TW201230607A - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TW201230607A
TW201230607A TW100143132A TW100143132A TW201230607A TW 201230607 A TW201230607 A TW 201230607A TW 100143132 A TW100143132 A TW 100143132A TW 100143132 A TW100143132 A TW 100143132A TW 201230607 A TW201230607 A TW 201230607A
Authority
TW
Taiwan
Prior art keywords
switch
energy
battery
switching device
circuit
Prior art date
Application number
TW100143132A
Other languages
Chinese (zh)
Other versions
TWI430536B (en
Inventor
wen-hui Xu
Yao-Chuan Han
Wei Feng
Qin-Yao Yang
Wen-Jin Xia
shi-bin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010106047145A external-priority patent/CN102074759B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201230607A publication Critical patent/TW201230607A/en
Application granted granted Critical
Publication of TWI430536B publication Critical patent/TWI430536B/en

Links

Classifications

    • Y02T10/7055

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery heating circuit provided in the invention comprises: a switchgear, a switch control module, a first damping element, an energy storage circuit and an energy transferring unit. The energy storage circuit for connecting with the battery comprises a current storage element and a first charge storage element. The fist damping element, the switchgear, and the energy storage circuit are connected in series. The switch control module is connected with the switchgear for controlling the switchgear to switch on and off so as to control energy to flow between the battery and the energy storage circuit. The energy transferring unit is connected with the energy storage circuit for transferring energy in the energy storage circuit to an energy storage element after the switchgear is first switched on and then switched off. The heating circuit provided in the invention can improve charge-discharge performance of the battery, improve security when heating the battery and recycle energy.

Description

201230607 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明屬於電子設備技術領域,尤其涉及一種電池的加 熱電路。 【先前技術】 [0002] 考慮到汽車需要在複雜的路況和環境條件下行駛,或者 有些電子設備需要在較差的環境條件中使用的情況,所 以,作為電動車或電子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輸出功率性能。 一般而言,如果在低溫條件下對電池充電的話,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降,最終導致電池壽命的降低。 【發明内容】 [0003] 本發明的目的是針對電池在低溫條件下會導致電池的阻 抗增大,極化增強,由此導致電池的容量下降的問題, 提供一種電池的加熱電路。為了保持電池在低溫條件下 的容量,提高電池的充放電性能,本發明提供了 一種電 池的加熱電路。 本發明提供的電池的加熱電路,該加熱電路包括開關裝 置、開關控制模組、阻尼元件、儲能電路以及能量轉移 單元,所述儲能電路用於與所述電池連接,所述儲能電 路包括電流記憶元件和電荷記憶元件,所述阻尼元件和 10014313#單編號 A〇101 第4頁/共35頁 1013091665-0 201230607 開關裝置與所述儲能電路串聯,所述開關控制模組與開 關裝置連接,用於控制開關裝置導通和關斷,以控制能 量在所述電池與所述儲此電路之間的流動,所述能量轉 移單元與所述儲能電路連接,用於在開關裝置關斷後, 將儲能電路中的能量轉移至儲能元件中。 本發明提供的加熱電路能夠提高電池的充放電性能,並 且在S亥加熱電路中,儲能電路與電池串聯當給電池加 熱時’由於串聯的電荷記憶元件的存在,能夠避免開關 裝置失效短路引㈣安全_題,能財效地保護電池 。同時,本發㈣加熱電財還提供了能量轉移單元, 當開關裝置關斷後,該能量轉移單元能夠將儲能電路中 的能量轉移至其他雜元件或錢供給其倾備,因此 還起到了能量回收利用的作用。 本發明的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 L貫施方式】 [0004] 〇 、。附圖對本發明的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具禮實施方式僅用於說明 ♦解釋本發明’並不用於聞本發明。 ’ 的是’除非特別說明’當下文中提及時,術語 開關控制模組,,兔 任意能夠根據設定的條件或者設定 衝:相應的控制指令(例如具有相應占 空比的脈 斷的控制^而控制與其連接的開關裝置相應地導通或關 女Φ描;β *例如可以為PLC (可編程控制器)等;當下 文笮徒及時,術笋“” 通斷控制或者根。_ 的是可以通過電信號實現 1〇〇14313产單編號A0101 據几器件自身的特性實現通斷控制的開201230607 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to the field of electronic device technology, and more particularly to a heating circuit for a battery. [Prior Art] [0002] Considering that a car needs to travel under complicated road conditions and environmental conditions, or some electronic devices need to be used in poor environmental conditions, a battery that is a power source for an electric vehicle or an electronic device needs to be adapted. These complicated situations. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher Input and output power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. SUMMARY OF THE INVENTION [0003] The object of the present invention is to provide a heating circuit for a battery in which the battery causes an increase in resistance of the battery under low temperature conditions and polarization is increased, thereby causing a decrease in capacity of the battery. In order to maintain the capacity of the battery under low temperature conditions and to improve the charge and discharge performance of the battery, the present invention provides a heating circuit for a battery. A heating circuit for a battery provided by the present invention, the heating circuit comprising a switching device, a switch control module, a damping element, a storage circuit and an energy transfer unit, wherein the energy storage circuit is configured to be connected to the battery, the energy storage circuit Including a current memory element and a charge memory element, the damping element and the 10014313# single number A 〇 101 page 4 / a total of 35 pages 1013091665-0 201230607 switching device in series with the energy storage circuit, the switch control module and switch a device connection for controlling switching device to be turned on and off to control energy flow between the battery and the storage circuit, the energy transfer unit being coupled to the energy storage circuit for switching After the break, the energy in the tank circuit is transferred to the energy storage element. The heating circuit provided by the invention can improve the charge and discharge performance of the battery, and in the Shai heating circuit, when the energy storage circuit is connected in series with the battery, when the battery is heated, the switch device can be prevented from being short-circuited due to the existence of the series of charge memory elements. (4) Safety _ questions, can protect the battery financially. At the same time, the present invention also provides an energy transfer unit. When the switch device is turned off, the energy transfer unit can transfer the energy in the energy storage circuit to other miscellaneous components or money to supply it, thus also playing a role. The role of energy recycling. Other features and advantages of the invention will be described in detail in the detailed description which follows. L through the way] [0004] 〇,. The drawings illustrate in detail the specific embodiments of the invention. It should be understood that the presently described embodiments are merely illustrative of the invention and are not intended to be used in the invention. 'There is 'unless specifically stated', when mentioned in the following, the term switch control module, the rabbit can be arbitrarily controlled according to the set conditions or settings: corresponding control commands (such as the control of the pulse with the corresponding duty cycle ^) The switching device connected thereto is turned on or off correspondingly to the female Φ drawing; β * can be, for example, a PLC (programmable controller); when the following gangsters are in time, the bamboo shoots "" the on-off control or the root. Signal realization 1〇〇14313 Production order number A0101 According to the characteristics of several devices, the on-off control is turned on.

頁 / 共 35 頁 1013091665-G 201230607 關’既可以是單向開關’例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide oemiconductor MOSFET)或帶有反並續流二極體的IGBT (Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等 ,當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元器件自身的特性實現通 斷控制的可雙嚮導通的開關,例如M〇SFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 ;當下文中提及時,術語“電荷記憶元件,,指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指㈣可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向,,指能 篁從電池向儲能電路流動的方向,術語“反向,,指能量 從餘能電路向電池流動的方向;當下文中提及時,術語 “電池”包括—次電池(例如乾電池、驗性電池等)/口 二次電池(例如_子電池、_電池、鎳氫電池或錯 酸電池等);當下文中提及時,術語“阻尼元件,,指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ’例如可以為電阻等;當下文_提及時,術語⑽ 組成的回路。 開關裝置以及儲能電路串聯 ㈣別說明的是,考慮到不同類型的電池的不 同特性,在本發明中,“㈣,,7、“t 4池的不 10014313产早編號 第6頁/共35頁 歷 W可以指不包含内部寄生 弟b頁/社狀苜 1013091665-0 201230607 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 理想電池時,第一阻尼元件R1指的是電池外接的阻尼元 件》電流記憶元件L1指的是電池外接的電流記憶元件, 當“電池”為包含有内部寄生電阻和寄生電感的電池包 時,第一阻尼元件R1既可以指電池外部的阻尼元件,也 0 可以指電池包内部的寄生電阻,同樣地,電流記憶元件 L1既可以指電池外部的電流記憶元件,也可以指電池包 内部的寄生電感。 在本發明的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 .... 在電池的實際應用令,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 為了對處於低溫環境中的電池E進行加熱,本發明提供了 一種電池E的加熱電路,如第1圖所示,該加熱電路包括 開關裝置1、開關控制模組100、第一阻尼元件R1、儲能 電路以及能量轉移單元,所述儲能電路與電池E連接。在 本發明的一個實施例中,該儲能電路包括電流記憶元件 L1和第一電荷記憶元件C1,第一阻尼元件R1和開關裝置1 10014313^^^ A〇101 ^ 7 1 7 ^ 35 1 1013091665-0 201230607 與所述儲能電路串聯,所述開關控制模組100與開關裝置 1連接,用於控制開關裝置1導通和關斷,以控制能量在 電池與儲能電路之間的流動,能量轉移單元與儲能電路 連接,用於在開關裝置1導通再關斷後,將儲能電路中的 能量轉移至儲能元件中。 根據本發明的技術方案,當達到加熱條件時,開關控制 模組100控制開關裝置1導通,電池E與儲能電路串聯構成 回路,電池E可以通過回路放電,即對第一電荷記憶元件 C1進行充電,當回路中的電流經過電流峰值後正向為零 時,第一電荷記憶元件C1開始通過回路放電,即是對電 池E充電;在電池E的充放電過程中,回路中的電流正向 、反向均能流過第一阻尼元件R1,通過第一阻尼元件R1 的發熱可以達到給電池E加熱的目的,通過控制開關裝置 1的導通和關斷時間,可以控制電池E僅通過放電來加熱 ,或者通過放電和充電兩種方式來加熱。當達到停止加 熱條件時,開關控制模組100可以控制開關裝置1關斷, 加熱電路停止工作。 能量轉移單元與儲能電路連接,用於在開關裝置1導通再 關斷後,將儲能電路中的能量轉移到儲能元件中,目的 在於對存儲電路中的能量進行回收利用。儲能元件可以 是外接電容、低溫電池或者電網以及其他用電設備。 優選情況下,儲能元件是本發明提供的電池E,能量轉移 單元包括電量回灌單元103,該電量回灌單元103與儲能 電路連接,用於在開關裝置1導通再關斷後,將儲能電路 中的能量轉移至電池E中,如第2圖所示。 根據本發明的技術方案,在開關裝置1關斷後,通過能量 10014313^^ A〇101 第8頁/共35頁 1013091665-0 201230607 轉移單元將儲能電路中的能量轉移到電池E中,能夠在開 關裝置1再次導通後對被轉移的能量進行迴圈利用,提高 了加熱電路的工作效率。 作為電量回灌單元丨03的一種實施方式,如第3圖所示, 電量回灌單元103包括第二DC-DC模組3,該第二DC-DC模 組3與第一電荷記憶元件C1和電池E分別連接,開關控制 模組100還與第二])C_DC模組3連接,用於通過控制第二 DC-DC模組3工作來將第一電荷記憶元件C1中的能量轉移 到電池E中。 第二DC-DC模組3是本領域中常用的用於實現能量轉移的 直流變直流轉換電路,本發明不對第二DC_DC模組3的具 體電路結構作任何限制,只要能夠實現對第一電荷記憶 元件C1的能量進行轉移即可,本領域技術人員可以根據 實際操作的需要對其電路巾的元件進行增加、替換或刪Page / Total 35 pages 1013091665-G 201230607 Off 'can be a one-way switch' such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field The effect transistor (Metal Oxide oemiconductor MOSFET) or an IGBT (Insulated Gate Bipolar Transistor) with an anti-free current diode, etc., when referred to below, the term "bidirectional switch" refers to A bi-directional switch that achieves on-off control by means of an electrical signal or an on-off control according to the characteristics of the component itself, such as an M〇SFET or an IGBT with an anti-freewheeling diode; etc.; The semiconductor element refers to a semiconductor element having a unidirectional conduction function, such as a diode or the like; when referred to hereinafter, the term "charge memory element" refers to any device that can realize charge storage, such as a capacitor, etc.; when mentioned below , the term "current memory element" means (d) a device that can store current, such as an inductor, etc.; when mentioned below, The term "forward" refers to the direction in which the battery can flow from the battery to the tank circuit. The term "reverse" refers to the direction in which energy flows from the residual circuit to the battery; when referred to below, the term "battery" includes - secondary battery (eg dry battery, calibrated battery, etc.) / secondary battery (eg _ sub-cell, _ battery, nickel-hydrogen battery or acid-acid battery, etc.); when referred to below, the term "damping element" refers to any passing current The means for flowing the obstruction to achieve energy consumption can be, for example, a resistor or the like; when referred to hereinafter, the term (10) constitutes a loop. The switching device and the energy storage circuit are connected in series (4). In view of the different characteristics of different types of batteries, in the present invention, "(4), 7, "t 4 pools are not 10014313, early numbering is 6th/total 35 The page calendar W can be an ideal battery that does not include the internal parasitic brother page/community 苜1013091665-0 201230607 resistance and parasitic inductance, or the internal parasitic resistance and the parasitic inductance. Battery pack with parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is an ideal battery that does not contain internal parasitic resistance and parasitic inductance, or the resistance value of the internal parasitic resistance and the inductance value of the parasitic inductance is small, the first damping element R1 Refers to the external damper element of the battery. The current memory element L1 refers to the current memory element external to the battery. When the "battery" is a battery pack containing internal parasitic resistance and parasitic inductance, the first damper element R1 can be referred to as a battery. The external damping element, also 0, can refer to the parasitic resistance inside the battery pack. Similarly, the current memory element L1 can be either a current memory element outside the battery or a parasitic inductance inside the battery pack. In the embodiment of the present invention, in order to ensure the service life of the battery, the battery needs to be heated at a low temperature. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated, and when the heating condition is stopped, the control is performed. The heating circuit stops working. .... In the actual application of the battery, as the environment changes, the battery heating conditions and the stop heating conditions can be set according to the actual environmental conditions, in order to more accurately control the temperature of the battery, thereby ensuring the battery Charge and discharge performance. In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E. As shown in FIG. 1, the heating circuit includes a switching device 1, a switch control module 100, and a first damping element R1. The energy storage circuit and the energy transfer unit are connected to the battery E. In one embodiment of the invention, the tank circuit comprises a current memory element L1 and a first charge memory element C1, a first damping element R1 and a switching device 1 10014313^^^ A〇101 ^ 7 1 7 ^ 35 1 1013091665 -0 201230607 is connected in series with the energy storage circuit, and the switch control module 100 is connected to the switching device 1 for controlling the switching device 1 to be turned on and off to control the flow of energy between the battery and the energy storage circuit. The transfer unit is connected to the energy storage circuit for transferring energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and off. According to the technical solution of the present invention, when the heating condition is reached, the switch control module 100 controls the switching device 1 to be turned on, the battery E and the energy storage circuit are connected in series to form a loop, and the battery E can be discharged through the loop, that is, the first charge storage element C1 is performed. Charging, when the current in the loop passes through the current peak and the positive direction is zero, the first charge memory element C1 starts to discharge through the loop, that is, the battery E is charged; during the charging and discharging of the battery E, the current in the loop is positive The reverse direction can flow through the first damper element R1, and the heat of the first damper element R1 can be used to heat the battery E. By controlling the on and off times of the switch device 1, the battery E can be controlled only by discharging. Heating, or heating by both discharging and charging. When the stop heating condition is reached, the switch control module 100 can control the switch device 1 to be turned off, and the heating circuit stops operating. The energy transfer unit is connected to the energy storage circuit for transferring the energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and off, in order to recycle the energy in the storage circuit. The energy storage component can be an external capacitor, a low temperature battery or a power grid, and other electrical equipment. Preferably, the energy storage component is the battery E provided by the present invention, and the energy transfer unit includes a power recharging unit 103, and the power recharging unit 103 is connected to the energy storage circuit for after the switching device 1 is turned on and off again. The energy in the tank circuit is transferred to battery E as shown in Figure 2. According to the technical solution of the present invention, after the switching device 1 is turned off, the transfer unit transfers the energy in the energy storage circuit to the battery E through the energy 10014313^^A〇101 page 8/35 pages 1013091665-0 201230607 After the switching device 1 is turned on again, the transferred energy is recycled, which improves the working efficiency of the heating circuit. As an embodiment of the power refill unit 丨03, as shown in FIG. 3, the power refill unit 103 includes a second DC-DC module 3, the second DC-DC module 3 and the first charge storage element C1. Connected to the battery E, the switch control module 100 is further connected to the second]) C_DC module 3 for transferring the energy in the first charge memory element C1 to the battery by controlling the operation of the second DC-DC module 3. E. The second DC-DC module 3 is a DC-DC converter circuit commonly used in the art for implementing energy transfer. The present invention does not impose any limitation on the specific circuit structure of the second DC-DC module 3, as long as the first charge can be realized. The energy of the memory element C1 can be transferred, and those skilled in the art can add, replace or delete the components of the circuit towel according to the actual operation.

開關S4為MOSFET。Switch S4 is a MOSFET.

與組之間的對接點分別與第三 第9頁/共35頁 10014313#單編號 A0101 :池E的正端連接,另兩個單向半 接點與電池E的負端連接,且組 第二變慶器T3的3腳和4腳連接 1013091665-0 201230607 ,由此構成橋式整流電路。 其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙 向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1 、雙向開關S2的漏極與第一電荷記憶元件C1的正端連接 ,雙向開關S3、雙向開關S4的源極與第一電荷記憶元件 C1的負端連接,由此構成全橋電路。 在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂, 雙向開關S3、雙向開關S4為下橋臂,第三變壓器T3的1腳 與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向 開關S 2和雙向開關S 4之間的節點連接。 其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開 關S4分別通過開關控制模組100的控制來實現導通和關斷 〇 下面對第二DC-DC模組3的工作過程進行描述: 1、 在開關裝置1關斷後,開關控制模組100控制雙向開關 S1和雙向開關S4同時導通以構成A相,控制雙向開關S2、 雙向開關S3同時導通以構成B相,通過控制A相、B相交替 導通以構成全橋電路進行工作; 2、 當全橋電路工作時,第一電荷記憶元件C1上的能量通 過第三變壓器T3和整流電路轉移到電池E上,整流電路將 輸入的交流電轉化為直流電輸出至電池E,達到電量回灌 的目的。 為了避免第一電荷記憶元件C1給處於低溫情況下的電池E 充電,保證電池E的充放電性能,作為本發明提供的加熱 電路的一種優選實施方式,開關控制模組100用於控制開 關裝置1導通和關斷,以控制能量僅從電池E流向儲能電 10014313#单編號腿01 $ 10 頁 / 共 35 頁 1013091665-0 201230607 路,由此,可以避免第一電荷記憶元件以對電池E進行充 電0 對於能量僅從電池E流向儲能電路的實施方式,開關控制 杈組100用於在開關裝置1導通後流經開關裝置丨的電流為 零%或為零前控制開關裝置1關斷,只要保證電流僅從電 池E流向第一電荷記憶元件以即可。 為了控制能量僅從電池E流向第一電荷記憶元件以,根據 本發明的一種實施方式,如第5圖所示,開關裝置i包括 第一開關K1和第一單向半導體元件j)丨,第一開關κ丨和第 一單向半導體元件D1彼此串聯之後串聯在儲能電路中, 開關控制模組100與第一開關K1連接,用於通過控制第一 開關K1的導通和關斷來控制開關裝置1導通和關斷。通過 串聯第-單向半導體元細,在第__K1失效的情況 下,可以阻止第一電荷記憶元件^中的能量回流,避免 對電池Ε充電。 由於第一開關Κ1關斷時導致的電流下降速率較高會在電 流s己憶元件L1上感應出較高的過電壓,容易導致第一開 關Κ1關斷時由於其電流、電壓超出安全工作區而損壞, 因此優選隋況下,開關控制模組1 〇 〇用於在流經開關裝 置1的電流為零時控制第一開關K1關斷。 為了提高加熱效率,優選情況下,根據本發明的另一種 實施方式,如第6圖所示,開關控制模組100用於在開關 裝置1導通後流經開關裝置1的電流為零前控制開關裝置1 關斷,開關裝置1包括第二單向半導體元件D9、第三單向 半導體元件D10、第二開關K2、第二阻尼元件R4w及第二 電荷記憶元件C3,第二單向半導體元件D9與第二開關K2 10014313#單編號Α0101 第11頁/共35頁 1013091665-0 201230607 順次串聯在儲能電路中,第二阻尼元件R4與第二電荷記 憶元件C3串聯之後並聯在第二開關K2的兩端,第三單向 半導體元件D10並聯在第二阻尼元件R4的兩端,用於在第 二開關K2關斷時對電流記憶元件L1進行續流,開關控制 模組100與第二開關K2連接,用於通過控制第二開關K2的 導通和關斷來控制開關裝置1導通和關斷。 第三單向半導體元件D10、第二阻尼元件R4以及第二電荷 記憶元件C3組成了吸收回路,用於在第二開關K2關斷時 降低儲能電路中電流的下降速率。由此,當第二開關K2 關斷時,電流記憶元件L1上產生的感應電壓會迫使第三 單向半導體元件D10導通並通過第二電荷記憶元件C3實現 續流,使得電流記憶元件L1中電流變化速率降低,限制 了電流記憶元件L1兩端的感應電壓,可以保證第二開關 K2兩端的電壓在安全工作區内。當第二開關K2再次閉合 時,存儲在第二電荷記憶元件C3上的能量可以通過第二 阻尼元件R4進行消耗。 另外,為了提高加熱電路的工作效率,可以控制能量在 電池E與儲能電路之間往復流動,利用電流正向和反向流 經第一阻尼元件R1來實現加熱。 因此,作為本發明提供的加熱電路的一種優選實施方式 ,開關控制模組100用於控制開關裝置1導通和關斷,以 使得當開關裝置1導通時,能量在電池E與儲能電路之間 往復流動。 為了實現能量在電池E與儲能電路之間的往復流動,根據 本發明的一種實施方式,開關裝置1為第一雙向開關K3, 如第7圖所示。由開關控制模組100控制第一雙向開關K3 10014313产單編號 A〇101 第12頁/共35頁 1013091665-0 201230607 的導通與關斷,當需要對電池E加熱時,導通第-雙向開 關K3即可,如暫停加熱或者不需要加熱時關斷第一雙向 開關K3即可。 單獨制-個第-雙向_3實__卜電路簡單 ’佔用系統面積小,容易實現,但是為了實現對反向電 流的關斷,本發明還提供了如下開關裝置i的優選實施方 式。 優選地’開關裝置1包括用於實現能量從電池嫌向儲能 電路的第—單向支路和用於實現能量從儲能電路流向電 池£的第二單向支路,開關控制模組100與第-單向支路 和第二單向支路中的—者或兩者分別連接,用以控制所 連接的支路的導通和關斷。 當電池需要加熱時,導通第—單向支路和第二單向支路 兩者,如暫停加熱可以選擇關斷第一單向支路和第二單 向支路中的一者或兩者,當不需要加熱時,可以關斷第 單向支路和第二單向支路兩者。優選地,第一單向支 Ο 路和第二單向支路兩者都能夠受開關控制模組1〇〇的控制 ,這樣,可以靈活實現能量正向流動和反向流動。 作為開關裝置1的另一種實施方式,如第8圖所示,開關 裝置1可以包括第二雙向開關K4和第三雙向開關K5,第二 雙向開關K4和第三雙向開關K5彼此反向串聯以構成第一 單向支路和第二單向支路,開關控制模組100與第二雙向 開關K4和第三雙向開關£5分別連接,用於通過控制第二 雙向開關K 4和第三雙向開關κ 5的導通和關斷來控制第一 單向支路和第二單向支路的導通和關斷。 當需要對電池E加熱時,導通第二雙向開關K4和第三雙向 100143祕單蝙號A_ 第13頁/此识百 "1 1013091665-0 201230607 開祕即可,如暫停加熱可以選擇關斷第二雙向開嶋 和第三雙向開祕中的—者或者兩者,在不需要加熱時 關斷第二雙向開關K4和第三雙向開嶋即可。這種開關 裳置1的實現方式能夠分別控制第—單向支路和第二單向 支路的導通㈣m現電路的㈣和反向能量流 作為開關裝置1的另一種實施方式,如第9圖所示,開關 裝置1二以包括第三開胸、第四單向半導體元細!以 及第五早向半導體元件D12,第三開關邮第四單向半導 體元件im彼此串聯以構成第—單向支路,第五單向半導 體几件D12構成第二單向支路,開關控制模組⑽與第三 開關〇連接,用於通過控制第三關_導通和關斷來 控制第-單向支路的導通和關斷。在如第9圖所示的開關 裝置1中’當需要加熱時,導通第三開祕即可,不需要 加熱時,關斷第三開·Κ6即可。 如第9圖中所示的開關裝置1的實現方式雖然實現了能量 往返沿著相_立的纽流動,但是還錢實現能量反 向机動時的關斷功能。本發明還提出了開關裝置^的另一 種實^方式,如第10圖所示’開關裝置1還可以包括位於 第二單向支路中的第四開關Π,該第四關Κ7與第五單 向半導體%件D12串聯,開關控制模組丨_與第四開關 Κ7連接,用於通過控制第四開關Κ7的導通和關斷來控制 第二單向支路的導通和關斷。這樣在第_⑼的開關 裝置1中’由於兩個單向支路上均存在開關(即第三開關 ㈣第四開關Κ7) ’同時具備能量正向和反向流動時的 關斷功能。 第14頁/共35頁 10014313#單編號 Α0101 1013091665-0 201230607 優選地’開關裝置1還可以包括與第一單向支路和/或第 二單向支路串聯的電阻,用於減小電池£加熱回路的電流 ,避免回路中電流過大對電池£造成損害。例如,可以在 第8圖中示出的開關裝置!中添加與第二雙向開關以和第 二雙向開關K5串聯的電阻R6,得到開關装置丨的另一種實 現方式’如第11圖所示。第12圖中也示出了開關裝置!的 一種實施方式,其是在第1〇圖中示出的開關裝置】中的兩 個單向支路上分別串聯電阻R2、電阻R3得到的。 對於能量在電池E與儲能電路之間往復流動的實施方式, 開關裝置1可以在一個週期或多個週期内的任意時間點關 斷,開關裝置1的關斷時刻可以是任何時刻,例如流經開 關裝置1的電流為正向/反向時、為零時/不為零時均可以 實施關斷。根據所需要的關斷策略可以選擇開關裝置1的 不同的實現开> 式,如果只需要實現正向電流流動時關斷 ,則選用例如第*7圖、第9圖所示的開關裝置i的實現形式 即可,如果需要實現正向電流和反向電流時均可以關斷 ,則需要選用如第8圖、第10圖所示的兩個單向支路均可 控的開關裝置。 優選地,開關控制模組100用於在開關裝置1導通後流經 開關裝置1的電流為零時或為零後控制開關裝置1關斷。 更加優選地,開關控制模組100用於在開關裝置1導通後 流經開關裝置1的電流為零時控制開關裝置i關斷,採用 零時關斷對整個電路影響較小。 1013091665-0 作為本發明的一種實施方式,可以通過將第一電荷記憶 元件C1中的直接能量轉移到電池E中來提高加熱電路的工 作效率,也可以將第一電荷記憶元件C1中的一部分能量 10014313#單編號A〇101 第15頁/共35頁 201230607 消耗掉之後,再將第一電荷記憶元件ci中的剩餘能量進 行轉移,或者可以將第一電荷記憶元件C1中的,部分能 量轉移之後,再對第一電荷記憶元件C1中的剩餘能量進 行消耗。 因此,如第13圖所示,加熱電路還包括與第一電荷記憶 元件C1連接的能量消耗單元,該能量消耗單元用於在開 關裝置1導通再關斷後、能量轉移單元進行能量轉移之前 ,對第一電荷記憶元件C1中的能量進行消耗,或者在能 量轉移單元進行能量轉移之後,對第一電荷記憶元件C1 中的能量進行消耗。該能量消耗單元可以與以上包括能 量僅從電池E流向儲能電路和能量在電池E與儲能電路之 間往復流動的多種實施方式相結合。第13圖中能量轉移 單元與電池E相連,以用於將能量轉移回電池E中,但根 據之前描述可知,能量轉移單元也可以將能量存儲到其 他儲能元件中。 根據本發明的一種實施方式,如第14圖所示,能量消耗 單元包括電壓控制單元101,該電壓控制單元101與第一 電荷記憶元件C1連接,用於在開關裝置1導通再關斷後、 能量轉移單元進行能量轉移之前,將第一電荷記憶元件 C1兩端的電壓值轉換成電壓設定值,或者在能量轉移單 元進行能量轉移之後,對第一電荷記憶元件C1中的能量 進行消耗。能量消耗和能量轉移的順序可以根據實際操 作的需要進行設定,本發明不對其進行限定。電壓設定 值也可以根據實際操作的需要進行設定。 根據一種實施方式,如第14圖所示,電壓控制單元101包 括第三阻尼元件R5和第五開關K8,第三阻尼元件R5和第 10014313^W A0101 第16頁/共35頁 1013091665-0 201230607 五開關K8彼此串聯之後並聯在第_電荷記憶元件π的兩 端,開關控制模組100還與第五開關K8連接,開關控制模 組1〇〇還用於在控制開關裳置i導通再關斷後控制第:五開 關K8導通。由此’第—電荷記憶元件㈣的能量可以通 過第三阻尼元件R5進行消耗。 為—個單獨的控制器,通過對其内 開關控制模組10 0可以The docking point with the group is respectively connected with the third page 9/35 pages 10014313# single number A0101: the positive end of the pool E, the other two one-way half contacts are connected with the negative end of the battery E, and the group The 3rd and 4th legs of the T3 are connected to 1013091665-0 201230607, thereby forming a bridge rectifier circuit. The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, the drain of the bidirectional switch S1, the bidirectional switch S2 and the first charge storage element C1. The positive terminal is connected, and the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1, thereby constituting a full bridge circuit. In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper bridge arm, the bidirectional switch S3, the bidirectional switch S4 is the lower bridge arm, the node between the 1st pin of the third transformer T3 and the bidirectional switch S1 and the bidirectional switch S3 The connection between the 2 pin and the bidirectional switch S 2 and the bidirectional switch S 4 is connected. The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3 and the bidirectional switch S4 are respectively turned on and off by the control of the switch control module 100. The working process of the second DC-DC module 3 is described below: 1. After the switching device 1 is turned off, the switch control module 100 controls the bidirectional switch S1 and the bidirectional switch S4 to be simultaneously turned on to form the A phase, and the bidirectional switch S2 and the bidirectional switch S3 are simultaneously turned on to form the B phase, and the phase A is controlled. The B phase alternately conducts to form a full bridge circuit for operation; 2. When the full bridge circuit operates, the energy on the first charge storage element C1 is transferred to the battery E through the third transformer T3 and the rectifier circuit, and the rectifier circuit inputs the alternating current Converted to direct current output to battery E, to achieve the purpose of power recharge. In order to prevent the first charge storage element C1 from charging the battery E in a low temperature condition and ensuring the charge and discharge performance of the battery E, as a preferred embodiment of the heating circuit provided by the present invention, the switch control module 100 is used to control the switch device 1 Turning on and off to control energy flow only from battery E to energy storage 10014313# single number leg 01 $ 10 pages / total 35 pages 1013091665-0 201230607 way, thereby avoiding the first charge memory element to perform on battery E Charging 0 For the embodiment in which energy flows only from the battery E to the energy storage circuit, the switch control unit 100 is used to control the switching device 1 to be turned off before the current flowing through the switching device 为零 after the switching device 1 is turned on is zero or zero. As long as the current is guaranteed to flow only from the battery E to the first charge storage element. In order to control the flow of energy only from the battery E to the first charge storage element, according to an embodiment of the present invention, as shown in FIG. 5, the switching device i includes a first switch K1 and a first unidirectional semiconductor element j), A switch 丨 and the first unidirectional semiconductor component D1 are connected in series to each other and then connected in series in the tank circuit, and the switch control module 100 is connected to the first switch K1 for controlling the switch by controlling the on and off of the first switch K1. Device 1 is turned "on" and "off". By serially connecting the first-unidirectional semiconductor element, in the case of the __K1 failure, the energy in the first charge memory element can be prevented from flowing back, thereby avoiding charging of the battery pack. Since the current falling rate caused by the first switch Κ1 is turned off, a high overvoltage is induced on the current s1 element L1, which easily causes the first switch Κ1 to turn off because its current and voltage exceed the safe working area. However, it is preferable that the switch control module 1 is configured to control the first switch K1 to be turned off when the current flowing through the switching device 1 is zero. In order to improve the heating efficiency, preferably, according to another embodiment of the present invention, as shown in FIG. 6, the switch control module 100 is used to control the switch before the current flowing through the switch device 1 is turned on after the switch device 1 is turned on. The device 1 is turned off, and the switching device 1 includes a second unidirectional semiconductor component D9, a third unidirectional semiconductor component D10, a second switch K2, a second damper component R4w, and a second charge memory component C3, and a second unidirectional semiconductor component D9. And the second switch K2 10014313# single number Α 0101 page 11 / total 35 pages 1013091665-0 201230607 sequentially connected in series in the tank circuit, the second damping element R4 and the second charge memory element C3 are connected in series and then connected in parallel to the second switch K2 At both ends, the third unidirectional semiconductor component D10 is connected in parallel at both ends of the second damper component R4 for freewheeling the current memory component L1 when the second switch K2 is turned off, and the switch control module 100 and the second switch K2 The connection is for controlling the switching device 1 to be turned on and off by controlling the turning on and off of the second switch K2. The third unidirectional semiconductor element D10, the second damper element R4, and the second charge memory element C3 constitute an absorption loop for reducing the rate of current drop in the tank circuit when the second switch K2 is turned off. Thus, when the second switch K2 is turned off, the induced voltage generated on the current memory element L1 forces the third unidirectional semiconductor element D10 to be turned on and the freewheeling is performed by the second charge memory element C3, so that the current in the current memory element L1 The rate of change is reduced, limiting the induced voltage across the current memory element L1, which ensures that the voltage across the second switch K2 is within the safe operating area. When the second switch K2 is closed again, the energy stored on the second charge storage element C3 can be consumed by the second damping element R4. Further, in order to improve the operating efficiency of the heating circuit, it is possible to control the energy to reciprocate between the battery E and the storage circuit, and to perform heating by flowing the current forward and reverse through the first damper element R1. Therefore, as a preferred embodiment of the heating circuit provided by the present invention, the switch control module 100 is used to control the switching device 1 to be turned on and off, so that when the switching device 1 is turned on, energy is between the battery E and the storage circuit. Reciprocating flow. In order to achieve a reciprocating flow of energy between the battery E and the energy storage circuit, according to one embodiment of the invention, the switching device 1 is a first bidirectional switch K3, as shown in FIG. The switch control module 100 controls the first bidirectional switch K3 10014313 to produce a single number A 〇 101 page 12 / a total of 35 pages 1013091665-0 201230607 turn on and off, when the battery E needs to be heated, turn on the first - bidirectional switch K3 That is, the first bidirectional switch K3 can be turned off if the heating is suspended or when heating is not required. Separate system-single-bidirectional_3 real__b circuit is simple. The occupied system area is small and easy to implement, but in order to achieve the shutdown of the reverse current, the present invention also provides a preferred embodiment of the following switching device i. Preferably, the switching device 1 comprises a first one-way branch for realizing energy from the battery to the energy storage circuit and a second one-way branch for realizing energy flow from the energy storage circuit to the battery, the switch control module 100 Connected to either or both of the first one-way branch and the second one-way branch to control the turn-on and turn-off of the connected branch. When the battery needs to be heated, turning on both the first one-way branch and the second one-way branch, such as suspending heating, may choose to turn off one or both of the first one-way branch and the second one-way branch When both heating is not required, both the first one-way branch and the second one-way branch can be turned off. Preferably, both the first one-way branch road and the second one-way branch can be controlled by the switch control module 1〇〇, so that energy forward flow and reverse flow can be flexibly realized. As another embodiment of the switching device 1, as shown in FIG. 8, the switching device 1 may include a second bidirectional switch K4 and a third bidirectional switch K5, and the second bidirectional switch K4 and the third bidirectional switch K5 are connected in reverse series with each other. Forming a first one-way branch and a second one-way branch, the switch control module 100 is respectively connected to the second bidirectional switch K4 and the third bidirectional switch £5 for controlling the second bidirectional switch K 4 and the third bidirectional The turn-on and turn-off of the switch κ 5 controls the turn-on and turn-off of the first one-way branch and the second one-way branch. When it is necessary to heat the battery E, turn on the second bidirectional switch K4 and the third bidirectional 100143 singular bat number A_ page 13 / this acquaintance "1 1013091665-0 201230607 open secret, such as suspending heating can choose to turn off The two or both of the second bidirectional opening and the third bidirectional opening may turn off the second bidirectional switch K4 and the third bidirectional opening when heating is not required. The implementation of the switch skirt 1 can respectively control the conduction of the first one-way branch and the second one-way branch (four) and the reverse energy flow as another embodiment of the switching device 1, such as the ninth As shown in the figure, the switching device 1 includes a third open chest and a fourth unidirectional semiconductor element! And the fifth early direction to the semiconductor element D12, the third switch fourth unidirectional semiconductor element im connected in series to form a first one-way branch, the fifth one-way semiconductor several pieces D12 constitute a second one-way branch, the switch control mode The group (10) is connected to the third switch , for controlling the on and off of the first one-way branch by controlling the third off-on and off. In the switching device 1 as shown in Fig. 9, when the heating is required, the third opening can be turned on, and when the heating is not required, the third opening/closing 6 can be turned off. The implementation of the switching device 1 as shown in Fig. 9 realizes the energy reciprocating flow along the phase, but also realizes the shutdown function when the energy is reversely maneuvered. The present invention also proposes another implementation of the switching device ^, as shown in FIG. 10, the switching device 1 may further include a fourth switch 位于 in the second one-way branch, the fourth switch 7 and the fifth The one-way semiconductor component D12 is connected in series, and the switch control module 丨_ is connected to the fourth switch Κ7 for controlling the conduction and the off of the second one-way branch by controlling the on and off of the fourth switch Κ7. Thus, in the switching device 1 of the _(9), since the switches are present on both of the unidirectional branches (i.e., the third switch (four), the fourth switch Κ7)' has the shutdown function when the energy flows in the forward and reverse directions. Page 14 of 35 page 10014313#单号Α0101 1013091665-0 201230607 Preferably, the switching device 1 may further comprise a resistor in series with the first one-way branch and/or the second one-way branch for reducing the battery The current in the heating circuit avoids damage to the battery caused by excessive current in the circuit. For example, the switching device shown in Fig. 8! A resistor R6 in series with the second bidirectional switch and in series with the second bidirectional switch K5 is added to obtain another implementation of the switching device ’ as shown in Fig. 11. The switching device is also shown in Figure 12! An embodiment of the present invention is obtained by connecting a resistor R2 and a resistor R3 to each of the two unidirectional branches in the switching device shown in Fig. 1. For an embodiment in which energy flows back and forth between the battery E and the energy storage circuit, the switching device 1 can be turned off at any time point in one cycle or a plurality of cycles, and the turn-off time of the switching device 1 can be any time, such as a flow. The shutdown can be performed when the current of the switching device 1 is forward/reverse, and when the current is zero/non-zero. According to the required shutdown strategy, different implementations of the switching device 1 can be selected. If only the forward current flow is required to be turned off, the switching device i shown in, for example, FIG. 7 and FIG. 9 is selected. The realization form can be any. If it is necessary to turn off both the forward current and the reverse current, it is necessary to select the two-way branch controllable switching device as shown in Fig. 8 and Fig. 10. Preferably, the switch control module 100 is configured to control the switch device 1 to be turned off when the current flowing through the switch device 1 after the switch device 1 is turned on is zero or zero. More preferably, the switch control module 100 is configured to control the switch device i to be turned off when the current flowing through the switch device 1 is zero after the switch device 1 is turned on, and the zero-time turn-off has less influence on the entire circuit. 1013091665-0 As an embodiment of the present invention, the working efficiency of the heating circuit can be improved by transferring the direct energy in the first charge storage element C1 into the battery E, and a part of the energy in the first charge memory element C1 can also be used. 10014313#单号A〇101 Page 15 of 35 201230607 After consumption, the remaining energy in the first charge memory element ci is transferred, or after part of the energy transfer in the first charge memory element C1 Then, the remaining energy in the first charge storage element C1 is consumed. Therefore, as shown in FIG. 13, the heating circuit further includes an energy consuming unit connected to the first charge storage element C1, and the energy consuming unit is used before the energy transfer unit performs energy transfer after the switching device 1 is turned on and off again. The energy in the first charge storage element C1 is consumed, or after the energy transfer unit performs energy transfer, the energy in the first charge storage element C1 is consumed. The energy consuming unit can be combined with the above various embodiments including energy flowing only from the battery E to the energy storage circuit and energy reciprocating between the battery E and the energy storage circuit. The energy transfer unit of Fig. 13 is connected to the battery E for transferring energy back into the battery E, but as can be seen from the foregoing description, the energy transfer unit can also store energy into other energy storage elements. According to an embodiment of the present invention, as shown in FIG. 14, the energy consuming unit includes a voltage control unit 101 connected to the first charge storage element C1 for after the switching device 1 is turned on and off again, Before the energy transfer unit performs energy transfer, the voltage value across the first charge memory element C1 is converted into a voltage set value, or after the energy transfer unit performs energy transfer, the energy in the first charge memory element C1 is consumed. The order of energy consumption and energy transfer can be set according to the needs of actual operations, and is not limited in the present invention. The voltage setting value can also be set according to the actual operation. According to an embodiment, as shown in Fig. 14, the voltage control unit 101 includes a third damper element R5 and a fifth switch K8, a third damper element R5 and a 10014313^W A0101 page 16 of 35 pages 1013091665-0 201230607 The five switches K8 are connected in series with each other and then connected in parallel at the two ends of the _th charge memory element π, the switch control module 100 is also connected to the fifth switch K8, and the switch control module 1 〇〇 is also used to control the switch to be turned on and off. After the break control: the five switch K8 is turned on. Thereby, the energy of the 'first charge storage element (4) can be consumed by the third damper element R5. For a separate controller, it can be controlled by its internal switch control module 10 0

部程式的設置,可以實現對不同的外接開關的通斷控制 ’開關控制模組100也可以為多個控制器,例如針對每一 個外接開關設置對應的開關控制模組1〇〇,多個開關控制 模組100也可以集成為-體,本發明不對開關控制模組 100的實現形式作出任何限定。 下面結合第15圖-第18圖對電池£的加熱電路的實施方式 的工作方式進行簡單介紹。需要注意的是,雖然本發明 的特徵和元素參考第15圖_第18圖以特定的結合進行了描 述,但每個特徵或元素可以在沒有其他特徵和元素的情 況下單獨使用,或在與或不與其他特徵和元素結合的各 種情況下使用。本發明提供的電池E的加熱電路的實施方 式並不限於第15圖-第18圖所示的實現方式。另外,所示 的波形圖中的網格部分表示在該段時間内可以多次對開 關施加驅動脈衝,並且脈衝的寬度可以根據需要進行調 即0 在如第15圖所示的電池Ε的加熱電路中,使用第一開關〇 和第—單向半導體元件D1構成開關裝置1,儲能電路包括 電流記憶元件L1和第一電荷記憶元件C1,第一阻尼元件 R1和開關裝置1與儲能電路串聯,第二DC-DC模組3構成 能量轉移單元中的電量回灌單元103,開關控制模組1〇〇 10014313#單編號A0101 第Π頁/共35寅 1013091665-0 201230607 可以控制第一開關Κ1的導通和關斷以及第二DC-DC模組3 的工作與否。第16圖為與第15圖的加熱電路對應的波形 時序圖,其中’ vci指的是第一電荷記憶元件C1的電壓值 ,I主指的是流經第一開關Κ1的電流的電流值。該加熱電 路的工作過程如下: a )當需要對電池Ε進行加熱時’開關控制模組1 〇 〇控制第 一開關K1導通,電池E通過第一開關K1、第一單向半導體 元件D1和第一電荷記憶元件C1組成的回路放電,如第1 6 圖中所示的tl時間段;開關控制模組1〇〇在流經第一開關 〇的電流為零時控制第一開關K1關斷,如第16圖中所示 的t2時間段; b) 當第一開關K1關斷後,開關控制模組1〇〇控制第二 DC-DC模組3工作’第一電荷記憶元件(^通過第二dc_dc 模組3將交流電轉化為直流電輸出到電池E中,實現電量 回灌’之後開關控制模組1〇〇控制第二DC_j)C模組3停止 工作,如第16圖中所示的t2時間段; c) 重複步驟a)和b),電池£不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 在如第17圖所示的電池ε的加熱電路中,使用相互串聯的 第三開關K6、第四單向半導體元件DU (第一單向支路) 以及相互串聯的第四開關K7、第五單向半導體元件D12 ( 第一單向支路)構成開關裝置1,儲能電路包括電流記憶 元件L1和第一電荷記憶元件C1,第一阻尼元件^和開關 裝置1與儲能電路串聯,第二DC_DC模組3構成將第一電荷 記憶几件C1中的能量轉移回電池E的電量回灌單元1〇3 , 開關控制模組1〇0可以控制第三開關K6、第四開關K7的導 Ι00143Ι3#·單編號Α0101 第18頁/共35頁 1013091665-0 201230607 通和關斷以及第二DC-DC模組3的工作與否。第18圖為與 第17圖的加熱電路對應的波形時序圖,其中Vei指的是第 一電荷記憶元件C1的電壓值,1±指的是流經第一開關K1 的電流的電流值。第17圖所示的加熱電路的工作過程如 下:The setting of the program can realize the on/off control of different external switches. The switch control module 100 can also be a plurality of controllers, for example, a corresponding switch control module 1 〇〇 for each external switch, multiple switches The control module 100 can also be integrated into a body. The present invention does not limit the implementation form of the switch control module 100. The operation of the embodiment of the heating circuit for the battery will be briefly described below with reference to Figs. 15 to 18. It should be noted that although the features and elements of the present invention are described with reference to FIG. 15 to FIG. 18 in a specific combination, each feature or element may be used alone or without other features and elements. Or not in combination with other features and elements in various situations. The embodiment of the heating circuit of the battery E provided by the present invention is not limited to the embodiment shown in Figs. 15 to 18. In addition, the grid portion in the waveform diagram shown indicates that the drive pulse can be applied to the switch a plurality of times during the period of time, and the width of the pulse can be adjusted as needed, that is, 0. Heating of the battery cartridge as shown in FIG. In the circuit, the first switch 〇 and the first unidirectional semiconductor element D1 are used to form the switching device 1. The energy storage circuit includes a current memory element L1 and a first charge memory element C1, the first damper element R1 and the switching device 1 and the energy storage circuit In series, the second DC-DC module 3 constitutes the power recharging unit 103 in the energy transfer unit, and the switch control module 1〇〇10014313# single number A0101 page/total 35寅1013091665-0 201230607 can control the first switch The turn-on and turn-off of Κ1 and the operation of the second DC-DC module 3. Fig. 16 is a waveform timing chart corresponding to the heating circuit of Fig. 15, wherein 'vci refers to the voltage value of the first charge storage element C1, and I main refers to the current value of the current flowing through the first switch Κ1. The working process of the heating circuit is as follows: a) When the battery pack needs to be heated, the switch control module 1 〇〇 controls the first switch K1 to be turned on, and the battery E passes through the first switch K1, the first unidirectional semiconductor component D1 and the first A circuit composed of a charge memory element C1 is discharged, as in the time period tl shown in FIG. 6; the switch control module 1 控制 controls the first switch K1 to be turned off when the current flowing through the first switch 为零 is zero, The t2 time period as shown in Fig. 16; b) When the first switch K1 is turned off, the switch control module 1 〇〇 controls the second DC-DC module 3 to operate 'the first charge memory element (^ passes the first The second dc_dc module 3 converts the alternating current into a direct current output into the battery E, and after the power is recharged, the switch control module 1〇〇 controls the second DC_j) the C module 3 stops working, as shown in FIG. Time period; c) Repeat steps a) and b), the battery is continuously heated by discharge until the battery E reaches the stop heating condition. In the heating circuit of the battery ε as shown in Fig. 17, a third switch K6, a fourth unidirectional semiconductor element DU (first one-way branch) and a fourth switch K7, fifth connected in series with each other are used in series. The unidirectional semiconductor component D12 (the first one-way branch) constitutes the switching device 1. The energy storage circuit includes a current memory component L1 and a first charge memory component C1. The first damping component and the switching device 1 are connected in series with the energy storage circuit. The DC_DC module 3 constitutes a power recharging unit 1〇3 for transferring the energy in the first charge memory C1 back to the battery E, and the switch control module 1〇0 can control the conduction of the third switch K6 and the fourth switch K7. Ι00143Ι3#·单号Α0101 Page 18/35 pages 1013091665-0 201230607 On and off and the operation of the second DC-DC module 3. Fig. 18 is a waveform timing chart corresponding to the heating circuit of Fig. 17, in which Vei refers to the voltage value of the first charge storage element C1, and 1± refers to the current value of the current flowing through the first switch K1. The operation of the heating circuit shown in Figure 17 is as follows:

a) 開關控制模組100控制第三開關K6、第四開關K7導通 ,儲能電路開始工作,如第18圖所示的tl時間段,電池E 通過第三開關K6、第四單向半導體元件D11、第一電荷記 憶元件C1進行正向放電(如第18圖中的tl時間段即流經 第一開關K1的電流的正半週期所示),並且通過第一電 荷記憶元件C1、第四開關K7、第五單向半導體元件D12反 向充電(如第18圖中的t2時間段即流經第一開關K1的電 流的負半週期所示); b) 開關控制模組100控制第三開關K6、第四開關K7在反 向電流為零時關斷; c) 開關控制模組100控制第二DC-DC模組3工作,第一電 荷記憶元件C1通過第二DC-DC模組3將交流電轉化為直流 電輸出到電池E中,實現電量回灌,之後控制第二DC-DC 模組3停止工作,如第18圖中所示的t3時間段; d) 重複步驟a)至c),電池E不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 本發明提供的加熱電路能夠提高電池的充放電性能,並 且在該加熱電路中,儲能電路與電池串聯,當給電池加 熱時,由於串聯的電荷記憶元件的存在,能夠避免開關 裝置失效短路引起的安全性問題,能夠有效地保護電池 。同時,本發明的加熱電路中還提供了能量轉移單元, 10014313^單編號 A_ 第19頁/共35頁 1013091665-0 201230607 當開關裝置關斷後,該能量轉移單元能夠將儲能電路中 的能量轉移至其他儲能元件或者提供給其他設備,因此 還起到了能量回收利用的作用。 以上結合附圖詳細描述了本發明的優選實施方式,但是 ,本發明並不限於上述實施方式中的具體細節,在本發 明的技術構思範圍内,可以對本發明的技術方案進行多 種簡單變型,這些簡單變型均屬於本發明的保護範圍。 另外需要說明的是,在上述具體實施方式中所描述的各 個具體技術特徵,在不矛盾的情況下,可以通過任何合 適的方式進行組合,為了避免不必要的重複,本發明對 各種可能的組合方式不再另行說明。此外,本發明的各 種不同的實施方式之間也可以進行任意組合,只要其不 違背本發明的思想,其同樣應當視為本發明所公開的内 容。 【圖式簡單說明】 [0005] 附圖是用來提供對本發明的進一步理解,並且構成說明 書的一部分,與下面的具體實施方式一起用於解釋本發 明,但並不構成對本發明的限制。在附圖中: 第1圖為本發明提供的電池的加熱電路的示意圖; 第2圖為第1圖中的能量轉移單元的一種實施方式的示意 圖; 第3圖為第2圖中的電量回灌單元的一種實施方式的示意 圖; 第4圖為第3圖中的第二DC-DC模組的一種實施方式的示意 圖; 第5圖為第1圖中的開關裝置的一種實施方式的示意圖; 1()()14313#單編號A0101 第20頁/共35頁 1013091665-0 201230607 第6圖為第1圖中的開關裝置的一種實施方式的示意圖; 第7圖為第1圖中的開關裝置的一種實施方式的示意圖; 第8圖為第1圖中的開關裝置的一種實施方式的示意圖; 第9圖為第1圖中的開關裝置的一種實施方式的示意圖; 第10圖為第1圖中的開關裝置的一種實施方式的示意圖; 第11圖為第1圖中的開關裝置的一種實施方式的示意圖; 第12圖為第1圖中的開關裝置的一種實施方式的示意圖; 第1 3圖為本發明提供的電池的加熱電路的一種優選實施 方式的示意圖; 第14圖為第13圖中的能量消耗單元的一種實施方式的示 意圖; 第15圖為本發明提供的電池的加熱電路的一種實施方式 的示意圖; 第16圖為第15圖的加熱電路所對應的波形時序圖; 第17圖為本發明提供的電池的加熱電路的一種實施方式 的示意圖;以及 第18圖為第17圖的加熱電路所對應的波形時序圖。 【主要元件符號說明】 [0006] 1 :開關裝置 3 :第二DC-DC模組 100 :開關控制模組 101 :電壓控制單元 103 :電量回灌單元a) The switch control module 100 controls the third switch K6 and the fourth switch K7 to be turned on, and the energy storage circuit starts to work. As shown in FIG. 18, the battery E passes through the third switch K6 and the fourth unidirectional semiconductor component. D11, the first charge storage element C1 performs forward discharge (as shown in the positive half period of the current flowing through the first switch K1 in the tl period in FIG. 18), and passes through the first charge storage element C1, fourth. The switch K7 and the fifth unidirectional semiconductor component D12 are reversely charged (as shown in the negative half cycle of the current flowing through the first switch K1 in the t2 time period in FIG. 18); b) the switch control module 100 controls the third The switch K6 and the fourth switch K7 are turned off when the reverse current is zero; c) the switch control module 100 controls the operation of the second DC-DC module 3, and the first charge memory element C1 passes through the second DC-DC module 3 Converting the alternating current into a direct current output to the battery E to realize the power recharging, and then controlling the second DC-DC module 3 to stop working, as shown in the t3 time period shown in Fig. 18; d) repeating steps a) to c) The battery E is continuously heated by the discharge until the battery E reaches the stop heating condition. The heating circuit provided by the invention can improve the charge and discharge performance of the battery, and in the heating circuit, the energy storage circuit is connected in series with the battery, and when the battery is heated, due to the existence of the series of charge memory elements, the failure of the switching device can be avoided. The safety issue can effectively protect the battery. At the same time, the energy transfer unit is also provided in the heating circuit of the present invention, 10014313^single number A_page 19/35 pages 1013091665-0 201230607, the energy transfer unit can energy in the energy storage circuit when the switching device is turned off Transfer to other energy storage components or to other equipment, so it also plays a role in energy recycling. The preferred embodiments of the present invention have been described in detail above with reference to the drawings, but the present invention is not limited to the specific details of the embodiments described above, and various simple modifications can be made to the technical solutions of the present invention within the scope of the technical idea of the present invention. Simple variations are within the scope of the invention. It should be further noted that the specific technical features described in the above specific embodiments may be combined in any suitable manner without contradiction. In order to avoid unnecessary repetition, the present invention has various possible combinations. The method will not be explained otherwise. In addition, any combination of various embodiments of the invention may be made without departing from the spirit of the invention, and should be considered as the disclosure of the invention. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are intended to be a In the drawings: Fig. 1 is a schematic view showing a heating circuit of a battery provided by the present invention; Fig. 2 is a schematic view showing an embodiment of the energy transfer unit in Fig. 1; FIG. 4 is a schematic diagram of an embodiment of a second DC-DC module in FIG. 3; FIG. 5 is a schematic diagram of an embodiment of the switching device in FIG. 1; 1()()14313#单单A0101 Page 20/35 pages 1013091665-0 201230607 Fig. 6 is a schematic diagram of an embodiment of the switching device of Fig. 1; Fig. 7 is a switching device of Fig. 1. FIG. 8 is a schematic view showing an embodiment of the switch device in FIG. 1; FIG. 9 is a schematic view showing an embodiment of the switch device in FIG. 1; FIG. 10 is a first view 1 is a schematic view of an embodiment of a switching device in FIG. 1; and FIG. 12 is a schematic view showing an embodiment of the switching device in FIG. 1; The figure provides the battery provided by the invention A schematic diagram of a preferred embodiment of a heating circuit; FIG. 14 is a schematic diagram of an embodiment of the energy consuming unit of FIG. 13; FIG. 15 is a schematic diagram of an embodiment of a heating circuit for a battery provided by the present invention; Figure 17 is a waveform timing diagram corresponding to the heating circuit of Figure 15; Figure 17 is a schematic diagram of an embodiment of the heating circuit of the battery provided by the present invention; and Figure 18 is a waveform timing corresponding to the heating circuit of Figure 17. Figure. [Main component symbol description] [0006] 1 : Switching device 3 : Second DC-DC module 100 : Switch control module 101 : Voltage control unit 103 : Power refill unit

Cl、C3 :電荷記憶元件 E :電池 LI ' L4 :電流記憶元件 1013091665-0 1()。14313产單編號A0101 第21頁/共35頁 201230607 R1、R4、R5 : P且尼元件 R2、R3、R6 :電阻 S1〜S4 :雙向開關 T3 :變壓器 ΚΙ、K2、K6、K7、K8 :開關 K3、K4、K5 :雙向開關 Dl、D9、DIO、Dll、D12 :單向半導體元件 vei:第一電荷記憶元件C1的電壓值 I 流經第一開關K1的電流的電流值 王 · 時間段 10014313^^'^^ A〇101 第22頁/共35頁 1013091665-0Cl, C3: Charge Memory Element E: Battery LI ' L4 : Current Memory Element 1013091665-0 1(). 14313 Production Order No. A0101 Page 21 of 35201230607 R1, R4, R5: P and Ni components R2, R3, R6: Resistor S1~S4: Bidirectional switch T3: Transformer ΚΙ, K2, K6, K7, K8: Switch K3, K4, K5: bidirectional switches D1, D9, DIO, D11, D12: unidirectional semiconductor component vei: voltage value of first charge storage element C1 current value of current flowing through first switch K1 Wang·time period 10014313 ^^'^^ A〇101 Page 22 of 35 Page 1013091665-0

Claims (1)

201230607 七、申請專利範圍: 1 . 一種電池的加熱電路,該加熱電路包括: 開關裝置; 第一阻尼元件; 儲能電路,所述儲能電路與所述電池連接,所述儲能電路 包括電流記憶元件和第一電荷記憶元件,所述第一阻尼元 件和開關裝置與所述儲能電路串聯; 開關控制模組,所述開關控制模組與開關裝置連接,用於 ^ 控制開關裝置導通和關斷,以控制能量在所述電池與所述 儲能電路之間的流動;以及 能量轉移單元,所述能量轉移單元與所述儲能電路連接, 用於在開關裝置導通再關斷後,將儲能電路中的能量轉移 至儲能元件中。 2.如申請專利範圍第1項所述的加熱電路,其中,所述第一 阻尼元件為所述電池内部的寄生電阻,所述電流記憶元件 為所述電池内部的寄生電感;或者,所述第一阻尼元件為 Q 外接電阻,所述電流記憶元件為外接電感,所述第一電荷 記憶元件為電容。 3 .如申請專利範圍第2項所述的加熱電路,其中,所述儲能 元件為所述電池,所述能量轉移單元包括電量回灌單元, 所述電量回灌單元與所述儲能電路連接,用於在所述開關 裝置導通再關斷後,將所述儲能電路中的能量轉移至所述 電池中。 4.如申請專利範圍第3項所述的加熱電路,其中,所述電量 回灌單元包括第二DC-DC模組,所述第二DC-DC模組與所 10014313#單編號 A0101 第23頁/共35頁 1013091665-0 201230607 述第-電荷記憶元件和所述電池分別連接,所述開關控制 模组還與所述第填—此模組連接,用於通過控制所述第 二DC-DC模組工作來將所述第—電荷記憶元件中的能量轉 移到所述電池中。 5 .如申清專利fc圍第2項所述的加熱電路,其中,所述開關 控制模組用於控制所述開關裝置導通和關斷,以控制能量 僅從所述電池流向所述儲能電路。 6 .如申凊專利範圍第5項所述的加熱電路,其中,所述開關 裝置包括第-開關和第一單向半導體元件,所述第一開關 和所述第-單向半導體元件彼此串聯之後串聯在所述儲能 電路中,所述開關控制模組與所述第一開關連接,用於通 U控制所述第開關的導通和關斷來控制所述開關裝置導 通和關斷。 7. 如申請專利範圍第5項所述的加熱電路,其中,所述開關 控ϋ模、,且用於在所述開關裝置導通後流經所述開關裝置的 電流為零時或為零前控制所述開關裝置關斷。 8. 如申请專利範圍第7項所述的加熱電路其中所述開關 控制模組用於在所述開關褒置導通後流經所述開關裝置的 電流為零前控制開關裝置關斷,所述開關裝置包括第二單 向半導體元件、第三單向半導體元件、第二開關、第二阻 尼元件以及第二電荷記憶元件,所述第二單向半導體元件 與所述第二開關順次串聯在所述儲能電路中,所述第二阻 尼元件與所述第二電荷記憶元件㈣之後並聯在所述第二 開關的兩端,所述第三單向半導體元件並聯在所述第二阻 尼元件的兩端’用於在所述第二開關關斷時對所述電流記 憶元件進行續流,所述開關控制模組與所述第二開關連接 10014313#單編號Α0101 第24頁/共35頁 1013091665-0 201230607 ,用於通過_所述第二 關裝置導的導通和_來控制所述開 如申請專職_2項_“ 控制模組賴_料_ /、巾所述開關 述開關裝置導通時,能f、通和關斷,以使得當所 往復流動。 b 所述電池與所述儲能電路之間 ίο 11 Ο 如申請專利範園第9項所述 裝置為第一雙向„。 …、電路’其中,所述開關 如申請專職項所述 裝置包括用於實現能量電也電路,其中,所述開關 一單向支路和用於實現能量從^流向所述儲能電路的第 述開關控制模組與所述第-單向支路 = 早^路巾I 者分職接,用於通過 X 1所連接的支路的導通和關斷來控制所述開關裝置導通 和關斷。 12 ·如申請專利範圍第u項所述的加熱電路,其中,所述開關 裝置匕括第一雙向開關和第三雙向開關,所述第二雙向開 關和所述第二雙向開關彼此反向串聯以構成所述第一單向 支路和所述第二單向支路,所述開關控制模組與所述第二 雙向開關和所述第三雙向開關分別連接 ,用於通過控制第 一雙向開關和所述第三雙向開關的導通和關斷來控制所述 第一單向支路和所述第二單向支路的導通和關斷。 13 .如申請專利範圍第u項所述的加熱電路,其中,所述開關 裝置包括第三開關、第四單向半導體元件以及第五單向半 導體元件,所述第三開關和第四單向半導體元件彼此串聯 以構成所述第一單向支路,第五單向半導體元件構成所述 A單编號 10014313Γ A0101 第25頁/共35頁 1013091665-0 201230607 第二單向支路,所述開關控制模組與所述第三開關連接, 用於通過控制所述第三開關的導通和關斷來控制所述第一 單向支路的導通和關斷。 14 .如申請專利範圍第13項所述的電池的加熱電路,其中,所 述開關裝置還包括位於所述第二單向支路中的第四開關, 所述第四開關與第五單向半導體元件串聯,所述開關控制 模組還與所述第四開關連接,用於通過控制所述第四開關 的導通和關斷來控制所述第二單向支路的導通和關斷。 15 .如申請專利範圍第11項所述的加熱電路,其中,所述開關 裝置還包括與所述第一單向支路和/或所述第二單向支路 串聯的電阻。 16 .如申請專利範圍第9項所述的加熱電路,其中,所述開關 控制模組用於在所述開關裝置導通後流經所述開關裝置的 電流為零時或為零後控制所述開關裝置關斷。 17 .如申請專利範圍第卜16項中任一項申請專利範圍所述的 加熱電路,其中,所述加熱電路還包括與所述第一電荷記 憶元件連接的能量消耗單元,所述能量消耗單元用於在所 述開關裝置導通再關斷後、所述能量轉移單元進行能量轉 移之前,對所述第一電荷記憶元件中的能量進行消耗,或 者在所述能量轉移單元進行能量轉移之後,對所述第一電 荷記憶元件中的能量進行消耗。 18 .如申請專利範圍第17項所述的加熱電路,其中,所述能量 消耗單元包括電壓控制單元,所述電壓控制單元與所述第 一電荷記憶元件連接,用於在所述開關裝置導通再關斷後 、所述能量轉移單元進行能量轉移之前,將所述第一電荷 記憶元件兩端的電壓值轉換成電壓設定值,或者在所述能 10014313^^·^ A0101 第26頁/共35頁 1013091665-0 201230607 量轉移單元進行能量轉移之後,對所述第一電荷記憶元件 中的能量進行消耗。 19.如申請專利範圍第18項所述的加熱電路,其中,所述電壓 控制單元包括第三阻尼元件和第五開關,所述第三阻尼元 件和所述第五開關彼此串聯之後並聯在所述第一電荷記憶 元件的兩端,所述開關控制模組還與所述第五開關連接, 所述開關控制模組還用於在控制所述開關裝置導通再關斷 後控制所述第五開關導通。 〇 1001431#單編號 A〇101 第27頁/共35頁 1013091665-0201230607 VII. Patent application scope: 1. A heating circuit for a battery, the heating circuit comprising: a switching device; a first damping element; a storage circuit, the energy storage circuit is connected to the battery, and the energy storage circuit comprises a current a memory element and a first charge memory element, the first damping element and the switching device being connected in series with the energy storage circuit; a switch control module, the switch control module being connected to the switch device for controlling the conduction of the switch device Turning off to control the flow of energy between the battery and the energy storage circuit; and an energy transfer unit coupled to the energy storage circuit for after the switching device is turned on and off again, The energy in the tank circuit is transferred to the energy storage element. 2. The heating circuit of claim 1, wherein the first damping element is a parasitic resistance inside the battery, and the current memory element is a parasitic inductance inside the battery; or The first damper element is a Q external resistor, the current memory element is an external inductor, and the first charge memory element is a capacitor. 3. The heating circuit of claim 2, wherein the energy storage component is the battery, the energy transfer unit comprises a power refill unit, the power recharge unit and the energy storage circuit And a connection for transferring energy in the energy storage circuit to the battery after the switching device is turned on and off. 4. The heating circuit of claim 3, wherein the power refill unit comprises a second DC-DC module, the second DC-DC module and the 10014313# single number A0101 23 Page 35 of 1013091665-0 201230607 The first-charge memory element and the battery are respectively connected, and the switch control module is further connected with the first filling module for controlling the second DC- The DC module operates to transfer energy in the first charge storage element into the battery. 5. The heating circuit of claim 2, wherein the switch control module is configured to control the switching device to be turned on and off to control energy flow only from the battery to the energy storage. Circuit. 6. The heating circuit of claim 5, wherein the switching device comprises a first switch and a first unidirectional semiconductor component, the first switch and the first unidirectional semiconductor component being connected in series And then connected in series in the energy storage circuit, the switch control module is connected to the first switch, and is used to control the on and off of the switch to control the on and off of the switch device. 7. The heating circuit of claim 5, wherein the switch is controlled, and the current flowing through the switching device after the switching device is turned on is zero or zero The switching device is controlled to be turned off. 8. The heating circuit of claim 7, wherein the switch control module is configured to control the switch device to turn off before the current flowing through the switch device is zero after the switch is turned on, The switching device includes a second unidirectional semiconductor component, a third unidirectional semiconductor component, a second switch, a second damper component, and a second charge memory component, wherein the second unidirectional semiconductor component and the second switch are sequentially connected in series In the tank circuit, the second damper element and the second charge memory element (4) are then connected in parallel at both ends of the second switch, and the third unidirectional semiconductor element is connected in parallel to the second damper element The two ends 'for renewing the current memory element when the second switch is turned off, the switch control module is connected with the second switch 10014313#单号Α0101 page 24/total 35 page 1013091665 -0 201230607, for controlling the opening of the application by the _the second closing device and the ___ control module _ _ /, the switch said switching device is turned on , F, on and off, so that when the reciprocating flow. b between the battery and the tank circuit as patent ίο 11 Ο Park range of the device 9 for the first bidirectional item. " The circuit of the switch, as claimed in the application for the full-time item, includes a circuit for implementing energy, and wherein the switch has a one-way branch and a means for realizing energy flow from the energy storage circuit The switch control module is connected to the first one-way branch = early road towel I for controlling the switching device to be turned on and off by turning on and off the branch connected by X 1 . 12. The heating circuit of claim 5, wherein the switching device comprises a first bidirectional switch and a third bidirectional switch, the second bidirectional switch and the second bidirectional switch being connected in series with each other To form the first unidirectional branch and the second unidirectional branch, the switch control module is respectively connected to the second bidirectional switch and the third bidirectional switch for controlling the first bidirectional Turning on and off of the switch and the third bidirectional switch to control conduction and deactivation of the first one-way branch and the second one-way branch. The heating circuit of claim 5, wherein the switching device comprises a third switch, a fourth unidirectional semiconductor component, and a fifth unidirectional semiconductor component, the third switch and the fourth unidirectional The semiconductor elements are connected in series to each other to form the first unidirectional branch, and the fifth unidirectional semiconductor element constitutes the A single number 10014313 Γ A0101 page 25 / 35 pages 1013091665-0 201230607 second unidirectional branch, said The switch control module is coupled to the third switch for controlling the turning on and off of the first one-way branch by controlling the turning on and off of the third switch. The heating circuit of the battery of claim 13, wherein the switching device further comprises a fourth switch located in the second one-way branch, the fourth switch and the fifth one-way The semiconductor components are connected in series, and the switch control module is further connected to the fourth switch for controlling the on and off of the second one-way branch by controlling the on and off of the fourth switch. The heating circuit of claim 11, wherein the switching device further comprises a resistor in series with the first one-way branch and/or the second one-way branch. The heating circuit of claim 9, wherein the switch control module is configured to control the current flowing through the switching device after the switching device is turned on, or after zero The switching device is turned off. The heating circuit of claim 1, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit And consuming the energy in the first charge storage element after the energy transfer unit performs energy transfer after the switching device is turned on and off again, or after the energy transfer unit performs energy transfer, The energy in the first charge storage element is consumed. The heating circuit of claim 17, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for conducting in the switching device After the power is turned off, the voltage transfer unit is converted into a voltage setting value, or Page 1013091665-0 201230607 After the amount transfer unit performs energy transfer, the energy in the first charge storage element is consumed. 19. The heating circuit of claim 18, wherein the voltage control unit comprises a third damping element and a fifth switch, the third damping element and the fifth switch being connected in series after being connected in parallel The switch control module is further configured to be connected to the fifth switch, the switch control module is further configured to control the fifth after controlling the switch device to be turned on and off again The switch is turned on. 〇 1001431#单单 A〇101 Page 27 of 35 1013091665-0
TW100143132A 2010-12-23 2011-11-24 Battery heating circuit TWI430536B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106047145A CN102074759B (en) 2010-07-30 2010-12-23 Heating circuit of battery

Publications (2)

Publication Number Publication Date
TW201230607A true TW201230607A (en) 2012-07-16
TWI430536B TWI430536B (en) 2014-03-11

Family

ID=46934195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100143132A TWI430536B (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (1) TWI430536B (en)

Also Published As

Publication number Publication date
TWI430536B (en) 2014-03-11

Similar Documents

Publication Publication Date Title
EP2413463B1 (en) Battery heating circuit
TW201251260A (en) Battery heating circuit
TWI477027B (en) Battery heating circuit
TWI433429B (en) Battery heating circuit
TW201230607A (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWI469473B (en) Battery heating circuit
TWI433428B (en) Battery heating circuit
TWI427894B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI464999B (en) Battery heating circuit
TWM434312U (en) Battery heating circuit
TWM436949U (en) Battery heating circuit
TWM438031U (en) Battery heating circuit
TWM438034U (en) Battery heating circuit
TWM437537U (en) Battery heating circuit