TWM434311U - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TWM434311U
TWM434311U TW100222191U TW100222191U TWM434311U TW M434311 U TWM434311 U TW M434311U TW 100222191 U TW100222191 U TW 100222191U TW 100222191 U TW100222191 U TW 100222191U TW M434311 U TWM434311 U TW M434311U
Authority
TW
Taiwan
Prior art keywords
battery
charge
switching device
circuit
charging
Prior art date
Application number
TW100222191U
Other languages
Chinese (zh)
Inventor
wen-hui Xu
Yao-Chuan Han
Wei Feng
Qin-Yao Yang
Wen-Jin Xia
shi-bin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010106046778A external-priority patent/CN102074758B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TWM434311U publication Critical patent/TWM434311U/en

Links

Classifications

    • Y02E60/12

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The present utility provides a battery heating circuit. The battery comprises a first battery and a second battery, and the heating circuit comprises a first switchgear, a second switchgear, a first current storage element, a second current storage element, a switch control module and a charge storage element. The first battery, the first current storage element, the charge storage element and the first switchgear are connected in series to form a first charging-discharging circuit. The second battery, the current storage element, the charge storage element and the second switchgear are connected in series to form a second charging-discharging circuit. When charging or discharging the charge storage element, a charging-discharging direction of the second charging-discharging circuit is contrary to that of the first charging-discharging circuit. The switch control module is used for controlling the first switchgear and the second switchgear to switch on alternately, so as to control energy to flow among the first battery, the charge storage element and the second battery. The heating circuit has advantage of high heating efficiency.

Description

M434311 五、新型說明: 【新型所屬之技術領域】 [0001] [0002] [0003] 本創作屬於電子設備技術領域,尤其涉及一種電池的加 熱電路》 【先前技術】 考慮到汽車需要在複雜的路況和環境條件下行驶,或者 有些電子設備需要在較差的環境條件中使用的情況,所 以,作為電動車或電子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輸出功率性能。 一般而言,如果在低溫條件下對電池充電的話將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降,最終導致電池壽命的降低。 【新型内容】 本創作的目的是針對電池在低溫條件下會導致電池的阻 抗增大,極化增強,由此導致電池的容量下降的問題, 為了保持電池在低溫條件下的容量,提高電池的充放電 性能,本創作提供一種電池的加熱電路。 一種電池的加熱電路,所述電池包括第一電池和第二電 池’其中,所述加熱電路包括第一開關裝置、第二開關 裝置、第一阻尼元件R1、第二阻尼元件R2、第—電流記 憶元件L1、第二電流記憶元件L2、開關控制模組以及電 % SC*憶元件,其中,所述第一電池、第一阻尼元件Μ、 1〇〇222丨9严編號Α0101 第4頁/共19頁 1013105257-0 M434311 第一電流記憶元件Ll、電荷記憶元件以及第一開關裝置 相串聯以構成第一充放電電路;所述第二電池、第二阻 尼元件R2、第二電流記憶元件L2、電荷記憶元件以及第 二開關裝置相串聯以構成第二充放電電路,在對所述電 荷記憶元件充放電時,所述第二充放電電路的充放電方 向與所述第一充放電電路的充放電方向相反;所述開關 控制模組分別與所述第一開關裝置和所述第二開關裝置 電連接,用於控制所述第一開關裝置和所述第二開關裝 置交替導通,以控制電能在所述第一電池、電荷記憶元 Φ 件以及所述第二電池之間的流動。 在本創作提供的電池的加熱電路中,可通過開關控制模 組控制所述第一開關裝置和第二開關裝置交替導通,從 而實現電能在第一電池、電荷記憶元件以及第二電池之 間的交替往復流動,從而實現第一阻尼元件R1和第二阻 尼元件R2發熱,以對第一電池和第二電池進行加熱。由 於以電荷記憶元件而言,第二充放電電路的充放電方向 與所述第一充放電電路的充放電方向相反,由第一電池 ® 所充入電荷記憶元件的能量可順利轉移至第二電池,加 熱效率高。 另外,在本創作提供的加熱電路中,電荷記憶元件與電 池串聯,當給電池加熱時,由於串聯的電荷記憶元件的 存在,能夠避免開關裝置失效短路引起的安全性問題, 能夠有效地保護電池。 本創作的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 【實施方式】 1013105257-0 1QQ22219产單編號A0101 第5頁/共19頁 M434311 [0004] 以下結合附圖對本創作的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本創作,並不用於限制本創作。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根據元器件自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide Serai conductor Field Effect Transistor, MOSFET)或帶有反並讀流二極體的IGBT (Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等 ;當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元器件自身的特性實現通 斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 ;當下文中提及時,術語“電荷記憶元件”指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向,術語“反向”指能量 1()。22219产單编號A0101 第6頁/共19頁 1013105257-0 M434311 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、鹼性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如可以為電阻等;當下文中提及時,術語“主回路 ”指的是電池與阻尼元件、開關裝置以及儲能電路串聯 組成的回路。 這裏還需要特別說明的是,考慮到不同類型的電池的不 • 同特性,在本創作中,“電池”可以指不包含内部寄生 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 理想電池時,第一阻尼元件R1和第二阻尼元件R2分別指 的是第一電池和第二電池外部的阻尼元件,第一電流記 ® 憶元件L1和第二電流記憶元件L2分別指的是第一電池和 第二電池外接的電流記憶元件;當“電池”為包含有内 部寄生電阻和寄生電感的電池包時,第一阻尼元件R1和 第二阻尼元件R2既可以分別指第一電池和第二電池外部 的阻尼元件,也可以分別指第一電池包和第二電池包内 部的寄生電阻,同樣地,第一電流記憶元件L1和第二電 流記憶元件L 2既可以分別指第一電池和第二電池外部的 電流記憶元件,也可以分別指第一電池包和第二電池包 内部的寄生電感。 10022219^^^ A〇101 第7頁/共19頁 1013105257-0 M434311 在本創作的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 第1圖為本創作第一實施方式的加熱電路的電路圖。如第 1圖所示,本創作提供了一種電池的加熱電路,其中,電 池包括第一電池E1和第二電池E2。加熱電路包括第一開 關裝置10、第二開關裝置20、第一阻尼元件R1、第二阻 尼元件R 2、第一電流記憶元件L1、第二電流記憶元件L 2 、開關控制模組100以及第一電荷記憶元件C1。其中,第 一電池E1、第一阻尼元件R1、第一電流記憶元件L1、第 一電荷記憶元件C1以及第一開關裝置10相串聯,構成第 一充放電電路;所述第二電池E2、第二阻尼元件R2、第 二電流記憶元件L2、第一電荷記憶元件C1以及第二開關 裝置20相串聯,構成第二充放電電路《在對第一電荷記 憶元件C1充放電時,該第二充放電電路的充放電方向與 第一充放電電路的充放電方向相反。開關控制模組100分 別與第一開關裝置10和第二開關裝置20電連接,用於控 制第一開關裝置10和第二開關裝置20交替導通,從而控 制電能在第一電池E1、第一電荷記憶元件C1以及第二電 池E2之間的流動。 其中,開關控制模組100可以控制第一開關裝置10和第二 100222191^^^^ A〇101 第8頁/共19頁 1013105257-0 M434311 開關裝置20進行開關狀態切換,例如第—開關裝置1〇由 導通狀態切換為關斷狀態,而第二開關裝置2〇由關斷狀 態切換為導通狀態,從而使得由一個電池存儲於第一電 荷記憶元件C1内的電能流入另一個電池。該電能的流動 會伴隨著的電流的產生,通過不斷使電流流經第一阻尼 元件R1和第二阻尼元件R2,以使第一阻尼元件R1和第二 阻尼元件R2可以產生熱量,從而對第一電池£1和第二電 池E2進行加熱。 第2圖為本創作第一實施方式的加熱電路的波形時序圖。 以下結合第2圖摇述本創作提供的加熱電路的具體工作過 程。首先,開關控制模組1 〇 〇控制第一開關裝置丨〇導通、 第一開關裝置2 0斷開,第一電池e 1、第一阻尼元件r 1、 第一電流s己憶元件L1、第一電荷記憶元件c 1以及第一開 關裝置10構成一個充放電電路,該充放電電路進行充放 電(如第2圖中的時間段u所示)。在該充放電電路的一 個充放電週期結束之後(此時第一電荷記憶元件C1的電 流IC1經負半週期之後為零,電荷記憶元件的電壓U已經 G1 歷正半週期峰值),開關控制模組1〇〇控制第一開關裝置 10斷開、第二開關裝置2〇導通,第二電池E2、第一阻尼 元件R1、第二電流記憶元件L2、第一電荷記憶元件C1以 及第二開關裝置20構成一個充放電電路,該充放電電路 進行充放電(如第2圖中的時間段t2所示)。在該充放電 電路-個充放電週期結束之後(此時,第—電荷記憶元 件C1的電流IC1經正半週期之後為零,整個加熱電路完成 —個完整工作週期)’開關控制模組1GG再次控制第-開 關裝置10導通、第二開關裝置2G斷開,如此循環往復, 1〇〇22219产單编號 A0101 1013105257-0 第9頁/共19頁 M434311 使得電流不斷流過第一阻尼元件R1和第二阻尼元#R2 , 以使第一 1¾•尼元件R1和第二阻尼元件R2可以產生熱量, 從而對第一電池E1和第二電池E2進行加熱,直至加熱完 畢為止。 在本創作加熱電路的以上工作過程中,可使得電流在所 述第一電池E1和第二電池E2之間交替往復流動,實現了 兩個電池的交替加熱,加熱效率高》M434311 V. New Description: [New Technology Field] [0001] [0002] [0003] This creation belongs to the field of electronic equipment technology, especially to a heating circuit for batteries. [Prior Art] Considering the need for cars in complex road conditions Driving under ambient conditions, or when some electronic devices need to be used in poor environmental conditions, batteries that are used as power sources for electric vehicles or electronic devices need to adapt to these complex conditions. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher Input and output power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. [New content] The purpose of this creation is to solve the problem that the battery will increase the impedance of the battery under low temperature conditions, and the polarization will increase, resulting in a decrease in the capacity of the battery. In order to maintain the capacity of the battery under low temperature conditions, the battery is improved. Charge and discharge performance, the present invention provides a heating circuit for a battery. A heating circuit for a battery, the battery comprising a first battery and a second battery, wherein the heating circuit comprises a first switching device, a second switching device, a first damping element R1, a second damping element R2, a first current The memory element L1, the second current memory element L2, the switch control module, and the electric % SC* memory element, wherein the first battery, the first damping element Μ, 1〇〇222丨9 are strictly numbered Α0101, page 4/ 19 pages 1013105257-0 M434311 The first current memory element L1, the charge memory element and the first switching device are connected in series to form a first charging and discharging circuit; the second battery, the second damping element R2, and the second current memory element L2 The charge storage device and the second switching device are connected in series to form a second charge and discharge circuit. When charging and discharging the charge storage device, a charge and discharge direction of the second charge and discharge circuit is opposite to that of the first charge and discharge circuit. The charging and discharging directions are opposite; the switch control module is electrically connected to the first switching device and the second switching device, respectively, for controlling the first switching device and the second Means for alternately turned off to control the flow of electrical power between the first battery, the charge memory element Φ member and the second battery. In the heating circuit of the battery provided by the present invention, the first switching device and the second switching device are alternately turned on by the switch control module, thereby realizing electric energy between the first battery, the charge storage element and the second battery. The alternating flow reciprocates to heat the first damping element R1 and the second damping element R2 to heat the first battery and the second battery. Since the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit in the charge memory element, the energy charged by the first battery® into the charge memory element can be smoothly transferred to the second The battery has high heating efficiency. In addition, in the heating circuit provided by the present invention, the charge memory element is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the safety problem caused by the failure of the switching device can be avoided, and the battery can be effectively protected. . Other features and advantages of the present work will be described in detail in the Detailed Description section that follows. [Embodiment] 1013105257-0 1QQ22219 Production Order No. A0101 Page 5 of 19 M434311 [0004] Specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the specific embodiments described herein are merely illustrative and illustrative of the invention and are not intended to limit the invention. It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control that can be realized by an electrical signal or according to a The switch of the device itself can realize the on-off control, which can be a one-way switch, such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field. Metal Oxide Serai Conductor Field Effect Transistor (MOSFET) or IGBT (Insulated Gate Bipolar Transistor) with reversed readout diode; when referred to below, the term "bidirectional switch" "refers to the on-off control through electrical signals or according to the components themselves A bidirectionally conductive switch that implements on-off control, such as a MOSFET or an IGBT with an anti-freewheeling diode; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor component having a unidirectional conduction function, For example, a diode or the like; when referred to hereinafter, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor, etc.; when referred to hereinafter, the term "current memory element" refers to any device that can store current. For example, an inductor or the like; when referred to hereinafter, the term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to energy 1 (). 22219bill number A0101 Page 6 of 191013105257-0 M434311 Direction from the energy storage circuit to the battery; when mentioned below, the term "battery" includes primary batteries (eg dry batteries, alkaline batteries, etc.) and two a secondary battery (eg, a lithium ion battery, a nickel cadmium battery, a nickel hydride battery, or a lead acid battery, etc.); as referred to hereinafter, the term "damping element" refers to any device that, by obstructing the flow of current to achieve energy consumption, such as It may be a resistor or the like; when referred to hereinafter, the term "main circuit" refers to a circuit in which a battery is connected in series with a damper element, a switching device, and a tank circuit. It should also be noted here that considering the different characteristics of different types of batteries, in this creation, "battery" can refer to the resistance and parasitic inductance that does not contain internal parasitic resistance and parasitic inductance, or internal parasitic resistance. An ideal battery with a small inductance value can also be referred to as a battery pack containing internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is an ideal battery that does not contain internal parasitic resistance and parasitic inductance, or the resistance value of the internal parasitic resistance and the inductance value of the parasitic inductance is small, the first damping element R1 And the second damping element R2 refers to a damping element external to the first battery and the second battery, respectively, and the first current memory element L1 and the second current memory element L2 respectively refer to the external connection of the first battery and the second battery Current memory element; when the "battery" is a battery pack including internal parasitic resistance and parasitic inductance, the first damping element R1 and the second damping element R2 may respectively refer to the damping elements outside the first battery and the second battery, respectively The parasitic resistances inside the first battery pack and the second battery pack may be respectively referred to, and the first current storage element L1 and the second current memory element L 2 may be respectively referred to as current storage elements outside the first battery and the second battery, respectively. It is also possible to refer to the parasitic inductance inside the first battery pack and the second battery pack, respectively. 10022219^^^ A〇101 Page 7 of 19 1013105257-0 M434311 In the embodiment of the present invention, in order to ensure the service life of the battery, it is necessary to heat the battery at a low temperature, and when the heating condition is reached, control The heating circuit starts to work, heating the battery, and when the heating condition is stopped, the control heating circuit stops working. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. Fig. 1 is a circuit diagram of a heating circuit of the first embodiment of the present invention. As shown in Fig. 1, the present invention provides a heating circuit for a battery, wherein the battery includes a first battery E1 and a second battery E2. The heating circuit includes a first switching device 10, a second switching device 20, a first damping element R1, a second damping element R2, a first current memory element L1, a second current memory element L2, a switch control module 100, and a A charge memory element C1. The first battery E1, the first damper element R1, the first current memory element L1, the first charge memory element C1, and the first switching device 10 are connected in series to form a first charging and discharging circuit; the second battery E2 The second damper element R2, the second current storage element L2, the first charge storage element C1, and the second switching device 20 are connected in series to form a second charge and discharge circuit. When the first charge storage element C1 is charged and discharged, the second charge The charge and discharge direction of the discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit. The switch control module 100 is electrically connected to the first switch device 10 and the second switch device 20, respectively, for controlling the first switch device 10 and the second switch device 20 to be alternately turned on, thereby controlling the electrical energy in the first battery E1 and the first charge The flow between the memory element C1 and the second battery E2. The switch control module 100 can control the first switch device 10 and the second 100222191^^^^ A〇101 page 8/19 pages 1013105257-0 M434311 switch device 20 to switch state, for example, the first switch device 1 The 〇 is switched from the on state to the off state, and the second switching device 2 切换 is switched from the off state to the on state, so that the electric energy stored in the first charge storage element C1 by one battery flows into the other battery. The flow of the electrical energy is accompanied by the generation of a current, by continuously flowing a current through the first damper element R1 and the second damper element R2, so that the first damper element R1 and the second damper element R2 can generate heat, thereby A battery £1 and a second battery E2 are heated. Fig. 2 is a waveform timing chart of the heating circuit of the first embodiment of the present invention. The specific working process of the heating circuit provided by the present creation is described below in conjunction with FIG. First, the switch control module 1 〇〇 controls the first switching device 丨〇 to be turned on, the first switching device 20 is turned off, the first battery e 1 , the first damper element r 1 , the first current s hex element L1 A charge storage element c 1 and the first switching device 10 constitute a charge and discharge circuit that performs charge and discharge (as indicated by time period u in FIG. 2). After the end of one charge and discharge cycle of the charge and discharge circuit (when the current IC1 of the first charge memory element C1 is zero after a negative half cycle, the voltage U of the charge memory element has a positive half cycle peak of G1), the switch control mode The group 1〇〇 controls the first switching device 10 to be turned off, the second switching device 2 is turned on, the second battery E2, the first damping element R1, the second current memory element L2, the first charge memory element C1, and the second switching device 20 constitutes a charge and discharge circuit that performs charge and discharge (as shown by time period t2 in Fig. 2). After the charging and discharging circuit ends, the charging and discharging cycle ends (at this time, the current IC1 of the first charge storage element C1 is zero after the positive half cycle, and the entire heating circuit is completed - a complete duty cycle) 'switch control module 1GG again Controlling the first-switching device 10 to be turned on and the second switching device 2G to be turned off, so that the cycle is reciprocating, 1〇〇22219bill number A0101 1013105257-0 page 9/19 pages M434311 causes current to continuously flow through the first damping element R1 And the second damper element #R2, so that the first 126N element and the second damper element R2 can generate heat, thereby heating the first battery E1 and the second battery E2 until the heating is completed. During the above operation of the present heating circuit, current can be alternately reciprocated between the first battery E1 and the second battery E2, thereby achieving alternating heating of the two batteries, and the heating efficiency is high.

第3圖為根據本創作第二實施方式的加熱電路的電路圖。 優選地,如第3圖所示,本創作的加熱電路還可以包括第 一電荷記憶元件C 2。第一電池E1、第一阻尼元件r 1、第 一電流記憶元件L1、第二電荷記憶元件C2以及第二開關 装置20相串聯,構成第三充放電電路;第二電池以、第 二阻尼元件R2、第二電流記憶元件L2、第二電荷記憶元 件C2以及第一開關裝置1〇相串聯,構成第四充放電電路 。在對第二電荷記憶元件C2充放電時,該第三充放電電 路的充放電方向與第四充放電電路的充放電方向相反。 開關控制模組100還通過控制第一開關裝置10和第二開關 裝置20交替導通,以控制電能在所述第一電池、第一電 荷記憶元件C1、第二電荷記憶元件C2以及第二電池之間 的流動。 開關控制模組100可以控制第一開關裝置10和第二開關裝 置20進行開關狀態切換。第4圖為根據本創作第三實施方 式的加熱電路的波形時序圖《以下結合第3圖和第4圖描 述本創作第三實施方式的具體工作過程》 首先’開關控制模組100控制第一開關裝置10導通、第二 開關裝置20斷開,第一電池E1、第一阻尼元件R1、第— 1〇〇22219产單編號 A0101 第10頁/共19頁 1013105257-0 電•·記兀件L卜第一電荷記憶元件。以及第一開關裝 置10構成-個充放電電路,第二電池E2 '第二阻尼元件 R—2、第二電流記憶元件L2、第二電荷記憶元件C2以及第 :開關裝置闕成另-個充放電電路,上述兩個充放電 ^料行充放電(如第4圖中的時間段tl所示,注意,第 電何記憶元件C1和第二電荷記憶元件C2的電壓波形和 電瓜波形均相同)。在上述兩個充放電電路的—個充放 電週期結束之後(此時第—電荷記憶元件C14C2的電流 • Ici或1C2經過負半週期之後為零,第-電荷記憶元件C1 或C2的電壓Uci或%已經歷正半週期峰值),開關控制 模組H0控制第-開關裝置10斷開、第二開關裝置2〇導通 ’第一電池E1、第-阻尼元細、第—電流記憶元件u 、第二電荷記憶元件C2以及第二開關裝置2Q構成一個充 放電電路,第二電池E2、第二阻尼元件R2、第二電流記 憶元件L2、第-電荷記憶元件C1以及第二開關裝置㈣ 成另一個充放電電路,上述兩個充放電電路進行充放電 φ (如第4圖中的時間段t2所示,注意,此時第一電荷記憶 . 元件C1和第二電荷記憶元件C2的電壓波形和電流波形亦 均相同)》在上述兩個充放電電路的一個充放電週期結 束之後(此時第一電荷記憶元件C1*C2的電流】Fig. 3 is a circuit diagram of a heating circuit according to a second embodiment of the present creation. Preferably, as shown in Fig. 3, the heating circuit of the present invention may further include a first charge storage element C 2 . The first battery E1, the first damping element r1, the first current storage element L1, the second charge storage element C2, and the second switching device 20 are connected in series to form a third charging and discharging circuit; the second battery and the second damping element R2, the second current storage element L2, the second charge storage element C2, and the first switching device 1 are connected in series to form a fourth charge and discharge circuit. When the second charge storage element C2 is charged and discharged, the charge and discharge direction of the third charge and discharge circuit is opposite to the charge and discharge direction of the fourth charge and discharge circuit. The switch control module 100 also controls the first switching device 10 and the second switching device 20 to alternately conduct power to control the electric energy in the first battery, the first charge storage element C1, the second charge storage element C2, and the second battery. The flow between. The switch control module 100 can control the first switching device 10 and the second switching device 20 to perform switching state switching. 4 is a waveform timing chart of the heating circuit according to the third embodiment of the present creation. "The specific working process of the third embodiment of the present creation is described below in conjunction with FIGS. 3 and 4". First, the switch control module 100 controls the first The switch device 10 is turned on, and the second switch device 20 is turned off. The first battery E1, the first damper element R1, the first 〇〇 22219, the order number A0101, the 10th page, the 19th page, the 1013105257-0 L Bu first charge memory element. And the first switching device 10 constitutes one charging and discharging circuit, and the second battery E2 'the second damping element R-2, the second current memory element L2, the second charge memory element C2, and the first: the switching device are further charged In the discharge circuit, the above two charging and discharging lines are charged and discharged (as shown in the time period t1 in FIG. 4, it is noted that the voltage waveforms and the electric waveforms of the first and second charge memory elements C1 and C2 are the same. ). After the end of one charge and discharge cycle of the above two charge and discharge circuits (when the current of the first charge storage element C14C2 • Ici or 1C2 is zero after a negative half cycle, the voltage Uci of the first charge storage element C1 or C2 or % has experienced the positive half cycle peak), the switch control module H0 controls the first switching device 10 to be turned off, the second switching device 2 is turned on, the first battery E1, the first damping element, the first current storage element u, the first The two charge storage element C2 and the second switching device 2Q constitute a charge and discharge circuit, and the second battery E2, the second damping element R2, the second current memory element L2, the first charge storage element C1 and the second switching device (4) are formed into another In the charge and discharge circuit, the above two charge and discharge circuits perform charge and discharge φ (as shown in time period t2 in Fig. 4, note that at this time, the first charge memory. The voltage waveform and current of the element C1 and the second charge memory element C2 The waveforms are also the same)" after the end of one charge and discharge cycle of the above two charge and discharge circuits (at this time, the current of the first charge memory element C1*C2)

Cl C2 !正半週期之後為零,整個加熱電路完成一個完整工作 週期),開關控制模組1〇〇再次控制第一開關裝置1〇導通 、第二開關裝置20斷開,如此循環往復,使得電流不斷 流過第一阻尼元件R1和第二阻尼元件!^,以使第一阻尼 元件R1和第二阻尼元件!^可以產生熱量,從而對第一電 池E1和第二電池E2進行加熱,直至加熱完畢為止。 1002221#單編號_1 第11頁/共19頁 1013105257-0 M434311 · . _ -- - · ·. 在S亥加熱電路中,通過增加一個第二電荷記憶元件C2, 使得每一個週期可同時形成兩個充放電電路,從而使得 第一電池E1和第二電池E2無時無刻均處於充放電的過程 ,且第一阻尼元件R1和第二阻尼元件以無時無刻均有電 流流過’可縮短加熱時間β 第5圖為本創作提供的加熱電路中的開關裝置的一種實施 方式的電路圖。如第5圖所示,第一開關裝置1〇和/或第 二開關裝置20可包括開關Κ11和與該開關Κ11反向並聯的 單向半導體元件D11,開關控制模組1 〇〇與開關κ 11電連 接’用於通過控制開關Κ11的導通和關斷來控制第一開關 裝置10的正向支路導通和關斷◊對該開關K11的導通和關 斷控制可以在第2圖、第4圖、第6圖以及第8圖中所示的 網格區段中進行。開關控制模組1〇〇可以在流經第一開關 裝置10或第二開關裝置20的電流過零時或電流過零之後 ,控制第一開關裝置1 〇和第二開關裝置2〇進行開關狀態 切換。 本創作所提供的加熱電路具備以下優點: (1)由於就電荷記憶元件而言,第二充放電電路的充放 電方向與所述第一充放電電路的充放電方向相反,因此 電能可於第一電池E1、電荷記憶元件以及第二電池E2之 間的交替往復流動’藉此所產生的電流可使得第一阻尼 元件R1和第二阻尼元件R2發熱,從而對第一電池E1和第 二電池E2進行加熱’實現了對第一電池以和第二電池E2 交替加熱,加熱效率高。 (2)在本創作提供的加熱電路中,電荷記憶元件與電池 串聯’當給電池加熱時,由於串聯的電荷記憶元件的存 10022219f 丨编號 A0101 第12頁/共19頁 1013105257-0 M434311 在,能夠避免開關裝置失效短路引起的安全性問題,從 而有效地保護電池。 ° ( 3 )在使用雙電荷記憶元件時,每一個時間週期内可以 同時形成兩個充放電電路,從而可使得第一阻尼元件R1 和第二阻尼元件R2内無論何時均有電流流過,縮短了加 熱時間。 雖然本創作已通過上述實施例所公開,然而上述實施例 並非用以限定本創作,任何本創作所屬技術領域中技術 人員,在不脫離本創作的精神和範圍内,應當可以作各 • 種的變動與修改。因此本創作的保護範圍應當以所附申 請專利範圍所界定的範圍為準。 【圖式簡單說明】 [0005] 附圖是用來提供對本創作的進一步理解,並且構成說明 書的一部分,與下面的具體實施方式一起用於解釋本新 型,但並不構成對本創作的限制。在附圖中: 第1圖為本創作第一實施方式的加熱電路的電路圖; ^ 第2圖為本創作第一實施方式的加熱電路的波形時序圖; a 第3圖為根據本創作第二實施方式的加熱電路的電路圖; 第4圖為根據本創作第二實施方式的加熱電路的波形時序 圖;以及 第5圖為本創作提供的加熱電路中的開關裝置的一種實施 方式的電路圖。 【主要元件符號說明】 [0006] LI、L2電流記憶元件 El、E2電池 1QQ22219I^單編號A0101 第13頁/共19頁 1013105257-0 M434311 Cl、C2電荷記憶元件 Rl、R2阻尼元件 I € 1電何記憶元件C1的電流 I 9電何記憶元件C 2的電流 10、20開關裝置 tl、t2時間段 K11開關 D11單向半導體元件 100開關控制模組 10022219产單編號 A〇101 第14頁/共19頁 1013105257-0Cl C2 ! is zero after the positive half cycle, the entire heating circuit completes a complete duty cycle), the switch control module 1 〇〇 again controls the first switching device 1 〇 to turn on, the second switching device 20 to turn off, so that the cycle reciprocates The current continuously flows through the first damper element R1 and the second damper element so that the first damper element R1 and the second damper element can generate heat, thereby heating the first battery E1 and the second battery E2 until Until the heating is completed. 1002221#单编号_1 Page 11/19 pages 1013105257-0 M434311 · . _ -- - · · In the S Hai heating circuit, by adding a second charge memory element C2, each cycle can be formed simultaneously The two charging and discharging circuits are such that the first battery E1 and the second battery E2 are in a process of charging and discharging all the time, and the first damping element R1 and the second damping element flow through the current all the time to shorten the heating time β 5 is a circuit diagram of an embodiment of a switching device in a heating circuit provided by the present invention. As shown in FIG. 5, the first switching device 1A and/or the second switching device 20 may include a switch Κ11 and a unidirectional semiconductor element D11 connected in anti-parallel with the switch Κ11, the switch control module 1 〇〇 and the switch κ 11 electrical connection 'for controlling the on and off of the forward branch of the first switching device 10 by controlling the on and off of the switch Κ11, the on and off control of the switch K11 can be shown in Fig. 2, 4 The grid segments shown in the figures, Fig. 6 and Fig. 8 are performed. The switch control module 1 控制 can control the first switching device 1 〇 and the second switching device 2 〇 to switch state when the current flowing through the first switching device 10 or the second switching device 20 crosses zero or after the current crosses zero Switch. The heating circuit provided by the present invention has the following advantages: (1) Since the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit in terms of the charge storage element, the electric energy can be An alternating reciprocating flow between a battery E1, a charge storage element, and a second battery E2' thereby generating a current that causes the first damper element R1 and the second damper element R2 to heat up, thereby opposing the first battery E1 and the second battery E2 is heated to achieve alternating heating of the first battery and the second battery E2, and the heating efficiency is high. (2) In the heating circuit provided by this creation, the charge memory element is connected in series with the battery 'When the battery is heated, due to the storage of the charge memory element in series 10022219f 丨 No. A0101 Page 12 / Total 19 Page 1013105257-0 M434311 The safety problem caused by the failure of the switching device and the short circuit can be avoided, thereby effectively protecting the battery. ° (3) When a double-charge memory element is used, two charge and discharge circuits can be simultaneously formed in each time period, so that current flows in the first damping element R1 and the second damping element R2 at any time, shortening The heating time. Although the present invention has been disclosed by the above embodiments, the above embodiments are not intended to limit the present invention, and any person skilled in the art to which the present invention pertains should be able to make various types without departing from the spirit and scope of the present invention. Changes and modifications. Therefore, the scope of protection of this creation should be based on the scope defined by the scope of the attached patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are included to provide a further understanding of the present invention, and are a part of the description, and are used to explain this new type together with the following specific embodiments, but do not constitute a limitation of the present invention. In the drawings: FIG. 1 is a circuit diagram of a heating circuit of a first embodiment of the present invention; ^ FIG. 2 is a waveform timing chart of the heating circuit of the first embodiment of the present invention; a FIG. 3 is a second drawing according to the present creation Fig. 4 is a circuit diagram of a waveform of a heating circuit according to a second embodiment of the present invention; and Fig. 5 is a circuit diagram of an embodiment of a switching device in the heating circuit provided by the present invention. [Main component symbol description] [0006] LI, L2 current memory component El, E2 battery 1QQ22219I^ single number A0101 Page 13 / 19 pages 1013105257-0 M434311 Cl, C2 charge memory element Rl, R2 damping element I € 1 The current I 9 of the memory element C1 The current of the memory element C 2 10, 20 Switching device tl, t2 period K11 switch D11 unidirectional semiconductor component 100 switch control module 10022219 production order number A 〇 101 page 14 / total 19 pages 1013105257-0

Claims (1)

M434311 六、申請專利範圍: 1 . 一種電池的加熱電路,所述電池包括第一電池和第二電池 ,其特徵在於,所述加熱電路包括: 第一開關裝置和第二開關裝置; 第一電流記憶元件、第二電流記憶元件、開關控制模組; 以及 第一電荷記憶元件, 其中, 所述第一電池、第一電流記憶元件、第一電荷記憶元件以 及第一開關裝置相串聯,構成第一充放電電路; 所述第二電池、第二電流記憶元件、第一電荷記憶元件以 及第二開關裝置相串聯,構成第二充放電電路,在對所述 第一電荷記憶元件充放電時,該第二充放電電路的充放電 方向與所述第一充放電電路的充放電方向相反;M434311 VI. Patent application scope: 1. A heating circuit for a battery, the battery comprising a first battery and a second battery, wherein the heating circuit comprises: a first switching device and a second switching device; a memory element, a second current memory element, a switch control module, and a first charge memory element, wherein the first battery, the first current memory element, the first charge memory element, and the first switching device are connected in series to form a first a charging and discharging circuit; the second battery, the second current storage element, the first charge storage element, and the second switching device are connected in series to form a second charging and discharging circuit, when charging and discharging the first charge storage element, The charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit; 所述開關控制模組分別與所述第一開關裝置和所述第二開 關裝置電連接,用於控制所述第一開關裝置和所述第二開 關裝置交替導通,以控制電能在所述第一電池、第一電荷 記憶元件以及所述第二電池之間的流動。 2 .如申請專利範圍第1項所述的加熱電流,其特徵在於,還 ' : ♦ 包括第一阻尼元件和第二阻尼元件, 其中,所述第一阻尼元件R1串聯在所述第一充故電電路中 ,所述第二阻尼元件R2串聯在所述第二充放電窀路中。 . < • » 3.如申請專利範圍第2項所述的加熱電路,其特徵咅於,所 述第一阻尼元4和第二阻尼元件分別為所述第一;電池和所 述第二電池内部的寄生電卩且,所述第一電流記憶:元件和所. 述第二電流纪憶元件分別為所述第一電池和第二;電池内部 10022219^^ A〇101 第15頁/共19頁 1013105257-0 M434311 的寄生電感,且所述第一電荷記憶元件為電容β 如申請專利範圍第1項所述的加熱電路,其特徵在於,所 述加熱電路還包括第二電荷記憶元件, 所述第一電池、第一阻尼元件、第一電流記憶元件、第二 電荷記憶元件以及所述第二開關裝置相串聯以構成第三充 放電電路; 所述第二電池、第二阻尼元件、第二電流記憶元件、第二 電荷記憶元件以及所述第一開關裝置相串聯以構成第四充 放電電路,在對所述第二電荷記憶元件充放電時,所述第 三充放電電路的充故電方向與所述第四充放電電路的充放 電方向相反; 所述開關控制模組還通過控制所述第一開關裝置和所述第 二開關裝置交替導通,以控制電能在所述第一電池、第一 電荷記憶元件、第二電荷記憶元件以及所述第二電池之間 的流動。 如申請專利範圍第4項所述的加熱電路,其特徵在於,所 述第二電荷記憶元件為電容。 如申請專利範圍第1~5項中任一項申請專利範圍所述的加 熱電路,其特徵在於,所述第一開關裝置和/或所述第二 開關裝置包括開關和與所述開關反向並聯的單向+導體元 件,所述開關控制模組與所述開關電連接,用於通過控制 所述開關的導通和關斷來控制所述第一開關裝置的:正向支 路導通和關斷。 ,10022219^^^· Α0101 第16頁_/共19頁 1013105257-0The switch control module is electrically connected to the first switch device and the second switch device, respectively, for controlling the first switch device and the second switch device to be alternately turned on to control power in the first A flow between the battery, the first charge storage element, and the second battery. 2. The heating current according to claim 1, further characterized in that: a first damping element and a second damping element are included, wherein the first damping element R1 is connected in series to the first charging Therefore, in the electrical circuit, the second damping element R2 is connected in series in the second charging and discharging circuit. 3. The heating circuit of claim 2, wherein the first damper element 4 and the second damper element are respectively the first; the battery and the second The parasitic electric current inside the battery, and the first current memory element and the second current memory element are the first battery and the second, respectively; the battery internal 10022219^^ A〇101 page 15 / total A heating circuit according to the first aspect of the invention, characterized in that the heating circuit further comprises a second charge memory element, The first battery, the first damping element, the first current storage element, the second charge storage element, and the second switching device are connected in series to form a third charging and discharging circuit; the second battery, the second damping element, The second current storage element, the second charge storage element, and the first switching device are connected in series to form a fourth charging and discharging circuit, and when charging and discharging the second charge storage element, the third charging and discharging circuit Therefore, the electrical direction is opposite to the charging and discharging direction of the fourth charging and discharging circuit; the switch control module further controls the first switching device and the second switching device to alternately conduct power to control the first in the first A flow between the battery, the first charge storage element, the second charge storage element, and the second battery. The heating circuit of claim 4, wherein the second charge storage element is a capacitor. A heating circuit according to any one of claims 1 to 5, wherein the first switching device and/or the second switching device comprise a switch and is opposite to the switch a parallel unidirectional + conductor element, the switch control module being electrically connected to the switch for controlling the first switching device by controlling the turning on and off of the switch: the forward branch is turned on and off Broken. ,10022219^^^· Α0101 Page 16_/Total 19 Pages 1013105257-0
TW100222191U 2010-12-23 2011-11-24 Battery heating circuit TWM434311U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106046778A CN102074758B (en) 2010-07-30 2010-12-23 Heating circuit of battery

Publications (1)

Publication Number Publication Date
TWM434311U true TWM434311U (en) 2012-07-21

Family

ID=46882779

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100143160A TWI469473B (en) 2010-12-23 2011-11-24 Battery heating circuit
TW100222191U TWM434311U (en) 2010-12-23 2011-11-24 Battery heating circuit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100143160A TWI469473B (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (2) TWI469473B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362942A (en) * 1993-08-24 1994-11-08 Interdigital Technology Corporation Battery heating system using internal battery resistance
TW269727B (en) * 1995-04-03 1996-02-01 Electrosource Inc Battery management system
US5990661A (en) * 1998-04-30 1999-11-23 Daimlerchrysler Corporation Circulating current battery heater
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
CN101685971B (en) * 2008-09-27 2015-01-14 比亚迪股份有限公司 Low-temperature active device and method of vehicle lithium iron phosphate lithium battery
CN201435426Y (en) * 2009-04-20 2010-03-31 赛恩斯能源科技有限公司 Battery group with thermal management unit

Also Published As

Publication number Publication date
TWI469473B (en) 2015-01-11
TW201232999A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US8816647B2 (en) Battery heating circuits and methods using resonance components in series based on current limiting and voltage inversion with bi-directionality
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
US9209644B2 (en) Circuits and methods for heating batteries in series using resonance components in series
TW201251260A (en) Battery heating circuit
TWI477027B (en) Battery heating circuit
TWI433429B (en) Battery heating circuit
TWI454012B (en) Battery heating circuit
TWM434311U (en) Battery heating circuit
TWI493830B (en) Battery heating circuit
TWI465001B (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI464999B (en) Battery heating circuit
TWI433430B (en) Battery heating circuit
TWI427894B (en) Battery heating circuit
TWM433983U (en) Battery heating circuit
TW201322586A (en) Battery heating circuit
TWM437537U (en) Battery heating circuit
TWM438031U (en) Battery heating circuit
TW201230607A (en) Battery heating circuit

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model