TWM436952U - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TWM436952U
TWM436952U TW100222192U TW100222192U TWM436952U TW M436952 U TWM436952 U TW M436952U TW 100222192 U TW100222192 U TW 100222192U TW 100222192 U TW100222192 U TW 100222192U TW M436952 U TWM436952 U TW M436952U
Authority
TW
Taiwan
Prior art keywords
battery
switching device
charge
series
current
Prior art date
Application number
TW100222192U
Other languages
Chinese (zh)
Inventor
wen-hui Xu
Yao-Chuan Han
Wei Feng
Qin-Yao Yang
Wen-Jin Xia
shi-bin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010106047446A external-priority patent/CN102074761B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TWM436952U publication Critical patent/TWM436952U/en

Links

Classifications

    • Y02T10/7005
    • Y02T10/7022
    • Y02T10/7055
    • Y02T90/127

Abstract

The present utility provides a battery heating circuit. The battery comprises a first battery and a second battery connected forward in series, and the heating circuit comprises a first switchgear and a second switchgear, a first current storage element, a second current storage element, a switch control module and a charge storage element. The first battery, the first current storage element, the first switchgear and the charge storage element are connected in series to form a first charging-discharging circuit. The second battery, the second current storage element, the charge storage element and the second switchgear are connected in series to form a second charging-discharging circuit. When charging or discharging the charge storage element, a charging-discharging direction of the second charging-discharging circuit is contrary to that of the first charging-discharging circuit. The switch control module is electrically connected with the first and second switchgears for controlling the first and second switchgears to switch on alternately, so as to control energy to flow among the first and second batteries and the charge storage element. The heating circuit has advantage of high heating efficiency.

Description

M436952 ιοί年.OgJ 14Θ捧正替¥頁 五、新型說明: 【新型所屬之技術領域】 _本創作屬於電子設備技術領域,尤其涉及一種電池的加 熱電路β 【先前技術】 [_考慮到汽車需要在複雜的路私環境條件下行跌,或者 有些電子設備需要在較差的環境條件中使用的情況,戶斤 · 以’作為電動車或電子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輪出功率性能。 -般而言,如果在低溫條件下對電池充電的話,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降’最終導致電池壽命的降低。 【新型内容】 剛捕作的目的是針對電池在低溫條件下會導致電池的阻 抗增大,極化增強,由此導致電池的容量下降的問題,· ’為了保持電池在低溫條件下的容f,提高電池的充放 電性能,本創作提供一種電池的加熱電路。 本創作提供一種電池的加熱電路,所述電池包括第一電 池和第二電池’所述加熱電路包括第一開關裝置、第二 開關裝置、開關控制模組、第一 P且尼元件Η、第二阻尼 元件R2、第-電流記憶元件L1、第二電流記憶元件L2、 以及電荷記憶元件,所述第-電池與第二電池正向串聯 10022219#單編號細1 第4頁/共21頁 1013181011-0 • ^ 丄U 丄^FUDfl 14 0 ,所述第一電池'第一阻足_ - 阻尼兀件以、第一電流記憶元件 L1 '第一開關裝置、& 及电何5己憶元件C相串聯,構成第 一充故電電路;所述第-φ 乐一冤池、第二阻尼元件R2、第二 電流記憶元件L2、電荇”格-过η 包何6己隐tl件C以及第二開關裝置相串 聯’構成第二充放雷雷,欠,+如 電路在對所述電荷記憶元件C充放 j 4^—充放㊆電路的充放電方向與所述第一充放 μ路的充放電方向相反;所述開關控制模組分別與第 一開關裝置和第二開關裝置電連接,用於控制第-開關 裝置和第—開關裝置交替導通,以控制電能在所述第一 電池f荷記憶元件c以及所述第二電池之間的流動。 在本創作提供的電池的加熱電路中,可通過開關控制模 組控制所述第"開關裝置和第二開Μ置交替導通,從 而實現電能在第-電池、電荷記憶元件€以及第二電池之 間的交替往復流動,從而導致第一阻尼元件以和第二阻 尼元件R2發熱,以對第一電池和第二電池進行加熱。由 於以電荷§己憶元件C而言,第二充放電電路的充放電方向 與所述第一充放電電路的充放電方向相反,由第一電池 所充入電街5己憶元件C的能量可順利轉移至第二電池加 熱效率高。 在本創作提供的加熱電路中,電荷記憶元件與電池串聯 ’當給電池加熱時,由於串聯的電荷記憶元件的存在, 月&夠避免開關裝置失效短路引起的安全性問題,能夠有 效地保護電池β 本創作的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 1013181011-0 【實施方式】 10022219^單編號 Α〇101 M436952 101年:05^ 14日按正靜[ [0004] 以下結合附圖對本創作的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本創作,並不用於限制本創作。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根攄元器件自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)或帶有反並續流二極體的IGBT (Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等 ;當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元器件自身的特性實現通 斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 :當下文中提及時,術語“電荷記憶元件”指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向,術語“反向”指能量 10〇22219产單编號 A0101 第6頁/共21頁 1013181011-0 M436952 101:年.05月14日修正脊換百 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、鹼性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如可以為電阻等;當下文中提及時,術語“主回路 ”指的是電池與阻尼元件、開關裝置以及儲能電路串聯 組成的回路。 這裏還需要特別說明的是,考慮到不同類型的電池的不 同特性,在本創作中,“電池”可以指不包含内部寄生 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 理想電池時,第一阻尼元件R1和第二阻尼元件R2分別指 的是第一電池和第二電池外部的阻尼元件,第一電流記 憶元件L1和第二電流記憶元件L2分別指的是第一電池和 第二電池外部的電流記憶元件;當“電池”為包含有内 部寄生電阻和寄生電感的電池包時,第一阻尼元件R1和 第二阻尼元件R2既可以分別指第一電池和第二電池外接 的阻尼元件,也可以分別指第一電池包和第二電池包内 部的寄生電阻,同樣地,第一電流記憶元件L1和第二電 流記憶元件L2既可以分別指第一電池和第二電池外部的 電流記憶元件,也可以分別指第一電池包和第二電池包 内部的寄生電感。 10022219^^ A〇101 第7頁/共21頁 1013181011-0 I ιοί年05¾ i4日接正摔頁 在本創作的實施例t,為了保證電池的使用壽命,需要 — 在低溫情況下對電池進行加熱,t達到加熱條件時,控 制加熱電路開始工作’對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境知况對電池的加熱條件和停止加熱條件進行設置 以從對電池的溫度進行更精確的控制,從而保證電池 的充放電性能。 第1圖為本創作第一實施方式的加熱電路的電路圖。如第 1圖所示,本創作提供了一種電池的加熱電路所述電池 包括第一電池和第二電池。其中,加熱電路包括第一開 關裝置10、第二開關裝置20、第一阻尼元件R1、第二阻 尼元件R2、第一電流記憶元件L1、第二電流記憶元件l2 、開關.控制模組1〇〇、以及電荷記憶元件C❶其中,第一 電池與第二電池正向串聯;第一電池、第一阻尼元件以 、第一電流記憶元件L1、第一開關裝置1〇、以及電荷記 憶元件C相串聯’構成第一充放電電路;第二電池、第二 阻尼元件R2、第二電流記憶元件L2、電荷記憶元件C以及 第二開關裝置20相串聯,構成第二充放電電路。在對電 荷記憶元件C充放電時,第二充放電電路的充放電方向與 第一充放電電路的充放電方向相反。開關控制模組1〇〇分 別與第一開關裝置10和第二開關裝置20電連接,用於控 制第一開關裝置10和第二開關裝置20交替導通,以控制 電能在第一電池、電荷記憶元件C以及第二電池之間的流 動0 其中,開關控制模組1〇〇可以控制第一開關裝置10和第二 1013181011-0 1〇〇22219产單編號A01〇l 第8頁/共21頁 M436952 101·年.05月14日梭正替換百 開關裝置20進行開關狀態切換,例如第一開關裝置10由 導通狀態切換為關斷狀態,而第二開關裝置20由關斷狀 態切換為導通狀態,從而使由一個電池存儲在電荷記憶 元件C内的電能流入另一個電池内。該電能的流動會伴隨 著的電流的產生,通過不斷使電流流經第一阻尼元件R1 和第二阻尼元件R2,使得第一阻尼元件R1和第二阻尼元 件R2可以產生熱量,從而對該第一電池E1和第二電池E2 進行加熱。 第2圖為本創作第一實施方式的加熱電路的波形時序圖。 以下結合第2圖描述本創作提供的加熱電路的具體工作過 程。首先,開關控制模組10 0控制第一開關裝置10導通、 第二開關裝置20斷開,第一電池E1、第一阻尼元件R1、 第一電流記憶元件L1、第一開關裝置10以及電荷記憶元 件C構成一個充放電電路,該充放電電路進行充放電(如 第2圖中的時間段tl~t2所示,時間段tl表示該充放電電M436952 ιοί年.OgJ 14 正 正 ¥ ¥ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本In the case of complex road and private environment conditions, or some electronic equipment needs to be used in poor environmental conditions, the battery that is used as the power source for electric vehicles or electronic equipment needs to adapt to these complicated conditions. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher The input rounds out the power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase, and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. [New content] The purpose of the catching is to solve the problem that the battery will increase the impedance of the battery under low temperature conditions, and the polarization will increase, which will cause the battery capacity to drop. · 'In order to keep the battery under low temperature conditions To improve the charge and discharge performance of the battery, the present invention provides a heating circuit for the battery. The present invention provides a heating circuit for a battery, the battery including a first battery and a second battery. The heating circuit includes a first switching device, a second switching device, a switch control module, and a first P component. The second damper element R2, the first current storage element L1, the second current memory element L2, and the charge memory element, the first battery and the second battery are connected in series 10022219# single number fine 1 page 4 / 21 pages 1011381011 -0 • ^ 丄U 丄^FUDfl 14 0 , the first battery 'first blocking foot _ - damper element, first current memory element L1 'first switching device, & The C phase is connected in series to form a first charging circuit; the first -φ music cell, the second damping element R2, the second current memory element L2, the electric cell "grid-over η packet" And the second switching device is connected in series to form a second charging and discharging mine, owing, +, for example, the charging and discharging direction of the circuit for charging and discharging the charging and discharging device C to the charge storage device C and the first charging and discharging The charging and discharging directions of the μ road are opposite; the switch control module and the first switching device are respectively And electrically connected to the second switching device for controlling alternate conduction between the first switching device and the first switching device to control the flow of electrical energy between the first battery f and the second memory device. In the heating circuit of the battery provided by the creation, the switch control module can be controlled to alternately conduct the "switching device" and the second opening device, thereby realizing electric energy between the first battery, the charge memory device, and the second battery. Alternating reciprocating flow, thereby causing the first damper element to generate heat with the second damper element R2 to heat the first battery and the second battery. The charge of the second charge and discharge circuit is due to the charge § the element C The discharge direction is opposite to the charge and discharge direction of the first charge and discharge circuit, and the energy charged by the first battery into the electric street 5 can be smoothly transferred to the second battery with high heating efficiency. In the heating circuit provided by the present invention , the charge memory element is connected in series with the battery. When heating the battery, due to the presence of the series of charge memory elements, the month & can avoid the safety caused by the failure of the switching device. Problem, the battery can be effectively protected. Other features and advantages of the present invention will be described in detail in the following detailed description. 1013181011-0 [Embodiment] 10022219^单号Α〇101 M436952 101年:05^14日The specific embodiments of the present invention are described in detail below with reference to the accompanying drawings. It is understood that the specific embodiments described herein are only used to illustrate and explain the present invention, and are not intended to limit the present invention. Unless otherwise specified, the term "switch control module" is used to control the connection of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time, unless otherwise specified. The switch device is turned on or off correspondingly, for example, can be a PLC (programmable controller), etc.; when mentioned hereinafter, the term "switch" refers to the on/off control or the component can be realized by an electrical signal. A switch that implements on-off control by its own characteristics, which can be a one-way switch, for example, a bidirectional switch A single-conducting switch formed in series with a diode, or a bidirectional switch, such as a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or a reverse-current freewheeling diode IGBT (Insulated Gate Bipolar Transistor); when referred to below, the term "bidirectional switch" refers to the on/off control by electrical signal or on-off control according to the characteristics of the component itself. A bi-directional switch, such as a MOSFET or an IGBT with an anti-freewheeling diode; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor component having a unidirectional conduction function, such as a diode, etc. When referred to hereinafter, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor or the like; when referred to hereinafter, the term "current memory element" refers to any device that can store current, such as an inductor or the like; As referred to hereinafter, the term "forward" refers to the direction in which energy flows from the battery to the energy storage circuit. “Reverse” means energy 10〇22219 Production Order No. A0101 Page 6/Total 21 Page 1013181011-0 M436952 101: Year. May 14 Correct the direction of the ridge change from the energy storage circuit to the battery; In time, the term "battery" includes primary batteries (eg dry batteries, alkaline batteries, etc.) and secondary batteries (eg lithium ion batteries, nickel cadmium batteries, nickel hydride batteries or lead acid batteries, etc.); when referred to below, the term "damping" "Element" means any device that achieves energy consumption by obstructing the flow of current, for example, may be a resistor or the like; when referred to hereinafter, the term "main circuit" refers to a battery in series with a damping element, a switching device, and a storage circuit. The loop of the composition. It should also be noted here that, considering the different characteristics of different types of batteries, in the present creation, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is an ideal battery that does not contain internal parasitic resistance and parasitic inductance, or the resistance value of the internal parasitic resistance and the inductance value of the parasitic inductance is small, the first damping element R1 And the second damping element R2 refers to a damping element outside the first battery and the second battery, respectively, and the first current storage element L1 and the second current memory element L2 respectively refer to current memories outside the first battery and the second battery When the "battery" is a battery pack including internal parasitic resistance and parasitic inductance, the first damper element R1 and the second damper element R2 may respectively mean the damper elements externally connected to the first battery and the second battery, or may be respectively Refers to the parasitic resistance inside the first battery pack and the second battery pack. Similarly, the first current memory element L1 and the second current memory element L2 may refer to the current memory elements outside the first battery and the second battery, respectively. Refers to the parasitic inductance inside the first battery pack and the second battery pack, respectively. 10022219^^ A〇101 Page 7/Total 21 Page 1013181011-0 I ιοί年053⁄4 i4 Day is falling on the page In the example t of this creation, in order to ensure the battery life, it is necessary to - carry out the battery at low temperature Heating, when the heating condition is reached, the heating circuit is controlled to start working 'heating the battery, and when the heating condition is stopped, the heating circuit is stopped. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. . Fig. 1 is a circuit diagram of a heating circuit of the first embodiment of the present invention. As shown in Fig. 1, the present invention provides a heating circuit for a battery including a first battery and a second battery. The heating circuit includes a first switching device 10, a second switching device 20, a first damping element R1, a second damping element R2, a first current memory element L1, a second current memory element 12, a switch, and a control module. And a charge memory element C, wherein the first battery and the second battery are connected in series; the first battery, the first damping element, the first current memory element L1, the first switching device 1〇, and the charge memory element C The series constituting the first charge and discharge circuit; the second battery, the second damper element R2, the second current memory element L2, the charge memory element C, and the second switching device 20 are connected in series to constitute a second charge and discharge circuit. When the charge memory device C is charged and discharged, the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit. The switch control module 1 is electrically connected to the first switch device 10 and the second switch device 20, respectively, for controlling the first switch device 10 and the second switch device 20 to be alternately turned on to control the electric energy in the first battery and the charge memory. The flow between the component C and the second battery 0, wherein the switch control module 1〇〇 can control the first switching device 10 and the second 1013181011-0 1〇〇22219 production order number A01〇l page 8 / total 21 pages M436952 101·May 14th, the shuttle is replacing the switch device 20 to switch the switch state, for example, the first switch device 10 is switched from the on state to the off state, and the second switch device 20 is switched from the off state to the on state. Thereby, the electric energy stored in one charge storage element C by one battery flows into the other battery. The flow of the electric energy is accompanied by the generation of a current, and by continuously flowing a current through the first damper element R1 and the second damper element R2, the first damper element R1 and the second damper element R2 can generate heat, thereby A battery E1 and a second battery E2 are heated. Fig. 2 is a waveform timing chart of the heating circuit of the first embodiment of the present invention. The specific working process of the heating circuit provided by this creation is described below in conjunction with FIG. First, the switch control module 100 controls the first switching device 10 to be turned on, the second switching device 20 to be turned off, the first battery E1, the first damping element R1, the first current memory element L1, the first switching device 10, and the charge memory. The component C constitutes a charge and discharge circuit, and the charge and discharge circuit performs charge and discharge (as shown in time period t1 to t2 in FIG. 2, the time period t1 indicates the charge and discharge electricity

路的充電時間段,在該時間段tl結尾處,電荷記憶元件CThe charging period of the road, at the end of the period t1, the charge memory element C

的電容電壓L為正半週期峰值,電容電流I。經過正半週 C C 期之後為零;時間段t2表示該充放電電路的放電時間段 )。在一個充放電週期結束之後(此時電荷記憶元件C的 電流^經過負半週期之後為零),開關控制模組100控制 第一開關裝置10斷開、第二開關裝置20導通,第二電池 E2、第二阻尼元件R2、第二電流記憶元件L2、電荷記憶 元件C以及第二開關裝置20構成一個充放電電路,該充放 電電路進行充放電(如第2圖中的時間段t3~t4所示,時 間段t3表示該充放電電路的充電時間段,時間段t4表示 該充放電電路的放電時間段)。在該充放電電路的一個 10022219^^^51 A〇101 第9頁/共21頁 1013181011-0 M436952 101年0¾ 14日按;頁 充放電週期結束之後(此時電荷記憶元件C的電流I經過 正半週期之後為零,整個加熱電路完成一個完整工作週 期),開關控制模組100再次控制第一開關裝置10導通、 第二開關裝置20斷開,如此循環往復,使得電流不斷流 過第一阻尼元件R1和第二阻尼元件R2,使得該第一阻尼 元件R1和第二阻尼元件R2可以產生熱量,從而對該第一 電池E1和第二電池E2進行加熱,直至加熱完畢為止。 在本創作加熱電路的以上工作過程中,可使得電流在第 一電池E1和第二電池E2之間交替往復流動,實現了兩個 正向串聯的電池的交替加熱,加熱效率高。 第3圖為根據本創作第二實施方式的加熱電路的電路圖。The capacitor voltage L is a positive half cycle peak and a capacitor current I. After the positive half cycle C C period is zero; time period t2 represents the discharge time period of the charge and discharge circuit). After the end of a charge and discharge cycle (when the current of the charge memory element C is zero after a negative half cycle), the switch control module 100 controls the first switching device 10 to be turned off and the second switching device 20 to be turned on, the second battery E2, the second damping element R2, the second current memory element L2, the charge memory element C and the second switching device 20 constitute a charging and discharging circuit, and the charging and discharging circuit performs charging and discharging (as in the time period t3~t4 in FIG. 2) As shown, the period t3 represents the charging period of the charging and discharging circuit, and the period t4 represents the discharging period of the charging and discharging circuit). In the charge and discharge circuit, a 10022219^^^51 A〇101 page 9/21 page 1013181011-0 M436952 101 years 03⁄4 14 days; after the end of the page charge and discharge cycle (at this time, the current I of the charge memory element C passes) After the positive half cycle is zero, the entire heating circuit completes a complete duty cycle. The switch control module 100 again controls the first switching device 10 to be turned on and the second switching device 20 to be turned off, so that the current continues to flow through the first The damping element R1 and the second damping element R2 are such that the first damping element R1 and the second damping element R2 can generate heat to heat the first battery E1 and the second battery E2 until the heating is completed. In the above working process of the present heating circuit, the current can be alternately reciprocated between the first battery E1 and the second battery E2, and the alternating heating of the two forward series batteries is realized, and the heating efficiency is high. Fig. 3 is a circuit diagram of a heating circuit according to a second embodiment of the present creation.

優選地,如圖3所示,本創作的加熱電路還包括第三電流 記憶元件L10和第四電流記憶元件L 2 0 ’第二電流記憶元 件L10串聯在述第一充放電電路申,第四電流記憶元件 L20串聯在第二充放電電路中。藉此,可利用該第三電流 記憶元件L10和第四電流記憶元件L20,實現電容電流I L/ (即,流經第一電池E1和第二電池E2以及第一開關裝置 10和第二開關裝置電池E1的電流)的雙向限流,減小了 流經第一電池E1和第二電池E2以及第一開關裝置1 0和第 二開關裝置20的電流大小,達到了保護第一電池E1和第 二電池E2以及第一開關裝置10和第二開關裝置20的目的 。第4圖為該根據本創作第二實施方式的加熱電路的波形 時序圖,如第4圖所示,相比於第2圖所示的電容電流I ,第4圖所示電容電流、的波形較為平滑,其峰值及榖值 皆遠小於第2圖所示的電容電流^的峰值及穀值。 第5圖為根據本創作第三實施方式的加熱電路的電路圖。 10022219户單編號 A0101 第10頁/共21頁 1013181011-0 M.436952 Ίόϊ年.05月 i4 日 優選地,如第5圖所示,本創作的加熱電路還可包括第三 —^ 電流記憶元件L10、第四電流記憶元件L2〇、第一單向半 導體凡件D1、第二單向半導體元件D2、第三單向半導體 兀件D10以及第四單向半導體元件D2(),第一單向半導體 兀件D1與第一開關裝置1〇相串聯,相串聯的第一電流記 憶几件L1與第一單向半導體元件^並聯於相串聯的第三 單向半導體元件D10與第一開關裝置1〇的兩端,以對第一 充放電電路進行反向限流;以及第二單向半導體元件D2 與第二開關裝置20相串聯,相串聯岣第二電流記憶元件 L2與第二單向半導體元件D2並聯於相串聯的第四單向半 導體元件D20與第二開關裝置2〇的兩端,以對第二充放電 電路進行反向限流。藉此,可實現電容電流(即,流經 第一電池E1和第二電池e 2的電流)的單向限流(即,對 第一電池E1和第二電池E2充電時進行限流),從而相比 於第二實施方式的加熱電路(雙向限流),可在保護第 一電池E1和第二電池e 2以及第一開關裝置丨0和第二開關 裝置20的同時’進一步提升加熱效率。第6圖為該根據本 創作第三實施方式的加熱電路的波形時序圖,如第6圖所 不’相比於第4圖所示的電容電流I ,第6圖所示電容電 流Ic在正半週期的峰值較高。 第7圖為本創作提供的加熱電路中的開關裝置的一種實施 方式的電路圖。如第7圖所示’第一開關裝置1〇和/或第 二開關裝置20可以包括開關ΚΙ 1和與該開關ΚΙ 1反向並聯 的第五單向半導體元件1)11,開關控制模組1〇〇與開關 K11電連接,用於通過控制開關ΚΠ的導通和關斷來控制 開關裝置10正向支路的導通和關斷。對該開關Ku的導通 10022219#單編號A0101 第11頁/共21頁 1013181011-0 M436952 :1〇1年_ 14 ά费正輕頁 和關斷控制可在第2圖、第4圖以及第6圖中所示的網格區 段進行’開關控制模組1〇〇可在流經第一開關裝置1〇或第 二開關裳置20的電流過零時或電流過零之後,控制第一 開關裝置1 G和第二開關裝置2Q進行開關狀態切換。 本創作所提供的加熱電路具備以下優點: (1)由於就電荷記憶元件而言,第二充放電電路的充放 電方向與所述第一充放電電路的充放電方向相反,因此 電能可於第一電池El、電荷記憶元件以及第二電池£2之 間的交替往復流動,藉此所產生的電流可使得第一阻尼 元件R1和第二阻尼元件R2發熱,從而對第一電池£ 1和第 二電池E2進行加熱,實現了對第一電池E1和第二電池E2 交替加熱,加熱效率高。 (2 )由於電流記憶元件的限流作用以及每一個時間週期 僅形成單個充放電電路,從而使得流經第一電池E1和第 二電池E2以及第一開關裝置ι〇和第二開關裝置2〇的電流 較小,另外,充放電電路的構成以及第一電流記憶元件 L1、第二電流記憶元件L2的存在亦可進一步限制流經第 一電池E1和第二電池E2以及第一開關裝置1 〇和第二開關 裝置20的電流’從而避免了大電流損害電池以及開關裝 置。 (3) 在使用單向限流時’可增大第一電池E1和第二電池 E2的放電效率’同時反向充電電流受限以避免損害第一 電池E1和第二電池E2,從而於保證了不損害第一電池Ei 和第二電池E2以及開關裝置的同時,更增加熱效率。 (4) 在本創作提供的加熱電路中,電荷記憶元件與電池 串聯,當給電池加熱時,由於串聯的電荷記憶元件的存 1013181011-0 10022219#單编號A0101 第12頁/共21頁 M436952 101年.05月14日核正替^頁 在,能夠避免開關裝置失效短路引起的安全性問題,從 而有效地保護電池。 雖然本創作已通過上述實施例所公開,然而上述實施例 並非用以限定本創作,任何本創作所屬技術領域中技術 人員,在不脫離本創作的精神和範圍内,應當可以作各 種的變動與修改。因此本創作的保護範圍應當以所附申 請專利範圍所界定的範圍為准。 【圖式簡單說明】 [0005] 附圖是用來提供對本創作的進一步理解,並且構成說明 書的一部分,與下面的具體實施方式一起用於解釋本創 作,但並不構成對本創作的限制。在附圖中: 第1圖為本創作第一實施方式的加熱電路的電路圖; 第2圖為本創作第一實施方式的加熱電路的波形時序圖; 第3圖為根據本創作第二實施方式的加熱電路的電路圖; 第4圖為根據本創作第二實施方式的加熱電路的波形時序 圖; 第5圖為根據本創作第三實施方式的加熱電路的電路圖; 第6圖為根據本創作第三實施方式的加熱電路的波形時序 圖;以及 第7圖為本創作提供的加熱電路中的開關裝置的一種實施 方式的電路圖。 【主要元件符號說明】 [0006] LI、L2、L10、L20 電流記憶元件 El、E2電池Preferably, as shown in FIG. 3, the heating circuit of the present invention further includes a third current memory element L10 and a fourth current memory element L 2 0 'the second current memory element L10 is connected in series to the first charge and discharge circuit, and the fourth The current memory element L20 is connected in series in the second charge and discharge circuit. Thereby, the capacitor current IL/ can be realized by the third current memory element L10 and the fourth current memory element L20 (ie, flowing through the first battery E1 and the second battery E2 and the first switching device 10 and the second switching device) The bidirectional current limiting of the current of the battery E1 reduces the current flowing through the first battery E1 and the second battery E2 and the first switching device 10 and the second switching device 20, thereby achieving protection of the first battery E1 and the first The purpose of the two batteries E2 and the first switching device 10 and the second switching device 20. Fig. 4 is a waveform timing chart of the heating circuit according to the second embodiment of the present invention. As shown in Fig. 4, the capacitance current and the waveform shown in Fig. 4 are compared with the capacitance current I shown in Fig. 2. It is relatively smooth, and its peak value and 榖 value are much smaller than the peak value and valley value of the capacitor current ^ shown in Fig. 2. Fig. 5 is a circuit diagram of a heating circuit according to a third embodiment of the present creation. 10022219House No. A0101 Page 10 of 21 1013181011-0 M.436952 Leap Year. May i4 Preferably, as shown in Figure 5, the heating circuit of the present invention may further comprise a third-^ current memory component L10, fourth current memory element L2, first unidirectional semiconductor device D1, second unidirectional semiconductor element D2, third unidirectional semiconductor element D10, and fourth unidirectional semiconductor element D2 (), first unidirectional The semiconductor element D1 is connected in series with the first switching device 1〇, and the first current memory piece L1 and the first unidirectional semiconductor element connected in series are connected in parallel to the third unidirectional semiconductor element D10 and the first switching device 1 connected in series. The two ends of the crucible are reversely current-limiting to the first charging and discharging circuit; and the second unidirectional semiconductor element D2 is connected in series with the second switching device 20, and the second current storage element L2 and the second unidirectional semiconductor are connected in series The element D2 is connected in parallel to the two ends of the fourth unidirectional semiconductor element D20 and the second switching device 2A connected in series to reversely limit the second charging and discharging circuit. Thereby, a unidirectional current limit of the capacitor current (ie, the current flowing through the first battery E1 and the second battery e 2) can be achieved (ie, current limiting is performed when the first battery E1 and the second battery E2 are charged), Thereby, the heating efficiency can be further improved while protecting the first battery E1 and the second battery e 2 and the first switching device 丨0 and the second switching device 20 compared to the heating circuit of the second embodiment (bidirectional current limiting) . Fig. 6 is a waveform timing chart of the heating circuit according to the third embodiment of the present invention. As shown in Fig. 6, the capacitance current I is shown in Fig. 4, and the capacitance current Ic is shown in Fig. 6. The peak of the half cycle is higher. Fig. 7 is a circuit diagram showing an embodiment of a switching device in a heating circuit provided by the present invention. As shown in FIG. 7 'the first switching device 1 〇 and/or the second switching device 20 may include a switch ΚΙ 1 and a fifth unidirectional semiconductor element 1) 11 in anti-parallel with the switch ΚΙ 1 , the switch control module 1〇〇 is electrically connected to the switch K11 for controlling the turning-on and turning-off of the forward branch of the switching device 10 by controlling the turning-on and turning-off of the switch ΚΠ. Turning on the switch Ku 10022219#Single number A0101 Page 11/Total 21 page 1013181011-0 M436952 :1〇1年_ 14 ά费正轻页 and turn-off control can be found in Figure 2, Figure 4 and Figure 6. The grid section shown in the figure performs the 'switching control module 1', and the first switch can be controlled when the current flowing through the first switching device 1 or the second switching device 20 crosses zero or the current crosses zero. The device 1G and the second switching device 2Q perform switching state switching. The heating circuit provided by the present invention has the following advantages: (1) Since the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit in terms of the charge storage element, the electric energy can be An alternating reciprocating flow between the battery E1, the charge storage element, and the second battery £2, whereby the generated current can cause the first damper element R1 and the second damper element R2 to heat up, thereby making the first battery £1 and The second battery E2 is heated, and the first battery E1 and the second battery E2 are alternately heated, and the heating efficiency is high. (2) Due to the current limiting action of the current memory element and only a single charge and discharge circuit is formed every time period, so that the first battery E1 and the second battery E2 and the first switching device ι and the second switching device 2 are passed. The current is small, and the configuration of the charge and discharge circuit and the presence of the first current memory element L1 and the second current memory element L2 can further restrict the flow through the first battery E1 and the second battery E2 and the first switching device 1 And the current of the second switching device 20 thus avoids large currents damaging the battery and the switching device. (3) When the unidirectional current limit is used, 'the discharge efficiency of the first battery E1 and the second battery E2 can be increased' while the reverse charging current is limited to avoid damage to the first battery E1 and the second battery E2, thereby ensuring The heat efficiency is further increased while not damaging the first battery Ei and the second battery E2 and the switching device. (4) In the heating circuit provided by this creation, the charge memory element is connected in series with the battery. When the battery is heated, due to the storage of the series of charge memory elements 1013181011-0 10022219# single number A0101 page 12 / 21 pages M436952 On the 14th and the 14th of May, the nuclear power is replaced by the ^ page, which can avoid the safety problem caused by the failure of the switching device and the short circuit, thereby effectively protecting the battery. Although the present invention has been disclosed by the above embodiments, the above embodiments are not intended to limit the present invention, and any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. modify. Therefore, the scope of protection of this creation should be based on the scope defined by the scope of the attached patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are provided to provide a further understanding of the present invention, and are a part of the description, and are used to explain the present invention together with the following specific embodiments, but do not constitute a limitation of the present invention. In the drawings: FIG. 1 is a circuit diagram of a heating circuit according to a first embodiment of the present invention; FIG. 2 is a waveform timing chart of the heating circuit of the first embodiment; FIG. 3 is a second embodiment according to the present creation. FIG. 4 is a circuit diagram of a heating circuit according to a second embodiment of the present invention; FIG. 5 is a circuit diagram of a heating circuit according to a third embodiment of the present creation; A waveform timing chart of the heating circuit of the third embodiment; and a seventh circuit diagram of an embodiment of the switching device in the heating circuit provided by the present invention. [Main component symbol description] [0006] LI, L2, L10, L20 current memory components El, E2 battery

Rl、R2阻尼元件 10022219^^^^ A〇101 第13頁/共21頁 1013181011-0 M436952 ιοί年〇5li4日梭正_頁 C電荷記憶元件 10、20開關裝置 I e電容電流 tl、t2、t3、t4 時間段 D1、D2 、DIO、Dll、D20單向半導體元件Rl, R2 damping element 10022219^^^^ A〇101 Page 13/Total 21 page 1013181011-0 M436952 ιοί年〇5li4日梭正_Page C charge memory element 10, 20 switching device I e capacitor current tl, t2 T3, t4 time period D1, D2, DIO, D11, D20 unidirectional semiconductor components

Kll開關 10022219产單編號 A〇101 第14頁/共21頁 1013181011-0Kll switch 10022219 production order number A〇101 Page 14 of 21 1013181011-0

Claims (1)

101:年.05月14日修正_^百 M436952 六、申請專利範圍: 1 . 一種電池的加熱電路,所述電池包括第一電池、第二電池 ,其特徵在於,所述加熱電路包括: 第一開關裝置和第二開關裝置; 第一電流記憶元件、第二電流記憶元件、開關控制模組; 以及 電何記憶元件* 其中,所述第一電池與所述第二電池正向串聯; 所述第一電池、電流記憶元件、第一開關裝置、以及電荷 記憶元件相串聯,構成第一充放電電路; 所述第二電池、電流記憶元件、電荷記憶元件、以及第二 開關裝置相串聯,構成第二充放電電路,在對所述電荷記 憶元件充放電時,該第二充放電電路的充放電方向與所述 第一充放電電路的充放電方向相反; 所述開關控制模組分別與所述第一開關裝置和所述第二開 關裝置電連接,用於控制所述第一開關裝置和所述第二開 關裝置交替導通,以控制電能在所述第一電池、電荷記憶 元件以及所述第二電池之間的流動。 2 .如申請專利範圍第1項所述的加熱電路,其特徵在於,還 包括第一阻尼元件和第二阻尼元件,其中,所述第一阻尼 元件串聯在所述第一充放電電路中,所述第二阻尼元件串 聯在所述第二充放電電路中。 3.如申請專利範圍第2項所述的加熱電路,其特徵在於,所 述第一阻尼元件和第二阻尼元件分別為所述第一電池和第 二電池内部的寄生電阻,所述第一電流記憶元件和第二電 流記憶元件分別為所述第一電池和所述第二電池内部的寄 1002221A〇101 第15頁/共21頁 1013181011-0 月14日梭正轉瓦] 生電感,所述電荷記憶元件為電容。 4.如申請專利範圍第1項所述的加熱電路,其特徵在於,所 述加熱電路還包括第三電流記憶元件和第四電流記憶元件 ,所述第三電流記憶元件串聯在所述第一充放電電路中, 所述第四電流記憶元件串聯在所述第二充放電電路中。 .如申凊專利範圍第4項所述的加熱電路,其特徵在於,所 述第三電流記憶元件和所述第四電流記憶元件為電感。 6 .如申睛專利範圍第1項所述的加熱電路,其特徵在於,所 述加熱電路還包括第三電流記憶元件、第四電流記憶元件 · 、第一單向半導體元件、第二單向半導體元件第三單向 半導體元件以及第四單向半導體元件,其中, 所述第-單向半導體元件與所述第一開關裝置相串聯,相 宰聯的所述第一單向半導體元件與第三電流記憶元件並聯 於相串聯的所述第三單向半導體元件與所述第一開關裝置 兩端,以對所述第一充放電電路進行反向限流;以及 所述第二單向半導體元件與所述第二開關裝置相串聯,相 串聯的所述第四電流記憶元件與所述第二單向半導體元件 並聯於相串聯的所述第四單向半導體元件與所述第二開關 裝置兩端,以對所述第二充放電電路進行反向限流。 7 .如申请專利範圍第4項所述的加熱電路,其特徵在於,所 述第二電流記憶元件和所述第四電流記憶元件為電感。 .如申4專利範圍第1-7項中任一項所述的加熱電路,其特 徵在於,所述第一開關裝置和/或第二開關裝置包括開關 和與所述開關反向並聯的第五單向半導體元件所述開關 控制模組與所述開關電連接,用於通過控制所述開關的導 通和關斷來控制所述第一開關裝置和/或第二開關裝置的 10022219#單編號Α0101 第16頁/共21頁 1013181011-0 M436952 101年.05月14日修正替换頁 正向支路導通和關斷。 10022219^^^^ A〇101 第17頁/共21頁 1013181011-0101: Year. May 14th Amendment _^ Hundred M436952 VI. Patent Application Range: 1. A heating circuit for a battery, the battery comprising a first battery and a second battery, wherein the heating circuit comprises: a switching device and a second switching device; a first current memory element, a second current memory element, a switch control module; and an electrical memory element*, wherein the first battery and the second battery are forwardly connected in series; The first battery, the current storage element, the first switching device, and the charge storage element are connected in series to form a first charging and discharging circuit; the second battery, the current storage element, the charge storage element, and the second switching device are connected in series, Forming a second charge and discharge circuit, when charging and discharging the charge storage element, the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit; The first switching device and the second switching device are electrically connected to control the first switching device and the second switching device to be alternately turned on, Controlling the flow of electrical power between the first battery, the charge element and the second memory cell. 2. The heating circuit of claim 1, further comprising a first damping element and a second damping element, wherein the first damping element is connected in series in the first charging and discharging circuit, The second damping element is connected in series in the second charging and discharging circuit. 3. The heating circuit of claim 2, wherein the first damping element and the second damping element are parasitic resistances inside the first battery and the second battery, respectively, the first The current memory element and the second current memory element are respectively the first battery and the second battery internal 1002221A 〇 101 page 15 / 21 pages 1013181011 - the month of the 14th shuttle watts] The charge memory element is a capacitor. 4. The heating circuit of claim 1, wherein the heating circuit further comprises a third current memory element and a fourth current memory element, the third current memory element being connected in series at the first In the charge and discharge circuit, the fourth current memory element is connected in series in the second charge and discharge circuit. The heating circuit of claim 4, wherein the third current memory element and the fourth current memory element are inductors. 6. The heating circuit according to claim 1, wherein the heating circuit further comprises a third current memory element, a fourth current memory element, a first unidirectional semiconductor element, and a second one-way. a third unidirectional semiconductor component and a fourth unidirectional semiconductor component, wherein the first unidirectional semiconductor component is connected in series with the first switching device, and the first unidirectional semiconductor component and phase a three-current semiconductor device connected in parallel with the third unidirectional semiconductor device and the first switching device in series to reverse current limiting the first charging and discharging circuit; and the second unidirectional semiconductor An element is connected in series with the second switching device, and the fourth current storage element and the second unidirectional semiconductor element connected in series are connected in parallel with the fourth unidirectional semiconductor element and the second switching device connected in series Both ends are used to reversely limit the second charging and discharging circuit. 7. The heating circuit of claim 4, wherein the second current memory element and the fourth current memory element are inductors. The heating circuit according to any one of claims 1 to 7, wherein the first switching device and/or the second switching device comprise a switch and an anti-parallel connection with the switch The five-way semiconductor component is electrically connected to the switch, and is configured to control a single number of the first switching device and/or the second switching device by controlling the turning on and off of the switch. Α0101 Page 16 of 21 1013181011-0 M436952 101. May 14 Corrected the replacement page forward branch turn-on and turn-off. 10022219^^^^ A〇101 Page 17 of 21 1013181011-0
TW100222192U 2010-12-23 2011-11-24 Battery heating circuit TWM436952U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106047446A CN102074761B (en) 2010-07-30 2010-12-23 Heating circuit of battery

Publications (1)

Publication Number Publication Date
TWM436952U true TWM436952U (en) 2012-09-01

Family

ID=47226543

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100222192U TWM436952U (en) 2010-12-23 2011-11-24 Battery heating circuit
TW100143162A TWI433429B (en) 2010-12-23 2011-11-24 Battery heating circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100143162A TWI433429B (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (2) TWM436952U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653654A (en) * 2016-11-01 2017-05-10 上海华力微电子有限公司 Particle monitoring method of multi-step dry method etching machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089390A (en) * 2020-12-21 2022-06-28 세메스 주식회사 Temperature adjustment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653654A (en) * 2016-11-01 2017-05-10 上海华力微电子有限公司 Particle monitoring method of multi-step dry method etching machine

Also Published As

Publication number Publication date
TWI433429B (en) 2014-04-01
TW201233000A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CA2806628C (en) Battery heating circuit
TWI477026B (en) Battery heating circuit
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
US9209644B2 (en) Circuits and methods for heating batteries in series using resonance components in series
EP2413454A1 (en) Battery heating circuit
TWI477027B (en) Battery heating circuit
TWM436952U (en) Battery heating circuit
TWI454012B (en) Battery heating circuit
TWI469473B (en) Battery heating circuit
TWI433430B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI430536B (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWM433983U (en) Battery heating circuit
TWM434312U (en) Battery heating circuit
TWM438034U (en) Battery heating circuit
TWM438032U (en) Battery heating circuit
TW201240275A (en) Battery heating circuit
TW201251262A (en) Battery heating circuit
TWM437537U (en) Battery heating circuit
TW201322586A (en) Battery heating circuit

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model