TWI433429B - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TWI433429B
TWI433429B TW100143162A TW100143162A TWI433429B TW I433429 B TWI433429 B TW I433429B TW 100143162 A TW100143162 A TW 100143162A TW 100143162 A TW100143162 A TW 100143162A TW I433429 B TWI433429 B TW I433429B
Authority
TW
Taiwan
Prior art keywords
battery
switching device
memory element
charge
current
Prior art date
Application number
TW100143162A
Other languages
Chinese (zh)
Other versions
TW201233000A (en
Inventor
Wenhui Xu
Yaochuan Han
Wei Feng
Qinyao Yang
Wenjin Xia
Shibin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010106047446A external-priority patent/CN102074761B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201233000A publication Critical patent/TW201233000A/en
Application granted granted Critical
Publication of TWI433429B publication Critical patent/TWI433429B/en

Links

Classifications

    • Y02T10/7005
    • Y02T10/7022
    • Y02T10/7055
    • Y02T90/127

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

一種電池的加熱電路Battery heating circuit

本發明屬於電子設備技術領域,尤其涉及一種電池的加熱電路。
The invention belongs to the technical field of electronic devices, and in particular relates to a heating circuit of a battery.

考慮到汽車需要在複雜的路況和環境條件下行駛,或者有些電子設備需要在較差的環境條件中使用的情況,所以,作為電動車或電子設備電源的電池就需要適應這些複雜的狀況。而且除了需要考慮這些狀況,還需考慮電池的使用壽命及電池的充放電迴圈性能,尤其是當電動車或電子設備處於低溫環境中時,更需要電池具有優異的低溫充放電性能和較高的輸入輸出功率性能。
一般而言,如果在低溫條件下對電池充電的話,將會導致電池的阻抗增大,極化增強,從而導致電池的容量下降,最終導致電池壽命的降低。

Considering that cars need to travel under complex road conditions and environmental conditions, or that some electronic devices need to be used in poor environmental conditions, batteries that are power sources for electric vehicles or electronic devices need to adapt to these complex conditions. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher Input and output power performance.
In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase, the polarization will increase, and the capacity of the battery will decrease, eventually leading to a decrease in battery life.

本發明的目的是針對電池在低溫條件下會導致電池的阻抗增大,極化增強,由此導致電池的容量下降的問題,為了保持電池在低溫條件下的容量,提高電池的充放電性能,本發明提供一種電池的加熱電路。
本發明提供一種電池的加熱電路,所述電池包括第一電池和第二電池,所述加熱電路包括第一開關裝置、第二開關裝置、開關控制模組、第一阻尼元件R1、第二阻尼元件R2、第一電流記憶元件L1、第二電流記憶元件L2、以及電荷記憶元件,其中,所述第一電池與第二電池正向串聯,所述第一電池、第一阻尼元件R1、電流記憶元件L1、第一開關裝置、以及所述電荷記憶元件C相串聯以構成第一充放電電路;所述第二電池、第二阻尼元件R2、第二電流記憶元件L2、電荷記憶元件C以及所述第二開關裝置相串聯以構成第二充放電電路,在對所述電荷記憶元件C充放電時,所述第二充放電電路的充放電方向與所述第一充放電電路的充放電方向相反;所述開關控制模組分別與所述第一開關裝置和所述第二開關裝置電連接,用於控制所述第一開關裝置和所述第二開關裝置交替導通,以控制電能在所述第一電池、電荷記憶元件C以及所述第二電池之間的流動。
在本發明提供的電池的加熱電路中,可通過開關控制模組控制所述第一開關裝置和第二開關裝置交替導通,從而實現電能在第一電池、電荷記憶元件C以及第二電池之間的交替往復流動,從而導致第一阻尼元件R1和第二阻尼元件R2發熱,以對第一電池和第二電池進行加熱。由於以電荷記憶元件C而言,第二充放電電路的充放電方向與所述第一充放電電路的充放電方向相反,由第一電池所充入電荷記憶元件C的能量可順利轉移至第二電池,加熱效率高。
在本發明提供的加熱電路中,電荷記憶元件與電池串聯,當給電池加熱時,由於串聯的電荷記憶元件的存在,能夠避免開關裝置失效短路引起的安全性問題,能夠有效地保護電池。
本發明的其他特徵和優點將在隨後的具體實施方式部分予以詳細說明。

The object of the present invention is to solve the problem that the battery will increase the impedance of the battery under low temperature conditions, and the polarization is enhanced, thereby causing the capacity of the battery to decrease. In order to maintain the capacity of the battery under low temperature conditions, the charge and discharge performance of the battery is improved. The invention provides a heating circuit for a battery.
The invention provides a heating circuit for a battery, the battery comprising a first battery and a second battery, the heating circuit comprising a first switching device, a second switching device, a switch control module, a first damping element R1, and a second damping The element R2, the first current memory element L1, the second current memory element L2, and the charge memory element, wherein the first battery and the second battery are connected in series, the first battery, the first damping element R1, and the current The memory element L1, the first switching device, and the charge memory element C are connected in series to form a first charging and discharging circuit; the second battery, the second damping element R2, the second current memory element L2, the charge memory element C, and The second switching device is connected in series to form a second charging and discharging circuit. When the charging and discharging device C is charged and discharged, the charging and discharging direction of the second charging and discharging circuit and the charging and discharging of the first charging and discharging circuit The switch control module is electrically connected to the first switch device and the second switch device, respectively, for controlling the first switch device and the second switch device Alternatingly conducting to control the flow of electrical energy between the first battery, the charge storage element C, and the second battery.
In the heating circuit of the battery provided by the present invention, the first switching device and the second switching device can be alternately turned on by the switch control module, thereby realizing electrical energy between the first battery, the charge storage element C and the second battery. The alternating reciprocating flow causes the first damping element R1 and the second damping element R2 to generate heat to heat the first battery and the second battery. In the charge storage device C, the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit, and the energy charged by the first battery into the charge memory element C can be smoothly transferred to the first Two batteries, high heating efficiency.
In the heating circuit provided by the present invention, the charge memory element is connected in series with the battery. When the battery is heated, due to the presence of the series of charge memory elements, the safety problem caused by the failure of the switching device can be avoided, and the battery can be effectively protected.
Other features and advantages of the invention will be described in detail in the detailed description which follows.

以下結合附圖對本發明的具體實施方式進行詳細說明。應當理解的是,此處所描述的具體實施方式僅用於說明和解釋本發明,並不用於限制本發明。
需要指出的是,除非特別說明,當下文中提及時,術語“開關控制模組”為任意能夠根據設定的條件或者設定的時刻輸出相應的控制指令(例如具有相應占空比的脈衝波形)從而控制與其連接的開關裝置相應地導通或關斷的控制器,例如可以為PLC(可編程控制器)等;當下文中提及時,術語“開關”指的是可以通過電信號實現通斷控制或者根據元器件自身的特性實現通斷控制的開關,既可以是單向開關,例如由雙向開關與二極體串聯構成的可單嚮導通的開關等,也可以是雙向開關,例如金屬氧化物半導體型場效應管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)或帶有反並續流二極體的IGBT(Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等;當下文中提及時,術語“雙向開關”指的是可以通過電信號實現通斷控制或者根據元器件自身的特性實現通斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續流二極體的IGBT等;當下文中提及時,單向半導體元件指的是具有單嚮導通功能的半導體元件,例如二極體等;當下文中提及時,術語“電荷記憶元件”指任意可以實現電荷存儲的裝置,例如電容等;當下文中提及時,術語“電流記憶元件”指任意可以對電流進行存儲的裝置,例如電感等;當下文中提及時,術語“正向”指能量從電池向儲能電路流動的方向,術語“反向”指能量從儲能電路向電池流動的方向;當下文中提及時,術語“電池”包括一次電池(例如乾電池、鹼性電池等)和二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛酸電池等);當下文中提及時,術語“阻尼元件”指任意通過對電流的流動起阻礙作用以實現能量消耗的裝置,例如可以為電阻等;當下文中提及時,術語“主回路”指的是電池與阻尼元件、開關裝置以及儲能電路串聯組成的回路。
這裏還需要特別說明的是,考慮到不同類型的電池的不同特性,在本發明中,“電池”可以指不包含內部寄生電阻和寄生電感、或者內部寄生電阻的阻值和寄生電感的電感值較小的理想電池,也可以指包含有內部寄生電阻和寄生電感的電池包。因此,本領域技術人員應當理解的是,當“電池”為不包含內部寄生電阻和寄生電感、或者內部寄生電阻的阻值和寄生電感的電感值較小的理想電池時,第一阻尼元件R1和第二阻尼元件R2分別指的是第一電池和第二電池外部的阻尼元件,第一電流記憶元件L1和第二電流記憶元件L2分別指的是第一電池和第二電池外部的電流記憶元件;當“電池”為包含有內部寄生電阻和寄生電感的電池包時,第一阻尼元件R1和第二阻尼元件R2既可以分別指第一電池和第二電池外接的阻尼元件,也可以分別指第一電池包和第二電池包內部的寄生電阻,同樣地,第一電流記憶元件L1和第二電流記憶元件L2既可以分別指第一電池和第二電池外部的電流記憶元件,也可以分別指第一電池包和第二電池包內部的寄生電感。
在本發明的實施例中,為了保證電池的使用壽命,需要在低溫情況下對電池進行加熱,當達到加熱條件時,控制加熱電路開始工作,對電池進行加熱,當達到停止加熱條件時,控制加熱電路停止工作。
在電池的實際應用中,隨著環境的改變,可以根據實際的環境情況對電池的加熱條件和停止加熱條件進行設置,以從對電池的溫度進行更精確的控制,從而保證電池的充放電性能。
第1圖為本發明第一實施方式的加熱電路的電路圖。如第1圖所示,本發明提供了一種電池的加熱電路,所述電池包括第一電池和第二電池,其中,加熱電路包括第一開關裝置10、第二開關裝置20、第一阻尼元件R1、第二阻尼元件R2、第一電流記憶元件L1、第二電流記憶元件L2、開關控制模組100、以及電荷記憶元件C。其中,第一電池與第二電池正向串聯,第一電池、第一阻尼元件R1、第一電流記憶元件L1、第一開關裝置10、以及電荷記憶元件C相串聯,構成第一充放電電路;第二電池、第二阻尼元件R2、第二電流記憶元件L2、電荷記憶元件C以及第二開關裝置20相串聯,構成第二充放電電路。在對電荷記憶元件C充放電時,該第二充放電電路的充放電方向與第一充放電電路的充放電方向相反。開關控制模組100分別與第一開關裝置10和第二開關裝置20電連接,用於控制第一開關裝置10和第二開關裝置20交替導通,以控制電能在第一電池、電荷記憶元件C以及第二電池之間的流動。
其中,開關控制模組100可控制第一開關裝置10和第二開關裝置20進行開關狀態切換,例如第一開關裝置10由導通狀態切換為關斷狀態,而第二開關裝置20由關斷狀態切換為導通狀態,從而使得由一個電池存儲在電荷記憶元件C內的電能流入到另一個電池內。該電能的流動會伴隨著的電流的產生,通過不斷使電流流經第一阻尼元件R1和第二阻尼元件R2,以使第一阻尼元件R1和第二阻尼元件R2可以產生熱量,從而對該第一電池E1和第二電池E2進行加熱。

第2圖為本發明第一實施方式的加熱電路的波形時序圖。以下結合第2圖描述本發明提供的加熱電路的具體工作過程。首先,開關控制模組100控制第一開關裝置10導通、第二開關裝置20斷開,第一電池E1、第一阻尼元件R1、電流記憶元件L1、第一開關裝置10以及電荷記憶元件C構成一個充放電電路,該充放電電路進行充放電(如第2圖中的時間段t1~t2所示,時間段t1表示該充放電電路的充電時間段,在該時間段t1結尾處,電荷記憶元件C的電容電壓UC為正半週期峰值,電容電流IC 經正半週期之後為零;時間段t2表示該充放電電路的放電時間段)。在一個充放電週期結束之後(此時電荷記憶元件C的電流IC 經負半週期之後為零),開關控制模組100控制第一開關裝置10斷開、第二開關裝置20導通,第二電池E2、第二阻尼元件R2、第二電流記憶元件L2、電荷記憶元件C以及第二開關裝置20構成一個充放電電路,該充放電電路進行充放電(如第2圖中的時間段t3~t4所示,時間段t3表示該充放電電路的充電時間段,時間段t4表示該充放電電路的放電時間段)。在該充放電電路的一個充放電週期結束之後(此時電荷記憶元件C的電流IC 經正半週期之後為零,整個加熱電路完成一個完整工作週期),開關控制模組100再次控制第一開關裝置10導通、第二開關裝置20斷開,如此循環往復,使得電流不斷流過第一阻尼元件R1和第二阻尼元件R2,使得第一阻尼元件R1和第二阻尼元件R2可以產生熱量,從而對該第一電池E1和第二電池E2進行加熱,直至加熱完畢為止。

在本發明加熱電路的以上工作過程中,可使得電流在第一電池E1和第二電池E2之間交替往復流動,實現了兩個正向串聯的電池的交替加熱,加熱效率高。
第3圖為根據本發明第二實施方式的加熱電路的電路圖。優選地,如第3圖所示,本發明的加熱電路還包括第三電流記憶元件L10和第四電流記憶元件L20。第三電流記憶元件L10串聯在第一充放電電路中,第四電流記憶元件L20串聯在第二充放電電路中。藉此,可以利用第三電流記憶元件L10和第四電流記憶元件L20,實現電容電流IC (即,流經第一電池E1和第二電池E2以及第一開關裝置10和第二開關裝置20的電流)的雙向限流,減小了流經第一電池E1和第二電池E2以及第一開關裝置10和第二開關裝置20的電流大小,達到了保護第一電池E1和第二電池E2以及第一開關裝置10和第二開關裝置20的目的。第4圖為該根據本發明第二實施方式的加熱電路的波形時序圖,如第4圖所示,相比於第2圖所示的電容電流IC ,第4圖所示電容電流IC 的波形較為平滑,其峰值及穀值皆遠小於第2圖所示的電容電流IC 的峰值及穀值。
第5圖為根據本發明第三實施方式的加熱電路的電路圖。優選地,如第5圖所示,本發明的加熱電路還可包括第三電流記憶元件L10、第四電流記憶元件L20、第一單向半導體元件D1、第二單向半導體元件D2、第三單向半導體元件D10以及第四單向半導體元件D20。其中,第一單向半導體元件D1與第一開關裝置10相串聯,相串聯的第一電流記憶元件L1與第一單向半導體元件D1並聯於相串聯的第三單向半導體元件D10與第一開關裝置10的兩端,以對第一充放電電路進行反向限流;以及第二單向半導體元件D2與第二開關裝置20相串聯,相串聯的第二電流記憶元件L2與第二單向半導體元件D2並聯於相串聯的第四單向半導體元件D20與第二開關裝置20的兩端,以對第二充放電電路進行反向限流。藉此,可實現電容電流(即,流經第一電池E1和第二電池E2的電流)的單向限流(即,對第一電池E1和第二電池E2充電時進行限流),從而相比於第二實施方式的加熱電路(雙向限流),可在保護第一電池E1和第二電池E2以及第一開關裝置10和第二開關裝置20的同時,進一步提升加熱效率。第6圖為該根據本發明第三實施方式的加熱電路的波形時序圖,如第6圖所示,相比於第4圖所示的電容電流IC ,第6圖所示電容電流IC 在正半週期的峰值較高。
第7圖為本發明提供的加熱電路中的開關裝置的一種實施方式的電路圖。如第7圖所示,第一開關裝置10和/或第二開關裝置20可包括開關K11和與該開關K11反向並聯的第五單向半導體元件D11。其中,開關控制模組100與開關K11電連接,用於通過控制開關K11的導通和關斷來控制第一開關裝置10正向支路的導通和關斷。對該開關K11的導通和關斷控制可在第2圖、第4圖以及第6圖中所示的網格區段中進行,開關控制模組100可在流經第一開關裝置10或第二開關裝置20的電流過零時或電流過零之後,控制第一開關裝置10和第二開關裝置20進行開關狀態切換。
本發明所提供的加熱電路具備以下優點:
(1)由於就電荷記憶元件而言,第二充放電電路的充放電方向與所述第一充放電電路的充放電方向相反,因此電能可於第一電池E1、電荷記憶元件以及第二電池E2之間的交替往復流動,藉此所產生的電流可使得第一阻尼元件R1和第二阻尼元件R2發熱,從而對第一電池E1和第二電池E2進行加熱,實現了對第一電池E1和第二電池E2交替加熱,加熱效率高。
(2)由於電流記憶元件的限流作用以及每一時間週期僅形成單個充放電電路,從而使得流經第一電池E1和第二電池E2以及第一開關裝置10和第二開關裝置20的電流較小,另外,充放電電路的構成以及第一電流記憶元件L1、第一電流記憶元件L2的存在亦可進一步限制流經第一電池E1和第二電池E2以及第一開關裝置10和第二開關裝置20的電流,從而避免了大電流損害電池以及開關裝置。
(3)在使用單向限流時,可增大第一電池E1和第二電池E2的放電效率,同時反向充電電流受限以避免損害第一電池E1和第二電池E2,從而於保證了不損害第一電池E1和第二電池E2以及開關裝置的同時,更增加熱效率。
(4)在本發明提供的加熱電路中,電荷記憶元件與電池串聯,當給電池加熱時,由於串聯的電荷記憶元件的存在,能夠避免開關裝置失效短路引起的安全性問題,從而有效地保護電池。
雖然本發明已通過上述實施例所公開,然而上述實施例並非用以限定本發明,任何本發明所屬技術領域中技術人員,在不脫離本發明的精神和範圍內,應當可以作各種的變動與修改。因此本發明的保護範圍應當以所附權利要求書所界定的範圍為准。
The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It is to be understood that the specific embodiments described herein are merely illustrative and not restrictive.
It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control that can be realized by an electrical signal or according to a The switch of the device itself can realize the on-off control, which can be a one-way switch, such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or IGBT (Insulated Gate Bipolar Transistor) with reversed-current diodes; etc.; when referred to below, the term "bidirectional switch" Refers to the ability to achieve on-off control through electrical signals or according to the characteristics of the components themselves A switchable bidirectional conduction switch, such as a MOSFET or an IGBT with an anti-freewheeling diode; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor component having a unidirectional conduction function, such as two Polar body, etc.; as referred to hereinafter, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor, etc.; as referred to hereinafter, the term "current memory element" refers to any device that can store current, such as Inductance or the like; when referred to hereinafter, the term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to the direction in which energy flows from the tank circuit to the battery; as referred to hereinafter, the term "battery""includes primary batteries (eg dry batteries, alkaline batteries, etc.) and secondary batteries (eg lithium-ion batteries, nickel-cadmium batteries, nickel-hydrogen batteries or lead-acid batteries, etc.); as mentioned below, the term "damping element" refers to any passage. A device that hinders the flow of current to achieve energy consumption, such as a resistor or the like; when referred to hereinafter, the term " Loop "refers to a damping element and a battery, the switching device and an energy storage circuit in series circuit.
It should also be noted here that, in consideration of the different characteristics of different types of batteries, in the present invention, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is an ideal battery that does not contain internal parasitic resistance and parasitic inductance, or the resistance value of the internal parasitic resistance and the inductance value of the parasitic inductance is small, the first damping element R1 And the second damping element R2 refers to a damping element outside the first battery and the second battery, respectively, and the first current storage element L1 and the second current memory element L2 respectively refer to current memories outside the first battery and the second battery When the "battery" is a battery pack including internal parasitic resistance and parasitic inductance, the first damper element R1 and the second damper element R2 may respectively mean the damper elements externally connected to the first battery and the second battery, or may be respectively Refers to the parasitic resistance inside the first battery pack and the second battery pack. Similarly, the first current memory element L1 and the second current memory element L2 may refer to the current memory elements outside the first battery and the second battery, respectively. Refers to the parasitic inductance inside the first battery pack and the second battery pack, respectively.
In the embodiment of the present invention, in order to ensure the service life of the battery, the battery needs to be heated at a low temperature. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated, and when the heating condition is stopped, the control is performed. The heating circuit stops working.
In the practical application of the battery, as the environment changes, the heating condition and the stop heating condition of the battery can be set according to the actual environmental conditions, so as to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. .
Fig. 1 is a circuit diagram of a heating circuit according to a first embodiment of the present invention. As shown in FIG. 1, the present invention provides a heating circuit for a battery, the battery including a first battery and a second battery, wherein the heating circuit includes a first switching device 10, a second switching device 20, and a first damping element. R1, second damping element R2, first current memory element L1, second current memory element L2, switch control module 100, and charge memory element C. Wherein, the first battery and the second battery are connected in series, and the first battery, the first damping element R1, the first current memory element L1, the first switching device 10, and the charge memory element C are connected in series to form a first charging and discharging circuit. The second battery, the second damper element R2, the second current memory element L2, the charge memory element C, and the second switching device 20 are connected in series to form a second charge and discharge circuit. When the charge storage element C is charged and discharged, the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit. The switch control module 100 is electrically connected to the first switch device 10 and the second switch device 20 respectively for controlling the first switch device 10 and the second switch device 20 to be alternately turned on to control the electric energy in the first battery and the charge memory device C. And the flow between the second cells.
The switch control module 100 can control the first switch device 10 and the second switch device 20 to switch state, for example, the first switch device 10 is switched from the on state to the off state, and the second switch device 20 is turned off. Switching to the on state causes the electrical energy stored in the charge memory element C by one battery to flow into the other battery. The flow of the electrical energy is accompanied by the generation of a current by continuously flowing a current through the first damper element R1 and the second damper element R2 so that the first damper element R1 and the second damper element R2 can generate heat, thereby The first battery E1 and the second battery E2 are heated.

Fig. 2 is a waveform timing chart of the heating circuit of the first embodiment of the present invention. The specific operation of the heating circuit provided by the present invention will be described below in conjunction with FIG. First, the switch control module 100 controls the first switching device 10 to be turned on, the second switching device 20 to be turned off, and the first battery E1, the first damping element R1, the current memory element L1, the first switching device 10, and the charge memory element C are configured. a charge and discharge circuit that performs charge and discharge (as shown in time period t1 to t2 in FIG. 2, time period t1 represents a charging period of the charge and discharge circuit, and at the end of the time period t1, charge memory The capacitance voltage UC of the element C is a positive half cycle peak, the capacitance current I C is zero after a positive half cycle; the time period t2 represents the discharge time period of the charge and discharge circuit). After the end of a charge and discharge cycle (when the current I C of the charge memory element C is zero after a negative half cycle), the switch control module 100 controls the first switching device 10 to be turned off, the second switching device 20 to be turned on, and the second The battery E2, the second damper element R2, the second current memory element L2, the charge memory element C, and the second switching device 20 constitute a charge and discharge circuit that performs charging and discharging (such as time period t3 in FIG. 2). As indicated by t4, the period t3 represents the charging period of the charging and discharging circuit, and the period t4 represents the discharging period of the charging and discharging circuit). After the end of a charge-discharge cycle of the charge-discharge circuit (in this case after the current I C charges through the positive half cycle of the memory element C is zero, the entire heating circuit through a complete operating cycle), the switching control module 100 controls the first again The switching device 10 is turned on, and the second switching device 20 is turned off, so that the current reciprocates through the first damper element R1 and the second damper element R2, so that the first damper element R1 and the second damper element R2 can generate heat. Thereby, the first battery E1 and the second battery E2 are heated until the heating is completed.

During the above operation of the heating circuit of the present invention, the current can be alternately reciprocated between the first battery E1 and the second battery E2, and alternating heating of the two forward series batteries is realized, and the heating efficiency is high.
Fig. 3 is a circuit diagram of a heating circuit according to a second embodiment of the present invention. Preferably, as shown in FIG. 3, the heating circuit of the present invention further includes a third current memory element L10 and a fourth current memory element L20. The third current memory element L10 is connected in series in the first charge and discharge circuit, and the fourth current memory element L20 is connected in series in the second charge and discharge circuit. Thereby, the capacitor current I C can be realized by the third current memory element L10 and the fourth current memory element L20 (ie, flowing through the first battery E1 and the second battery E2 and the first switching device 10 and the second switching device 20) The bidirectional current limiting of the current) reduces the current flowing through the first battery E1 and the second battery E2 and the first switching device 10 and the second switching device 20, thereby protecting the first battery E1 and the second battery E2. And the purpose of the first switching device 10 and the second switching device 20. 4. The picture shows a waveform timing diagram of a second embodiment of the heating circuit of the present invention, as shown in FIG. 4, as compared to the second capacitor shown in Fig. I C current, capacitive current I C 4 shown in FIG. The waveform is smoother, and its peak and valley are much smaller than the peak and valley of the capacitor current I C shown in Figure 2.
Fig. 5 is a circuit diagram of a heating circuit according to a third embodiment of the present invention. Preferably, as shown in FIG. 5, the heating circuit of the present invention may further include a third current memory element L10, a fourth current memory element L20, a first unidirectional semiconductor element D1, a second unidirectional semiconductor element D2, and a third The unidirectional semiconductor element D10 and the fourth unidirectional semiconductor element D20. The first unidirectional semiconductor device D1 is connected in series with the first switching device 10, and the first current storage element L1 and the first unidirectional semiconductor device D1 connected in series are connected in parallel to the third unidirectional semiconductor device D10 and the first in series. Both ends of the switching device 10 are used for reverse current limiting of the first charging and discharging circuit; and the second unidirectional semiconductor element D2 is connected in series with the second switching device 20, and the second current memory element L2 and the second single are connected in series The semiconductor element D2 is connected in parallel to both ends of the fourth unidirectional semiconductor element D20 and the second switching device 20 connected in series to reversely limit the second charge and discharge circuit. Thereby, a unidirectional current limit of the capacitive current (ie, the current flowing through the first battery E1 and the second battery E2) can be achieved (ie, current limiting is performed when the first battery E1 and the second battery E2 are charged), thereby Compared with the heating circuit of the second embodiment (bidirectional current limiting), the heating efficiency can be further improved while protecting the first battery E1 and the second battery E2 and the first switching device 10 and the second switching device 20. 6 graph a waveform timing diagram of the heating circuit of the third embodiment of the present invention, as shown in FIG. 6, as compared to FIG. 4 of the capacitive current I C, the capacitor current I C as shown in FIG. 6 The peak value in the positive half cycle is higher.
Fig. 7 is a circuit diagram showing an embodiment of a switching device in a heating circuit provided by the present invention. As shown in FIG. 7, the first switching device 10 and/or the second switching device 20 may include a switch K11 and a fifth unidirectional semiconductor element D11 that is connected in anti-parallel with the switch K11. The switch control module 100 is electrically connected to the switch K11 for controlling the turning on and off of the forward branch of the first switching device 10 by controlling the turning on and off of the switch K11. The on and off control of the switch K11 can be performed in the grid segments shown in FIGS. 2, 4, and 6, and the switch control module 100 can flow through the first switching device 10 or When the current of the two switching devices 20 crosses zero or the current crosses zero, the first switching device 10 and the second switching device 20 are controlled to perform switching state switching.
The heating circuit provided by the invention has the following advantages:
(1) Since the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit in terms of the charge memory element, electric energy can be applied to the first battery E1, the charge memory element, and the second battery. Alternating reciprocating flow between E2, whereby the generated current can cause the first damping element R1 and the second damping element R2 to generate heat, thereby heating the first battery E1 and the second battery E2, achieving the first battery E1 The second battery E2 is alternately heated, and the heating efficiency is high.
(2) current flowing through the first battery E1 and the second battery E2 and the first switching device 10 and the second switching device 20 due to the current limiting action of the current memory element and forming only a single charge and discharge circuit per time period Smaller, in addition, the configuration of the charge and discharge circuit and the presence of the first current memory element L1 and the first current memory element L2 can further restrict the flow through the first battery E1 and the second battery E2 and the first switching device 10 and the second The current of the switching device 20 is such that large currents are prevented from damaging the battery and the switching device.
(3) When the unidirectional current limiting is used, the discharge efficiency of the first battery E1 and the second battery E2 can be increased, and the reverse charging current is limited to avoid damage to the first battery E1 and the second battery E2, thereby ensuring The heat efficiency is further increased while the first battery E1 and the second battery E2 and the switching device are not damaged.
(4) In the heating circuit provided by the present invention, the charge memory element is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the safety problem caused by the failure of the switching device can be avoided, thereby effectively protecting battery.
While the present invention has been disclosed by the above-described embodiments, the above-described embodiments are not intended to limit the scope of the present invention, and those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. modify. The scope of the invention should therefore be determined by the scope of the appended claims.

100‧‧‧開關控制模組100‧‧‧Switch Control Module

10‧‧‧第一開關裝置10‧‧‧First switchgear

20‧‧‧第二開關裝置20‧‧‧Second switchgear

C‧‧‧電荷記憶元件C‧‧‧ Charge Memory Element

L1‧‧‧第一電流記憶元件L1‧‧‧First Current Memory Element

R1‧‧‧第一阻尼元件R1‧‧‧First damping element

E1‧‧‧第一電池E1‧‧‧First battery

L2‧‧‧第二電流記憶元件L2‧‧‧Second current memory element

R2‧‧‧第二阻尼元件R2‧‧‧second damping element

E2‧‧‧第二電池E2‧‧‧second battery

L10‧‧‧第三電流記憶元件L10‧‧‧ Third current memory element

L20‧‧‧第四電流記憶元件L20‧‧‧ fourth current memory element

D1‧‧‧第一單向半導體元件D1‧‧‧ first unidirectional semiconductor component

D2‧‧‧第二單向半導體元件D2‧‧‧ second unidirectional semiconductor component

D10‧‧‧第三單向半導體元件D10‧‧‧ third unidirectional semiconductor component

D20‧‧‧第四單向半導體元件D20‧‧‧4th unidirectional semiconductor component

D11‧‧‧第五單向半導體元件D11‧‧‧ fifth unidirectional semiconductor component

K11‧‧‧開關K11‧‧‧ switch

附圖是用來提供對本發明的進一步理解,並且構成說明書的一部分,與下面的具體實施方式一起用於解釋本發明,但並不構成對本發明的限制。在附圖中:
第1圖為本發明第一實施方式的加熱電路的電路圖;
第2圖為本發明第一實施方式的加熱電路的波形時序圖;
第3圖為根據本發明第二實施方式的加熱電路的電路圖;
第4圖為根據本發明第二實施方式的加熱電路的波形時序圖;
第5圖為根據本發明第三實施方式的加熱電路的電路圖;
第6圖為根據本發明第三實施方式的加熱電路的波形時序圖;以及
第7圖為本發明提供的加熱電路中的開關裝置的一種實施方式的電路圖。

The drawings are intended to provide a further understanding of the invention, and are intended to be a In the drawing:
1 is a circuit diagram of a heating circuit according to a first embodiment of the present invention;
2 is a waveform timing chart of a heating circuit according to a first embodiment of the present invention;
Figure 3 is a circuit diagram of a heating circuit in accordance with a second embodiment of the present invention;
4 is a waveform timing chart of a heating circuit according to a second embodiment of the present invention;
Figure 5 is a circuit diagram of a heating circuit in accordance with a third embodiment of the present invention;
Fig. 6 is a waveform timing chart of a heating circuit according to a third embodiment of the present invention; and Fig. 7 is a circuit diagram of an embodiment of a switching device in the heating circuit provided by the present invention.

100‧‧‧開關控制模組 100‧‧‧Switch Control Module

10‧‧‧第一開關裝置 10‧‧‧First switchgear

20‧‧‧第二開關裝置 20‧‧‧Second switchgear

C‧‧‧電荷記憶元件 C‧‧‧ Charge Memory Element

L1‧‧‧第一電流記憶元件 L1‧‧‧First Current Memory Element

R1‧‧‧第一阻尼元件 R1‧‧‧First damping element

E1‧‧‧第一電池 E1‧‧‧First battery

L2‧‧‧第二電流記憶元件 L2‧‧‧Second current memory element

R2‧‧‧第二阻尼元件 R2‧‧‧second damping element

E2‧‧‧第二電池 E2‧‧‧second battery

Claims (8)

一種電池的加熱電路,所述電池包括第一電池、第二電池,其特徵在於,該加熱電路包括:
第一開關裝置和第二開關裝置;
第一阻尼元件和第二阻尼元件;
第一電流記憶元件和第二電流記憶元件;
開關控制模組;以及
電荷記憶元件,
其中,所述第一電池與所述第二電池正向串聯;
所述第一電池、第一阻尼元件、第一電流記憶元件、第一開關裝置、以及所述電荷記憶元件相串聯以構成第一充放電電路;
所述第二電池、第二阻尼元件、第二電流記憶元件、電荷記憶元件、以及所述第二開關裝置相串聯以構成第二充放電電路,在對所述電荷記憶元件充放電時,所述第二充放電電路的充放電方向與所述第一充放電電路的充放電方向相反;
所述開關控制模組分別與所述第一開關裝置和所述第二開關裝置電連接,用於控制所述第一開關裝置和所述第二開關裝置交替導通,以控制電能在所述第一電池、電荷記憶元件以及所述第二電池之間的流動。
A heating circuit for a battery, the battery comprising a first battery and a second battery, wherein the heating circuit comprises:
a first switching device and a second switching device;
a first damping element and a second damping element;
a first current memory element and a second current memory element;
Switch control module; and charge memory component,
Wherein the first battery and the second battery are connected in series;
The first battery, the first damping element, the first current memory element, the first switching device, and the charge storage element are connected in series to form a first charging and discharging circuit;
The second battery, the second damping element, the second current storage element, the charge storage element, and the second switching device are connected in series to form a second charging and discharging circuit, and when charging and discharging the charge storage element, The charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit;
The switch control module is electrically connected to the first switch device and the second switch device, respectively, for controlling the first switch device and the second switch device to be alternately turned on to control power in the first A flow between a battery, a charge storage element, and the second battery.
如申請專利範圍第1項所述的加熱電路,其特徵在於,所述第一阻尼元件和所述第二阻尼元件分別為所述第一電池和第二電池內部的寄生電阻,所述第一電流記憶元件和所述第二電流記憶元件分別為所述第一電池和所述第二電池內部的寄生電感,所述電荷記憶元件為電容。The heating circuit of claim 1, wherein the first damping element and the second damping element are parasitic resistances inside the first battery and the second battery, respectively, the first The current memory element and the second current memory element are parasitic inductances inside the first battery and the second battery, respectively, and the charge memory element is a capacitor. 如申請專利範圍第1項所述的加熱電路,其特徵在於,所述加熱電路還包括第三電流記憶元件和第四電流記憶元件,其中,所述第三電流記憶元件串聯在所述第一充放電電路中,所述第四電流記憶元件串聯在所述第二充放電電路中。The heating circuit of claim 1, wherein the heating circuit further comprises a third current memory element and a fourth current memory element, wherein the third current memory element is connected in series at the first In the charge and discharge circuit, the fourth current memory element is connected in series in the second charge and discharge circuit. 如申請專利範圍第3項所述的加熱電路,其特徵在於,所述第三電流記憶元件和所述第四電流記憶元件為電感。The heating circuit of claim 3, wherein the third current memory element and the fourth current memory element are inductors. 如申請專利範圍第1項所述的加熱電路,其特徵在於,所述加熱電路還包括第三電流記憶元件、第四電流記憶元件、第一單向半導體元件、第二單向半導體元件、第三單向半導體元件以及第四單向半導體元件,其中,
所述第一單向半導體元件與所述第一開關裝置相串聯,相串聯的所述第一單向半導體元件與所述第三電流記憶元件並聯於相串聯的所述第三單向半導體元件與所述第一開關裝置兩端,以對所述第一充放電電路進行反向限流;以及
所述第二單向半導體元件與所述第二開關裝置相串聯,相串聯的所述第四電流記憶元件與所述第二單向半導體元件並聯於相串聯的所述第四單向半導體元件與所述第二開關裝置兩端,以對所述第二充放電電路進行反向限流。
The heating circuit of claim 1, wherein the heating circuit further comprises a third current memory element, a fourth current memory element, a first unidirectional semiconductor element, a second unidirectional semiconductor element, a three-way semiconductor component and a fourth unidirectional semiconductor component, wherein
The first unidirectional semiconductor component is connected in series with the first switching device, and the first unidirectional semiconductor component and the third current memory component connected in series are connected in parallel to the third unidirectional semiconductor component connected in series And the first switching device is reversely current-limited to the first charging and discharging circuit; and the second unidirectional semiconductor element is connected in series with the second switching device, and the a fourth current storage element and the second unidirectional semiconductor element are connected in parallel across the fourth unidirectional semiconductor component and the second switching device in series to reverse current limiting the second charging and discharging circuit .
如申請專利範圍第1項所述的加熱電路,其特徵在於,所述第三電流記憶元件和所述第四電流記憶元件為電感。The heating circuit of claim 1, wherein the third current memory element and the fourth current memory element are inductors. 如申請專利範圍第1項-第6項中任一項權利要求所述的加熱電路,其特徵在於,所述第一開關裝置和/或第二開關裝置包括開關和與所述開關反向並聯的第五單向半導體元件,所述開關控制模組與所述開關電連接,用於通過控制所述開關的導通和關斷來控制所述第一開關裝置的正向支路導通和關斷。A heating circuit according to any one of claims 1 to 6, wherein the first switching device and/or the second switching device comprise a switch and an anti-parallel connection with the switch a fifth unidirectional semiconductor component, the switch control module being electrically connected to the switch, for controlling the forward branch of the first switching device to be turned on and off by controlling the turning on and off of the switch . 如申請專利範圍第7項所述的加熱電路,其特徵在於,所述開關控制模組用於在流經所述第一開關裝置或第二開關裝置的電流過零時或電流過零之後,控制所述第一開關裝置和第二開關裝置進行開關狀態切換。

The heating circuit of claim 7, wherein the switch control module is configured to: when a current flowing through the first switching device or the second switching device crosses zero or after a current zero crossing, The first switching device and the second switching device are controlled to perform switching state switching.

TW100143162A 2010-12-23 2011-11-24 Battery heating circuit TWI433429B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106047446A CN102074761B (en) 2010-07-30 2010-12-23 Heating circuit of battery

Publications (2)

Publication Number Publication Date
TW201233000A TW201233000A (en) 2012-08-01
TWI433429B true TWI433429B (en) 2014-04-01

Family

ID=47226543

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100143162A TWI433429B (en) 2010-12-23 2011-11-24 Battery heating circuit
TW100222192U TWM436952U (en) 2010-12-23 2011-11-24 Battery heating circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100222192U TWM436952U (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (2) TWI433429B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653654B (en) * 2016-11-01 2019-07-12 上海华力微电子有限公司 A kind of method of multi-step dry etching board particle monitoring
KR20220089390A (en) * 2020-12-21 2022-06-28 세메스 주식회사 Temperature adjustment apparatus

Also Published As

Publication number Publication date
TW201233000A (en) 2012-08-01
TWM436952U (en) 2012-09-01

Similar Documents

Publication Publication Date Title
TWI477026B (en) Battery heating circuit
US8823317B2 (en) Circuits and methods for heating batteries in series using resonance components in series
US9209644B2 (en) Circuits and methods for heating batteries in series using resonance components in series
US8829856B2 (en) Circuits and methods for heating batteries in parallel using resonance components in series
US9083196B2 (en) Circuits and methods for heating batteries in parallel using resonance components in series
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
TWI477027B (en) Battery heating circuit
TWI433429B (en) Battery heating circuit
TWI454012B (en) Battery heating circuit
TWI469473B (en) Battery heating circuit
TWI493830B (en) Battery heating circuit
TWI465001B (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWI430536B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI433428B (en) Battery heating circuit
TWI433430B (en) Battery heating circuit
TWI464999B (en) Battery heating circuit
TWI427894B (en) Battery heating circuit
TWI465000B (en) Battery heating circuit
TW201322586A (en) Battery heating circuit