WO2017067446A1 - 摩擦纳米发电机的能量管理方法、电路和装置 - Google Patents

摩擦纳米发电机的能量管理方法、电路和装置 Download PDF

Info

Publication number
WO2017067446A1
WO2017067446A1 PCT/CN2016/102452 CN2016102452W WO2017067446A1 WO 2017067446 A1 WO2017067446 A1 WO 2017067446A1 CN 2016102452 W CN2016102452 W CN 2016102452W WO 2017067446 A1 WO2017067446 A1 WO 2017067446A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
switch
register
inductance
energy management
Prior art date
Application number
PCT/CN2016/102452
Other languages
English (en)
French (fr)
Inventor
牛思淼
王晓峰
王中林
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Priority to JP2018521021A priority Critical patent/JP6584661B2/ja
Priority to KR1020187013801A priority patent/KR102113936B1/ko
Priority to EP16856877.2A priority patent/EP3367537B1/en
Priority to US15/769,605 priority patent/US10778120B2/en
Publication of WO2017067446A1 publication Critical patent/WO2017067446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Definitions

  • the present invention relates to the field of nano power generation, and in particular to an energy management method and management circuit for a friction nano generator, and a management device including the same.
  • Embodiments of the present invention provide an energy management method and management circuit for a friction nano-generator, and a management device including the management circuit.
  • an energy management method for a friction nano-generator comprising: temporarily storing electrical energy output by a friction nano-generator in an energy register; and temporarily suspending the energy register The stored energy is transferred to the energy store.
  • the electrical energy output by the friction nano-generator is temporarily stored in the energy register, specifically: converting the alternating current energy output by the friction nano-generator into direct current and temporarily storing the energy in the energy register.
  • the energy management method includes: transferring a temporary energy stored by the energy register to the energy storage device using a DC-DC converter, wherein the DC-DC converter is a non-isolated DC-DC converter Or isolate the DC-DC converter.
  • the isolated DC-DC converter includes: a first switch, a first inductor connected in parallel with the energy register through a first switch, a second switch, and a parallel connection with the energy storage through a second switch a second inductor; wherein the first inductor and the second inductor form a mutual inductance.
  • the energy management method includes: transmitting energy to the energy storage when the voltage of the energy temporarily stored by the energy register reaches a first preset value.
  • the energy management method includes: when the energy buffer transfers power to the energy storage device, when the voltage of the temporarily stored energy of the energy register reaches a second preset value, stopping The energy store transfers electrical energy.
  • the energy management method includes: before the voltage of the energy temporarily stored in the energy register reaches the first preset value, the first switch and the second switch are both disconnected; When the voltage of the energy temporarily stored by the energy register reaches the first predetermined value, the first switch is closed, so that electrical energy is transmitted from the energy register to the first inductor; and when the energy is temporarily When the voltage of the temporarily stored energy reaches the second preset value, the first switch is turned off and the second switch is closed, so that electrical energy is transmitted from the first inductor to the Energy storage.
  • the second switch is again turned off.
  • the value of the second preset value is less than or equal to the first preset value.
  • the first preset value ranges from 15V to 1000V.
  • the energy register is a 1 pF-1 mF capacitor.
  • the energy register is a battery
  • a square wave clock signal is generated by the control circuit to control a closing time of the first switch and/or the second switch, when the output signal of the control circuit is a low level, The first switch and the second switch are both turned off; when the control circuit output signal is high level, the first switch is closed, so that electrical energy is transferred from the energy register to the first inductor And when the control circuit output signal returns from a high level to a low level again, the first switch is turned off and the second switch is closed, so that electrical energy is transmitted from the first inductor via the second inductor To the energy store.
  • the energy register includes at least one battery, and the total voltage is 10V- 500V, internal resistance is not more than 1M ⁇ , leakage is not more than 10mA.
  • the voltage of the energy register is 3-1000 times the voltage of the energy storage.
  • first inductance and the second inductance have a mutual inductance greater than 0.5, the inductance is greater than or equal to 10 nH, and the parasitic resistance is less than or equal to 1 M ⁇ .
  • the energy storage unit is a rechargeable battery or capacitor having an internal resistance of less than or equal to 1 M ⁇ and a leakage current of less than or equal to 100 mA.
  • an energy management circuit for a friction nanogenerator including a first stage circuit and a second stage circuit in parallel with the frictional nanogenerator, wherein:
  • the first stage circuit includes an energy register; and the second stage circuit includes a parallel DC-DC converter and an energy store; wherein the DC-DC converter is configured to store the energy register Electrical energy is delivered to the energy store.
  • the first stage circuit further includes a rectifier configured to rectify the electrical energy output by the frictional nano-generator into direct current to the energy register.
  • the DC-DC converter is a non-isolated DC-DC converter or an isolated DC-DC converter.
  • the isolated DC-DC converter includes: a first switch, a first inductor connected in parallel with the energy register through a first switch, a second switch, and a parallel connection with the energy storage through a second switch a second inductor; wherein the first inductor and the second inductor form a mutual inductance.
  • the DC-DC converter is configured to transfer the energy stored by the energy register to the energy storage when the voltage of the energy stored by the energy register reaches a first preset value.
  • the DC-DC converter is configured to stop transferring power to the energy storage device when a voltage of the temporarily stored energy of the energy register reaches a second preset value during the process of transferring electrical energy.
  • the first switch and the second switch are both disconnected; when the energy register is temporarily stored When the voltage of the electrical energy reaches the first predetermined value, the first switch is closed, so that electrical energy is transferred from the energy register to the first inductor; and when the energy register is temporarily stored When the voltage reaches the second predetermined value, the first switch opens and the second switch closes, such that electrical energy is transferred from the first inductance to the energy store via the second inductance.
  • the second switch is again turned off.
  • the value of the second preset value is less than or equal to the first preset value.
  • the first preset value ranges from 15V to 1000V.
  • the energy register is a 1 pF-1 mF capacitor.
  • the energy register is a battery
  • a square wave clock signal is generated by the control circuit to control a closing time of the first switch and/or the second switch, when the output signal of the control circuit is a low level, The first switch and the second switch are both turned off; when the control circuit output signal is high level, the first switch is closed, so that electrical energy is transferred from the energy register to the first inductor And when the control circuit output signal returns from a high level to a low level again, the first switch is turned off and the second switch is closed, so that electrical energy is transmitted from the first inductor via the second inductor To the energy store.
  • the energy register includes at least one battery, the total voltage is 10V-500V, the internal resistance is not more than 1M ⁇ , and the leakage is not more than 10mA.
  • the voltage of the energy register is 3-1000 times the voltage of the energy storage.
  • first inductance and the second inductance have a mutual inductance greater than 0.5, the inductance is greater than or equal to 10 nH, and the parasitic resistance is less than or equal to 1 M ⁇ .
  • the energy storage unit is a rechargeable battery or capacitor having an internal resistance of less than or equal to 1 M ⁇ and a leakage current of less than or equal to 100 mA.
  • first switch and the second switch are electronic switches.
  • an energy management apparatus for a friction nanogenerator including the energy management circuit described above.
  • the energy register is periodically charged and discharged to realize the energy storage Charging, the impedance matching between the friction nano-generator and the energy storage is realized, and the energy storage efficiency is greatly improved, so that the alternating current electric energy generated by the friction nano-generator can be efficiently converted into the constant-voltage direct current output.
  • FIG. 1 is a flow chart of an energy management method for a friction nano-generator according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a frame of an energy management circuit of a friction nano-generator according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a typical working state of an energy management circuit of a friction nano-generator according to an embodiment of the present invention
  • 4A and 4B are respectively a diagram showing a relationship between an average AC power and a load resistance of an energy management circuit of a friction nanogenerator according to an embodiment of the present invention, and a measured voltage versus time.
  • FIG. 5 is a block diagram of an energy management device of a friction nano-generator according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the composition of an energy management device for a friction nano-generator according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of an energy management method for a friction nano-generator according to an embodiment of the present invention.
  • another aspect of the present invention provides an energy management method for a friction nano-generator, the energy management method comprising: S201, temporarily storing energy output by a friction nano-generator in an energy register; S202 And transferring the energy temporarily stored by the energy register to the energy storage.
  • step S201 the electric energy output by the friction nano-generator is temporarily stored in the energy register, specifically: converting the alternating current electric energy output by the friction nano-generator into a direct current Temporary storage in the energy register.
  • the energy management method may include: transmitting energy to the energy storage when the voltage of the energy temporarily stored by the energy register reaches a first preset value. Further, the energy management method includes: when the energy buffer transfers power to the energy storage device, when the voltage of the temporarily stored energy of the energy register reaches a second preset value, stopping The energy store transfers electrical energy.
  • the energy management method includes: transmitting, by the DC-DC converter (eg, a non-isolated DC-DC converter or an isolated DC-DC converter), the energy stored in the energy register to the An energy storage device, wherein the isolated DC-DC converter includes: a first switch, a first inductor connected in parallel with the energy register through a first switch, a second switch, and a second switch and the energy storage device a second inductor connected in parallel; wherein the first inductor and the second inductor form a mutual inductance.
  • the DC-DC converter eg, a non-isolated DC-DC converter or an isolated DC-DC converter
  • the energy management method includes: when a voltage of the electrical energy temporarily stored by the energy register reaches the first preset value, the first switch is closed, so that the electrical energy is from the energy register Passing to the first inductance; and when the voltage of the energy temporarily stored by the energy register reaches the second preset value, the first switch is turned off and the second switch is closed, so that the electric energy is The first inductance is transmitted to the energy storage via the second inductance. Then, after the electrical energy is all transferred from the second inductor to the energy store, the second switch is again turned off.
  • the first switch and the second switch are both turned off before the voltage of the energy temporarily stored in the energy register reaches a first preset value.
  • the energy management method provided by the embodiments of the present invention can be divided into multiple cycles, wherein each cycle is divided into two steps, and the first step is performed by the friction nano-generator through the rectifier circuit to the energy register (for example, the temporary storage capacitor C temp Charging, the second step: when the voltage of the temporary storage capacitor C temp reaches the previously set value V 1 , the energy in the temporary storage capacitor is transferred to the storage of the final energy storage C, and then the temporary storage capacitor is discharged, and then temporarily When the voltage of the storage capacitor reaches V 2 (V 2 ⁇ V 1 ), the next charging cycle is entered, and the friction nano-generator continues to charge the temporary storage capacitor, and then the energy of the temporary storage capacitor continues to be transferred to the final energy storage unit.
  • the first step is performed by the friction nano-generator through the rectifier circuit to the energy register (for example, the temporary storage capacitor C temp Charging
  • the second step when the voltage of the temporary storage capacitor C temp reaches the previously set value V 1 , the energy in the temporary storage capacitor is
  • FIG. 2 is a schematic diagram of a frame of an energy management circuit of a friction nano-generator according to an embodiment of the present invention.
  • an energy management circuit for a friction nano-generator is provided.
  • the energy management circuit is divided into two-stage circuits, and the first-stage circuit includes an energy register, and the second-stage circuit uses Efficient energy transfer from the temporary storage capacitor to the final energy storage unit.
  • the first stage circuit and the second stage circuit are sequentially connected in parallel with the friction nanogenerator, wherein: the first stage circuit includes an energy register (eg, a temporary storage capacitor C temp ); and the second stage circuit includes a parallel connection a DC-DC converter and an energy storage (such as a rechargeable battery or capacitor C storage ); the first stage circuit may further include a rectifier configured to rectify the electrical energy output by the frictional nano-generator to a DC point to supply the energy Save.
  • the first stage circuit may further include a rectifier configured to rectify the electrical energy output by the frictional nano-generator to a DC point to supply the energy Save.
  • the DC-DC converter is configured to transfer the energy stored by the energy register to the energy storage, which may be a non-isolated DC-DC converter or an isolated DC-DC converter.
  • the energy stored by the energy register is transferred to the energy storage.
  • the DC-DC converter is configured to stop the energy storage when the voltage of the temporarily stored energy of the energy register reaches a second preset value during the transfer of the electrical energy Transfer energy.
  • the DC-DC converter may include: a first switch J 1 , a first inductor L 1 , a second switch J 2 connected to the energy register through the first switch J 1 , and a second switch J 2 is a second inductance L 2 in parallel with the energy storage device; wherein the first inductance L 1 and the second inductance L 2 form a mutual inductance.
  • the first switch J 1 and the second switch J 2 are both disconnected, thereby achieving fast energy storage. Charging.
  • the first switch J 1 is closed, so that electrical energy is transmitted from the energy register to the first inductor L 1
  • the first switch J 1 is turned off and the second switch J 2 is closed, so that the electric energy is from the first an inductor L 1 L 2 is transmitted to the energy storage via the second inductor.
  • the friction nano-generator charges the temporary storage capacitor C temp through a full-bridge rectifier composed of four diodes D 1 - D 4 (for example, a temporary storage capacitor can select a capacitor of 500 nF)
  • the DC-DC converter of the second-stage circuit can select two electronic switches J 1 and J 2 and a mutual inductance (for example, the main stage is the inductance L 1 and the slave stage is the inductance L 2 ), in addition to the control circuit Used to control two electronic switches J 1 and J 2 .
  • the value of the temporary capacitor can be selected from 1pF to 1mF.
  • the choice of the final storage unit includes rechargeable batteries (including lithium-ion batteries, nickel-metal hydride batteries, etc.), supercapacitors and ordinary capacitors (including ceramic capacitors, electrolytic capacitors, etc.), the internal resistance is not more than 1M ⁇ , and the leakage is not more than 100mA.
  • the rectifier in the first stage circuit uses a full-wave diode rectifier bridge or a half-wave rectifier bridge.
  • the DC-DC converter of the second stage circuit may include a non-isolated DC-DC converter (including a step-down chopper, a boost chopper, a buck or a boost chopper). And so on and isolated DC-DC converters (including forward converters, flyback converters, half-bridge converters, full-bridge converters, push-pull converters, etc.).
  • a non-isolated DC-DC converter including a step-down chopper, a boost chopper, a buck or a boost chopper.
  • isolated DC-DC converters including forward converters, flyback converters, half-bridge converters, full-bridge converters, push-pull converters, etc.
  • the electronic switching component of the direct current-direct current (DC/DC) converter may include a triode (including various field effect transistors, a bipolar transistor, etc.), and a switching element such as a diode.
  • the mutual inductance of the transformer selected in the DC-DC converter is >0.5, the primary-stage secondary inductance is not less than 10nH, and the primary-stage secondary parasitic resistance is not more than 1M ⁇ .
  • the entire circuit works as follows (take a charge cycle as an example). First, the electronic switches J 1 and J 2 are both disconnected, and the friction nano-generator charges the temporary storage capacitor through the bridge rectifier circuit.
  • the second step when the preceding storage capacitor voltage reaches a preset value V 1, the control by the control circuit, the switch J 1 is closed, the storage capacitor voltage begins to drop.
  • the third step when the voltage of the temporary storage capacitor drops below the previous preset value V 2 (V 2 is less than V 1 ), the switch J 1 is turned off and the J 2 is closed by the control of the control circuit (or controller). . Finally, when the energy on the mutual inductance L 2 is transferred to the final energy storage, the switch J 2 is turned off by the control of the control circuit, and a charging cycle ends.
  • the energy register can also be a battery.
  • the working process is to generate a square wave clock signal by the control circuit to control the opening time of the first switch J 1 and/or the second switch J 2 when the output signal of the control circuit is low.
  • the first switch J 1 and the second switch J 2 are both turned off; when the control circuit output signal is high level, the first switch J 1 is closed, so that electrical energy is transmitted from the energy register to The first inductance; and, when the control circuit output signal is again returned to a low level, the first switch J 1 is turned off and the second switch is closed J 2 such that electrical energy is from the first inductor Transfer to the energy store via the second inductance.
  • the range of selection of V 1 is 15V-1000V, and the range of selection of V 2 is 0-0.999 ⁇ V 1 .
  • the energy register includes at least one battery, and the plurality of batteries can form a battery pack by connecting in series, the total voltage is 10V-500V, the internal resistance is not more than 1M ⁇ , and the leakage is not more than 10mA.
  • the voltage of the energy register can be 3-1000 times the voltage of the energy storage.
  • FIG. 3 The working state of the entire control circuit is shown in Figure 3.
  • a 15-layer laminated friction nanogenerator is used as the power source to be collected.
  • the friction nano-generator By constantly pressing the friction nano-generator, the friction nano-generator generates an AC signal that is input to the entire system.
  • the voltage V temp of the temporary storage capacitor starts to oscillate between 230V and 0V.
  • the energy transferred from the temporary storage capacitor C temp is 9.160 mJ and the energy stored in the storage capacitor C store (C storage ) is 8.243 mJ. Therefore, it can be concluded that the energy conversion efficiency of the designed DC-DC converter is 90%.
  • the most important parameter of the entire energy management circuit is its overall energy conversion efficiency.
  • the overall energy conversion efficiency is defined as the DC power that the friction nanogenerator system can output divided by the maximum average AC power that can be output on the resistor.
  • the overall energy conversion efficiency of the energy management circuit was tested. The test results are shown in Figures 4A and 4B. Firstly, by changing the applied resistance, the maximum average AC power that the friction nano-generator can output is 0.3384mW under the condition of 4.26M ⁇ matching resistance. Under the same conditions, the energy is passed. The management circuit can output a maximum DC power of 0.202mW. Therefore, the overall energy conversion efficiency ⁇ total of the energy management circuit can reach 60%, which is much higher than the overall energy conversion efficiency (less than 1%) of single-step charging.
  • FIG. 5 is a block diagram showing the composition of an energy management device for a friction nano-generator according to an embodiment of the present invention.
  • the present invention also provides an energy management device for a friction nano-generator, which may include: an energy register 102 (corresponding to an energy register of a management circuit) configured to temporarily store friction The electrical energy output by the nano-generator; the transmitting unit 103 (corresponding to the DC-DC converter in the management circuit) configured to transfer the energy temporarily stored in the energy register to the energy storage; the energy storage 104 (corresponding to the management circuit An energy store) configured to store electrical energy transferred from the energy register.
  • an energy register 102 corresponding to an energy register of a management circuit
  • the transmitting unit 103 corresponding to the DC-DC converter in the management circuit
  • the energy storage 104 corresponding to the management circuit An energy store
  • the energy register is charged and discharged to charge the energy storage, the impedance matching between the friction nano-generator and the energy storage is realized, the energy storage efficiency is greatly improved, and the emission of the friction nano-generator can be efficiently performed.
  • AC power is converted to a constant voltage DC output.
  • the frictional nanogenerator can include a rectifier configured to convert alternating electrical energy received from the frictional nanogenerator to a direct current output.
  • the apparatus provided by the present invention can include a rectifier 101 (corresponding to a rectifier of the management circuit) (as shown in Figure 6).
  • the transfer unit 103 is further configured to transfer electrical energy to the energy storage 104 when the voltage of the electrical energy temporarily stored by the energy register 102 reaches a first predetermined value (V 1 ).
  • the energy register 102 can also be configured to stop when the voltage of the energy temporarily stored by the energy register reaches a second preset value (V 2 ) during the transfer of electrical energy to the energy storage 104 Electrical energy is delivered to the energy store 104.
  • V 1 should be greater than or equal to V 2 .
  • the electrical energy stored in the energy register 102 is direct current, and thus, in order to transfer or transfer electrical energy from the energy register 102 to the energy storage 104, the transfer unit 103 can include a DC-DC converter.
  • the DC-DC converter may include a non-isolated DC-DC converter (eg, a buck chopper, a boost chopper, a buck or boost chopper, etc.) and an isolated DC-DC converter. (eg, forward converter, flyback converter, half bridge converter, full bridge converter, push-pull converter, etc.).
  • the DC-DC converter used in the present invention may include: a first switch J 1 , a first inductor L 1 and a second connected in parallel with the energy register 102 through the first switch J 1 a switch J 2 and a second inductor L 2 connected in parallel with the energy store 104 via a second switch J 2 ; wherein the first inductor L 1 and the second inductor L 2 constitute a mutual inductance.
  • the first switch J 1 when the voltage of the temporarily stored energy of the energy register 102 reaches the first preset value V 1 , the first switch J 1 is closed, so that the electrical energy is from the energy register 102. Passing to the first inductor L 1 ; and when the voltage of the energy temporarily stored in the energy register 102 reaches the second preset value, the first switch J 1 is turned off and the second switch J 2 is closed such that electrical energy is transferred from the first inductance L 1 to the energy store 104 via the second inductance L 2 .
  • the first switch J 1 and the second Switch J 2 should be open so that the energy register can quickly accumulate the electrical energy obtained from rectifier 101.
  • the first inductance L 1 and the second inductance L 2 may have a mutual inductance greater than 0.5, the inductance may be greater than or equal to 10 nH, and the parasitic resistance may be less than or equal to 1 M ⁇ .
  • the first preset value may be in a range of, for example, 15V-1000V to cover a common voltage range.
  • the second preset value may be smaller than the first value.
  • the preset value, for example, the second preset value V 2 may range from 0V ⁇ V 2 ⁇ V 1 .
  • the transfer unit 103 may further include a controller (or processor) (not shown) that may be coupled to various components in the energy management device and may be configured to monitor the energy register
  • the voltage of 102 and/or energy storage 104, and the on-off state of first switch J 1 and second switch J 2 are controlled in accordance with the above-described principles of the present invention.
  • the first switch J 1 and the second switch J 2 may be electronic switches such as triodes (including bipolar transistors and field effect transistors, etc.), diodes, and the like.
  • the energy register 102 can be a 1 pF-1 mF capacitor, such as an electrolytic capacitor, a ceramic capacitor, a super capacitor, or the like.
  • the energy storage unit 104 may be a rechargeable battery (for example, a lithium ion battery, a nickel-hydrogen rechargeable battery, or the like) or a capacitor (for example, a super capacitor, a general capacitor, or the like) having an internal resistance of less than or equal to 1 M ⁇ and a leakage current of less than or equal to 100 mA.
  • the rectifier 101 (or rectifier circuit) can be a diode rectifier bridge or a half wave rectifier bridge.
  • the energy register may also be a battery
  • the control circuit generates a square wave clock signal to control the opening time of the first switch J 1 and/or the second switch J 2 when the control circuit output signal is low.
  • the first switch J 1 and the second switch J 2 are both turned off; when the control circuit output signal is high level, the first switch J 1 is closed, so that electrical energy is from the energy register Passing to the first inductance; and, when the control circuit output signal is returning to a low level again, the first switch J 1 is turned off and the second switch is closed J 2 such that electrical energy is from the first An inductor is delivered to the energy store via the second inductance.
  • the second switch J 2 is again turned off when energy is completely transferred from the second inductor to the energy store.
  • the voltage of the battery is M1
  • the voltage of the energy storage is M2
  • the switching duty ratio of the first switch J 1 and the second switch J 2 is an important parameter, and the appropriate duty ratio can be selected according to the voltage ratio and the DC-DC converter type. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种摩擦纳米发电机的能量管理方法和管理电路,以及包含该管理电路的装置。其中该能量管理方法包括:在能量暂存器中暂存摩擦纳米发电机输出的电能(S201);以及将所述能量暂存器暂存的电能传递到能量存储器(S202)。通过上述技术方案,使能量暂存器周期性充放电实现对能量存储器充电,实现摩擦纳米发电机与能量存储器的阻抗匹配,大幅度提升能量存储效率,从而能够高效率的将摩擦纳米发电机的发出的交流电能转换成恒压直流电输出。

Description

摩擦纳米发电机的能量管理方法、电路和装置 技术领域
本发明涉及纳米发电领域,尤其涉及一种摩擦纳米发电机的能量管理方法和管理电路,以及包括该管理电路的管理装置。
背景技术
从2012年开始,基于摩擦静电效应的纳米发电机得以快速发展,为机械能转变为电能来驱动电子器件提供了一种具有应用前景的途径。但是,传统的摩擦电纳米发电机由于内部阻抗高,其很容易造成与能量存储单元的阻抗失配。所以传统的先整流再直接将整流后的电压存入能量存储单元中这样的摩擦纳米发电机能量存储技术能量存储效率极低,实验测得其能量存储效率只有不到1%,大量的能量被无端浪费。
针对上述技术问题,传统技术中尚无良好解决方案。
发明内容
本发明实施方式提供一种摩擦纳米发电机的能量管理方法和管理电路,以及包括该管理电路的管理装置。
根据本发明的一个方面,提供一种摩擦纳米发电机的能量管理方法,该能量管理方法包括:在能量暂存器中暂存摩擦纳米发电机输出的电能;以及将所述能量暂存器暂存的电能传递到能量存储器。
进一步地,在能量暂存器中暂存摩擦纳米发电机输出的电能,具体为:将所述摩擦纳米发电机输出的交流电能转变为直流后在所述能量暂存器中暂存。
进一步地,该能量管理方法包括:使用直流-直流变换器将所述能量暂存器暂存的电能传递到所述能量存储器,其中,所述直流-直流变换器为非隔离直流-直流变换器或隔离直流-直流变换器。
进一步地,所述隔离直流-直流变换器包括:第一开关,通过第一开关与所述能量暂存器并联的第一电感,第二开关,以及通过第二开关与所述能量存储器并联的第二电感;其中,所述第一电感与所述第二电感组成互感。
进一步地,该能量管理方法包括:所述能量暂存器暂存的电能的电压达到第一预设值时向所述能量存储器传递电能。
进一步地,该能量管理方法包括:在所述能量暂存器传递电能到所述能量存储器的过程中,当所述能量暂存器暂存的电能的电压达到第二预设值时,停止向所述能量存储器传递电能。
进一步地,该能量管理方法包括:在所述能量暂存器暂存的电能的电压达到所述第一预设值之前,所述第一开关和所述第二开关均断开;当所述能量暂存器暂存的电能的电压达到所述第一预设值时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及当所述能量暂存器暂存的电能的电压达到所述第二预设值时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
进一步地,当所述电能从所述第二电感全部传递到所述能量存储器后,所述第二开关再次断开。
进一步地,所述第二预设值的取值为小于或等于所述第一预设值。
进一步地,所述第一预设值取值范围为15V-1000V。
进一步地,所述能量暂存器为1pF-1mF电容器。
进一步地,所述能量暂存器为电池,通过控制电路产生方波时钟信号控制所述第一开关和/或所述第二开关的闭合时间,在所述控制电路输出信号为低电平时,所述第一开关和所述第二开关均断开;在所述控制电路输出信号为高电平时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及在所述控制电路输出信号从高电平再次回到低电平时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
进一步地,所述能量暂存器的包括至少一个电池,总电压为10V- 500V、内阻不大于1MΩ、漏电不大于10mA。
进一步地,所述能量暂存器的电压为所述能量存储器电压的3-1000倍。
进一步地,所述第一电感与所述第二电感互感系数大于0.5、电感均大于或等于10nH、以及寄生电阻均小于或等于1MΩ。
进一步地,所述能量存储单元为内阻小于或等于1MΩ且漏电流小于或等于100mA的充电电池或电容器。
根据本发明的另一个方面,提供了一种摩擦纳米发电机的能量管理电路,该能量管理电路包括依次与所述摩擦纳米发电机并联的第一级电路和第二级电路,其中:所述第一级电路包括能量暂存器;以及所述第二级电路包括并联的直流-直流变换器和能量存储器;其中,所述直流-直流变换器被配置成将所述能量暂存器存储的电能传递到所述能量存储器。
进一步地,所述第一级电路还包括整流器,被配置成将所述摩擦纳米发电机输出的电能整流为直流电提供给所述能量暂存器。
进一步地,所述直流-直流变换器为非隔离直流-直流变换器或隔离直流-直流变换器。
进一步地,所述隔离直流-直流变换器包括:第一开关,通过第一开关与所述能量暂存器并联的第一电感,第二开关,以及通过第二开关与所述能量存储器并联的第二电感;其中,所述第一电感与所述第二电感组成互感。
进一步地,所述直流-直流变换器被配置成当所述能量暂存器存储的电能的电压达到第一预设值时,将所述能量暂存器存储的电能传递到所述能量存储器。
进一步地,所述直流-直流变换器被配置成在传递电能的过程中当所述能量暂存器暂存的电能的电压达到第二预设值时,停止向所述能量存储器传递电能。
进一步地,在所述能量暂存器暂存的电能的电压达到所述第一预设值之前,所述第一开关和所述第二开关均断开;当所述能量暂存器暂存 的电能的电压达到所述第一预设值时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及当所述能量暂存器暂存的电能的电压达到所述第二预设值时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
进一步地,当所述电能从所述第二电感全部传递到所述能量存储器后,所述第二开关再次断开。
进一步地,所述第二预设值的取值为小于或等于所述第一预设值。
进一步地,所述第一预设值取值范围为15V-1000V。
进一步地,所述能量暂存器为1pF-1mF电容器。
进一步地,所述能量暂存器为电池,通过控制电路产生方波时钟信号控制所述第一开关和/或所述第二开关的闭合时间,在所述控制电路输出信号为低电平时,所述第一开关和所述第二开关均断开;在所述控制电路输出信号为高电平时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及在所述控制电路输出信号从高电平再次回到低电平时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
进一步地,所述能量暂存器的包括至少一个电池,总电压为10V-500V、内阻不大于1MΩ且漏电不大于10mA。
进一步地,所述能量暂存器的电压为所述能量存储器电压的3-1000倍。
进一步地,所述第一电感与所述第二电感互感系数大于0.5、电感均大于或等于10nH、以及寄生电阻均小于或等于1MΩ。
进一步地,所述能量存储单元为内阻小于或等于1MΩ且漏电流小于或等于100mA的充电电池或电容器。
进一步地,所述第一开关和第二开关为电子开关。
根据本发明的再一个方面,提供了一种摩擦纳米发电机的能量管理装置,该能量管理装置包括上述的能量管理电路。
通过上述技术方案,使能量暂存器周期性充放电实现对能量存储器 充电,实现摩擦纳米发电机与能量存储器的阻抗匹配,大幅度提升能量存储效率,从而能够高效率的将摩擦纳米发电机的发出的交流电能转换成恒压直流电输出。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明实施方式提供的摩擦纳米发电机的能量管理方法流程图;
图2为本发明实施方式提供的摩擦纳米发电机的能量管理电路的框架示意图;
图3为本发明实施方式提供的摩擦纳米发电机的能量管理电路的典型工作状态示意图;
图4A和4B分别为本发明实施方式提供的摩擦纳米发电机的能量管理电路的交流平均功率与负载电阻关系图、测得电压与时间关系图。
图5为本发明实施方式提供的摩擦纳米发电机的能量管理装置组成框图;
图6为本发明实施方式提供的摩擦纳米发电机的能量管理装置组成框图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
图1为本发明实施方式提供的摩擦纳米发电机的能量管理方法流程图。如图1所示,本发明的另一个方面提供了一种摩擦纳米发电机的能量管理方法,该能量管理方法包括:S201,在能量暂存器中暂存摩擦纳米发电机输出的电能;S202,将所述能量暂存器暂存的电能传递到能量存储器。
摩擦纳米发电机输出的电能为交流电时,步骤S201,在能量暂存器中暂存摩擦纳米发电机输出的电能,具体为:将所述摩擦纳米发电机输出的交流电能转变为直流后在所述能量暂存器中暂存。
在实施方式中,该能量管理方法可以包括:所述能量暂存器暂存的电能的电压达到第一预设值时向所述能量存储器传递电能。进一步地,该能量管理方法包括:在所述能量暂存器传递电能到所述能量存储器的过程中,当所述能量暂存器暂存的电能的电压达到第二预设值时,停止向所述能量存储器传递电能。
在实施方式中,该能量管理方法包括:使用直流-直流变换器(例如,非隔离直流-直流变换器或隔离直流-直流变换器)将所述能量暂存器暂存的电能传递到所述能量存储器,其中,所述隔离直流-直流变换器包括:第一开关、通过第一开关与所述能量暂存器并联的第一电感、第二开关,以及通过第二开关与所述能量存储器并联的第二电感;其中,所述第一电感与所述第二电感组成互感。
在实施方式中,该能量管理方法包括:当所述能量暂存器暂存的电能的电压达到所述第一预设值时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及当所述能量暂存器暂存的电能的电压达到所述第二预设值时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。然后,当电能从第二电感全部传递到所述能量存储器后,所述第二开关再次断开。在优选的实施方式中,在所述能量暂存器暂存的电能的电压达到第一预设值之前,所述第一开关和所述第二开关均断开。
本发明实施方式提供的能量管理方法可以分为多个周期,其中每个周期内分为2步管理,第一步由摩擦纳米发电机通过整流电路给能量暂 存器(例如暂存电容Ctemp)充电,第二步:当暂存电容Ctemp的电压达到之前设定的值V1时,将暂存电容内的能量向最终能量存储器C存储中转移,然后暂存电容放电,之后当暂存电容的电压达到V2(V2≤V1)时,进入下一个充电周期,摩擦纳米发电机继续向暂存电容充电,然后暂存电容的能量继续向最终能量存储单元转移。
图2为本发明实施方式提供的摩擦纳米发电机的能量管理电路的框架示意图。如图2所示,本发明的再一个方面,提供了一种摩擦纳米发电机的能量管理电路,能量管理电路分为两级电路,第一级电路包括能量暂存器,第二级电路用来实现从暂存电容向最终能量存储单元的高效能量传递。
第一级电路和第二级电路依次与所述摩擦纳米发电机并联,其中:所述第一级电路包括能量暂存器(例如暂存电容Ctemp);以及所述第二级电路包括并联的直流-直流变换器和能量存储器(例如充电电池或电容C存储);第一级电路还可以包括整流器,被配置为将所述摩擦纳米发电机输出的电能整流为直流点供给所述能量暂存器。
其中,所述直流-直流变换器被配置成将所述能量暂存器存储的电能传递到所述能量存储器,可以为非隔离直流-直流变换器或隔离直流-直流变换器。在实施方式中,当所述能量暂存器存储的电能的电压达到第一预设值时,将所述能量暂存器存储的电能传递到所述能量存储器。在进一步的实施方式中,所述直流-直流变换器被配置成在传递电能的过程中当所述能量暂存器暂存的电能的电压达到第二预设值时,停止向所述能量存储器传递电能。其中,所述直流-直流变换器可以包括:第一开关J1、通过第一开关J1与所述能量暂存器并联的第一电感L1、第二开关J2,以及通过第二开关J2与所述能量存储器并联的第二电感L2;其中,所述第一电感L1与所述第二电感L2组成互感。
在实施方式中,在能量暂存器暂存的电能的电压达到第一预设值之前,所述第一开关J1和所述第二开关J2均断开,从而实现对能量存储器的快速充电。当所述能量暂存器暂存的电能的电压达到所述第一预设值时,所述第一开关J1闭合,使得电能从所述能量暂存器传递到所述第一 电感L1;以及当所述能量暂存器暂存的电能的电压达到所述第二预设值时,所述第一开关J1断开并且所述第二开关J2闭合,使得电能从所述第一电感L1经由所述第二电感L2传递到所述能量存储器。
在实施方式中,如图2所示,摩擦纳米发电机通过由D1-D4这4个二极管组成的全桥整流器向暂存电容Ctemp充电(例如,暂存电容可以选择500nF的电容),第二级电路的直流-直流变换器可以选用两个电子开关J1与J2和一个互感(例如,主级为电感L1,从级为电感L2)的组合,此外还有控制电路用于控制两个电子开关J1与J2
暂存电容的选值范围可以是1pF-1mF。最终存储单元的选择包括可充电电池(包括锂离子电池、镍氢充电电池等),超级电容器以及普通电容器(包括陶瓷电容,电解电容等),其内阻不大于1MΩ,漏电不大于100mA。
第一级电路里的整流器采用全波二极管整流桥或者半波整流桥。
第二级电路的直流-直流(DC/DC)变换器可以包括非隔离直流-直流(DC/DC)变换器(包括降压斩波器、升压斩波器、降压或升压斩波器等)以及隔离直流-直流(DC/DC)变换器(包括正激变换器、反激变换器、半桥变换器、全桥变换器、推挽变换器等)。
直流-直流(DC/DC)变换器的电子开关组件可以包括三极管(包括各种场效应管,双极型三极管等),二极管等开关元件。
直流-直流(DC/DC)变换器中选用的互感器互感系数>0.5,主级从级电感均不小于10nH,主级从级寄生电阻均不大于1MΩ。
整个电路的工作方式如下所示(以一个充电周期为例)。首先,电子开关J1与J2均断开,摩擦纳米发电机通过桥式整流电路给暂存电容充电。第二步,当暂存电容的电压达到之前的预设值V1时,通过控制电路的控制,开关J1闭合,暂存电容的电压开始下降。第三步,当暂存电容的电压下降到低于之前的预设值V2(V2小于V1)时,通过控制电路(或控制器)的控制,开关J1断开,J2闭合。最终,当互感L2上的能量转移到最终能量存储器里后,通过控制电路的控制,开关J2断开,一个充电周期结束。
能量暂存器也可以为电池,工作过程为,通过控制电路产生方波时钟信号控制第一开关J1和/或第二开关J2的打开时间,在控制电路输出信号为低电平时,所述第一开关J1和所述第二开关J2均断开;在所述控制电路输出信号为高电平时,所述第一开关J1闭合,使得电能从所述能量暂存器传递到所述第一电感;以及,在所述控制电路输出信号为再次回到低电平时,所述第一开关J1断开并且所述第二开关闭合J2,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
V1的选值范围是15V-1000V,V2的选值范围为0-0.999×V1
能量暂存器的包括至少一个电池,多个电池可以通过串联并联形成电池组,总电压为10V-500V、内阻不大于1MΩ、漏电不大于10mA。能量暂存器的电压可以为能量存储器电压的3-1000倍。
整个控制电路的工作状态如图3所示。在图3中,使用了一个15层的叠层摩擦纳米发电机作为待收集的电源。通过不断的按压摩擦纳米发电机,摩擦纳米发电机产生交流信号,给整个系统输入。此时暂存电容的电压Vtemp开始在230V和0V之间振荡。每一次当Vtemp下降的时候,暂存电容的能量就成功通过直流-直流变换器向最终存储电容转移能量,这样存储电容的电压Vstore(V存储)就会上升。通过计算,从暂存电容Ctemp里转出的能量是9.160mJ而这部分能量最终存入存储电容Cstore(C存储)的有8.243mJ。因此可以得出设计的直流-直流变换器的能量转化效率是90%。
整个能量管理电路最重要的参数是它的总体能量转化效率,总体能量转化效率的定义为摩擦纳米发电机系统能够输出的直流功率除以在电阻上能够输出的最大平均交流功率。通过对该能量管理电路的总体能量转化效率进行了测试。测试结果如图4A和4B所示,首先通过改变外加电阻,测得在4.26MΩ的匹配电阻条件下,摩擦纳米发电机可以输出的最大平均交流功率为0.3384mW,在同样的条件下,通过能量管理电路,可以输出的最大直流功率为0.202mW。因此,该能量管理电路的总体能量转化效率ηtotal可以达到60%,大大高于单步充电的总体能量转化效率(不到1%)。
图5为本发明实施方式提供的摩擦纳米发电机的能量管理装置组成框图。如图5所示,本发明还提供一种摩擦纳米发电机的能量管理装置,该能量管理装置可以包括:能量暂存器102(对应管理电路的能量暂存器),被配置成暂存摩擦纳米发电机输出的电能;传递单元103(对应管理电路中的直流-直流变换器),被配置成将所述能量暂存器暂存的电能传递到能量存储器;能量存储器104(对应管理电路的能量存储器),被配置成存储从所述能量暂存器传递的电能。通过上述技术方案,使能量暂存器充放电实现对能量存储器充电,实现摩擦纳米发电机与能量存储器的阻抗匹配,大幅度提升能量存储效率,从而能够高效率的将摩擦纳米发电机的发出的交流电能转换成恒压直流电输出。
在实施方式中摩擦纳米发电机可以包括整流器,被配置成将从所述摩擦纳米发电机接收的交变电能转换为直流输出。在不同的实施方式中,如果摩擦纳米发电机为交流输出,则本发明提供的装置可以包括整流器101(对应管理电路的整流器)(如图6所示)。
在实施方式中,所述传递单元103还被配置成所述能量暂存器102暂存的电能的电压达到第一预设值(V1)时向所述能量存储器104传递电能。所述能量暂存器102还可以被配置成在传递电能到所述能量存储器104的过程中当所述能量暂存器暂存的电能的电压达到第二预设值(V2)时,停止向所述能量存储器104传递电能。这样的设置可以实现能量暂存器周期性充放电,从而实现对能量存储器104进行多次充电。为此,V1的值应大于或等于V2
在能量暂存器102中存储的电能为直流电,因此,为了将能量暂存器102中的电能传递或转移到能量存储器104,该传递单元103可以包括直流-直流变换器。在实施方式中,直流-直流变换器可以包括非隔离直流-直流变换器(例如,降压斩波器、升压斩波器、降压或升压斩波器等)以及隔离直流-直流变换器(例如,正激变换器、反激变换器、半桥变换器、全桥变换器、推挽变换器等)。在一个优选的实施方式中,本发明采用的直流-直流变换器可以包括:第一开关J1、通过第一开关J1与所述能量暂存器102并联的第一电感L1、第二开关J2,以及通过第二 开关J2与所述能量存储器104并联的第二电感L2;其中,所述第一电感L1与所述第二电感L2组成互感。
在实施方式中,当所述能量暂存器102暂存的电能的电压达到所述第一预设值V1时,所述第一开关J1闭合,使得电能从所述能量暂存器102传递到所述第一电感L1;以及当所述能量暂存器102暂存的电能的电压达到所述第二预设值时,所述第一开关J1断开并且所述第二开关J2闭合,使得电能从所述第一电感L1经由所述第二电感L2传递到所述能量存储器104。在实施方式中,在电能从L2传递到能量存储器104之后,所述能量暂存器102暂存的电能的电压达到第一预设值之前,所述第一开关J1和所述第二开关J2均应断开,使得能量暂存器能够迅速积累从整流器101获得的电能。
为了实现较好的能量传递效果,第一电感L1与第二电感L2互感系数可以大于0.5、电感可以均大于或等于10nH、以及寄生电阻可以均小于或等于1MΩ。在实施方式中,所述第一预设值取值范围可以为例如15V-1000V以覆盖常用电压范围,同时,为了周期性实现整个能量传递过程,第二预设值的取值应小于第一预设值,例如第二预设值V2的范围可以为0V<V2≤V1
在实施方式中,传递单元103还可以包括控制器(或处理器)(图中未示出),该控制器可以与能量管理装置中的各个组件相耦合,可以被配置成监测能量暂存器102和/或能量存储器104的电压,以及根据本发明的上述原理控制第一开关J1和第二开关J2的通断状态。在实施方式中,为了便于对开关的状态进行控制,第一开关J1和第二开关J2可以为电子开关,例如三极管(包括双极型三极管和场效应管等)、二极管等等。在实施方式中,能量暂存器102可以为1pF-1mF电容器,例如电解电容,陶瓷电容,超级电容器等。能量存储单元104可以为内阻小于或等于1MΩ且漏电流小于或等于100mA的充电电池(例如锂离子电池、镍氢充电电池等)或电容器(例如超级电容器、普通电容器等)。整流器101(或整流电路)可以为二极管整流桥或半波整流桥。
在其他实施例中,能量暂存器也可以为电池,通过控制电路产生方 波时钟信号控制第一开关J1和/或第二开关J2的打开时间,在控制电路输出信号为低电平时,所述第一开关J1和所述第二开关J2均断开;在所述控制电路输出信号为高电平时,所述第一开关J1闭合,使得电能从所述能量暂存器传递到所述第一电感;以及,在所述控制电路输出信号为再次回到低电平时,所述第一开关J1断开并且所述第二开关闭合J2,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
与能量暂存器采用电容的情况相同,当能量从第二电感完全传递到能量存储器后,第二开关J2再次断开。
电池的电压为M1,能量存储器的电压为M2,第一开关J1与第二开关J2的开关占空比是一个重要参数,可以根据电压比值和直流-直流变换器类型选择合适占空比。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。例如,在不违背发明原理的情况下,本发明实施方式的电路里可以有其他无关的不影响电路性能的元器件,例如电阻。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (34)

  1. 一种摩擦纳米发电机的能量管理方法,其特征在于,该能量管理方法包括:
    在能量暂存器中暂存摩擦纳米发电机输出的电能;以及
    将所述能量暂存器暂存的电能传递到能量存储器。
  2. 根据权利要求1所述的能量管理方法,其特征在于,在能量暂存器中暂存摩擦纳米发电机输出的电能,具体为:
    将所述摩擦纳米发电机输出的交流电能转变为直流后在所述能量暂存器中暂存。
  3. 根据权利要求1或2所述的能量管理方法,其特征在于,将所述能量暂存器暂存的电能传递到能量存储器,具体为:使用直流-直流变换器将所述能量暂存器暂存的电能传递到所述能量存储器,其中,所述直流-直流变换器为非隔离直流-直流变换器或隔离直流-直流变换器。
  4. 根据权利要求3所述的能量管理方法,其特征在于,所述隔离直流-直流变换器包括:第一开关、通过第一开关与所述能量暂存器并联的第一电感、第二开关、以及通过第二开关与所述能量存储器并联的第二电感;其中,所述第一电感与所述第二电感组成互感。
  5. 根据权利要求1-4中任一项所述的能量管理方法,其特征在于,该能量管理方法包括:所述能量暂存器暂存的电能的电压达到第一预设值时向所述能量存储器传递电能。
  6. 根据权利要求1-5中任一项所述的能量管理方法,其特征在于,该能量管理方法包括:在所述能量暂存器传递电能到所述能量存储器的过程中,当所述能量暂存器暂存的电能的电压达到第二预设值时,停止 向所述能量存储器传递电能。
  7. 根据权利要求6所述的能量管理方法,其特征在于,该能量管理方法包括:
    在所述能量暂存器暂存的电能的电压达到所述第一预设值之前,所述第一开关和所述第二开关均断开;
    当所述能量暂存器暂存的电能的电压达到所述第一预设值时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及
    当所述能量暂存器暂存的电能的电压达到所述第二预设值时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
  8. 根据权利要求7所述的能量管理方法,其特征在于,当所述电能从所述第二电感全部传递到所述能量存储器后,所述第二开关再次断开。
  9. 根据权利要求6所述的能量管理方法,其特征在于,所述第二预设值的取值小于或等于所述第一预设值。
  10. 根据权利要求9所述的能量管理方法,其特征在于,所述第一预设值取值范围为15V-1000V。
  11. 根据权利要求1-10中任一项所述的能量管理方法,其特征在于,所述能量暂存器为1pF-1mF电容器。
  12. 根据权利要求4所述的能量管理方法,其特征在于,所述能量暂存器为电池,通过控制电路产生方波时钟信号控制所述第一开关和/或所述第二开关的闭合时间,在所述控制电路输出信号为低电平时,所述第一开关和所述第二开关均断开;
    在所述控制电路输出信号为高电平时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及
    在所述控制电路输出信号从高电平再次回到低电平时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
  13. 根据权利要求12所述的能量管理方法,其特征在于,所述能量暂存器的包括至少一个电池,总电压为10V-500V、内阻不大于1MΩ且漏电不大于10mA。
  14. 根据权利要求12所述的能量管理方法,其特征在于,所述能量暂存器的电压为所述能量存储器电压的3-1000倍。
  15. 根据权利要求4所述的能量管理方法,其特征在于,所述第一电感与所述第二电感互感系数大于0.5、电感均大于或等于10nH、以及寄生电阻均小于或等于1MΩ。
  16. 根据权利要求1-15中任一项所述的能量管理方法,其特征在于,所述能量存储单元为内阻小于或等于1MΩ且漏电流小于或等于100mA的充电电池或电容器。
  17. 一种摩擦纳米发电机的能量管理电路,其特征在于,该能量管理电路包括依次与所述摩擦纳米发电机并联的第一级电路和第二级电路,其中:
    所述第一级电路包括能量暂存器;以及
    所述第二级电路包括并联的直流-直流变换器和能量存储器;
    其中,所述直流-直流变换器被配置成将所述能量暂存器存储的电能传递到所述能量存储器。
  18. 根据权利要求17所述的能量管理电路,其特征在于,所述第一级电路还包括整流器,被配置成将所述摩擦纳米发电机输出的电能整流为直流电提供给所述能量暂存器。
  19. 根据权利要求17或18所述的能量管理电路,其特征在于,所述直流-直流变换器为非隔离直流-直流变换器或隔离直流-直流变换器。
  20. 根据权利要求19所述的能量管理电路,其特征在于,所述隔离直流-直流变换器包括:第一开关、通过第一开关与所述能量暂存器并联的第一电感、第二开关以及通过第二开关与所述能量存储器并联的第二电感;其中,所述第一电感与所述第二电感组成互感。
  21. 根据权利要求17-20中任一项所述的能量管理电路,其特征在于,所述直流-直流变换器被配置成当所述能量暂存器存储的电能的电压达到第一预设值时,将所述能量暂存器存储的电能传递到所述能量存储器。
  22. 根据权利要求17-21中任一项所述的能量管理电路,其特征在于,所述直流-直流变换器被配置成在传递电能的过程中当所述能量暂存器暂存的电能的电压达到第二预设值时,停止向所述能量存储器传递电能。
  23. 根据权利要求22所述的能量管理电路,其特征在于,在所述能量暂存器暂存的电能的电压达到所述第一预设值之前,所述第一开关和所述第二开关均断开;
    当所述能量暂存器暂存的电能的电压达到所述第一预设值时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及
    当所述能量暂存器暂存的电能的电压达到所述第二预设值时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所 述第二电感传递到所述能量存储器。
  24. 根据权利要求23所述的能量管理电路,其特征在于,当所述电能从所述第二电感全部传递到所述能量存储器后,所述第二开关再次断开。
  25. 根据权利要求22-24任一项所述的能量管理电路,其特征在于,所述第二预设值的取值为小于或等于所述第一预设值。
  26. 根据权利要求21所述的能量管理电路,其特征在于,所述第一预设值取值范围为15V-1000V。
  27. 根据权利要求18-26中任一项所述的能量管理电路,其特征在于,所述能量暂存器为1pF-1mF电容器。
  28. 根据权利要求20所述的能量管理电路,其特征在于,所述能量暂存器为电池,通过控制电路产生方波时钟信号控制所述第一开关和/或所述第二开关的闭合时间,在所述控制电路输出信号为低电平时,所述第一开关和所述第二开关均断开;
    在所述控制电路输出信号为高电平时,所述第一开关闭合,使得电能从所述能量暂存器传递到所述第一电感;以及
    在所述控制电路输出信号从高电平再次回到低电平时,所述第一开关断开并且所述第二开关闭合,使得电能从所述第一电感经由所述第二电感传递到所述能量存储器。
  29. 根据权利要求28所述的能量管理电路,其特征在于,所述能量暂存器的包括至少一个电池,总电压为10V-500V、内阻不大于1MΩ、漏电不大于10mA。
  30. 根据权利要求28所述的能量管理电路,其特征在于,所述能量暂存器的电压为所述能量存储器电压的3-1000倍。
  31. 根据权利要求17-30中任一项所述的能量管理电路,其特征在于,所述第一电感与所述第二电感互感系数大于0.5、电感均大于或等于10nH、以及寄生电阻均小于或等于1MΩ。
  32. 根据权利要求17-31中任一项所述的能量管理电路,其特征在于,所述能量存储单元为内阻小于或等于1MΩ且漏电流小于或等于100mA的充电电池或电容器。
  33. 根据权利要求21中任一项所述的能量管理电路,其特征在于,所述第一开关和第二开关均为电子开关。
  34. 一种摩擦纳米发电机的能量管理装置,其特征在于,该能量管理装置包括权利要求17-33任一项所述的能量管理电路。
PCT/CN2016/102452 2015-10-19 2016-10-18 摩擦纳米发电机的能量管理方法、电路和装置 WO2017067446A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018521021A JP6584661B2 (ja) 2015-10-19 2016-10-18 摩擦式ナノ発電機のエネルギー管理の方法、回路および装置
KR1020187013801A KR102113936B1 (ko) 2015-10-19 2016-10-18 마찰식 나노 발전기의 에너지 관리 방법, 회로 및 장치
EP16856877.2A EP3367537B1 (en) 2015-10-19 2016-10-18 Energy management method and circuit for friction nano power generator, and device
US15/769,605 US10778120B2 (en) 2015-10-19 2016-10-18 Method, circuit and apparatus for energy management in triboelectric nanogenerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510679832.5A CN106602687A (zh) 2015-10-19 2015-10-19 摩擦纳米发电机的能量管理方法、电路和装置
CN201510679832.5 2015-10-19

Publications (1)

Publication Number Publication Date
WO2017067446A1 true WO2017067446A1 (zh) 2017-04-27

Family

ID=58554852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102452 WO2017067446A1 (zh) 2015-10-19 2016-10-18 摩擦纳米发电机的能量管理方法、电路和装置

Country Status (6)

Country Link
US (1) US10778120B2 (zh)
EP (1) EP3367537B1 (zh)
JP (1) JP6584661B2 (zh)
KR (1) KR102113936B1 (zh)
CN (1) CN106602687A (zh)
WO (1) WO2017067446A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520220A (ja) * 2017-05-12 2020-07-02 北京納米能源與系統研究所 摩擦式ナノ発電機の電源管理モジュール、管理方法、エネルギーシステム及び摩擦式電子学エネルギー抽出器
EP3806304A4 (en) * 2018-05-31 2022-03-16 The University of Tokyo POWER SUPPLY CIRCUIT AND VIBRATION ENERGY GENERATING DEVICE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873276B2 (en) * 2016-11-18 2020-12-22 University Of Hawaii Apparatus and method for harvesting ambient energy by circuit reconfiguration
WO2018102421A1 (en) 2016-11-29 2018-06-07 University Of Hawaii Ambient energy harvesting device with charge-carrying movable electrode
CN108667338B (zh) * 2017-04-01 2021-06-15 北京纳米能源与系统研究所 一种摩擦纳米发电机的能量管理电路和能量管理方法
DK3729633T3 (da) * 2017-12-19 2022-02-21 Single Buoy Moorings Omskifterunderstøttet diode-klemt energiindsamlingssystem til transducere med variabel kapacitet
CN108832813A (zh) * 2018-08-24 2018-11-16 深圳市无电通科技有限公司 能量延时装置、能量震荡模块、能量延时系统及其延时方法
US11090501B2 (en) * 2018-11-12 2021-08-17 Korea Electronics Technology Institute Heart pacemaker and energy harvesting method thereof
CN109768730A (zh) * 2018-12-24 2019-05-17 东莞市纽格力信息技术有限公司 一种充电模块、充电设备和电子产品
KR102301989B1 (ko) * 2020-03-20 2021-09-16 국방과학연구소 임피던스 매칭 장치, 방법, 컴퓨터 판독 가능한 기록 매체, 컴퓨터 프로그램 및 이를 포함하는 에너지 하베스팅 시스템
CN112751403B (zh) * 2021-01-06 2023-02-03 电子科技大学 复合电源电路
CN113375716B (zh) * 2021-06-01 2023-06-20 国网重庆市电力公司电力科学研究院 基于多传感器数据融合的自供电输电线路在线监测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201332281Y (zh) * 2008-12-19 2009-10-21 北京理工大学 光伏微能源系统中对锂离子电池合理充电的装置
US20110050181A1 (en) * 2009-08-27 2011-03-03 Asteism, Inc. Electrostatic power harvesting
CN104393658A (zh) * 2014-11-17 2015-03-04 北京纳米能源与系统研究所 一种能量管理电路
CN204349598U (zh) * 2014-12-30 2015-05-20 北京联云格科技有限公司 电磁波能量回收和转换装置及系统
CN104811085A (zh) * 2014-08-01 2015-07-29 纳米新能源(唐山)有限责任公司 基于摩擦发电机的能量收集转换装置
CN104901385A (zh) * 2015-06-19 2015-09-09 北京纳米能源与系统研究所 发电机能量管理装置及发电系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2905582B2 (ja) * 1990-09-14 1999-06-14 旭化成工業株式会社 充電式電池装置
RU2150170C1 (ru) * 1997-10-30 2000-05-27 Нунупаров Мартын Сергеевич Способ питания электронной системы и устройство для его осуществления
JP2000224849A (ja) * 1999-01-25 2000-08-11 Samsung Electro Mech Co Ltd ゼロ電圧スイッチングのための同期整流器フライバック回路
DE10134680A1 (de) * 2001-07-20 2003-02-06 Endress & Hauser Gmbh & Co Kg Schaltungsanrdnung für einen kapazitiven Sensor
KR100637224B1 (ko) * 2005-04-21 2006-10-20 삼성에스디아이 주식회사 연료 전지를 이용한 전력 공급 장치, 전력 공급 장치의 제어 방법 및 컴퓨터로 읽을 수 있는 기록매체
JP4057038B2 (ja) * 2006-06-05 2008-03-05 メレアグロス株式会社 電力伝送方法、電力伝送装置のコイルの選別方法および使用方法
JP4710749B2 (ja) * 2006-07-28 2011-06-29 富士電機システムズ株式会社 Dc−dcコンバータの制御回路及び方法
JP2011151944A (ja) * 2010-01-21 2011-08-04 Panasonic Corp 発電装置
CN101769995B (zh) * 2010-01-26 2012-07-25 南京工业大学 智能化电池循环充放电测试装置
WO2012039497A1 (ja) * 2010-09-24 2012-03-29 新神戸電機株式会社 蓄電デバイス及び蓄電デバイスの製造方法
EP2766982A4 (en) 2011-10-14 2015-07-15 Auckland Uniservices Ltd PASSIVELY SWITCHED CONVERTER AND CIRCUITRY COMPRISING SAME
WO2013132441A2 (en) * 2012-03-07 2013-09-12 Director General, Defence Research & Development Organisation Low load, low frequency piezo-electric power generator
DE102012205109B4 (de) * 2012-03-29 2022-11-10 Robert Bosch Gmbh Verfahren zum Betreiben einer Energiespeichereinrichtung, Energiespeichereinrichtung zum Erzeugen einer Versorgungsspannung für eine elektrische Maschine sowie Sytem mit einer Energiespeichereinrichtung
JP2014169054A (ja) 2013-03-05 2014-09-18 Toyota Auto Body Co Ltd 車載電機装置
JP5812032B2 (ja) * 2013-03-22 2015-11-11 トヨタ自動車株式会社 蓄電システム及び蓄電装置の満充電容量推定方法
CN104767376B (zh) 2013-12-26 2019-03-19 北京纳米能源与系统研究所 纳米发电机的变压变荷电路及方法
JP6445166B2 (ja) * 2014-12-15 2018-12-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 摩擦発電機システム及び方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201332281Y (zh) * 2008-12-19 2009-10-21 北京理工大学 光伏微能源系统中对锂离子电池合理充电的装置
US20110050181A1 (en) * 2009-08-27 2011-03-03 Asteism, Inc. Electrostatic power harvesting
CN104811085A (zh) * 2014-08-01 2015-07-29 纳米新能源(唐山)有限责任公司 基于摩擦发电机的能量收集转换装置
CN104393658A (zh) * 2014-11-17 2015-03-04 北京纳米能源与系统研究所 一种能量管理电路
CN204349598U (zh) * 2014-12-30 2015-05-20 北京联云格科技有限公司 电磁波能量回收和转换装置及系统
CN104901385A (zh) * 2015-06-19 2015-09-09 北京纳米能源与系统研究所 发电机能量管理装置及发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367537A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520220A (ja) * 2017-05-12 2020-07-02 北京納米能源與系統研究所 摩擦式ナノ発電機の電源管理モジュール、管理方法、エネルギーシステム及び摩擦式電子学エネルギー抽出器
EP3624322A4 (en) * 2017-05-12 2020-12-23 Beijing Institute of Nanoenergy and Nanosystems POWER SUPPLY MANAGEMENT MODULE, ADMINISTRATIVE PROCEDURES AND ENERGY SYSTEM FOR A TRIBOELECTRIC NANOGENERATOR
US11394318B2 (en) 2017-05-12 2022-07-19 Beijing Institute Of Nanoenergy And Nanosystems Power management circuit and power management method for triboelectric nanogenerator, and energy system
EP3806304A4 (en) * 2018-05-31 2022-03-16 The University of Tokyo POWER SUPPLY CIRCUIT AND VIBRATION ENERGY GENERATING DEVICE
US11848614B2 (en) 2018-05-31 2023-12-19 The University Of Tokyo Power supply circuit and vibration-driven energy harvester

Also Published As

Publication number Publication date
US10778120B2 (en) 2020-09-15
JP2018533346A (ja) 2018-11-08
CN106602687A (zh) 2017-04-26
KR20180069042A (ko) 2018-06-22
EP3367537A4 (en) 2019-06-26
KR102113936B1 (ko) 2020-05-21
EP3367537A1 (en) 2018-08-29
EP3367537B1 (en) 2021-11-24
US20180316280A1 (en) 2018-11-01
JP6584661B2 (ja) 2019-10-02

Similar Documents

Publication Publication Date Title
WO2017067446A1 (zh) 摩擦纳米发电机的能量管理方法、电路和装置
US8941356B2 (en) Battery heating circuits and methods with resonance components in series using energy transfer
Hsieh et al. A novel high-efficiency compact-size low-cost balancing method for series-connected battery applications
Phung et al. Optimized structure for next-to-next balancing of series-connected lithium-ion cells
TWI221695B (en) Uninterruptible power system
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
Chen et al. An any-cell (s)-to-cell (s) equalization method with a single magnetic component for Lithium-ion battery pack
WO2022002122A1 (zh) 电池均流控制方法及电池均流控制系统
CN105939108A (zh) 一种开关电感型准开关升压dc-dc变换器
TW201501447A (zh) 電動車輛電池組之主動電量平衡電路結構
TW201914184A (zh) 具隔離式高升壓轉換器及串聯電池平衡模組的電力裝置
Tulon et al. Designing a Bidirectional Isolated DC/DC Converter for EV with Power Back Operation for Efficient Battery Charging During Neutral Run
Haji-Esmaeili et al. Quasi-Y source based buck-boost DC-DC converter
Liu et al. New type equalization circuit and management system of Li-ion battery
Li et al. High step-up dc-dc converter based on multi-cell coupled inductor diode-capacitor network
Cao et al. A high efficiency DC-DC converter based on bidirectional half-bridge
Zeng et al. An active energy balancing system for lithium-ion battery pack
TWI524643B (zh) 高升壓型轉換器
CN109120032B (zh) 一种储能元件的均压电路
Miwa et al. Low cost universal battery charger for wide range input voltage and wide range output voltage in portable applications
Hua et al. Study of a charge/discharge equalizer
CN116885962A (zh) 一种用于电力变压器在线监测设备的能量管理电路
Hu et al. A battery cell equalizer with continuous charging current for energy storage system
TW201230607A (en) Battery heating circuit
TWM434311U (en) Battery heating circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018521021

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 15769605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013801

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016856877

Country of ref document: EP