合磁轴承通过以下技术方案实现:转子外同轴套有轴向定子和径向定子,所述径向定子由轭部连为一体的上、下部径向定子同轴布置组成,上下轭部形成径向定子极腔,上部径向定子轭部上端和下部径向定子轭部下端各自沿圆周方向均匀布置三个径向定子极,每个径向定子极的内端表面均为凹球面,在每个径向定子极上绕有径向控制线圈;所述转子最中间是中间圆柱体,上下两端各是相同的上端柱体和下端柱体,中间圆柱体的上下两端分别是连接上端柱体的上连接体和连接下端柱体的下连接体,上、下端柱体的侧壁均为凸球面;上、下部径向定子极内端的每个凹球面上下对应地正对着上、下端柱体的凸球面,凹球面和凸球面之间有气隙,正对着的凹球面和凸球面的球心重合;所述中间圆柱体外固定嵌套轴向定子,轴向定子由结构相同且同轴布置的圆盘形的上、下部轴向定子组成,上、下部轴向定子 之间叠压圆盘形的隔磁铝环,上、下部轴向定子和隔磁铝环的内腔形成轴向定子腔,轴向定子腔内是紧贴其内壁的轴向控制线圈;上部轴向定子的上侧和下部轴向定子的下侧各装有一个紧密叠压在轴向定子和径向定子极之间的环形永磁体,上、下部环形永磁体的结构相同且均轴向充磁,充磁方向相反。
本发明与现有技术相比的有益效果在于:
1、本发明双球面混合磁轴承的定子和转子相对面都采用球面结构,可有效减少磁轴承的轴向尺寸,当磁轴承的转子发生偏转或偏移时,电磁力会指向转子球心,从而降低定子磁极对转子产生的干扰力矩,提高磁轴承的控制精度。定子和转子的球面结构还能够消除陀螺效应的产生,球面结构更有利于多维运动,更加有利于空间上进行定位和工作,另外,球面结构使得气隙磁场分布更加均匀和对称,便于对转子进行控制与分析。
2、本发明充分利用磁轴承的径向定子空间,将永磁体分别安装在上径向定子腔和下径向定子腔中,减小了磁轴承的轴向尺寸,极大限度抑制了转子的陀螺效应,并且结构进一步紧凑。
3、本发明在轴向控制方面采用了无推力盘的转子结构,降低了转子的质量,且减少了旋转轴的摩擦和风阻损失,更有利于转子的高速运行,提高了轴向的控制精度。
4、本发明的轴向线圈空间大,因此可实现轴向的大承载力。
5、本发明采用五自由度集成结构,集成度高,缩短了轴的长度,减小了飞轮电池的体积,节约了材料。
附图说明
图1为本发明的内部结构剖视图;
图2为本发明的俯视图;
图3为图1中径向定子的局部结构图;
图4为图1中转子结构立体图;
图5为图3中径向定子和图4中转子的装配结构图;
图6为图1中轴向定子的立体结构图;
图7为图6中轴向定子和图4中转子的装配结构图;
图8为图1中径向定子、径向控制线圈、轴向定子以及环形永磁体的装配结构主视图;
图9为本发明静态被动悬浮的原理图;
图10为本发明径向二自由度平衡控制的原理图;
图11为本发明径向旋转二自由度平衡控制的原理图;
图12为本发明轴向单自由度平衡控制的原理图。
图中:1.上部径向定子;5.轴向定子;6.轴向控制线圈;7.转子;8.下部径向定子;11、12、13.上部径向定子极;16.径向定子极腔;17.轴向定子腔;21、22、23.上部径向控制线圈;31.上部环形永磁体;32.下部环形永磁体;41.上部隔磁铝环;42.隔磁铝环;43.下部隔磁铝环;51.上部轴向定子;52.下部轴向定子;53.大圆盘;54.中间圆环体;55.小圆盘;71.上端柱体;72.上连接体;73.中间圆柱体;74.下连接体;75.下端柱体;81、82、83.下部径向定子极;91、92、93.下部径向线圈;211.上凹球面;711.上凸球面;751.下凸球面;811.下凹球面。
具体实施方式
参见图1和图2,本发明正中间是转子7,在转子7外同轴套有轴向定子5和径向定子。
径向定子由上部径向定子1和下部径向定子8组成,上部径向定子1和下部径向定子8沿转子7的轴向上同轴布置。上部径向定子1和下部径向定子8的轭部沿转子7的轴向上同轴上下布置,并且上下轭部连为一体,上下轭部形成一个中空圆柱体,该中空圆柱体的内腔即是径向定子极腔16。
上部径向定子1的上端面和转子7的上端面平齐,下部径向定子8的下端面和转子7的下端面平齐。
在径向定子极腔16内,上部径向定子1的轭部上端和下部径向定子8的的轭部下端各自沿圆周方向均匀布置三个径向定子极,分别是三个上部径向定子极11、12、13和三个下部径向定子极81、82、83,三个上部径向定子极11、12、13和三个下部径向定子极81、82、83的形状完全相同,上下投影重叠。三个上部径向定子极11、12、13的上端面和上部径向定子1的轭部上端面平齐,三个下部径向定子极81、82、83的下端面和下部径向定子8的轭部下端面平齐。在每个径向定子极上绕有径向控制线圈,分别是上部径向控制线圈21、22、23和下部径向线圈91、92、93,6个完全相同的径向控制线圈一一对应地绕制于上部径向定子极11、12、13和下部径向定子极81、82、83。
三个上部径向定子极11、12、13和三个下部径向定子极81、82、83的内端都带有极靴,极靴表面为凹球面。如图3所示,仅以上部径向定子极11和下部径向定子极81为图例说明:上部径向定子极11的极靴表面加工为上凹球面111,下部径向定子极81的极靴表面加工为下凹球面811。
如图4所示,转子7是在轴向上上下对称的结构,最中间是一个中间圆柱体73,上下两端各是相同的中空的柱体,分别是上端柱体71和下端柱体75。在中间圆柱体73的上下两端分别是连接上端柱体71的上连接体72和连接下端柱体75的下连接体74。上端柱体71和下端柱体75的侧壁为凸球面结构,上端柱体71的侧壁是上凸球面711,下端柱体75的侧壁是下凸球面751。整个转子7在轴向上外径由中间向两端逐渐增大,中间圆柱体73的外径要小于上连接体72和下连接体74的外径,上连接体72和下连接体74的外径与上端柱体71和下端柱体75的上下端面外径相等。
如图1所示,三个上部径向定子极11、12、13和三个下部径向定子极81、82、83内端的每个凹球面上下对应地在径向上正对着转子7的上端柱体71和下端柱体75的凸球面,凹球面和凸球面之间保持0.5mm的径向气隙,凹球面和凸球面在轴向上的厚度相等。当转子7处于平衡位置时,转子7的上凸球面711和上部径向定子极11、12、13的凹球面的球心重合,转子7的下凸球面751和下部径向定子极81、82、83的凹球面的球心重合。图5仅以上部径向定子极11和下部径向定子极81与转子7的布置结构为图例说明:上部径向定子极11的上凹球面211与转子7的上凸球面711在径向上相配,两者之间留有0.5mm径向间隙;下部径向定子极81的下凹球面811与转子7的下凸球面751在径向上相配,两者之间留有0.5mm径向间隙。
如图1所示,在转子7的中间圆柱体73外,位于径向定子极腔16内的中间固定嵌套圆盘形的轴向定子5,轴向定子5在轴向上位于上部径向控制线圈21、22、23和下部径向线圈91、92、93之间,并且与径向控制线圈不接触。轴向定子5由上部轴向定子51和下部轴向定子52组成,上部轴向定子51和下部轴向定子52的结构相同,都是圆盘形,沿中间圆柱体73的轴向上下同轴布置。在上部轴向定子51和下部轴向定子52之间固定叠压一个圆盘形的隔磁铝环42,上部轴向定子51、下部轴向定子52和隔磁铝环42的外径均与径向定子极腔16的内径相同,并且均固定连接在径向定子极腔16的内壁上。上部轴向定子51、下部轴向定子52和隔磁铝环42的内腔形成轴向定子腔17,在轴向定子腔17内通过线圈架同轴固定一个轴向控制线圈6,轴向控制线圈6紧贴轴向定子腔17的内壁,且同套在中间圆柱体73外,与中间圆柱体73之间留有间隙。
如图6和图1所示,轴向定子5的上部轴向定子51和下部轴向定子52各由一个大圆盘53、一个中间圆环体54以及一个小圆盘55在轴向上依序连接组成。隔磁铝环42叠压在上下两个相同的大圆盘53之间,隔磁铝环42的内外径与大圆盘53的内外径对应相等。大圆盘53端面经中间圆环体54连接小圆盘55,中间圆环体54的内径等于大圆 盘53的内径,中间圆环体54的外径等于小圆盘55的外径但远小于大圆盘53的外径,小圆盘55的内径小于大圆盘53的内径,如此,在小圆盘55的外壁和大圆盘53的外壁之间形成台阶,具有径向空隙。上部轴向定子51的小圆盘55的上端面距离上部径向定子极11、12、13的轴向距离与下部轴向定子52的小圆盘55的下端面距离下部径向定子极81、82、83的轴向距离相等。轴向控制线圈6紧贴在两个中间圆环体54和两个大圆盘53的内壁上,当轴向控制线圈6通电时,圆环体54内能产生轴向控制磁场。
如图7所示,当转子7处于平衡位置时,上部轴向定子51的小圆盘55的上端面与转子7的上连接体72的下端面在轴向上保持0.5mm的轴向气隙。上部轴向定子51的小圆盘55的内径与转子7的上连接体72的外径相等。同样,下部轴向定子52的小圆盘55的下端面与转子7的下连接体74的上端面在轴向上保持0.5mm的轴向气隙,下部轴向定子52的小圆盘55的内径与转子7的下连接体74的外径相等。
如图8和图1所示,在上部轴向定子51的大圆盘53的上侧以及下部轴向定子52的大圆盘53的下侧各安装一个环形永磁体,分别是上部环形永磁体31和下部环形永磁体32,上部环形永磁体31和下部环形永磁体32的结构相同,均采用高性能稀土材料钕铁硼制成,均轴向充磁,上部环形永磁体31和下部环形永磁体32的充磁方向相反,永磁体的S极相面对面。环形永磁体紧密叠压在轴向定子5和径向定子极之间,上部环形永磁体31叠压在上部轴向定子51的大圆盘53和上部径向定子极11、12、13之间,下部环形永磁体32叠压在下部轴向定子52和下部径向定子极81、82、83之间。上部环形永磁体31和下部环形永磁体32的内径大于小圆盘55的外径,这样就保证环形永磁体与轴向定子5的中间圆环体54和小圆盘55之间留有一定的径向间隙,保证轴向定子5内的轴向磁路不受环形永磁体的影响。
在一个环形永磁体外套有一个隔磁铝环,隔磁铝环同时固定嵌套在环形永磁体的外壁和径向定子腔轴16的内壁上。上部环形永磁体31外套有上部隔磁铝环41,下部环形永磁体32外套有下部隔磁铝环43,上部隔磁铝环41和下部隔磁铝环43的结构完全相同,轴向高度与上部环形永磁体31和下部环形永磁体32相等。上部隔磁铝环41和下部隔磁铝环43先通过过盈配合分别紧密套在上部环形永磁体31和下部环形永磁体32的外壁上,再通过冷压焊的方式与径向定子腔轴16的内壁紧密连接。环形永磁体和隔磁铝环与上部径向控制线圈21、22、23和下部径向线圈91、92、93之间相互不接触、不干渉。
本发明工作时,能实现转子7的静态被动悬浮、径向二自由度平衡、径向扭转二自 由度平衡以及轴向单自由度平衡。在轴向控制方面,轴向控制线圈通以直流电与轴向定子组成电磁铁,通过改变控制直流电的大小和方向来改变轴向上转子受力大小与方向,从而实现对轴向一个自由度的控制。在径向控制方面,置于上下各一组三磁极径向球面定子上的径向控制线圈通以交流三相电,通过改变控制线圈电流大小,实现了径向上四个自由度的精准控制。具体如下:
静态被动悬浮的实现:参见图9,上部环形永磁体31和下部环形永磁体32产生的偏置磁通如图10中的虚线及箭头所示,上部环形永磁体31产生的偏置磁通从上部环形永磁体31的N极开始经过上部径向定子极11,再依次经过径向气隙、转子7的上凸球面711、转子7的上连接体72、轴向气隙、轴向定子5的上部轴向定子51,最后回到上部永磁体31的S极。同样,下部环形永磁体32产生的偏置磁通从下部环形永磁体32的N极开始经过下部径向定子极81,再依次经过径向气隙、转子7的下凸球面751、转子7的下连接体74、轴向气隙、轴向定子5的下部轴向定子52,最后回到下部环形永磁体32的S极。当转子7处于中心平衡位置时,转子7的中心轴与磁轴承的轴向中心轴重合,在径向上,转子7的上端柱体71和下端柱体75的凸球面与上部径向定子极11和下部径向定子极81的凹球面之间的气息磁通完全相等,因此转子7在径向上受电磁力平衡,实现转子7径向稳定悬浮。轴向上,上部轴向定子51与转子7之间的轴向气隙磁通和下部轴向定子52与转子7之间的轴向气隙磁通完全相等,转子7在轴向上受到的电磁力平衡,因此,实现转子7轴向稳定悬浮。
径向二自由度平衡的实现:参见图10,当转子7在径向二自由度X、Y受到干扰而偏离平衡位置时,对上部径向控制线圈21、22、23与下部径向控制线圈91、92、93通电,产生的单磁通指向与位置偏移相反的方向,产生相应的径向控制磁悬浮力,使转子7回到径向平衡位置。假设转子7在径向Y轴正方向上受到扰动而偏移平衡位置,上部径向控制线圈21、22、23与下部径向控制线圈91、92、93通电,产生的控制磁通如图10是粗实线及箭头所示,上部环形永磁体31和下部环形永磁体32产生的偏置磁通如图10中的虚线及箭头所示,经过上部径向定子极11、13以及下部径向定子极81、83中的偏置磁通和控制磁通方向相反,而总磁通减弱。上部径向定子极22、下部径向定子极82中的偏置磁通和控制磁通方向相同,进而总磁通增强,使得径向在Y轴负方向上的单磁通加强,转子7受到Y负方向的磁拉力F1、F2而回到平衡位置。
径向扭转二自由度平衡的实现:参见图11,当转子7在径向扭转二自由度(θx,θy) 受到干扰而偏离平衡位置时,对上部径向控制线圈21、22、23与下部径向控制线圈91、92、93通电,其产生的单磁通指向与位置偏移相反的方向,产生扭矩,使转子7回到径向平衡位置。假设转子7受到扰动在Y正方向上发生扭转,扭转角度为θx,由上部径向控制线圈21、22、23通电后产生的控制磁通如图11中粗实线及箭头所示,上部环形永磁体31和下部环形永磁体32产生的偏置磁通如图11中的虚线及箭头所示,可以看出,上部径向定子极21、23中的偏置磁通和控制磁通方向相反,上部径向定子极21、23中的总磁通减弱,而上部径向定子极22中的转子偏置磁通和控制磁通方向相同,总磁通增强,转子7会受到Y负方向的磁拉力F1。下部径向控制线圈91、92、93通电后,经过下部径向定子极81、83中的偏置磁通和控制磁通方向相同,经过下部径向定子极81、83中总磁通增强,而经过下部径向定子极82偏置磁通和控制磁通方向相反,进而总磁通减弱,转子7受到下部径向定子极81、83的磁拉力F3、F4,其合成磁拉力F2指向Y正方向,因此转子7受到恢复扭转力矩使转子7回到平衡位置。
轴向单自由度主动控制的实现:参见图12,轴向控制线圈6通以直流电,当转子7在轴向上出现位置偏移时,通过改变直流控制电流的大小与方向,通过改变上部轴向定子51与转子7之间的轴向气隙磁通和下部轴向定子52与转子7之间的轴向气隙磁通的大小,在轴向气隙处产生磁吸力使转子7回到轴向参考平衡位置。例如当转子7向上偏移时,通过轴向控制线圈6加载轴向控制电流产生的轴向控制磁通如图12中粗实线及箭头所示,上部环形永磁体31和下部环形永磁体32产生的偏置磁通如图12中虚线及箭头所示,可以看出经过上部轴向定子51与转子7之间的轴向气隙磁通方向相反,经过下部轴向定子52与转子7之间的轴向气隙磁通方向相同,上部轴向定子51与转子7之间的合成气隙磁通小于下部轴向定子52与转子7之间的合成气隙磁通。由此,转子7受到的合成电磁力FZ向下,将转子7拉回轴向平衡位置,因此,轴向上的一个自由度得到控制。
根据以上所述,便可以实现本发明。对本领域的技术人员在不背离本发明的精神和保护范围的情况下做出的其它的变化和修改,仍包括在本发明保护范围之内。

Claims (9)

  1. 一种车载飞轮电池用交直流五自由度双球面混合磁轴承,转子(7)外同轴套有轴向定子(5)和径向定子,其特征是:所述径向定子由轭部连为一体的上、下部径向定子(1、8)同轴布置组成,上下轭部形成径向定子极腔(16),上部径向定子(1)轭部上端和下部径向定子(8)轭部下端各自沿圆周方向均匀布置三个径向定子极,每个径向定子极的内端表面均为凹球面,在每个径向定子极上绕有径向控制线圈;所述转子(7)最中间是中间圆柱体(73),上下两端各是相同的上端柱体(71)和下端柱体(75),中间圆柱体(73)的上下两端分别是连接上端柱体(71)的上连接体(72)和连接下端柱体(75)的下连接体(74),上、下端柱体(71、75)的侧壁均为凸球面;上、下部径向定子极内端的每个凹球面上下对应地正对着上、下端柱体(71、75)的凸球面,凹球面和凸球面之间有气隙,正对着的凹球面和凸球面的球心重合;所述中间圆柱体(73)外固定嵌套轴向定子(5),轴向定子(5)由结构相同且同轴布置的圆盘形的上、下部轴向定子(51、52)组成,上、下部轴向定子(51、52)之间叠压圆盘形的隔磁铝环(42),上、下部轴向定子(51、52)和隔磁铝环(42)的内腔形成轴向定子腔(17),轴向定子腔(17)内是紧贴其内壁的轴向控制线圈(6);上部轴向定子(51)的上侧和下部轴向定子(52)的下侧各装有一个紧密叠压在轴向定子(5)和径向定子极之间的环形永磁体,上、下部环形永磁体的结构相同且均轴向充磁,充磁方向相反。
  2. 根据权利要求1所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:所述环形永磁体产生偏置磁通,控制转子(7)静态被动悬浮;所述轴向控制线圈通直流电,控制转子(7)轴向一个自由度;所述径向控制线圈通交流电,控制转子(7)径向四个自由度。
  3. 根据权利要求1所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:上部轴向定子(51)、下部轴向定子(52)和隔磁铝环(42)的外径均与径向定子极腔(16)的内径相同且均固定连接在径向定子极腔(16)的内壁上。
  4. 根据权利要求1所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:上、下部轴向定子(51、52)均各由一个大圆盘(53)、一个中间圆环体(54)以及一个小圆盘(55)在轴向上依序连接组成,隔磁铝环(42)叠压在上下两个相同的大圆盘(53)之间,隔磁铝环(42)的内外径与大圆盘(53)的内外径对应相等。
  5. 根据权利要求4所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:中间圆环体(54)的内径等于大圆盘(53)的内径,中间圆环体(54)的外径 等于小圆盘(55)的外径但远小于大圆盘(53)的外径,小圆盘(55)的内径小于大圆盘(53)的内径。
  6. 根据权利要求1所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:中间圆柱体(73)的外径小于上连接体(72)和下连接体(74)的外径,上连接体(72)和下连接体(74)的外径与上端柱体(71)和下端柱体(75)的上下端面外径相等。
  7. 根据权利要求1所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:所述凹球面和所述凸球面在轴向上的厚度相等,三个上部径向定子极的上端面和上部径向定子(1)的轭部上端面平齐,三个下部径向定子极的下端面和下部径向定子(8)的轭部下端面平齐。
  8. 根据权利要求1所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:上部径向定子(1)的上端面和转子(7)的上端面平齐,下部径向定子(8)的下端面和转子(7)的下端面平齐。
  9. 根据权利要求1所述的一种车载飞轮电池用交直流五自由度双球面混合磁轴承,其特征是:一个环形永磁体外套有一个隔磁铝环,隔磁铝环同时固定嵌套在环形永磁体的外壁和径向定子腔轴(16)的内壁上。
PCT/CN2017/099222 2017-07-27 2017-08-28 一种车载飞轮电池用交直流五自由度双球面混合磁轴承 WO2019019243A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH00973/18A CH713941B1 (de) 2017-07-27 2017-08-28 AC-/DC-Doppelkugelflächen-Mischmagnetlager mit fünf Freiheitsgraden für eine Fahrzeugsschwungradbatterie.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710623197.8A CN107327483B (zh) 2017-07-27 2017-07-27 一种车载飞轮电池用交直流五自由度双球面混合磁轴承
CN201710623197.8 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019019243A1 true WO2019019243A1 (zh) 2019-01-31

Family

ID=60227865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099222 WO2019019243A1 (zh) 2017-07-27 2017-08-28 一种车载飞轮电池用交直流五自由度双球面混合磁轴承

Country Status (3)

Country Link
CN (1) CN107327483B (zh)
CH (1) CH713941B1 (zh)
WO (1) WO2019019243A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111022498A (zh) * 2019-12-31 2020-04-17 淮阴工学院 径向无绕组混合磁轴承
CN112653258A (zh) * 2020-12-10 2021-04-13 哈尔滨理工大学 一种新型无轴承模块化高速永磁同步电机结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3450782B1 (de) * 2017-09-05 2019-11-06 Lakeview Innovation Ltd. Aktives radiales magnetlager mit jochwicklung
CN109340259B (zh) * 2018-12-02 2023-10-27 迈格钠磁动力股份有限公司 一种可承受径向和轴向载荷的永磁悬浮轴承
CN110112860B (zh) * 2019-04-22 2020-11-03 江苏大学 五自由度单侧悬浮支承式盘球飞轮一体化车载储能装置
CN110190706B (zh) * 2019-05-17 2021-02-12 江苏大学 一种h型电动汽车用飞轮电池结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074700A (zh) * 2007-06-25 2007-11-21 江苏大学 三自由度双薄片三相交流混合磁轴承
GB2491825A (en) * 2011-06-10 2012-12-19 William Brian Turner A permanent magnet combined journal and thrust bearing for a large shaft
CN104389903A (zh) * 2014-11-15 2015-03-04 北京石油化工学院 一种双永磁体外转子永磁偏置球面径向磁轴承
CN104533949A (zh) * 2015-01-21 2015-04-22 北京石油化工学院 一种内转子球形径向纯电磁磁轴承
CN105156475A (zh) * 2015-09-12 2015-12-16 北京科技大学 一种旋转调制径向球面永磁偏置磁轴承

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359357B1 (en) * 2000-08-18 2002-03-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Combination radial and thrust magnetic bearing
JP4200775B2 (ja) * 2003-01-30 2008-12-24 株式会社ジェイテクト フライホイール電力貯蔵装置
JP4616122B2 (ja) * 2005-08-22 2011-01-19 株式会社イワキ 磁気軸受
CN101709746A (zh) * 2009-12-22 2010-05-19 上海大学 五自由度永磁悬浮轴承转子系统
CN102359490B (zh) * 2011-08-31 2013-03-20 北京航空航天大学 一种五自由度径向解耦锥形磁轴承
US20140125176A1 (en) * 2012-11-08 2014-05-08 Waukesha Bearings Corporation Hybrid Bearing
CN103047348B (zh) * 2012-12-19 2015-02-11 哈尔滨工业大学 共面气浮正交解耦与滑动关节轴承角度解耦的磁浮隔振器
CN105782242A (zh) * 2016-05-20 2016-07-20 国网冀北电力有限公司承德供电公司 一种飞轮储能系统及其五自由度磁悬浮支承结构
CN106015331B (zh) * 2016-06-08 2019-05-21 淮阴工学院 一种低功耗永磁偏置五自由度集成化磁轴承
CN105840654B (zh) * 2016-06-08 2019-05-24 淮阴工学院 一种永磁偏置单自由度轴向磁轴承

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074700A (zh) * 2007-06-25 2007-11-21 江苏大学 三自由度双薄片三相交流混合磁轴承
GB2491825A (en) * 2011-06-10 2012-12-19 William Brian Turner A permanent magnet combined journal and thrust bearing for a large shaft
CN104389903A (zh) * 2014-11-15 2015-03-04 北京石油化工学院 一种双永磁体外转子永磁偏置球面径向磁轴承
CN104533949A (zh) * 2015-01-21 2015-04-22 北京石油化工学院 一种内转子球形径向纯电磁磁轴承
CN105156475A (zh) * 2015-09-12 2015-12-16 北京科技大学 一种旋转调制径向球面永磁偏置磁轴承

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111022498A (zh) * 2019-12-31 2020-04-17 淮阴工学院 径向无绕组混合磁轴承
CN111022498B (zh) * 2019-12-31 2023-09-29 淮阴工学院 径向无绕组混合磁轴承
CN112653258A (zh) * 2020-12-10 2021-04-13 哈尔滨理工大学 一种新型无轴承模块化高速永磁同步电机结构

Also Published As

Publication number Publication date
CH713941A2 (de) 2019-01-31
CH713941B1 (de) 2019-04-30
CN107327483A (zh) 2017-11-07
CN107327483B (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2019019243A1 (zh) 一种车载飞轮电池用交直流五自由度双球面混合磁轴承
CN106655605B (zh) 夹心式电动汽车用磁悬浮飞轮电池及工作方法
CN107425647B (zh) 采用五自由度混合磁轴承的车载飞轮电池
CN109831056B (zh) 电动汽车用虚拟轴式磁悬浮飞轮储能装置
CN107448474B (zh) 一种车载飞轮电池用五自由度混合磁轴承
WO2021143759A1 (zh) 新结构径向两自由度六极交流/直流混合磁轴承
CN105782242A (zh) 一种飞轮储能系统及其五自由度磁悬浮支承结构
CN104214216B (zh) 一种四自由度内转子磁轴承
CN110848253A (zh) 一种三自由度径向-轴向一体化混合磁轴承
CN110190706B (zh) 一种h型电动汽车用飞轮电池结构
WO2022236896A1 (zh) 一种超薄式车载磁悬浮飞轮电池及其工作方法
CN107289004A (zh) 一种车载飞轮电池用交直流五自由度锥球面混合磁轴承
CN109378930B (zh) 一种基于新型磁斥力混合磁轴承的外转子车载飞轮储能装置
CN110071598B (zh) 一种抗径向陀螺效应的车载飞轮电池
CN112160985A (zh) 不同磁极面的双片径向六极混合磁轴承支承的电主轴系统
CN103939465A (zh) 一种单自由度磁轴承
CN104154119A (zh) 一种永磁偏置轴向径向磁轴承
WO2021143766A1 (zh) 新结构交叉齿四极混合磁轴承
CN211574040U (zh) 径向无耦合三自由度直流混合磁轴承
CN110112860B (zh) 五自由度单侧悬浮支承式盘球飞轮一体化车载储能装置
CN111173838B (zh) 径向无耦合三自由度直流混合磁轴承
CN102537048A (zh) 一种可控制径向扭转的轴向磁轴承
CN204497904U (zh) 磁悬浮飞轮电机
CN107218298B (zh) 一种车载飞轮电池用恒流源偏置三自由度球面混合磁轴承
CN214534059U (zh) 一种圆盘定子型交/直流混合磁轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918845

Country of ref document: EP

Kind code of ref document: A1