201233000 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明屬於電子設備技術領域,尤其涉及一種電池的加 熱電路。 【先前技術】 [0002] 考慮到汽車需要在複雜的路況和環境條件下行駛,或者 有些電子設備需要在較差的環境條件中使用的情況,所 以,作為電動車或電子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低温環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輸出功率性能。 一般而言,如果在低溫條件下對電池充電的話,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降,最終導致電池壽命的降低。 【發明内容】 [0003] 本發明的目的是針對電池在低溫條件下會導致電池的阻 抗增大,極化增強,由此導致電池的容量下降的問題, 為了保持電池在低溫條件下的容量,提高電池的充放電 性能,本發明提供一種電池的加熱電路。 本發明提供一種電池的加熱電路,所述電池包括第一電 池和第二電池,所述加熱電路包括第一開關裝置、第二 開關裝置、開關控制模組、第一阻尼元件R1、第二阻尼 元件R2、第一電流記憶元件L1、第二電流記憶元件L2、 以及電荷記憶元件,其中,所述第一電池與第二電池正 10014316^^'^^ A〇101 第4頁/共21頁 1013098649-0 201233000 向串聯,所述第-電池、第一阻尼元倾、電流記憶元 件u、第-開隱置、以及所述電荷記憶元件(;相串聯以 構成第-充放電電路;所述第二電池、第二阻尼元件取 第-電憶元件L2、電荷記憶元件及所述第二開 關裝置相串聯以構成第二充放電電路,在對所述電荷記 憶元件C纽電時,·第二充放電電路縣放電方向與 所述第-充放電電路的充放電方向相反;所述開關控制 模組分別與所述第—_裝置和所述第二_裝置電連 接,用於控制所述第-開關裝置和所述第二開關裝置交 替導通,雜制魏麵鱗—電池、储織元件C以 及所述第二電池之間的流動。 在本發明提供的電池的加熱電路令,可通過開關控繼 組控制所述第-開職置和第二_裝置㈣導通,從 而實現電能在第-電池、電荷記憶元件及第二電池之 間的交替往復流動,從而導致第一阻尼元件R1和第二阻 尼元件R2發熱,以對第一電池和第二電池進行加熱。由 r! 於以電何記憶凡件C而言’第二充放電電路的充放電方向 " 與所述第一充放電電路的充玫電方向相反,由第-電池 所充入電荷記憶元件C的能量可順利轉移至第二電池,加 熱效率高》 在本發明提供的加熱電路中,電荷記憶元件與電池串聯 ,當給電池加熱時,由於串聯的電荷記憶元件的存在, 能夠避免糊裝置_剛_安全性_,能夠有 效地保護電池。 本發明的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 醒43^單織删1 W頁/共21頁 201233000 【實施方式】 [0004]以下結合附圖對本發明的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本發明’並不用於限制本發明。 需要指出的是,除非特別說明,當下文中提及時,術語 開關控制模組’’為任意能夠根據設定的條件或者設定 的日rr刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根據元器件自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide201233000 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to the field of electronic device technology, and more particularly to a heating circuit for a battery. [Prior Art] [0002] Considering that a car needs to travel under complicated road conditions and environmental conditions, or some electronic devices need to be used in poor environmental conditions, a battery that is a power source for an electric vehicle or an electronic device needs to be adapted. These complicated situations. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher Input and output power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. SUMMARY OF THE INVENTION [0003] The object of the present invention is to address the problem that the battery will increase the impedance of the battery under low temperature conditions, the polarization is enhanced, thereby causing the capacity of the battery to decrease, in order to maintain the capacity of the battery under low temperature conditions, To improve the charge and discharge performance of the battery, the present invention provides a heating circuit for a battery. The invention provides a heating circuit for a battery, the battery comprising a first battery and a second battery, the heating circuit comprising a first switching device, a second switching device, a switch control module, a first damping element R1, and a second damping The element R2, the first current memory element L1, the second current memory element L2, and the charge memory element, wherein the first battery and the second battery are 10014316^^'^^ A〇101 page 4/total 21 pages 1013098649-0 201233000 is connected in series, the first battery, the first damper element, the current memory element u, the first open recess, and the charge memory element (; are connected in series to form a first charge and discharge circuit; The second battery, the second damper element takes the first-electro-memory element L2, the charge memory element and the second switching device are connected in series to form a second charge-discharge circuit, when the charge-memory element C is energized, The discharge direction of the two charge and discharge circuits is opposite to the charge and discharge direction of the first charge and discharge circuit; the switch control module is electrically connected to the first device and the second device, respectively, for controlling the First-switch device The second switching device is alternately turned on, and the flow between the miscellaneous scale-battery, the storage element C, and the second battery is provided. The heating circuit of the battery provided by the invention can be controlled by the switch control group The first open device and the second device (four) are turned on to achieve alternating reciprocating flow of electrical energy between the first battery, the charge storage element and the second battery, thereby causing the first damping element R1 and the second damping element R2 Heating to heat the first battery and the second battery. The charging and discharging direction of the second charging and discharging circuit is the same as that of the electric device C. In the opposite direction, the energy charged by the first battery to the charge memory element C can be smoothly transferred to the second battery, and the heating efficiency is high. In the heating circuit provided by the present invention, the charge memory element is connected in series with the battery, when the battery is heated. Due to the presence of the series of charge memory elements, the paste device can be prevented from being able to effectively protect the battery. Other features and advantages of the present invention will be in the subsequent embodiments. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0004] The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the specific embodiments described herein. The present invention is only used to illustrate and explain the present invention', and is not intended to limit the present invention. It should be noted that, unless otherwise specified, the term switch control module '' is arbitrarily capable of setting the date or setting according to the set condition or setting. Outputting a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) to control a controller that is turned on or off correspondingly to a switching device connected thereto, for example, a PLC (Programmable Controller) or the like; when mentioned below The term "switch" refers to a switch that can perform on-off control by an electrical signal or on-off control according to the characteristics of the component itself, and can be a one-way switch, for example, a bidirectional switch and a diode connected in series. The switch, such as a switch, can also be a bidirectional switch, such as a metal oxide semiconductor field effect transistor (Metal Oxide).
Semiconductor Field Effect Transistor ^ M〇SFET)或帶有反並續流二極體的IGBT (Insulated Gate Blp〇iar Transist〇j_,絕緣柵雙極型電晶體)等 田^文中提及k,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元H件自㈣特性實現通 斷控制的可雙嚮導通的開關,例如M0SFET或帶有反並續 ":-,體的IGBT等;當下文中提及時,單向半導體元件 =疋具有單嚮導通功能的半導體元件,例如二極體等 承田I文中提及時’術語“電荷記憶元件,,指任意可以 貝現电何存儲的裝置’例如電容等;當下文中提及時, 術語“電流記憶元件,,指任意可以對電流進行存儲的裝 置例如電感等;當下文中提及時,術語“正向,,指能Semiconductor Field Effect Transistor ^ M〇SFET) or IGBT (Insulated Gate Blp〇iar Transist〇j_, Insulated Gate Bipolar Transistor) with anti-free current diodes, etc. “Switch” refers to a double-conducting switch that can be controlled by an electrical signal or an on-off control according to the characteristics of the element H, such as a MOSFET or an IGBT with an anti-continuous ":-, body, etc. When referred to hereinafter, a unidirectional semiconductor element = a semiconductor element having a unidirectional conduction function, such as a diode, such as a diode, etc., the term "charge memory element" as used in the text, means any device that can be stored and stored. 'For example, a capacitor or the like; when referred to hereinafter, the term "current memory element" means any device that can store current, such as an inductor, etc.; when referred to hereinafter, the term "forward," refers to energy.
10014316#單編號 A010I 第6頁/共21頁 1013098 201233000 2電池向儲能電路流動的方向,術語 ::電::電池流動的方向;當下文中提及時,二 次電池(例如乾電池、驗性電池等)和 二=广純離子電池、_池、錄氫電池或錯 咅、)^下文中提及時,術語“阻尼树,,指任 〜、通過對絲的賴起陶^㈣實魏量雜的裝置 ,,’例如可以為電阻等;當下文中提及時,術語“主回路10014316#单号A010I Page 6 of 21 1013098 201233000 2 The direction of battery flow to the storage circuit, term: electricity: direction of battery flow; when mentioned below, secondary battery (eg dry battery, test battery) Etc) and two = wide pure ion battery, _ pool, hydrogen battery or wrong 咅,) ^ mentioned in the following, the term "damping tree,, refers to any ~, through the silk to the pottery ^ (four) real Wei amount Device, 'for example, may be a resistor or the like; when referred to below, the term "main circuit
指的是電池與阻尼树、咖裝置以及儲能電路串聯 組成的回路。 這裏還需要_制岐,考慮财醜伽電池的不 同特性,在本發明中,“電池,,可以指不包含内部寄生 電阻和寄生魏、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也相指包含有内部寄生電 阻和寄生贼的電池包。因此,本賴技術人員應當理 解的疋,备電池為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 理想電池時,第—阻尼元傾和第二阻尼元件R2分別指 的是第一電池和第二電池外部的阻尼元件,第一電流記 憶元件L1和第二電流記憶元件L2分別指的是第一電池和 第二電池外部的電流記憶元件;當“電池,’為包含有内 部寄生電阻和寄生電感的電池包時,第一阻尼元件幻和 第二阻尼元件R2既可以分別指第一電池和第二電池外接 的阻尼元件,也可以分別指第一電池包和第二電池包内 部的寄生電阻,同樣地,第一電流記憶元件L1和第二電 流記憶元件L2既可以分別指第一電池和第二電池外部的 電流記憶元件,也可以分別指第一電池包和第二電池包 ^014316声單編號A0101 第7頁/共21頁 ^13098649-0 201233000 内部的寄生電感。 在本發明的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的%境情況對電池的加熱條件和停止加熱條件進行設置 以從對電池的溫度進行更精確的控制,從而保證電池 的充放電性能。 第1圖為本發明第一實施方式的加熱電路的電路圖。如第 1圖所示本發明&供了一種電池的加熱電路,所述電池 匕括第电池和第二電池,其中,加熱電路包括第一開 關裝置10、第二開驗置2G、第—阻尼元倾、第二阻 尼元件R2、第―電流記憶元舰 '第二電流記憶元件L2 、開關控制模組100、以及電荷記憶元件c。其中,第一 電池與第二電池正向串聯,第—電池、第—阻尼元件則 、第一電流記憶元件U、第—開職·、以及電荷記 L元件C相串聯,構成第—充放電電路;第二電池、第二 阻尼讀2、第二電流記憶元件L2、電荷記憶元件c以及 第-開關裝置20相串聯,構成第二充放電電路。在對電 何。己隐7C件C充放電時,該第二充放電電路的充放電方向 與第一充放電電路的充放電方向相反。開關控制模組!00 分別與第—關裝和第二_裝置2G電連接,用於 控制第-開關裝置10和第二開關裝置2〇交替導通,以控 制電能在第一電池、電荷記憶元件C以及第二電池之間的 流動。 第8頁/共21頁 10014316#單編號 A0101 其中,開關控制模組100可控制第一開關裝置10和第二開 關裝置20進行開關狀態切換,例如第一開關裝置1 〇由導 通狀態切換為關斷狀態,而第二開關裝置2〇由關斷狀態 切換為導通狀態’從而使得由一個電池存儲在電荷記憶 元件C内的電能流入到另一個電池内。該電能的流動會伴 隨著的電流的產生,通過不斷使電流流經第一阻尼元件 R1和第二阻尼元件R2,以使第一阻尼元件ri和第二阻尼 元件R2可以產生熱量,從而對該第一電池E1和第二電池 E2進行加熱。 第2圖為本發明第一實施方式的加熱電路的波形時序圖。 以下結合第2圖描述本發明提供的加熱電路的具體工作過 程。首先,開關控制模組1〇〇控制第一開關裝置1〇導通、 第二開關裝置20斷開,第一電池El、第一阻尼元件ri、 電流記憶元件L1、第一開關裝置1〇以及電荷記憶元件c構 成一個充放電電路,該充放電電路進行充放電(如第2圖 中的時間段tl〜t2所示,時間段tl表示該充放電電路的充 電時間段,在該時間段U結尾處,電荷記憶元件C的電容 電壓UC為正半週期峰值,電容電流丨c經正半週期之後為 零,時間段t2表示該充放電電路的放電時間段)。在一 個充放電週期結束之後(此時電荷記憶元件c的電流】 負半週期之後為零),開關控制模組丨〇〇控制第一開關裝 置10斷開、第二開關裝置20導通,第二電池E2、第二阻 尼元件R2、第二電流記憶元件L2、電荷記憶元件C以及第 -開關裝置20構成-個充放電電路,該充放電電路進行 充放電(如第2圖中的時間段t3~t4所示,時間段t3表示 5亥充放電電路的充電賴段’時間段麵該充放電電 201233000 路的放電時間段)。在該充放電電路的-個充放電週期 ^之後(此時電荷記憶元件c的電流I c經正半週期之後 為零’整個加熱電路完成—個完整工作週期),開關控 制模組100再次控制第—開關装置1〇導通、第二開關裝置 20斷開’如此循環往復’使得電流不斷流過第一阻尼元 倾和第二阻尼元傾,使得第—阻尼元·和第二阻 尼元件R2可以產生熱量,從而對該第_電池邮第二電 池E2進行加熱,直至加熱完畢為止。 在本發明加熱電_壯工作職巾,可使得電流在第 -電池E1和第二電池E2之間交替往復流動,實現了兩個 正向串聯的電池的交替加熱,加熱效率高。 第3圖為根據本發明第二實施方式的加熱電路的電路圖。 優選地’如第3圖所示,本發明的加熱電路還包括第三電 流§己憶元件L10和第四電流記憶元件L2〇。第三電流記憶 元件L10串聯在第一充放電電路中,第四電流記憶元件 L20串聯在第二充放電電路中。藉此,可以利用第三電流 §己憶元件L10和第四電流記憶元件L20,實現電容電流I (即,流經第一電池E1和第二電池E2以及第一開關裝置 10和第一開關裝置20的電流)的雙向限流,減小了流經 第一電池E1和第二電池E2以及第一開關裝置1〇和第二開 關裝置20的電流大小,達到了保護第一電池E1和第二電 池E2以及第一開關裝置10和第二開關裝置20的目的。第4 圖為該根據本發明第二實施方式的加熱電路的波形時序 圖,如第4圖所示,相比於第2圖所示的電容電流I c,第4 圖所示電容電流I e的波形較為平滑,其峰值及穀值皆遠 小於第2圖所示的電容電流I ^的峰值及縠值。 10_^料號 A〇101 第10頁/共21頁 1013098649-0 201233000 第5圖為根據本發明第三實施方式的加熱電路的電路圖。 優選地’如第5圖所示,本發明的加熱電路還可包括第三 電流記億元件L10、第四電流記憶元件l2〇、第一單向半 導體元件D1、第二單向半導體元件D2'第三單向半導體 元件D10以及第四單向半導體元件D20。其中,第一單向 半導體元件D1與第一開關裝置1〇相串聯,相串聯的第一 電流記憶元件L1與第一單向半導體元件]並聯於相串聯 的第三單向半導體元件Dl〇與第一開關裝置1〇的兩端,以 對第一充放電電路進行反向限流;以及第二單向半導體 元件D2與第二開關裝置20相串聯,相串聯的第二電流記 憶元件L2與第二單向半導體元件D2並聯於相串聯的第四 單向半導體元件D20與第二開關裝置20的兩端,以對第二 充放電電路進行反向限流。藉此,可實現電容電流(即 ,流經第一電池E1和第二電池E2的電流)的單向限流( 即,對第一電池EI和第二電池E2充電時進行限流),從 而相比於第二實施方式的加熱電路(雙向限流),可在 保護第一電池E1和第二電池E 2以及第一開關裝置1 〇和第 一開關農置20的同時,進一步提升加熱效率。第6圖為該 根據本發明第三實施方式的加熱電路的波形時序圖,如 第6圖所示,相比於第4圖所示的電容電流I ,第6圖所示Refers to the circuit consisting of a battery in series with a damping tree, a coffee device, and a storage circuit. Here, it is also necessary to consider the different characteristics of the battery. In the present invention, "battery," may refer to an inductance value that does not include internal parasitic resistance and parasitic resistance, or internal parasitic resistance and parasitic inductance. Small ideal batteries are also referred to as battery packs containing internal parasitic resistance and parasitic thieves. Therefore, as the technicians should understand, the backup battery is a resistor that does not contain internal parasitic resistance and parasitic inductance, or internal parasitic resistance. And an ideal battery having a smaller inductance value of the parasitic inductance, the first damping element and the second damping element R2 refer to the damping element outside the first battery and the second battery, respectively, the first current memory element L1 and the second current The memory element L2 refers to a current memory element external to the first battery and the second battery, respectively; when the "battery," is a battery pack including internal parasitic resistance and parasitic inductance, the first damping element and the second damping element R2 It can refer to the damping element externally connected to the first battery and the second battery, respectively, or the parasitic electric energy inside the first battery pack and the second battery pack, respectively. Similarly, the first current memory element L1 and the second current memory element L2 may refer to the current memory elements outside the first battery and the second battery, respectively, or may refer to the first battery pack and the second battery pack respectively. Single No. A0101 Page 7 / Total 21 Pages ^13098649-0 201233000 Internal parasitic inductance. In the embodiment of the present invention, in order to ensure the service life of the battery, the battery needs to be heated at a low temperature. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated, and when the heating condition is stopped, the control is performed. The heating circuit stops working. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual situation of the environment to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. . Fig. 1 is a circuit diagram of a heating circuit according to a first embodiment of the present invention. As shown in Fig. 1, the invention provides a heating circuit for a battery, the battery comprising a first battery and a second battery, wherein the heating circuit comprises a first switching device 10, a second opening device 2G, a first The damping element tilts, the second damping element R2, the first current storage element ship 'second current memory element L2, the switch control module 100, and the charge memory element c. Wherein, the first battery and the second battery are connected in series, and the first battery, the first damping element, the first current memory element U, the first opening, and the electric charge L element C are connected in series to form a first charging and discharging The second battery, the second damper read 2, the second current memory element L2, the charge memory element c, and the first switching device 20 are connected in series to form a second charge and discharge circuit. In the right. When the CC 7C is charged and discharged, the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit. The switch control module !00 is electrically connected to the first and second devices 2G, respectively, for controlling the first switch device 10 and the second switch device 2 to be alternately turned on to control the electric energy in the first battery and the charge memory device. C and the flow between the second battery. Page 8 / 21 pages 10014316 #单号 A0101 Wherein, the switch control module 100 can control the first switching device 10 and the second switching device 20 to switch state, for example, the first switching device 1 切换 is switched from the on state to the off state The off state, while the second switching device 2 is switched from the off state to the on state 'so that the electric energy stored in the charge memory element C by one battery flows into the other cell. The flow of the electrical energy is accompanied by the generation of a current by continuously flowing a current through the first damper element R1 and the second damper element R2 so that the first damper element ri and the second damper element R2 can generate heat, thereby The first battery E1 and the second battery E2 are heated. Fig. 2 is a waveform timing chart of the heating circuit of the first embodiment of the present invention. The specific operation of the heating circuit provided by the present invention will be described below in conjunction with FIG. First, the switch control module 1 〇〇 controls the first switching device 1 〇 to be turned on, the second switching device 20 to be turned off, the first battery E1, the first damper element ri, the current memory element L1, the first switching device 1 〇, and the electric charge The memory element c constitutes a charge and discharge circuit that performs charge and discharge (as shown in time period t1 to t2 in FIG. 2, the time period t1 represents the charging time period of the charge and discharge circuit, at the end of the time period U Wherein, the capacitance voltage UC of the charge memory element C is a positive half cycle peak, the capacitance current 丨c is zero after a positive half cycle, and the time period t2 represents a discharge time period of the charge and discharge circuit). After the end of a charge and discharge cycle (at this time, the current of the charge memory element c is zero after the negative half cycle), the switch control module 丨〇〇 controls the first switching device 10 to be turned off, the second switching device 20 to be turned on, and the second The battery E2, the second damper element R2, the second current memory element L2, the charge memory element C, and the first switching device 20 constitute a charge and discharge circuit that performs charge and discharge (as in the time period t3 in FIG. 2) As shown in ~t4, the time period t3 represents the charging period of the charging and discharging circuit of 201233000 in the charging section of the 5-Hay charging and discharging circuit. After the charge and discharge cycle of the charge and discharge circuit ^ (when the current I c of the charge memory element c is zero after the positive half cycle - the entire heating circuit is completed - a complete duty cycle), the switch control module 100 is again controlled The first switching device is turned on, and the second switching device 20 is turned off, so that the current continuously flows through the first damping element and the second damping element, so that the first damping element and the second damping element R2 can Heat is generated to heat the first battery E2 battery E2 until the heating is completed. In the heating electric-powered work towel of the present invention, current can be alternately reciprocated between the first battery E1 and the second battery E2, and alternating heating of two forward-series batteries is realized, and the heating efficiency is high. Fig. 3 is a circuit diagram of a heating circuit according to a second embodiment of the present invention. Preferably, as shown in Fig. 3, the heating circuit of the present invention further includes a third current circuit element L10 and a fourth current memory element L2. The third current memory element L10 is connected in series in the first charge and discharge circuit, and the fourth current memory element L20 is connected in series in the second charge and discharge circuit. Thereby, the capacitor current I can be realized by using the third current CMOS element L10 and the fourth current memory element L20 (ie, flowing through the first battery E1 and the second battery E2 and the first switching device 10 and the first switching device) The bidirectional current limiting of the current of 20 reduces the current flowing through the first battery E1 and the second battery E2 and the first switching device 1 and the second switching device 20, thereby achieving protection of the first battery E1 and the second The purpose of the battery E2 and the first switching device 10 and the second switching device 20. Fig. 4 is a waveform timing chart of the heating circuit according to the second embodiment of the present invention. As shown in Fig. 4, the capacitance current Ie shown in Fig. 4 is compared with the capacitance current Ic shown in Fig. 2. The waveform is smoother, and its peak value and valley value are much smaller than the peak value and threshold value of the capacitor current I ^ shown in Fig. 2. 10_^Item No. A〇101 Page 10 of 21 1013098649-0 201233000 Fig. 5 is a circuit diagram of a heating circuit according to a third embodiment of the present invention. Preferably, as shown in FIG. 5, the heating circuit of the present invention may further include a third current collector element L10, a fourth current memory element 12, a first unidirectional semiconductor element D1, and a second unidirectional semiconductor element D2'. The third unidirectional semiconductor element D10 and the fourth unidirectional semiconductor element D20. Wherein, the first unidirectional semiconductor element D1 is connected in series with the first switching device 1 ,, and the first current storage element L1 and the first unidirectional semiconductor element connected in series are connected in parallel to the third unidirectional semiconductor element D1 串联 in series Both ends of the first switching device 1 are reversely current-limiting to the first charging and discharging circuit; and the second unidirectional semiconductor device D2 is connected in series with the second switching device 20, and the second current memory element L2 is connected in series The second unidirectional semiconductor element D2 is connected in parallel to both ends of the fourth unidirectional semiconductor element D20 and the second switching device 20 connected in series to reverse current limiting the second charging and discharging circuit. Thereby, a unidirectional current limit of the capacitive current (ie, the current flowing through the first battery E1 and the second battery E2) can be achieved (ie, current limiting is performed when the first battery EI and the second battery E2 are charged), thereby Compared with the heating circuit of the second embodiment (bidirectional current limiting), the heating efficiency can be further improved while protecting the first battery E1 and the second battery E 2 and the first switching device 1 and the first switch farm 20 . Fig. 6 is a waveform timing chart of the heating circuit according to the third embodiment of the present invention, as shown in Fig. 6, which is shown in Fig. 6 as compared with the capacitor current I shown in Fig. 4.
C 電容電流I C在正半週期的峰值較高。 第7圖為本發明提供的加熱電路中的開關裝置的一種實施 方式的電路圖。如第7圖所示,第一開關裝置10和/或第 二開關裝置20可包括開關ΚΙ 1和與該開關ΚΙ 1反向並聯的 第五單向半導體元件D11。其中,開關控制模組1〇〇與開 關Π1電連接,用於通過控制開關K11的導通和關斷來控 10014316#單編號 A0101 第11頁/共21頁 1013098649-0 201233000 制第一開關裝置10正向支路的導通和關斷。對該開關Kll 的導通和關斷控制可在第2圖 '第4圖以及第6圖中所示的 網格區段中進行’開關控制模組1〇〇可在流經第一開關裝 置10或第二開關裝置20的電流過零時或電流過零之後, 控制第一開關裝置10和第二開關裝置2 〇進行開關狀態切 換。 本發明所提供的加熱電路具備以下優點: (1) 由於就電荷記憶元件而言,第二充放電電路的充放 電方向與所述第一充放電電路的充放電方向相反,因此 電能可於第一電池E1 '電荷記憶元件以及第二電池E2之 間的交替往復流動,藉此所產生的電流可使得第一阻尼 元件R1和第二阻尼元件R2發熱,從而對第一電池El和第 二電池E2進行加熱,實現了對第一電池E1和第二電池E2 交替加熱,加熱效率高。 (2) 由於電流記憶元件的限流作用以及每一時間週期僅 形成單個充放電電路,從而使得流經第一電池Ei和第二 電池E2以及第一開關裝置1 〇和第二開關裝置2 〇的電流較 小’另外’充放電電路的構成以及第一電流記憶元件L1 、第一電流記憶元件L2的存在亦可進一步限制流經第一 電池E1和第二電池E2以及第一開關裝置1〇和第二開關裝 置20的電流,從而避免了大電流損害電池以及開關裝置 〇 (3) 在使用單向限流時,可增大第一電池ei和第二電池 E2的放電效率,同時反向充電電流受限以避免損害第一 電池E1和第二電池E2,從而於保證了不損害第—電池们 和第二電池E2以及開關裝置的同時’更增加熱效率。 #單编號A0101 第12頁/共21頁 1013098649-0The C capacitor current I C has a higher peak value during the positive half cycle. Fig. 7 is a circuit diagram showing an embodiment of a switching device in a heating circuit provided by the present invention. As shown in Fig. 7, the first switching device 10 and/or the second switching device 20 may include a switch ΚΙ 1 and a fifth unidirectional semiconductor element D11 connected in anti-parallel with the switch ΚΙ 1. The switch control module 1 is electrically connected to the switch Π1 for controlling the on and off of the control switch K11. 10014316# single number A0101 page 11 / 21 page 1013098649-0 201233000 first switch device 10 The forward branch is turned on and off. The turn-on and turn-off control of the switch K11 can be performed in the grid section shown in FIG. 2 'FIG. 4 and FIG. 6'. The switch control module 1 can be passed through the first switching device 10 Or when the current of the second switching device 20 crosses zero or after the current crosses zero, the first switching device 10 and the second switching device 2 are controlled to perform switching state switching. The heating circuit provided by the present invention has the following advantages: (1) Since the charge and discharge direction of the second charge and discharge circuit is opposite to the charge and discharge direction of the first charge and discharge circuit in terms of the charge memory element, the electric energy can be An alternating reciprocating flow between the battery E1 'charge memory element and the second battery E2, whereby the generated current can cause the first damping element R1 and the second damping element R2 to generate heat, thereby pairing the first battery E1 and the second battery E2 is heated to achieve alternating heating of the first battery E1 and the second battery E2, and the heating efficiency is high. (2) Flowing through the first battery Ei and the second battery E2 and the first switching device 1 and the second switching device 2 due to the current limiting action of the current memory element and forming only a single charge and discharge circuit per time period The configuration of the smaller 'other' charge and discharge circuit and the presence of the first current memory element L1 and the first current memory element L2 can further restrict the flow through the first battery E1 and the second battery E2 and the first switching device 1 And the current of the second switching device 20, thereby avoiding the large current damaging the battery and the switching device 〇(3), when using the unidirectional current limiting, increasing the discharge efficiency of the first battery ei and the second battery E2 while reversing The charging current is limited to avoid damaging the first battery E1 and the second battery E2, thereby ensuring that the thermal efficiency is increased while not damaging the first battery and the second battery E2 and the switching device. #单编号A0101 Page 12 of 21 1013098649-0
10014316Z 201233000 ⑷在本發明提供的加熱電路中,電荷記憶元件與電池 串聯’當給電池加鱗,由於㈣的電荷記億元件的存 在’能夠避免_裝置失效短路引麵安全性問題從 而有效地保護電池。 Ο [0005] 雖然本發明已上财施_相,然社述實施例 並非用以限定本發明,任何本發明所屬技術領域中技術 人貝,在不脫離本發明的精神和範圍内,應當可以作各 種的變動與修改。因此本發_保護翻應當以所附權 利要求書所界定的範圍為准。 【圖式簡單說明】 附圖是用來提供對本發明的進一 書的一部分,與下面的具體實施 月但並不構成對本發明的限制 步理解,並且構成說明 方式一起用於解釋本發 。在附圖中: Ο 弟丄圖為本發實施方式心熱電料電路圖. ^圖為本發明第—實施方式的加熱電路的波形時序圖; 第3圖為根據本發明第二實 弟實施方式的加熱電路的電路圖; 苐4圖為根據本發明第實 ^霄施方式的加熱電路的波形時序 圖, 第5圖為根據本發明第三實 頁允方式的加熱電路的電路圖; 第6圖為根據本發明第三實祐古 頁轭方式的加熱電路的波形時序 圖;以及 第7圖為本發明提供的加熱 私崎〒的開關裝置的一種實施 方式的電路圖。 [0006] 【主要元件符號說明】 WO開關控制模組 10014316^^^^ A0101 第13頁 1013098649-0 201233000 ίο第一開關裝置 20第二開關裝置 C電荷記憶元件 L1第一電流記憶元件 R1第一阻尼元件 E1第一電池 L2第二電流記憶元件 R2第二阻尼元件 E2第二電池 L10第三電流記憶元件 L20第四電流記憶元件 Μ第一單向半導體元件 D2第二單向半導體元件 D10第三單向半導體元件 D20第四單向半導體元件 D11第五單向半導體元件 K11開關 10014316^^'^ A〇101 第14頁/共21頁 1013098649-010014316Z 201233000 (4) In the heating circuit provided by the present invention, the charge memory element is connected in series with the battery. 'When the battery is scaled, the presence of the charge of the (4) charge element can avoid the safety problem of the device failure short circuit and thus effectively protect battery. [0005] Although the present invention has been described in the above, the embodiments are not intended to limit the invention, and any person skilled in the art to which the invention pertains may be able to do so without departing from the spirit and scope of the invention. Make various changes and modifications. Therefore, the scope of the present invention should be determined by the scope defined in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are included to provide a part of the description of the present invention, and are not to be construed as a BRIEF DESCRIPTION OF THE DRAWINGS In the drawings: FIG. 3 is a waveform diagram of a heating circuit of a first embodiment of the present invention; FIG. 3 is a waveform diagram of a heating circuit according to a second embodiment of the present invention; FIG. 5 is a circuit diagram of a heating circuit according to a third embodiment of the present invention; FIG. 6 is a circuit diagram of a heating circuit according to a third embodiment of the present invention; A waveform timing diagram of a heating circuit of a third practical yoke method of the present invention; and a seventh circuit diagram of an embodiment of a heating device for heating a private shackle provided by the present invention. [0006] [Main component symbol description] WO switch control module 10014316^^^^ A0101 Page 13 1013098649-0 201233000 ίο first switching device 20 second switching device C charge memory element L1 first current memory element R1 first Damping element E1 first battery L2 second current memory element R2 second damping element E2 second battery L10 third current memory element L20 fourth current memory element Μ first unidirectional semiconductor element D2 second unidirectional semiconductor element D10 third Unidirectional semiconductor element D20 fourth unidirectional semiconductor element D11 fifth unidirectional semiconductor element K11 switch 10014316^^'^ A〇101 Page 14 of 21 page 1013098649-0