TWI465000B - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TWI465000B
TWI465000B TW100143130A TW100143130A TWI465000B TW I465000 B TWI465000 B TW I465000B TW 100143130 A TW100143130 A TW 100143130A TW 100143130 A TW100143130 A TW 100143130A TW I465000 B TWI465000 B TW I465000B
Authority
TW
Taiwan
Prior art keywords
energy
switch
storage element
heating circuit
circuit
Prior art date
Application number
TW100143130A
Other languages
Chinese (zh)
Other versions
TW201232996A (en
Inventor
Wenhui Xu
Yaochuan Han
Wei Feng
Qinyao Yang
Wenjin Xia
Shibin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010106047770A external-priority patent/CN102074762B/en
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TW201232996A publication Critical patent/TW201232996A/en
Application granted granted Critical
Publication of TWI465000B publication Critical patent/TWI465000B/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

一種電池的加熱電路Battery heating circuit

本發明屬於電子設備技術領域,尤其涉及一種電池的加熱電路。The invention belongs to the technical field of electronic devices, and in particular relates to a heating circuit of a battery.

考慮到汽車需要在複雜的路況和環境條件下行駛,或者有些電子設備需要在較差的環境條件中使用的情況,所以,作為電動車或電子設備電源的電池就需要適應這些複雜的狀況。而且除了需要考慮這些狀況,還需考慮電池的使用壽命及電池的充放電迴圈性能,尤其是當電動車或電子設備處於低溫環境中時,更需要電池具有優異的低溫充放電性能和較高的輸入輸出功率性能。
一般而言,如果在低溫條件下對電池進行充電,將會導致電池的阻抗增大,極化增強,從而導致電池的容量下降,最終導致電池壽命的降低。
Considering that cars need to travel under complex road conditions and environmental conditions, or that some electronic devices need to be used in poor environmental conditions, batteries that are power sources for electric vehicles or electronic devices need to adapt to these complex conditions. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and higher Input and output power performance.
In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase, the polarization will increase, and the capacity of the battery will decrease, eventually leading to a decrease in battery life.

本發明的目的是針對電池在低溫條件下會導致電池的阻抗增大、極化增強從而引起電池的容量下降的問題,提供一種電池的加熱電路。為了保持電池在低溫條件下的容量,提高電池的充放電性能,本發明提供了一種電池的加熱電路。
本發明提供的電池的加熱電路包括開關裝置、開關控制模組、阻尼元件R1以及儲能電路,所述儲能電路用於與所述電池連接,所述儲能電路包括第一電流記憶元件L1和第一電荷記憶元件C1,所述阻尼元件R1和開關裝置與所述儲能電路串聯,所述開關控制模組與開關裝置連接,用於控制開關裝置導通和關斷,以使得當開關裝置導通時,能量在所述電池與所述儲能電路之間往復流動。
本發明提供的加熱電路能夠提高電池的充放電性能,並且由於在該加熱電路中,儲能電路與電池串聯,當給電池加熱時,由於串聯的第一電荷記憶元件C1的存在,能夠避免開關裝置失效短路時電流過大引起的安全性問題,能夠有效地保護電池。
本發明的其他特徵和優點將在隨後的具體實施方式部分予以詳細說明。
SUMMARY OF THE INVENTION The object of the present invention is to provide a heating circuit for a battery in which the battery causes an increase in impedance of the battery and an increase in polarization to cause a decrease in the capacity of the battery under low temperature conditions. In order to maintain the capacity of the battery under low temperature conditions and improve the charge and discharge performance of the battery, the present invention provides a heating circuit for a battery.
The heating circuit of the battery provided by the invention comprises a switching device, a switch control module, a damping element R1 and a storage circuit, wherein the energy storage circuit is connected to the battery, and the energy storage circuit comprises a first current memory element L1 And a first charge storage element C1, the damping element R1 and the switching device are connected in series with the energy storage circuit, the switch control module is connected to the switching device for controlling the switching device to be turned on and off, so that when the switching device is When turned on, energy flows back and forth between the battery and the tank circuit.
The heating circuit provided by the invention can improve the charge and discharge performance of the battery, and since the storage circuit is connected in series with the battery in the heating circuit, when the battery is heated, the switch can be avoided due to the presence of the first charge storage element C1 connected in series. The safety problem caused by excessive current when the device is short-circuited can effectively protect the battery.
Other features and advantages of the invention will be described in detail in the detailed description which follows.

以下結合附圖對本發明的具體實施方式進行詳細說明。應當理解的是,此處所描述的具體實施方式僅用於說明和解釋本發明,並不用於限制本發明。
需要指出的是,除非特別說明,當下文中提及時,術語“開關控制模組”為任意能夠根據設定的條件或者設定的時刻輸出相應的控制指令(例如具有相應占空比的脈衝波形)從而控制與其連接的開關裝置相應地導通或關斷的控制器,例如可以為PLC(可編程控制器)等;當下文中提及時,術語“開關”指的是可以通過電信號實現通斷控制或者根據元器件自身的特性實現通斷控制的開關,既可以是單向開關,例如由雙向開關與二極體串聯構成的可單嚮導通的開關等,也可以是雙向開關,例如金屬氧化物半導體型場效應管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)或帶有反並續流二極體的IGBT(Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等;當下文中提及時,術語“雙向開關”指的是可以通過電信號實現通斷控制或者根據元器件自身的特性實現通斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續流二極體的IGBT等;當下文中提及時,單向半導體元件指的是具有單嚮導通功能的半導體元件,例如二極體等;當下文中提及時,術語“電荷記憶元件”指任意可以實現電荷存儲的裝置,例如電容等;當下文中提及時,術語“電流記憶元件”指任意可以對電流進行存儲的裝置,例如電感等;當下文中提及時,術語“正向”指能量從電池向儲能電路流動的方向,術語“反向”指能量從儲能電路向電池流動的方向;當下文中提及時,術語“電池”包括一次電池(例如乾電池、鹼性電池等)和二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛酸電池等);當下文中提及時,術語“阻尼元件”指任意通過對電流的流動起阻礙作用以實現能量消耗的裝置,例如電阻等;當下文中提及時,術語“主回路”指的是電池與阻尼元件、開關裝置以及儲能電路串聯組成的回路。
這裏還需要特別說明的是,考慮到不同類型的電池的不同特性,在本發明中,“電池”可以指不包含內部寄生電阻和寄生電感、或者內部寄生電阻的阻值和寄生電感的電感值較小的理想電池,也可以指包含有內部寄生電阻和寄生電感的電池包。因此,本領域技術人員應當理解的是,當“電池”為不包含內部寄生電阻和寄生電感、或者內部寄生電阻的阻值和寄生電感電感值較小的理想電池時,阻尼元件R1指的是電池外部的阻尼元件,第一電流記憶元件L1指的是電池外部的電流記憶元件;當“電池”為包含有內部寄生電阻和寄生電感的電池包時,阻尼元件R1既可以指電池外部的阻尼元件,也可以指電池包內部的寄生電阻,同樣地,第一電流記憶元件L1既可以指電池外部的電流記憶元件,也可以指電池包內部的寄生電感。
在本發明的實施例中,為了保證電池的使用壽命,需要在低溫情況下對電池進行加熱,當達到加熱條件時,控制加熱電路開始工作,對電池進行加熱,當達到停止加熱條件時,控制加熱電路停止工作。
在電池的實際應用中,隨著環境的改變,可以根據實際的環境情況對電池的加熱條件和停止加熱條件進行設置,以對電池的溫度進行更精確的控制,從而保證電池的充放電性能。
為了對處於低溫環境中的電池E進行加熱,本發明提供了一種電池E的加熱電路,如第1圖所示,該加熱電路包括開關裝置1、阻尼元件R1、開關控制模組100以及儲能電路,所述儲能電路用於與所述電池E串聯,所述儲能電路包括第一電流記憶元件L1和第一電荷記憶元件C1,所述阻尼元件R1、開關裝置1、第一電流記憶元件L1和第一電荷記憶元件C1串聯,所述開關控制模組100與開關裝置1連接,所述開關控制模組100用於控制開關裝置1導通和關斷,以使得當開關裝置1導通時,能量在所述電池E與所述儲能電路之間往復流動。
考慮到不同類型的電池E的不同特性,如果電池E內部的寄生電阻阻值和寄生電感自感較大,所述阻尼元件R1也可以為電池內部的寄生電阻,所述第一電流記憶元件L1也可以為電池內部的寄生電感。
根據本發明的一種實施方式,所述第一電荷記憶元件C1和所述開關裝置1均有多個,且第一電荷記憶元件C1與開關裝置1一一對應串聯構成多個支路,所述多個支路彼此並聯之後與第一電流記憶元件L1、阻尼元件R1串聯,開關控制模組100控制每一個開關裝置1的導通與關斷,從而控制與該開關裝置1串聯的儲能電路是否與電池E連接。優選地,所述開關控制模組100控制開關裝置1以使得能量從電池E同時流到多個儲能電路,並且能量從各個儲能電路依次流動回電池E。在這種實施方式中,電流正向流動時,電池E放電,可以將儲能電路同時與電池E連通,以增大電流;電流反向流動時,對電池E充電,此時可以將儲能電路依次與電池E連通,以減小流過電池E的電流。
所述開關裝置1與儲能電路串聯,在導通時能夠實現電池E與儲能電路之間的能量往復流動,開關裝置1具有多種實現方式,本發明對開關裝置的實現方式不作限制。作為開關裝置1的一種實施方式,所述開關裝置1為第一雙向開關K3,如第2圖所示。由開關控制模組100控制第一雙向開關K3的導通與關斷,當需要對電池加熱時,導通第一雙向開關K3即可,如暫停加熱或者不需要加熱時關斷第一雙向開關K3即可。
單獨使用一個第一雙向開關K3實現開關裝置1,電路簡單,佔用系統面積小,容易實現,但是電路功能受到明顯局限,例如不能實現反向電流時關斷等。對此,本發明還提供了如下開關裝置1的優選實施方式。
優選地,所述開關裝置1包括用於實現能量從電池流向儲能電路的第一單向支路和用於實現能量從儲能電路流向電池的第二單向支路,所述開關控制模組100與所述第一單向支路和第二單向支路中的一者或兩者分別連接,用以控制所連接的支路的導通和關斷。當電池需要加熱時,導通第一單向支路和第二單向支路兩者,如暫停加熱可以選擇關斷第一單向支路和第二單向支路中的一者或兩者,當不需要加熱時,可以關斷第一單向支路和第二單向支路兩者。優選地,第一單向支路和第二單向支路兩者都能夠受開關控制模組100的控制,這樣,可以靈活實現能量正向流動和反向流動。
作為開關裝置1的另一種實施方式,如第3圖所示,所述開關裝置1可以包括第二雙向開關K4和第三雙向開關K5,所述第二雙向開關K4和第三雙向開關K5彼此反向串聯以構成所述第一單向支路和第二單向支路,所述開關控制模組100與所述第二雙向開關K4和第三雙向開關K5分別連接,用於通過控制第二雙向開關K4和第三雙向開關K5的導通和關斷來控制第一單向支路和第二單向支路的導通和關斷。當需要對電池加熱時,導通第二雙向開關K4和K5即可,如暫停加熱可以選擇關斷第二雙向開關K4和第三雙向開關K5中的一者或者兩者,在不需要加熱時關斷第二雙向開關K4和第三雙向開關K5即可。這種開關裝置1的實現方式能夠分別控制第一單向支路和第二單向支路的導通和關斷,靈活實現電路的正向和反向能量流動。
作為開關裝置1的另一種實施方式,如第5圖所示,所述開關裝置1可以包括第一開關K6、第一單向半導體元件D11以及第二單向半導體元件D12,第一開關K6和第一單向半導體元件D11彼此串聯以構成所述第一單向支路,第二單向半導體元件D12構成所述第二單向支路,所述開關控制模組100與第一開關K6連接,用於通過控制第一開關K6的導通和關斷來控制第一單向支路的導通和關斷。在如第5圖所示的開關裝置1中,當需要加熱時,導通第一開關K6即可,不需要加熱時,關斷第一開關K6即可。
如第5圖中所示的開關裝置1的實現方式雖然實現了能量往返沿著相對獨立的支路流動,但是還不能實現能量反向流動時的關斷功能。本發明還提出了開關裝置1的另一種實施方式,如第6圖所示,所述開關裝置1還可以包括位於第二單向支路中的第二開關K7,該第二開關K7與第二單向半導體元件D12串聯,所述開關控制模組100還與第二開關K7連接,用於通過控制第二開關K7的導通和關斷來控制第二單向支路的導通和關斷。這樣在第6圖示出的開關裝置1中,由於兩個單向支路上均存在開關(即第一開關K6和第二開關K7),同時具備能量正向和反向流動時的關斷功能。
優選地,所述開關裝置1還可以包括與所述第一單向支路和/或第二單向支路串聯的電阻,用於減小電池加熱回路的電流,避免回路中電流過大對電池造成損害。例如,可以在第3圖中示出的開關裝置1中添加與第二雙向開關K4和第三雙向開關K5串聯的電阻R6,得到開關裝置1的另一種實現方式,如第4圖所示。第7圖中也示出了開關裝置1的一種實施方式,其是在第6圖中示出的開關裝置1中的兩個單向支路上分別串聯電阻R2、電阻R3得到的。
根據本發明的技術方案,當需要對電池E加熱時,開關控制模組100控制開關裝置1導通,電池E與儲能電路串聯構成回路,電池E對第一電荷記憶元件C1進行充電,當回路中的電流經過電流峰值後正向為零時,第一電荷記憶元件C1開始放電,電流從第一電荷記憶元件C1流回電池E,回路中的正向、反向電流均流過阻尼元件R1,通過阻尼元件R1的發熱可以達到給電池E加熱的目的。上述充放電過程迴圈進行,當電池E的溫度升高達到停止加熱條件時,開關控制模組100可以控制開關裝置1關斷,加熱電路停止工作。
在上述加熱過程中,當電流從儲能電路流回電池E時,第一電荷記憶元件C1中的能量不會完全流回電池E,而是會有一些能量餘留在第一電荷記憶元件C1中,最終使得第一電荷記憶元件C1電壓接近或等於電池電壓,從而使得從電池E向第一電荷記憶元件C1的能量流動不能進行,不利於加熱電路的迴圈工作。因此,本發明優選實施方式中還增加了將第一電荷記憶元件C1內的能量與電池E的能量進行疊加、將第一電荷記憶元件C1內的能量轉移到其他儲能元件等功能的附加單元。在達到一定時刻時,關斷開關裝置1,對第一電荷記憶元件C1中的能量進行疊加、轉移等操作。開關裝置1可以在一個週期或多個週期內的任意時間點關斷;開關裝置1的關斷時刻可以是任何時刻,例如回路中的電流為正向/反向時、為零時/不為零時均可以實施關斷。根據所需要的關斷策略可以選擇開關裝置1的不同的實現形式,如果只需要實現正向電流流動時關斷,則選用例如第2圖、第5圖所示的開關裝置1的實現形式即可,如果需要實現正向電流和反向電流時均可以關斷,則需要選用如第4圖、第6圖、第7圖所示的兩個單向支路均可控的開關裝置。優選地,所述開關控制模組100用於當開關裝置1導通後流過開關裝置1的電流為零時或為零後關斷開關裝置1,這樣回路效率高,且回路中電流為零再關斷開關裝置1對整個電路影響較小。
根據本發明的一種優選實施方式,如第8圖所示,本發明提供的加熱電路可以包括能量疊加單元,該能量疊加單元與所述儲能電路連接,用於在開關裝置1導通再關斷後,將儲能電路中的能量與電池E中的能量進行疊加。所述能量疊加單元使得在開關裝置1再次導通時,電池E能夠將疊加後的能量充入第一電荷記憶元件C1,由此提高加熱電路的工作效率。
根據本發明的一種實施方式,如第9圖所示,所述能量疊加單元包括極性反轉單元102,該極性反轉單元102與所述儲能電路連接,用於在開關裝置1導通再關斷後,對第一電荷記憶元件C1的電壓極性進行反轉,由於極性反轉後的第一電荷記憶元件C1的電壓極性與電池E的電壓極性形成串聯相加關係,當開關裝置1再次導通時,第一電荷記憶元件C1中的能量可以與電池E中的能量進行疊加。
作為極性反轉單元102的一種實施方式,如第10圖所示,所述極性反轉單元102包括第一單刀雙擲開關J1和第二單刀雙擲開關J2,所述第一單刀雙擲開關J1和第二單刀雙擲開關J2分別位於所述第一電荷記憶元件C1兩端,所述第一單刀雙擲開關J1的入線連接在所述儲能電路中,所述第一單刀雙擲開關J1的第一出線連接所述第一電荷記憶元件C1的第一極板,所述第一單刀雙擲開關J1的第二出線連接所述第一電荷記憶元件C1的第二極板,所述第二單刀雙擲開關J2的入線連接在所述儲能電路中,所述第二單刀雙擲開關J2的第一出線連接所述第一電荷記憶元件C1的第二極板,所述第二單刀雙擲開關J2的第二出線連接在所述第一電荷記憶元件C1的第一極板,所述開關控制模組100還與所述第一單刀雙擲開關J1和第二單刀雙擲開關J2分別連接,用於通過改變所述第一單刀雙擲開關J1和第二單刀雙擲開關J2各自的入線和出線的連接關係來對所述第一電荷記憶元件C1的電壓極性進行反轉。
根據上述實施方式,可以預先對第一單刀雙擲開關J1和第二單刀雙擲開關J2各自的入線和出線的連接關係進行設置,使得當開關裝置K1導通時,所述第一單刀雙擲開關J1的入線與其第一出線連接,而所述第二單刀雙擲開關J2的入線與其第一出線連接,當開關裝置K1關斷時,通過開關控制模組100控制第一單刀雙擲開關J1的入線切換到與其第二出線連接,而所述第二單刀雙擲開關J2的入線切換到與其第二出線連接,由此實現第一電荷記憶元件C1電壓極性反轉的目的。
作為極性反轉單元102的另一種實施方式,如第11圖所示,所述極性反轉單元102包括第三單向半導體元件D3、第二電流記憶元件L2以及第三開關K9,所述第一電荷記憶元件C1、第二電流記憶元件L2和第三開關K9順次串聯形成回路,所述第三單向半導體元件D3和串聯在所述第一電荷記憶元件C1與第二電流記憶元件L2或所述第二電流記憶元件L2與第三開關K9之間,所述開關控制模組100還與所述第三開關K9連接,用於通過控制第三開關K9導通來對所述第一電荷記憶元件C1的電壓極性進行反轉。
根據上述實施方式,當開關裝置1關斷時,可以通過開關控制模組100控制第三開關K9導通,由此,第一電荷記憶元件C1與第三單向半導體元件D3、第二電流記憶元件L2以及第三開關K9形成LC振盪回路,第一電荷記憶元件C1通過第二電流記憶元件L2放電,振盪回路上的電流流經正半週期後,流經第二電流記憶元件L2的電流為零時達到第一電荷記憶元件C1電壓極性反轉的目的。
作為極性反轉單元102的又一種實施方式,如第12圖所示,所述極性反轉單元102包括第一DC-DC模組2和第二電荷記憶元件C2,該第一DC-DC模組2與所述第一電荷記憶元件C1和第二電荷記憶元件C2分別連接,所述開關控制模組100還與所述第一DC-DC模組2連接,用於通過控制第一DC-DC模組2工作來將所述第一電荷記憶元件C1中的能量轉移至所述第二電荷記憶元件C2,再將所述第二電荷記憶元件C2中的能量反向轉移回所述第一電荷記憶元件C1,以實現對所述第一電荷記憶元件C1的電壓極性的反轉。
所述第一DC-DC模組2是本領域中常用的用於實現電壓極性反轉的直流變直流轉換電路,本發明不對第一DC-DC模組2的具體電路結構作任何限制,只要能夠實現對第一電荷記憶元件C1的電壓極性反轉即可,本領域技術人員可以根據實際操作的需要對其電路中的元件進行增加、替換或刪減。
第13圖為本發明提供的第一DC-DC模組2的一種實施方式,如第13圖所示,所述第一DC-DC模組2包括:雙向開關Q1、雙向開關Q2、雙向開關Q3、雙向開關Q4、第一變壓器T1、單向半導體元件D4、單向半導體元件D5、電流記憶元件L3、雙向開關Q5、雙向開關Q6、第二變壓器T2、單向半導體元件D6、單向半導體元件D7、以及單向半導體元件D8。
在該實施方式中,雙向開關Q1、雙向開關Q2、雙向開關Q3和雙向開關Q4均為MOSFET,雙向開關Q5和雙向開關Q6為IGBT。
其中,所述第一變壓器T1的1腳、4腳、5腳為同名端,第二變壓器T2的2腳與3腳為同名端。
其中,單向半導體元件D7的陽極與電容C1的a端連接,單向半導體元件D7的陰極與雙向開關Q1和雙向開關Q2的漏極連接,雙向開關Q1的源極與雙向開關Q3的漏極連接,雙向開關Q2的源極與雙向開關Q4的漏極連接,雙向開關Q3、雙向開關Q4的源極與電容C1的b端連接,由此構成全橋電路,此時電容C1的電壓極性為a端為正,b端為負。
在該全橋電路中,雙向開關Q1、雙向開關Q2為上橋臂,雙向開關Q3、雙向開關Q4為下橋臂,該全橋電路通過第一變壓器T1與所述第二電荷記憶元件C2相連;第一變壓器T1的1腳與第一節點N1連接、2腳與第二節點N2連接,3腳和5腳分別連接至單向半導體元件D4和單向半導體元件D5的陽極;單向半導體元件D4和單向半導體元件D5的陰極與電流記憶元件L3的一端連接,電流記憶元件L3的另一端與第二電荷記憶元件C2的d端連接;變壓器T1的4腳與第二電荷記憶元件C2的c端連接,單向半導體元件D8的陽極與第二電荷記憶元件C2的d端連接,單向半導體元件D8的陰極與第一電荷記憶元件C1的b端連接,此時第二電荷記憶元件C2的電壓極性為c端為負,d端為正。
其中,第二電荷記憶元件C2的c端連接雙向開關Q5的發射極,雙向開關Q5的集電極與變壓器T2的2腳連接,變壓器T2的1腳與第一電荷記憶元件C1的a端連接,變壓器T2的4腳與第一電荷記憶元件C1的a端連接,變壓器T2的3腳連接單向半導體元件D6的陽極,單向半導體元件D6的陰極與雙向開關Q6的集電極連接,雙向開關Q6的發射極與第二電荷記憶元件C2的b端連接。
其中,雙向開關Q1、雙向開關Q2、雙向開關Q3、雙向開關Q4、雙向開關Q5和雙向開關Q6分別通過所述開關控制模組100的控制來實現導通和關斷。
下面對所述第一DC-DC模組2的工作過程進行描述:
1、在開關裝置1關斷後,所述開關控制模組100控制雙向開關Q5、雙向開關Q6關斷,控制雙向開關Q1和雙向開關Q4同時導通以構成A相,控制雙向開關Q2、雙向開關Q3同時導通以構成B相,通過控制所述A相、B相交替導通以構成全橋電路進行工作;
2、當所述全橋電路工作時,第一電荷記憶元件C1上的能量通過第一變壓器T1、單向半導體元件D4、單向半導體元件D5、以及電流記憶元件L3轉移到第二電荷記憶元件C2上,此時第二電荷記憶元件C2的電壓極性為c端為負,d端為正。
3、所述開關控制模組100控制雙向開關Q5導通,第一電荷記憶元件C1通過第二變壓器T2和單向半導體元件D8與第二電荷記憶元件C2構成通路,由此,第二電荷記憶元件C2上的能量向第一電荷記憶元件C1反向轉移,其中,部分能量將儲存在第二變壓器T2上;此時,所述開關控制模組100控制雙向開關Q5關斷、雙向開關Q6閉合,通過第二變壓器T2和單向半導體元件D6將儲存在第二變壓器T2上的能量轉移至第一電荷記憶元件C1,以實現對第一電荷記憶元件C1進行反向充電,此時第一電荷記憶元件C1的電壓極性反轉為a端為負,b端為正,由此達到了將第一第一電荷記憶元件C1的電壓極性反向的目的。
為了對儲能電路中的能量進行回收利用,根據本發明的一種優選實施方式,如第14圖所示,本發明提供的加熱電路可以包括能量轉移單元,所述能量轉移單元與所述儲能電路連接,用於在開關裝置1導通再關斷後,將儲能電路中的能量轉移至儲能元件中。所述能量轉移單元目的在於對存儲電路中的能量進行回收利用。所述儲能元件可以是外接電容、低溫電池或者電網以及其他用電設備。
優選情況下,所述儲能元件是本發明提供的電池E,所述能量轉移單元包括電量回灌單元103,該電量回灌單元103與所述儲能電路連接,用於在開關裝置1導通再關斷後,將儲能電路中的能量轉移至所述電池E中,如第15圖所示。
根據本發明的技術方案,在開關裝置1關斷後,通過能量轉移單元將儲能電路中的能量轉移到電池E中,能夠在開關裝置1再次導通後對被轉移的能量進行迴圈利用,提高了加熱電路的工作效率。
作為電量回灌單元103的一種實施方式,如第16圖所示,所述電量回灌單元103包括第二DC-DC模組3,該第二DC-DC模組3與所述第一電荷記憶元件C1和所述電池E分別連接,所述開關控制模組100還與所述第二DC-DC模組3連接,用於通過控制第二DC-DC模組3工作來將第一電荷記憶元件C1中的能量轉移到所述電池中。
所述第二DC-DC模組3是本領域中常用的用於實現能量轉移的直流變直流轉換電路,本發明不對第二DC-DC模組3的具體電路結構作任何限制,只要能夠實現對第一電荷記憶元件C1的能量進行轉移即可,本領域技術人員可以根據實際操作的需要對其電路中的元件進行增加、替換或刪減。
第17圖為本發明提供的第二DC-DC模組3的一種實施方式,如第17圖所示,所述第二DC-DC模組3包括:雙向開關S1、雙向開關S2、雙向開關S3、雙向開關S4、第三變壓器T3、電流記憶元件L4、以及四個單向半導體元件。在該實施方式中,所述雙向開關S1、雙向開關S2、雙向開關S3、雙向開關S4均為MOSFET。
其中,所述第三變壓器T3的1腳和3腳為同名端,所述四個單向半導體元件中的兩個單向半導體元件負極相接成組,接點通過電流記憶元件L4與電池E的正端連接,另兩個單向半導體元件正極相接成組,接點與電池E的負端連接,且組與組之間的對接點分別與第三變壓器T3的3腳和4腳連接,由此構成橋式整流電路。
其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1、雙向開關S2的漏極與第一電荷記憶元件C1的正端連接,雙向開關S3、雙向開關S4的源極與第一電荷記憶元件C1的負端連接,由此構成全橋電路。
在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂,雙向開關S3、雙向開關S4為下橋臂,第三變壓器T3的1腳與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向開關S2和雙向開關S4之間的節點連接。
其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開關S4分別通過所述開關控制模組100的控制來實現導通和關斷。
下面對所述第二DC-DC模組3的工作過程進行描述:
1、在開關裝置1關斷後,所述開關控制模組100控制雙向開關S1和雙向開關S4同時導通以構成A相,控制雙向開關S2、雙向開關S3同時導通以構成B相,通過控制所述A相、B相交替導通以構成全橋電路進行工作;
2、當所述全橋電路工作時,第一電荷記憶元件C1上的能量通過第三變壓器T3和整流電路轉移到電池E上,所述整流電路將輸入的交流電轉化為直流電輸出至電池E,達到電量回灌的目的。
為了使本發明提供的加熱電路在提高工作效率的同時能夠對儲能電路中的能量進行回收利用,根據本發明的一種優選實施方式,如第18圖所示,本發明提供的加熱電路可以包括能量疊加和轉移單元,該能量疊加和轉移單元與所述儲能電路連接,用於在開關裝置1導通再關斷後,將儲能電路中的能量轉移至儲能元件中,之後將儲能電路中的剩餘能量與電池中的能量進行疊加。所述能量疊加和轉移單元既能夠提高加熱電路的工作效率,又能夠對儲能電路中的能量進行回收利用。
將儲能電路中的剩餘能量與電池中的能量進行疊加可以通過將第一電荷記憶元件C1的電壓極性進行反轉來實現,第一電荷記憶元件C1的電壓極性進行反轉後其極性與電池E的電壓極性形成串聯相加關係,由此,當下一次導通開關裝置1時,電池E中的能量能夠與第一電荷記憶元件C1中的能量進行疊加。
因此,根據一種實施方式,如第19圖所示,所述能量疊加和轉移單元包括DC-DC模組4,該DC-DC模組4與所述第一電荷記憶元件C1和所述電池分別連接,所述開關控制模組100還與所述DC-DC模組4連接,用於通過控制DC-DC模組4工作來將所述第一電荷記憶元件C1中的能量轉移至儲能元件中,之後將所述第一電荷記憶元件C1中的剩餘能量與電池中的能量進行疊加。
所述DC-DC模組4是本領域中常用的用於實現能量轉移和電壓極性反轉的直流變直流轉換電路,本發明不對DC-DC模組4的具體電路結構作任何限制,只要能夠實現對第一電荷記憶元件C1的能量轉移和電壓極性反轉即可,本領域技術人員可以根據實際操作的需要對其電路中的元件進行增加、替換或刪減。
作為DC-DC模組4的一種實施方式,如第19圖所示,該DC-DC模組4包括:雙向開關S1、雙向開關S2、雙向開關S3、雙向開關S4、雙向開關S5、雙向開關S6、第四變壓器T4、單向半導體元件D13、單向半導體元件D14、電流記憶元件L4、以及四個單向半導體元件。在該實施方式中,所述雙向開關S1、雙向開關S2、雙向開關S3、雙向開關S4均為MOSFET,雙向開關S5和雙向開關S6為IGBT。
其中,第四變壓器T4的1腳和3腳為同名端,所述四個單向半導體元件中的兩個單向半導體元件負極相接成組,接點通過電流記憶元件L4與電池E的正端連接,另兩個單向半導體元件正極相接成組,接點與電池E的負端連接,且組與組之間的對接點分別通過雙向開關S5和雙向開關S6與第三變壓器T3的3腳和4腳連接,由此構成橋式整流電路。
其中,雙向開關S1的源極與雙向開關S3的漏極連接,雙向開關S2的源極與雙向開關S4的漏極連接,雙向開關S1、雙向開關S2的漏極通過單向半導體元件D13與第一電荷記憶元件C1的正端連接,雙向開關S3、雙向開關S4的源極通過單向半導體元件D14與第一電荷記憶元件C1的負端連接,由此構成全橋電路。
在該全橋電路中,雙向開關S1、雙向開關S2為上橋臂,雙向開關S3、雙向開關S4為下橋臂,第四變壓器T4的1腳與雙向開關S1和雙向開關S3之間的節點連接、2腳與雙向開關S2和雙向開關S4之間的節點連接。
其中,雙向開關S1、雙向開關S2、雙向開關S3和雙向開關S4、雙向開關S5和雙向開關S6分別通過所述開關控制模組100的控制來實現導通和關斷。
下面對所述DC-DC模組4的工作過程進行描述:
1、在開關裝置1關斷後,當需要對第一電荷記憶元件C1執行電量回灌以實現能量轉移時,所述開關控制模組100控制雙向開關S5和S6導通,控制雙向開關S1和雙向開關S4同時導通以構成A相,控制雙向開關S2、雙向開關S3同時導通以構成B相,通過控制所述A相、B相交替導通以構成全橋電路進行工作;
2、當所述全橋電路工作時,第一電荷記憶元件C1上的能量通過第四變壓器T4和整流電路轉移到電池E上,所述整流電路將輸入的交流電轉化為直流電輸出至電池E,達到電量回灌的目的;
3、當需要對第一電荷記憶元件C1進行極性反轉以實現能量疊加時,所述開關控制模組100控制雙向開關S5和雙向開關S6關斷,控制雙向開關S1和雙向開關S4或者雙向開關S2和雙向開關S3兩組中的任意一組導通;此時,第一電荷記憶元件C1中的能量通過其正端、雙向開關S1、第四變壓器T4的原邊、雙向開關S4反向回到其負端,或者通過其正端、雙向開關S2、第四變壓器T4的原邊、雙向開關S3反向回到其負端,利用T4的原邊勵磁電感,達到對第一電荷記憶元件C1進行電壓極性反轉的目的。
根據另一種實施方式,所述能量疊加和轉移單元可以包括能量疊加單元和能量轉移單元,所述能量轉移單元與所述儲能電路連接,用於在開關裝置1導通再關斷後,將儲能電路中的能量轉移至儲能元件中,所述能量疊加單元與所述儲能電路連接,用於在所述能量轉移單元進行能量轉移之後,將儲能電路中的剩餘能量與電池中的能量進行疊加。
其中,所述能量疊加單元和能量轉移單元均可以採用本發明在前述實施方式中提供的能量疊加單元和能量轉移單元,其目的在於實現對第一電荷記憶元件C1的能量轉移和疊加,其具體結構和功能在此不再贅述。
作為本發明的一種實施方式,為了使加熱電路迴圈工作,還可以對第一電荷記憶元件C1中的能量進行消耗。因此,如第20圖所示,所述加熱電路還包括與所述第一電荷記憶元件C1連接的能量消耗單元,該能量消耗單元用於在開關裝置1導通再關斷後,對第一電荷記憶元件C1中的能量進行消耗。
該能量消耗單元可以在加熱電路中單獨使用,在開關裝置1導通再關斷後,直接對第一電荷記憶元件C1中的能量進行消耗,也可以與以上多種實施方式相結合,例如,該能量消耗單元可以與包括能量疊加單元的加熱電路結合,在開關裝置1導通再關斷後、能量疊加單元進行能量疊加操作之前對第一電荷記憶元件C1中的能量進行消耗,也可以與包括能量轉移單元的加熱電路結合,在開關裝置1導通再關斷後、能量轉移單元進行能量轉移之前或者在能量轉移單元進行能量轉移之後對第一電荷記憶元件C1中的能量進行消耗,同樣可以與包括能量疊加和轉移單元的加熱電路結合,在開關裝置1導通再關斷後、能量疊加和轉移單元進行能量轉移之前對第一電荷記憶元件C1中的能量進行消耗,或者在能量疊加和轉移單元進行能量轉移之後、進行能量疊加之前對第一電荷記憶元件C1中的能量進行消耗,本發明不對此進行限定,並且,通過以下實施方式可以更清楚地瞭解該能量消耗單元的工作過程。
根據一種實施方式,如第21圖所示,所述能量消耗單元包括電壓控制單元101,該電壓控制單元101用於在開關裝置1導通再關斷時,將第一電荷記憶元件C1兩端的電壓值轉換成電壓設定值。該電壓設定值可以根據實際操作的需要進行設定。
如第21圖所示,所述電壓控制單元101包括電阻R5和第四開關K8,所述電阻R5和第四開關K8彼此串聯之後並聯在所述第一電荷記憶元件C1的兩端,所述開關控制模組100還與第四開關K8連接,所述開關控制模組100還用於在控制開關裝置1導通再關斷後控制第四開關K8導通。由此,第一電荷記憶元件C1中的能量可以通過電阻R5進行消耗。
所述開關控制模組100可以為一個單獨的控制器,通過對其內部程式的設置,可以實現對不同的外接開關的通斷控制,所述開關控制模組100也可以為多個控制器,例如針對每一個外接開關設置對應的開關控制模組100,所述多個開關控制模組100也可以集成為一體,本發明不對開關控制模組100的實現形式作出任何限定。
下面結合第22圖-第31圖對電池E的加熱電路的實施方式的工作方式進行簡單介紹,其中第22、24、26、28、30圖顯示的是電池E的加熱電路的各種實施方式,第23、25、27、29圖顯示的是對應的波形圖。需要注意的是,雖然本發明的特徵和元素參考第22、24、26、28、30圖以特定的結合進行了描述,但每個特徵或元素可以在沒有其他特徵和元素的情況下單獨使用,或在與或不與其他特徵和元素結合的各種情況下使用。本發明提供的電池E的加熱電路的實施方式並不限於第22、24、26、28、30圖所示的實現方式。第23、25、27、29圖所示的波形圖中的網格部分表示在該段時間內可以單次或多次對開關施加驅動脈衝,並且脈衝的寬度可以根據需要進行調節。
在如第22圖所示的電池E的加熱電路中,使用一個第一雙向開關K3構成開關裝置1,該開關裝置1與阻尼元件R1、第一電荷記憶元件C1以及第一電流記憶元件L1串聯,第三單向半導體元件D3、第二電流記憶元件L2和第三開關K9構成極性反轉單元102,開關控制模組100可以控制第三開關K9和開關K3的導通和關斷。第23圖示出了第22圖所示的加熱電路的主回路電流I 、C1電壓VC1 和極性反轉回路電流IL2 波形圖,第22圖所示的加熱電路的工作過程如下:
a)開關控制模組100控制第一雙向開關K3導通,如第23圖所示的t1時間段,電池E通過第一雙向開關K3、第一電荷記憶元件C1進行正向放電(如第23圖中的t1時間段的回路電流的正半週期所示)和反向充電(如第23圖中的t1時間段的回路電流的負半週期所示);
b)開關控制模組100控制第一雙向開關K3在反向電流為零時關斷;
c)開關控制模組100控制第三開關K9導通,極性反轉單元102工作,第一電荷記憶元件C1通過第三單向半導體元件D3、第二電流記憶元件L2和第三開關K9組成的回路放電,並達到電壓極性反轉的目的,之後,開關控制模組100控制第三開關K9關斷,如第23圖中的t2時間段所示;
d)重複步驟a)至c),電池E不斷通過充放電實現加熱,直至電池E達到停止加熱條件為止。
在如第24圖所示的電池E的加熱電路中,使用相互串聯的第一開關K6、第一單向半導體元件D11(第一單向支路)以及相互串聯的第二開關K7、第二單向半導體元件D12(第二單向支路)構成開關裝置1,第二DC-DC模組3構成將第一電荷記憶元件C1中的能量轉移回電池E的電量回灌單元103,開關控制模組100可以控制第一開關K6、第二開關K7的導通和關斷以及第二DC-DC模組3的工作與否。第25圖示出了第24圖所示的加熱電路的主回路電流I 、C1電壓VC1 波形圖,第24圖所示的加熱電路的工作過程如下:
a)開關控制模組100控制第一開關K6、第二開關K7導通,如第25圖所示的t1時間段,電池E通過第一開關K6、第一單向半導體元件D11、第一電荷記憶元件C1進行正向放電(如第25圖中的t1時間段所示),並且通過第一電荷記憶元件C1、第二開關K7、第二單向半導體元件D12反向充電(如第25圖中的t2時間段所示);
b)開關控制模組100控制第一開關K6、第二開關K7在反向電流為零時關斷;
c)開關控制模組100控制第二DC-DC模組3工作,第一電荷記憶元件C1通過第二DC-DC模組3將交流電轉化為直流電輸出到電池E中,實現電量回灌,之後控制第二DC-DC模組3停止工作,如第25圖中所示的t3時間段;
d)重複步驟a)至c),電池E不斷通過放電實現加熱,直至電池E達到停止加熱條件為止。
如第26圖所示的電池E的加熱電路,使用相互串聯的第一開關K6、第一單向半導體元件D11(第一單向支路)以及相互串聯的第二開關K7、第二單向半導體元件D12(第二單向支路)構成開關裝置1,DC-DC模組4構成將第一電荷記憶元件C1中的能量轉移回電池E並且之後將第一電荷記憶元件C1極性反轉以在下一充放電週期與電池E的能量進行疊加的能量疊加和轉移單元,開關控制模組100可以控制第一開關K6、第二開關K7的導通和關斷以及DC-DC模組4的工作與否。第27圖示出了第26圖所示的加熱電路的主回路電流I 、C1電壓VC1 波形圖,第26圖所示的加熱電路的工作過程如下:
a)開關控制模組100控制第一開關K6、第二開關K7導通,如第27圖所示的t1時間段,電池E通過第一開關K6、第一單向半導體元件D11、第一電荷記憶元件C1進行正向放電(如第27圖中的t1時間段所示),並且通過第一電荷記憶元件C1、第二開關K7、第二單向半導體元件D12反向充電(如第27圖中的t2時間段所示);
b)開關控制模組100控制第一開關K6、第二開關K7在反向電流為零時關斷;
c)開關控制模組100控制DC-DC模組4工作,第一電荷記憶元件C1通過DC-DC模組4將交流電轉化為直流電輸出到電池E中,實現電量回灌,然後DC-DC模組4將第一電荷記憶元件C1的極性反轉,在C1極性反轉之後控制DC-DC模組4停止工作,如第27圖中所示的t3、t4時間段;
d)重複步驟a)至c),電池E不斷通過放電實現加熱,直至電池E達到停止加熱條件為止。
在第28圖所示的電池E的加熱電路中,第一電荷記憶元件C1和開關裝置1各自都有多個,第一電荷記憶元件C1和開關裝置1一一對應串聯構成多個支路,該多個支路彼此並聯之後與第一電流記憶元件L1、阻尼元件R1、電池E串聯,每個開關裝置1採用的是兩單向支路均可控的方式,極性反轉單元102可以採用上文所述的任一種極性反轉單元102的實現方式,例如採用第11圖所示的結構,在第28圖中未示出極性反轉單元102具體的電路結構。開關控制模組100可以控制每個開關裝置1的導通和關斷以及極性反轉單元102的工作與否。第29圖示出了第28圖所示的加熱電路的波形圖。第28圖所示的加熱電路的工作過程如下:
a)開關控制模組100控制第一開關K6、K60、K61、K62導通(第二開關K7、K70、K71、K72仍然閉合),電流正向流動,電池E放電,分別給第一電荷記憶元件C1、C12、C13和C14充電,如第29圖中的t1時間段所示;第一開關K6、K60、K61、K62並聯導通,能夠增大回路中的電流。
b)回路電流的正半週期結束後,開關控制模組100控制第一開關K6、K60、K61、K62關斷,並控制第二開關K7、K70、K71、K72依次導通,電流反向流動,如t2時間段所示,由於第一電荷記憶元件C1、C12、C13和C14依次給電池E充電,而不是同時充電,能夠減小反向電流,第29圖中,S1~S4為第二開關K7、K70、K71、K72依次導通時的反向電流波形圖;反向充電結束後,第二開關K7、K70、K71、K72均關斷;
c)開關控制模組100控制多個極性反轉單元102工作,將各個電荷記憶元件上的電壓極性反轉,如t3時間段所示。
d)重複步驟a)至c),電池E不斷通過放電實現加熱,直至電池E達到停止加熱條件為止。
如第30圖所示的電池E的加熱電路,使用相互串聯的第一開關K6、第一單向半導體元件D11(第一單向支路)以及相互串聯的第二開關K7、第二單向半導體元件D12(第二單向支路)構成開關裝置1,電阻R5和第四開關K8構成電壓控制單元101,第二電流記憶元件L2、半導體元件D3和第三開關K9構成極性反轉單元102,開關控制模組100可以控制第一開關K6、第二開關K7、第四開關K8和第三開關K9的導通和關斷。第31圖示出了第30圖所示的加熱電路的主回路電流I 、C1電壓VC1 極性反轉回路電流IL2 波形圖,第30圖所示的加熱電路的工作過程如下:
a)開關控制模組100控制第一開關K6、第二開關K7導通,如第31圖所示的t1時間段,電池E通過第一開關K6、第一單向半導體元件D11、第一電荷記憶元件C1進行正向放電(如第31圖中的t1時間段所示),並且通過第一電荷記憶元件C1、第二開關K7、第二單向半導體元件D12反向充電(如第31圖中的t2時間段所示);
b)開關控制模組100控制第一開關K6、第二開關K7在反向電流為零時關斷;
c)開關控制模組100控制第四開關K8導通,通過阻尼元件R8將第一電荷記憶元件C1上的能量進行消耗,如第31圖的t3時間段所示;然後開關控制模組100控制第四開關K8關斷,並且控制第三開關K9導通,通過第二電流記憶元件L2、半導體元件D3和第三開關K9將第一電荷記憶元件C1的極性反轉,在C1極性反轉之後,控制第三開關K9關斷,如第31圖中所示的t4時間段;
d)重複步驟a)至c),電池E不斷通過放電實現加熱,直至電池E達到停止加熱條件為止。
採用本發明提供的加熱電路,由於儲能電路與電池E串聯,當給電池E加熱時,由於第一電荷記憶元件C1的存在,能夠避免開關裝置1失效短路時引起的安全問題,從而有效地保護電池E。
以上結合附圖詳細描述了本發明的優選實施方式,但是,本發明並不限於上述實施方式中的具體細節,在本發明的技術構思範圍內,可以對本發明的技術方案進行多種簡單變型,這些簡單變型均屬於本發明的保護範圍。
另外需要說明的是,在上述具體實施方式中所描述的各個具體技術特徵,在不矛盾的情況下,可以通過任何合適的方式進行組合,為了避免不必要的重複,本發明對各種可能的組合方式不再另行說明。此外,本發明的各種不同的實施方式之間也可以進行任意組合,只要其不違背本發明的思想,其同樣應當視為本發明所公開的內容。
The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It is to be understood that the specific embodiments described herein are merely illustrative and not restrictive.
It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control that can be realized by an electrical signal or according to a The switch of the device itself can realize the on-off control, which can be a one-way switch, such as a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or IGBT (Insulated Gate Bipolar Transistor) with reversed-current diodes; etc.; when referred to below, the term "bidirectional switch" Refers to the ability to achieve on-off control through electrical signals or according to the characteristics of the components themselves A switchable bidirectional conduction switch, such as a MOSFET or an IGBT with an anti-freewheeling diode; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor component having a unidirectional conduction function, such as two Polar body, etc.; as referred to hereinafter, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor, etc.; as referred to hereinafter, the term "current memory element" refers to any device that can store current, such as Inductance or the like; when referred to hereinafter, the term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to the direction in which energy flows from the tank circuit to the battery; as referred to hereinafter, the term "battery""includes primary batteries (eg dry batteries, alkaline batteries, etc.) and secondary batteries (eg lithium-ion batteries, nickel-cadmium batteries, nickel-hydrogen batteries or lead-acid batteries, etc.); as mentioned below, the term "damping element" refers to any passage. A device that obstructs the flow of current to achieve energy consumption, such as electrical resistance, etc.; when referred to below, the term "main circuit It refers to a cell with the damping element, the switching device and an energy storage circuit in series circuit.
It should also be noted here that, in consideration of the different characteristics of different types of batteries, in the present invention, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is an ideal battery that does not contain internal parasitic resistance and parasitic inductance, or the internal parasitic resistance and the parasitic inductance inductance value is small, the damping element R1 refers to a damping element external to the battery, the first current memory element L1 refers to a current memory element external to the battery; when the "battery" is a battery pack containing internal parasitic resistance and parasitic inductance, the damping element R1 can be referred to as damping outside the battery The component may also refer to a parasitic resistance inside the battery pack. Similarly, the first current memory element L1 may refer to a current memory component outside the battery or a parasitic inductance inside the battery pack.
In the embodiment of the present invention, in order to ensure the service life of the battery, the battery needs to be heated at a low temperature. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated, and when the heating condition is stopped, the control is performed. The heating circuit stops working.
In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions, so as to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery.
In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E. As shown in FIG. 1, the heating circuit includes a switching device 1, a damping element R1, a switch control module 100, and an energy storage device. a circuit for connecting the battery E in series, the energy storage circuit comprising a first current memory element L1 and a first charge memory element C1, the damping element R1, the switching device 1, the first current memory The component L1 is connected in series with the first charge memory component C1, and the switch control module 100 is connected to the switch device 1, and the switch control module 100 is used to control the switch device 1 to be turned on and off, so that when the switch device 1 is turned on The energy reciprocates between the battery E and the energy storage circuit.
Considering the different characteristics of different types of batteries E, if the parasitic resistance value and the parasitic inductance self-inductance inside the battery E are large, the damping element R1 may also be a parasitic resistance inside the battery, and the first current memory element L1 It can also be a parasitic inductance inside the battery.
According to an embodiment of the present invention, the first charge storage element C1 and the switching device 1 are multiple, and the first charge storage element C1 and the switching device 1 are connected in series to form a plurality of branches. After the plurality of branches are connected in parallel with each other and in series with the first current memory element L1 and the damping element R1, the switch control module 100 controls the on and off of each of the switching devices 1, thereby controlling whether the energy storage circuit connected in series with the switching device 1 is Connected to battery E. Preferably, the switch control module 100 controls the switching device 1 such that energy flows from the battery E to the plurality of energy storage circuits simultaneously, and energy flows from the respective energy storage circuits to the battery E in sequence. In this embodiment, when the current is flowing forward, the battery E is discharged, and the energy storage circuit can be simultaneously connected with the battery E to increase the current; when the current flows in the opposite direction, the battery E is charged, and the energy storage can be performed at this time. The circuit is in turn in communication with the battery E to reduce the current flowing through the battery E.
The switching device 1 is connected in series with the energy storage circuit, and can realize the reciprocating flow of energy between the battery E and the energy storage circuit when being turned on. The switching device 1 has various implementation manners, and the implementation manner of the switching device is not limited in the present invention. As an embodiment of the switching device 1, the switching device 1 is a first bidirectional switch K3, as shown in FIG. The switch control module 100 controls the turn-on and turn-off of the first bidirectional switch K3. When the battery needs to be heated, the first bidirectional switch K3 can be turned on. If the heating is suspended or the heating is not required, the first bidirectional switch K3 is turned off. can.
The switching device 1 is realized by using a first bidirectional switch K3 alone, the circuit is simple, the system area is small, and the implementation is easy, but the circuit function is obviously limited, for example, the reverse current cannot be turned off. In this regard, the invention also provides a preferred embodiment of the switching device 1 as follows.
Preferably, the switching device 1 comprises a first one-way branch for energy flow from the battery to the energy storage circuit and a second one-way branch for energy flow from the energy storage circuit to the battery, the switch control mode The group 100 is coupled to one or both of the first one-way branch and the second one-way branch to control the conduction and disconnection of the connected branch. When the battery needs to be heated, turning on both the first one-way branch and the second one-way branch, such as suspending heating, may choose to turn off one or both of the first one-way branch and the second one-way branch When the heating is not required, both the first one-way branch and the second one-way branch can be turned off. Preferably, both the first one-way branch and the second one-way branch can be controlled by the switch control module 100, so that energy forward flow and reverse flow can be flexibly realized.
As another embodiment of the switching device 1, as shown in FIG. 3, the switching device 1 may include a second bidirectional switch K4 and a third bidirectional switch K5, the second bidirectional switch K4 and the third bidirectional switch K5 being mutually Reversely connected in series to form the first one-way branch and the second one-way branch, the switch control module 100 is respectively connected to the second bidirectional switch K4 and the third bidirectional switch K5 for controlling The two bidirectional switches K4 and the third bidirectional switch K5 are turned on and off to control the on and off of the first one-way branch and the second one-way branch. When the battery needs to be heated, the second bidirectional switches K4 and K5 may be turned on. For example, if the heating is suspended, one or both of the second bidirectional switch K4 and the third bidirectional switch K5 may be turned off, and the heating is not required. The second bidirectional switch K4 and the third bidirectional switch K5 can be broken. The implementation of the switching device 1 can control the conduction and the off of the first one-way branch and the second one-way branch, respectively, and flexibly realize the forward and reverse energy flow of the circuit.
As another embodiment of the switching device 1, as shown in FIG. 5, the switching device 1 may include a first switch K6, a first unidirectional semiconductor component D11, and a second unidirectional semiconductor component D12, a first switch K6 and The first unidirectional semiconductor elements D11 are connected in series to each other to form the first unidirectional branch, the second unidirectional semiconductor element D12 constitutes the second unidirectional branch, and the switch control module 100 is connected to the first switch K6. And for controlling the on and off of the first one-way branch by controlling the on and off of the first switch K6. In the switching device 1 shown in Fig. 5, when heating is required, the first switch K6 can be turned on, and when heating is not required, the first switch K6 can be turned off.
The implementation of the switching device 1 as shown in Fig. 5, while realizing the flow of energy back and forth along relatively independent branches, does not enable the shutdown function of reverse flow of energy. The present invention also proposes another embodiment of the switching device 1. As shown in FIG. 6, the switching device 1 may further include a second switch K7 located in the second one-way branch, the second switch K7 and the The two unidirectional semiconductor elements D12 are connected in series, and the switch control module 100 is further connected to the second switch K7 for controlling the turning on and off of the second one-way branch by controlling the turning on and off of the second switch K7. Thus, in the switching device 1 shown in FIG. 6, since the switches are present on both of the one-way branches (ie, the first switch K6 and the second switch K7), the shutdown function is provided with both forward and reverse flow of energy. .
Preferably, the switching device 1 may further comprise a resistor in series with the first one-way branch and/or the second one-way branch for reducing the current of the battery heating circuit and avoiding excessive current in the circuit to the battery Cause damage. For example, a resistor R6 connected in series with the second bidirectional switch K4 and the third bidirectional switch K5 may be added to the switching device 1 shown in FIG. 3 to obtain another implementation of the switching device 1, as shown in FIG. Also shown in Fig. 7 is an embodiment of the switching device 1, which is obtained by series-connecting a resistor R2 and a resistor R3 on two unidirectional branches in the switching device 1 shown in Fig. 6.
According to the technical solution of the present invention, when it is required to heat the battery E, the switch control module 100 controls the switching device 1 to be turned on, the battery E and the energy storage circuit are connected in series to form a loop, and the battery E charges the first charge storage element C1 as a loop. When the current in the current passes through the current peak and the positive direction is zero, the first charge storage element C1 starts to discharge, and the current flows from the first charge storage element C1 back to the battery E, and the forward and reverse currents in the loop flow through the damping element R1. The purpose of heating the battery E can be achieved by the heat generation of the damping element R1. The charging and discharging process is performed in a loop. When the temperature of the battery E rises to the stop heating condition, the switch control module 100 can control the switching device 1 to be turned off, and the heating circuit stops working.
During the above heating process, when current flows from the tank circuit back to the battery E, the energy in the first charge memory element C1 does not completely flow back to the battery E, but some energy remains in the first charge memory element C1. Finally, the voltage of the first charge storage element C1 is finally made close to or equal to the battery voltage, so that the energy flow from the battery E to the first charge storage element C1 cannot be performed, which is disadvantageous for the loop operation of the heating circuit. Therefore, in the preferred embodiment of the present invention, an additional unit that superimposes the energy in the first charge storage element C1 and the energy of the battery E, and transfers the energy in the first charge storage element C1 to other energy storage elements is added. . When a certain time is reached, the switching device 1 is turned off, and the energy in the first charge storage element C1 is superimposed, transferred, and the like. The switching device 1 can be turned off at any time point in one cycle or a plurality of cycles; the turn-off time of the switching device 1 can be any time, for example, when the current in the loop is forward/reverse, zero time/not Shutdown can be implemented at zero hour. Different implementations of the switching device 1 can be selected according to the required shutdown strategy. If only the forward current flow is required to be turned off, the implementation of the switching device 1 shown in FIGS. 2 and 5, for example, is selected. However, if both forward current and reverse current need to be turned off, it is necessary to select two unidirectional branches as shown in Fig. 4, Fig. 6, and Fig. 7 to control the switching device. Preferably, the switch control module 100 is configured to turn off the switch device 1 when the current flowing through the switch device 1 is zero after the switch device 1 is turned on or zero, so that the loop efficiency is high, and the current in the loop is zero. Turning off the switching device 1 has less effect on the entire circuit.
According to a preferred embodiment of the present invention, as shown in FIG. 8, the heating circuit provided by the present invention may include an energy superimposing unit connected to the energy storage circuit for turning on and off the switching device 1 Thereafter, the energy in the tank circuit is superimposed with the energy in the battery E. The energy superimposing unit enables the battery E to charge the superposed energy into the first charge storage element C1 when the switching device 1 is turned on again, thereby improving the operating efficiency of the heating circuit.
According to an embodiment of the present invention, as shown in FIG. 9, the energy superimposing unit includes a polarity inversion unit 102 connected to the energy storage circuit for turning on and off the switching device 1 After the disconnection, the polarity of the voltage of the first charge storage element C1 is reversed, and the polarity of the voltage of the first charge storage element C1 after the polarity inversion is in series with the voltage polarity of the battery E, when the switching device 1 is turned on again. At this time, the energy in the first charge storage element C1 can be superimposed with the energy in the battery E.
As an embodiment of the polarity inversion unit 102, as shown in FIG. 10, the polarity inversion unit 102 includes a first single pole double throw switch J1 and a second single pole double throw switch J2, the first single pole double throw switch J1 and a second single pole double throw switch J2 are respectively located at two ends of the first charge memory element C1, and an incoming line of the first single pole double throw switch J1 is connected in the energy storage circuit, the first single pole double throw switch a first output line of the first charge memory element C1 is connected to the first electrode of the first charge memory device C1, and a second output line of the first single-pole double-throw switch J1 is connected to the second electrode of the first charge memory element C1. The input line of the second single-pole double-throw switch J2 is connected to the energy storage circuit, and the first outgoing line of the second single-pole double-throw switch J2 is connected to the second plate of the first charge memory element C1. The second outgoing line of the second single-pole double-throw switch J2 is connected to the first plate of the first charge storage element C1, and the switch control module 100 is further connected to the first single-pole double-throw switch J1 and the second Single pole double throw switch J2 is respectively connected for changing the first single pole double throw switch J1 The second SPDT switch J2 respective incoming lines and outgoing connection relationship to reversing the polarity of the first charge voltage of memory element C1.
According to the above embodiment, the connection relationship between the incoming and outgoing lines of the first single-pole double-throw switch J1 and the second single-pole double-throw switch J2 can be set in advance, so that when the switching device K1 is turned on, the first single-pole double-throwing The input line of the switch J1 is connected to the first outgoing line, and the incoming line of the second single-pole double-throw switch J2 is connected to the first outgoing line. When the switching device K1 is turned off, the first single-pole double-throw is controlled by the switch control module 100. The incoming line of the switch J1 is switched to be connected to its second outgoing line, and the incoming line of the second single-pole double-throw switch J2 is switched to be connected to its second outgoing line, thereby achieving the purpose of reversing the polarity of the voltage of the first charge storage element C1.
As another embodiment of the polarity inversion unit 102, as shown in FIG. 11, the polarity inversion unit 102 includes a third unidirectional semiconductor element D3, a second current memory element L2, and a third switch K9, A charge storage element C1, a second current memory element L2 and a third switch K9 are sequentially connected in series to form a loop, the third unidirectional semiconductor element D3 being connected in series with the first charge storage element C1 and the second current memory element L2 or Between the second current memory element L2 and the third switch K9, the switch control module 100 is further connected to the third switch K9 for memorizing the first charge by controlling the third switch K9 to be turned on. The voltage polarity of the element C1 is reversed.
According to the above embodiment, when the switching device 1 is turned off, the third switch K9 can be controlled to be turned on by the switch control module 100, whereby the first charge storage element C1 and the third unidirectional semiconductor element D3 and the second current memory element are turned on. L2 and the third switch K9 form an LC tank circuit, and the first charge memory element C1 is discharged through the second current memory element L2. After the current on the tank circuit flows through the positive half cycle, the current flowing through the second current memory element L2 is zero. The purpose of reversing the polarity of the voltage of the first charge memory element C1 is achieved.
As still another embodiment of the polarity inversion unit 102, as shown in FIG. 12, the polarity inversion unit 102 includes a first DC-DC module 2 and a second charge memory element C2, the first DC-DC mode. The group 2 is connected to the first charge storage element C1 and the second charge memory element C2, respectively, and the switch control module 100 is further connected to the first DC-DC module 2 for controlling the first DC- The DC module 2 operates to transfer energy in the first charge storage element C1 to the second charge storage element C2, and then reversely transfer energy in the second charge storage element C2 back to the first Charge memory element C1 to effect inversion of the voltage polarity of said first charge memory element C1.
The first DC-DC module 2 is a DC-DC converter circuit commonly used in the art for realizing voltage polarity inversion. The present invention does not impose any limitation on the specific circuit structure of the first DC-DC module 2, as long as It can be realized that the voltage polarity of the first charge memory element C1 is reversed, and those skilled in the art can add, replace or delete the elements in the circuit according to the actual operation.
FIG. 13 is an embodiment of the first DC-DC module 2 provided by the present invention. As shown in FIG. 13, the first DC-DC module 2 includes: a bidirectional switch Q1, a bidirectional switch Q2, and a bidirectional switch. Q3, bidirectional switch Q4, first transformer T1, unidirectional semiconductor component D4, unidirectional semiconductor component D5, current memory component L3, bidirectional switch Q5, bidirectional switch Q6, second transformer T2, unidirectional semiconductor component D6, unidirectional semiconductor Element D7 and unidirectional semiconductor element D8.
In this embodiment, the bidirectional switch Q1, the bidirectional switch Q2, the bidirectional switch Q3, and the bidirectional switch Q4 are MOSFETs, and the bidirectional switch Q5 and the bidirectional switch Q6 are IGBTs.
Wherein, the first leg, the fourth leg and the fifth pin of the first transformer T1 are the same name end, and the second leg and the third pin of the second transformer T2 are the same name end.
The anode of the unidirectional semiconductor device D7 is connected to the a terminal of the capacitor C1, the cathode of the unidirectional semiconductor device D7 is connected to the drain of the bidirectional switch Q1 and the bidirectional switch Q2, and the source of the bidirectional switch Q1 and the drain of the bidirectional switch Q3. Connected, the source of the bidirectional switch Q2 is connected to the drain of the bidirectional switch Q4, and the source of the bidirectional switch Q3 and the bidirectional switch Q4 is connected to the b terminal of the capacitor C1, thereby forming a full bridge circuit, and the voltage polarity of the capacitor C1 is The a end is positive and the b end is negative.
In the full-bridge circuit, the bidirectional switch Q1, the bidirectional switch Q2 is an upper bridge arm, the bidirectional switch Q3, and the bidirectional switch Q4 are lower bridge arms, and the full bridge circuit is connected to the second charge storage element C2 through the first transformer T1. 1 leg of the first transformer T1 is connected to the first node N1, 2 legs are connected to the second node N2, and pins 3 and 5 are respectively connected to the anode of the unidirectional semiconductor element D4 and the unidirectional semiconductor element D5; the unidirectional semiconductor element D4 and the cathode of the unidirectional semiconductor element D5 are connected to one end of the current memory element L3, and the other end of the current memory element L3 is connected to the d terminal of the second charge memory element C2; the pin 4 of the transformer T1 and the second charge memory element C2 The c-terminal connection, the anode of the unidirectional semiconductor element D8 is connected to the d terminal of the second charge memory element C2, and the cathode of the unidirectional semiconductor element D8 is connected to the b terminal of the first charge memory element C1, at this time, the second charge memory element C2 The voltage polarity is negative at the c-end and positive at the d-end.
The c-terminal of the second charge storage element C2 is connected to the emitter of the bidirectional switch Q5, the collector of the bidirectional switch Q5 is connected to the 2 pin of the transformer T2, and the 1 leg of the transformer T2 is connected to the a end of the first charge storage element C1. The 4 pin of the transformer T2 is connected to the a terminal of the first charge memory element C1, the 3 pin of the transformer T2 is connected to the anode of the unidirectional semiconductor component D6, the cathode of the unidirectional semiconductor component D6 is connected to the collector of the bidirectional switch Q6, and the bidirectional switch Q6 The emitter is connected to the b terminal of the second charge memory element C2.
The bidirectional switch Q1, the bidirectional switch Q2, the bidirectional switch Q3, the bidirectional switch Q4, the bidirectional switch Q5, and the bidirectional switch Q6 are respectively turned on and off by the control of the switch control module 100.
The working process of the first DC-DC module 2 is described below:
1. After the switching device 1 is turned off, the switch control module 100 controls the bidirectional switch Q5 and the bidirectional switch Q6 to be turned off, and controls the bidirectional switch Q1 and the bidirectional switch Q4 to be simultaneously turned on to form the A phase, the control bidirectional switch Q2, and the bidirectional switch. Q3 is simultaneously turned on to form the B phase, and is operated by controlling the A phase and the B phase to be alternately turned on to form a full bridge circuit;
2. When the full bridge circuit is in operation, energy on the first charge memory element C1 is transferred to the second charge memory element through the first transformer T1, the unidirectional semiconductor element D4, the unidirectional semiconductor element D5, and the current memory element L3. At C2, the voltage polarity of the second charge storage element C2 is negative at the c-terminus and positive at the d-end.
3. The switch control module 100 controls the bidirectional switch Q5 to be turned on, and the first charge storage element C1 forms a path through the second transformer T2 and the unidirectional semiconductor element D8 and the second charge storage element C2, thereby, the second charge storage element The energy on C2 is reversely transferred to the first charge storage element C1, wherein part of the energy is stored on the second transformer T2; at this time, the switch control module 100 controls the bidirectional switch Q5 to be turned off and the bidirectional switch Q6 to be closed. Transferring the energy stored on the second transformer T2 to the first charge storage element C1 through the second transformer T2 and the unidirectional semiconductor element D6 to achieve reverse charging of the first charge storage element C1, at which time the first charge memory The polarity of the voltage of the element C1 is reversed such that the a terminal is negative and the b terminal is positive, thereby achieving the purpose of reversing the polarity of the voltage of the first first charge storage element C1.
In order to recycle energy in the energy storage circuit, in accordance with a preferred embodiment of the present invention, as shown in FIG. 14, the heating circuit provided by the present invention may include an energy transfer unit, the energy transfer unit and the energy storage The circuit is connected to transfer energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and then turned off. The energy transfer unit is intended to recycle energy in the storage circuit. The energy storage component can be an external capacitor, a low temperature battery or a power grid, and other electrical devices.
Preferably, the energy storage component is a battery E provided by the present invention, and the energy transfer unit includes a power recharge unit 103, and the power recharge unit 103 is connected to the energy storage circuit for being turned on at the switch device 1. After turning off again, the energy in the tank circuit is transferred to the battery E as shown in Fig. 15.
According to the technical solution of the present invention, after the switching device 1 is turned off, the energy in the energy storage circuit is transferred to the battery E through the energy transfer unit, and the transferred energy can be recycled after the switching device 1 is turned on again. Improve the working efficiency of the heating circuit.
As an embodiment of the power recharging unit 103, as shown in FIG. 16, the power recharging unit 103 includes a second DC-DC module 3, the second DC-DC module 3 and the first electric charge. The memory component C1 and the battery E are respectively connected, and the switch control module 100 is further connected to the second DC-DC module 3 for controlling the second DC-DC module 3 to operate the first charge. The energy in the memory element C1 is transferred to the battery.
The second DC-DC module 3 is a DC-DC converter circuit commonly used in the art for implementing energy transfer. The present invention does not impose any limitation on the specific circuit structure of the second DC-DC module 3, as long as it can be implemented. The energy of the first charge storage element C1 can be transferred, and those skilled in the art can add, replace or delete the components in the circuit according to the actual operation.
FIG. 17 is an embodiment of the second DC-DC module 3 provided by the present invention. As shown in FIG. 17, the second DC-DC module 3 includes: a bidirectional switch S1, a bidirectional switch S2, and a bidirectional switch. S3, a bidirectional switch S4, a third transformer T3, a current memory element L4, and four unidirectional semiconductor elements. In this embodiment, the bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are all MOSFETs.
Wherein the 1st pin and the 3rd leg of the third transformer T3 are the same name end, and the negative electrodes of the two unidirectional semiconductor elements of the four unidirectional semiconductor elements are connected in groups, and the contacts pass through the current memory element L4 and the battery E The positive terminal is connected, the other two unidirectional semiconductor components are connected in a positive group, the contacts are connected to the negative terminal of the battery E, and the docking points between the groups are respectively connected to the 3rd and 4th pins of the third transformer T3. Thus, a bridge rectifier circuit is constructed.
The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, the drain of the bidirectional switch S1, the bidirectional switch S2 and the first charge storage element C1. The positive terminal is connected, and the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1, thereby constituting a full bridge circuit.
In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, the node of the third transformer T3 and the node between the bidirectional switch S1 and the bidirectional switch S3 Connection, 2 pin and node connection between bidirectional switch S2 and bidirectional switch S4.
The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are respectively turned on and off by the control of the switch control module 100.
The working process of the second DC-DC module 3 is described below:
1. After the switch device 1 is turned off, the switch control module 100 controls the bidirectional switch S1 and the bidirectional switch S4 to be simultaneously turned on to form the A phase, the control bidirectional switch S2, and the bidirectional switch S3 are simultaneously turned on to form the B phase, through the control station. The A phase and the B phase are alternately turned on to form a full bridge circuit for operation;
2. When the full bridge circuit is in operation, the energy on the first charge memory element C1 is transferred to the battery E through the third transformer T3 and the rectifier circuit, and the rectifier circuit converts the input alternating current into a direct current output to the battery E, Reach the purpose of power recharge.
In order to enable the heating circuit provided by the present invention to recover energy in the energy storage circuit while improving work efficiency, according to a preferred embodiment of the present invention, as shown in FIG. 18, the heating circuit provided by the present invention may include An energy superposition and transfer unit connected to the energy storage circuit for transferring energy in the energy storage circuit to the energy storage element after the switching device 1 is turned on and off, and then storing energy The remaining energy in the circuit is superimposed with the energy in the battery. The energy superposition and transfer unit can both improve the working efficiency of the heating circuit and recycle the energy in the energy storage circuit.
The superposition of the remaining energy in the tank circuit with the energy in the battery can be achieved by inverting the polarity of the voltage of the first charge memory element C1. The polarity of the voltage of the first charge memory element C1 is reversed and its polarity is matched with the battery. The voltage polarity of E forms a series addition relationship, whereby the energy in the battery E can be superimposed with the energy in the first charge memory element C1 when the switching device 1 is turned on next time.
Therefore, according to an embodiment, as shown in FIG. 19, the energy superimposing and transferring unit includes a DC-DC module 4, and the DC-DC module 4 and the first charge storage element C1 and the battery respectively The switch control module 100 is further connected to the DC-DC module 4 for transferring energy in the first charge storage element C1 to the energy storage element by controlling the operation of the DC-DC module 4 The remaining energy in the first charge storage element C1 is then superimposed with the energy in the battery.
The DC-DC module 4 is a DC-DC converter circuit commonly used in the art for implementing energy transfer and voltage polarity inversion. The present invention does not impose any limitation on the specific circuit structure of the DC-DC module 4, as long as it can The energy transfer and voltage polarity inversion of the first charge storage element C1 can be realized, and those skilled in the art can add, replace or delete the components in the circuit according to the actual operation.
As an embodiment of the DC-DC module 4, as shown in FIG. 19, the DC-DC module 4 includes: a bidirectional switch S1, a bidirectional switch S2, a bidirectional switch S3, a bidirectional switch S4, a bidirectional switch S5, and a bidirectional switch. S6, fourth transformer T4, unidirectional semiconductor element D13, unidirectional semiconductor element D14, current memory element L4, and four unidirectional semiconductor elements. In this embodiment, the bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, and the bidirectional switch S4 are all MOSFETs, and the bidirectional switch S5 and the bidirectional switch S6 are IGBTs.
Wherein, the 1st pin and the 3rd pin of the fourth transformer T4 are the same name end, and the negative electrodes of the two unidirectional semiconductor elements of the four unidirectional semiconductor elements are connected in groups, and the contacts pass through the current memory element L4 and the positive of the battery E The terminals are connected, the other two unidirectional semiconductor components are connected in a positive group, the contacts are connected to the negative terminal of the battery E, and the mating points between the groups are respectively passed through the bidirectional switch S5 and the bidirectional switch S6 and the third transformer T3. The 3 pin and the 4 pin are connected, thereby constituting a bridge rectifier circuit.
The source of the bidirectional switch S1 is connected to the drain of the bidirectional switch S3, the source of the bidirectional switch S2 is connected to the drain of the bidirectional switch S4, and the drain of the bidirectional switch S1 and the bidirectional switch S2 is passed through the unidirectional semiconductor component D13 and the The positive terminal of the charge storage element C1 is connected, and the source of the bidirectional switch S3 and the bidirectional switch S4 is connected to the negative terminal of the first charge storage element C1 via the unidirectional semiconductor element D14, thereby constituting a full bridge circuit.
In the full bridge circuit, the bidirectional switch S1, the bidirectional switch S2 is the upper arm, the bidirectional switch S3, the bidirectional switch S4 is the lower arm, the node of the fourth transformer T4 and the node between the bidirectional switch S1 and the bidirectional switch S3 Connection, 2 pin and node connection between bidirectional switch S2 and bidirectional switch S4.
The bidirectional switch S1, the bidirectional switch S2, the bidirectional switch S3, the bidirectional switch S4, the bidirectional switch S5, and the bidirectional switch S6 are respectively turned on and off by the control of the switch control module 100.
The working process of the DC-DC module 4 is described below:
1. After the switching device 1 is turned off, when it is required to perform power recharging on the first charge storage element C1 to achieve energy transfer, the switch control module 100 controls the bidirectional switches S5 and S6 to be turned on, and controls the bidirectional switch S1 and the bidirectional The switch S4 is simultaneously turned on to form the A phase, the bidirectional switch S2 is controlled, and the bidirectional switch S3 is simultaneously turned on to form the B phase, and the A phase and the B phase are alternately turned on to form a full bridge circuit to operate;
2. When the full bridge circuit is in operation, the energy on the first charge memory element C1 is transferred to the battery E through the fourth transformer T4 and the rectifier circuit, and the rectifier circuit converts the input alternating current into a direct current output to the battery E, Reach the purpose of power recharge;
3. When it is required to perform polarity reversal on the first charge memory element C1 to achieve energy superposition, the switch control module 100 controls the bidirectional switch S5 and the bidirectional switch S6 to be turned off, and controls the bidirectional switch S1 and the bidirectional switch S4 or the bidirectional switch. S2 and the bidirectional switch S3 are turned on by any one of the two groups; at this time, the energy in the first charge storage element C1 is reversed back through the positive end thereof, the bidirectional switch S1, the primary side of the fourth transformer T4, and the bidirectional switch S4. The negative terminal, or through its positive terminal, the bidirectional switch S2, the primary side of the fourth transformer T4, the bidirectional switch S3 reverses back to its negative end, and uses the primary excitation inductance of T4 to reach the first charge memory element C1. Perform the purpose of voltage polarity reversal.
According to another embodiment, the energy superposition and transfer unit may include an energy superimposing unit and an energy transfer unit, and the energy transfer unit is connected to the energy storage circuit for storing after the switching device 1 is turned on and then turned off. The energy in the energy circuit is transferred to the energy storage element, and the energy superimposing unit is connected to the energy storage circuit for using the remaining energy in the energy storage circuit and the battery in the battery after the energy transfer unit performs energy transfer The energy is superimposed.
Wherein, both the energy superimposing unit and the energy transfer unit can adopt the energy superimposing unit and the energy transfer unit provided by the foregoing embodiment of the present invention, and the purpose thereof is to realize energy transfer and superposition of the first electric charge memory element C1, which is specific Structure and function will not be described here.
As an embodiment of the present invention, in order to operate the heating circuit, the energy in the first charge storage element C1 can also be consumed. Therefore, as shown in FIG. 20, the heating circuit further includes an energy consuming unit connected to the first charge storage element C1, the energy consuming unit is configured to apply a first charge after the switching device 1 is turned on and then turned off. The energy in the memory element C1 is consumed.
The energy consuming unit can be used alone in the heating circuit. After the switching device 1 is turned on and then turned off, the energy in the first charge storage element C1 is directly consumed, and can also be combined with the above various embodiments, for example, the energy. The consuming unit may be combined with a heating circuit including an energy superimposing unit to consume energy in the first charge storage element C1 after the switching device 1 is turned on and off, and before the energy superimposing unit performs an energy superimposing operation, and may also include energy transfer. The heating circuit of the unit is combined to consume energy in the first charge memory element C1 after the switching device 1 is turned on and off, before the energy transfer unit performs energy transfer, or after the energy transfer unit performs energy transfer. The heating circuit of the superimposing and transferring unit combines to consume energy in the first charge storage element C1 after the switching device 1 is turned on and off, before the energy superposition and transfer unit performs energy transfer, or in the energy superposition and transfer unit. After the transfer, before the energy superposition, the first charge Recalling the energy consumption element C1 is performed, the present invention is not limited in this, and can more clearly understand the energy consumption during operation of the cell by the following embodiments.
According to an embodiment, as shown in FIG. 21, the energy consuming unit comprises a voltage control unit 101 for voltageing the first charge storage element C1 when the switching device 1 is turned on and off again. The value is converted to a voltage set point. This voltage setting value can be set according to the needs of actual operation.
As shown in FIG. 21, the voltage control unit 101 includes a resistor R5 and a fourth switch K8, which are connected in series with each other and then connected in parallel at both ends of the first charge memory element C1. The switch control module 100 is further connected to the fourth switch K8. The switch control module 100 is further configured to control the fourth switch K8 to be turned on after the control switch device 1 is turned on and off. Thereby, the energy in the first charge memory element C1 can be consumed by the resistor R5.
The switch control module 100 can be a single controller. The on/off control of different external switches can be implemented by setting the internal program. The switch control module 100 can also be multiple controllers. For example, a corresponding switch control module 100 is provided for each external switch. The plurality of switch control modules 100 can also be integrated into one body. The present invention does not limit the implementation form of the switch control module 100.
The operation mode of the embodiment of the heating circuit of the battery E will be briefly described below with reference to FIGS. 22 to 31, wherein the 22, 24, 26, 28, and 30 diagrams show various embodiments of the heating circuit of the battery E, Figures 23, 25, 27, and 29 show the corresponding waveforms. It should be noted that although the features and elements of the present invention are described with reference to the specific combinations of Figures 22, 24, 26, 28, 30, each feature or element can be used alone without other features and elements. , or in various situations with or without other features and elements. Embodiments of the heating circuit of the battery E provided by the present invention are not limited to the implementations shown in Figures 22, 24, 26, 28, and 30. The portion of the grid in the waveform diagrams shown in Figures 23, 25, 27, and 29 indicates that a drive pulse can be applied to the switch one or more times during the period of time, and the width of the pulse can be adjusted as needed.
In the heating circuit of the battery E as shown in Fig. 22, a switching device 1 is constructed using a first bidirectional switch K3, which is connected in series with the damping element R1, the first charge storage element C1 and the first current memory element L1. The third unidirectional semiconductor element D3, the second current memory element L2, and the third switch K9 constitute a polarity inversion unit 102, and the switch control module 100 can control the on and off of the third switch K9 and the switch K3. Fig. 23 is a view showing the waveforms of the main circuit current I main , the C1 voltage V C1 and the polarity reversal circuit current I L2 of the heating circuit shown in Fig. 22. The operation of the heating circuit shown in Fig. 22 is as follows:
a) The switch control module 100 controls the first bidirectional switch K3 to be turned on. As in the t1 period shown in FIG. 23, the battery E performs positive discharge through the first bidirectional switch K3 and the first charge storage element C1 (as shown in FIG. 23). In the positive half cycle of the loop current in the t1 period) and reverse charging (as shown by the negative half cycle of the loop current in the t1 period in Fig. 23);
b) the switch control module 100 controls the first bidirectional switch K3 to turn off when the reverse current is zero;
c) The switch control module 100 controls the third switch K9 to be turned on, the polarity inversion unit 102 operates, and the first charge memory element C1 passes through the circuit composed of the third unidirectional semiconductor element D3, the second current memory element L2, and the third switch K9. Discharging, and achieving the purpose of voltage polarity reversal, after which the switch control module 100 controls the third switch K9 to be turned off, as shown in the t2 time period in FIG. 23;
d) Steps a) to c) are repeated, and the battery E is continuously heated by charge and discharge until the battery E reaches the stop heating condition.
In the heating circuit of the battery E as shown in Fig. 24, the first switch K6, the first unidirectional semiconductor element D11 (first one-way branch) and the second switch K7 and the second in series are connected in series with each other. The unidirectional semiconductor component D12 (second unidirectional branch) constitutes the switching device 1, and the second DC-DC module 3 constitutes a power recharging unit 103 for transferring energy in the first charge storage element C1 back to the battery E, and the switching control The module 100 can control the on and off of the first switch K6 and the second switch K7 and the operation of the second DC-DC module 3. Fig. 25 is a view showing the waveforms of the main circuit current I main and the C1 voltage V C1 of the heating circuit shown in Fig. 24. The operation of the heating circuit shown in Fig. 24 is as follows:
a) The switch control module 100 controls the first switch K6 and the second switch K7 to be turned on. According to the t1 period shown in FIG. 25, the battery E passes through the first switch K6, the first unidirectional semiconductor component D11, and the first charge memory. The element C1 performs forward discharge (as shown in the t1 period in FIG. 25), and is reversely charged by the first charge storage element C1, the second switch K7, and the second unidirectional semiconductor element D12 (as shown in FIG. 25). T2 time period);
b) the switch control module 100 controls the first switch K6 and the second switch K7 to be turned off when the reverse current is zero;
c) The switch control module 100 controls the operation of the second DC-DC module 3, and the first charge memory element C1 converts the alternating current into a direct current output into the battery E through the second DC-DC module 3, thereby realizing the power backflow, and then Controlling the second DC-DC module 3 to stop working, such as the t3 time period shown in FIG. 25;
d) Repeat steps a) to c), and battery E is continuously heated by discharge until battery E reaches the stop heating condition.
The heating circuit of the battery E as shown in Fig. 26 uses a first switch K6 connected in series with each other, a first unidirectional semiconductor element D11 (first one-way branch), and a second switch K7 and a second one in series with each other. The semiconductor element D12 (second unidirectional branch) constitutes a switching device 1, and the DC-DC module 4 constitutes transferring energy in the first charge storage element C1 back to the battery E and then inverting the polarity of the first charge storage element C1 The energy control superposition and transfer unit superimposed on the energy of the battery E in the next charge and discharge cycle, the switch control module 100 can control the on and off of the first switch K6 and the second switch K7 and the operation of the DC-DC module 4 no. Fig. 27 is a view showing the waveforms of the main circuit current I main and the C1 voltage V C1 of the heating circuit shown in Fig. 26. The operation of the heating circuit shown in Fig. 26 is as follows:
a) The switch control module 100 controls the first switch K6 and the second switch K7 to be turned on. According to the t1 period shown in FIG. 27, the battery E passes through the first switch K6, the first unidirectional semiconductor component D11, and the first charge memory. The element C1 performs forward discharge (as shown in the t1 period in FIG. 27), and is reversely charged by the first charge storage element C1, the second switch K7, and the second unidirectional semiconductor element D12 (as shown in FIG. 27). T2 time period);
b) the switch control module 100 controls the first switch K6 and the second switch K7 to be turned off when the reverse current is zero;
c) The switch control module 100 controls the operation of the DC-DC module 4, and the first charge memory element C1 converts the alternating current into a direct current output into the battery E through the DC-DC module 4, thereby realizing the power recharge, and then the DC-DC mode. Group 4 inverts the polarity of the first charge storage element C1, and controls the DC-DC module 4 to stop operating after the C1 polarity is reversed, as shown in the 27th period of the t3, t4 time period;
d) Repeat steps a) to c), and battery E is continuously heated by discharge until battery E reaches the stop heating condition.
In the heating circuit of the battery E shown in FIG. 28, each of the first charge storage element C1 and the switching device 1 has a plurality of, and the first charge storage element C1 and the switching device 1 are connected in series to form a plurality of branches. The plurality of branches are connected in parallel with the first current memory element L1, the damping element R1, and the battery E. Each switching device 1 adopts a control manner in which two unidirectional branches are controllable, and the polarity reversing unit 102 can adopt The implementation of any of the polarity inversion units 102 described above is, for example, the configuration shown in FIG. 11, and the specific circuit configuration of the polarity inversion unit 102 is not shown in FIG. The switch control module 100 can control the on and off of each of the switching devices 1 and the operation of the polarity inversion unit 102. Fig. 29 is a view showing the waveform of the heating circuit shown in Fig. 28. The working process of the heating circuit shown in Figure 28 is as follows:
a) The switch control module 100 controls the first switches K6, K60, K61, K62 to be turned on (the second switches K7, K70, K71, K72 are still closed), the current flows in the forward direction, and the battery E discharges, respectively, to the first charge memory element C1, C12, C13, and C14 are charged, as shown in the t1 period in Fig. 29; the first switches K6, K60, K61, and K62 are turned on in parallel to increase the current in the loop.
b) After the positive half cycle of the loop current ends, the switch control module 100 controls the first switches K6, K60, K61, K62 to be turned off, and controls the second switches K7, K70, K71, K72 to be turned on in turn, and the current flows in the opposite direction. As shown in the t2 time period, since the first charge storage elements C1, C12, C13, and C14 sequentially charge the battery E instead of simultaneously charging, the reverse current can be reduced. In Fig. 29, S1 to S4 are the second switches. The reverse current waveform diagram when K7, K70, K71, and K72 are turned on in turn; after the reverse charging is completed, the second switches K7, K70, K71, and K72 are all turned off;
c) The switch control module 100 controls the operation of the plurality of polarity inversion units 102 to invert the polarity of the voltages on the respective charge storage elements as indicated by the time period t3.
d) Repeat steps a) to c), and battery E is continuously heated by discharge until battery E reaches the stop heating condition.
The heating circuit of the battery E as shown in Fig. 30 uses a first switch K6 connected in series, a first unidirectional semiconductor element D11 (first one-way branch), and a second switch K7 and a second one in series with each other. The semiconductor element D12 (second unidirectional branch) constitutes the switching device 1, the resistor R5 and the fourth switch K8 constitute a voltage control unit 101, and the second current memory element L2, the semiconductor element D3 and the third switch K9 constitute a polarity inversion unit 102. The switch control module 100 can control the on and off of the first switch K6, the second switch K7, the fourth switch K8, and the third switch K9. Fig. 31 is a diagram showing the waveforms of the main circuit current I main and the C1 voltage V C1 polarity reversal circuit current I L2 of the heating circuit shown in Fig. 30. The operation of the heating circuit shown in Fig. 30 is as follows:
a) The switch control module 100 controls the first switch K6 and the second switch K7 to be turned on. According to the t1 period shown in FIG. 31, the battery E passes through the first switch K6, the first unidirectional semiconductor component D11, and the first charge memory. The element C1 performs forward discharge (as shown in the period t1 in FIG. 31), and is reversely charged by the first charge storage element C1, the second switch K7, and the second unidirectional semiconductor element D12 (as shown in FIG. 31). T2 time period);
b) the switch control module 100 controls the first switch K6 and the second switch K7 to be turned off when the reverse current is zero;
c) The switch control module 100 controls the fourth switch K8 to be turned on, and the energy on the first charge storage element C1 is consumed by the damping element R8, as shown in the t3 time period of FIG. 31; then the switch control module 100 controls The four switch K8 is turned off, and the third switch K9 is controlled to be turned on, and the polarity of the first charge storage element C1 is inverted by the second current memory element L2, the semiconductor element D3, and the third switch K9, after the polarity of C1 is reversed, the control is performed. The third switch K9 is turned off, as in the t4 time period shown in FIG. 31;
d) Repeat steps a) to c), and battery E is continuously heated by discharge until battery E reaches the stop heating condition.
With the heating circuit provided by the present invention, since the energy storage circuit is connected in series with the battery E, when the battery E is heated, due to the presence of the first charge memory element C1, the safety problem caused by the failure of the switching device 1 in the short circuit can be avoided, thereby effectively Protect battery E.
The preferred embodiments of the present invention have been described in detail above with reference to the drawings, but the present invention is not limited to the specific details of the embodiments described above, and various simple modifications can be made to the technical solutions of the present invention within the scope of the technical idea of the present invention. Simple variations are within the scope of the invention.
It should be further noted that the specific technical features described in the above specific embodiments may be combined in any suitable manner without contradiction. In order to avoid unnecessary repetition, the present invention has various possible combinations. The method will not be explained otherwise. In addition, any combination of various embodiments of the invention may be made as long as it does not deviate from the idea of the invention, and it should be regarded as the disclosure of the invention.

100...開關控制模組100. . . Switch control module

101...電壓控制單元101. . . Voltage control unit

102...極性反轉單元102. . . Polarity reversal unit

103...電量回灌單元103. . . Battery recharge unit

1...開關裝置1. . . Switching device

2、3、4...DC-DC模組2, 3, 4. . . DC-DC module

L1、L2、L3、L4...電流記憶元件L1, L2, L3, L4. . . Current memory element

C1、C2、C12、C13、C14...電荷記憶元件C1, C2, C12, C13, C14. . . Charge memory element

R1...阻尼元件R1. . . Damping element

E...電池E. . . battery

K3、K4、K5、Q1~Q6、S1~S6...雙向開關K3, K4, K5, Q1~Q6, S1~S6. . . Bidirectional switch

R2、R3、R5、R6...電阻R2, R3, R5, R6. . . resistance

K6、R7、K8、R9、K60、R61、K62、K70、K71、K72...開關K6, R7, K8, R9, K60, R61, K62, K70, K71, K72. . . switch

D3、D4、D5、D6、D7、D8、D11、D12、D13、D14...單向半導體元件D3, D4, D5, D6, D7, D8, D11, D12, D13, D14. . . Unidirectional semiconductor component

J1、J2...單刀雙擲開關J1, J2. . . Single pole double throw switch

T1、T2、T3、T4...變壓器T1, T2, T3, T4. . . transformer

N1、N2...節點N1, N2. . . node

t1、t2、t3、t4...時間段T1, t2, t3, t4. . . period

I ...主回路電流I main . . . Main loop current

VC1 ...C1電壓V C1 . . . C1 voltage

IL2 ...極性反轉回路電流I L2 . . . Polarity reverse loop current

附圖是用來提供對本發明的進一步理解,並且構成說明書的一部分,與下面的具體實施方式一起用於解釋本發明,但並不構成對本發明的限制。在附圖中:
第1圖為本發明提供的電池的加熱電路的示意圖;
第2圖為第1圖中的開關裝置的一種實施方式的示意圖;
第3圖為第1圖中的開關裝置的一種實施方式的示意圖;
第4圖為第1圖中的開關裝置的一種實施方式的示意圖;
第5圖為第1圖中的開關裝置的一種實施方式的示意圖;
第6圖為第1圖中的開關裝置的一種實施方式的示意圖;
第7圖為第1圖中的開關裝置的一種實施方式的示意圖;
第8圖為本發明提供的電池的加熱電路的一種優選實施方式的示意圖;
第9圖為第8圖中的能量疊加單元的一種實施方式的示意圖;
第10圖為第9圖中的極性反轉單元的一種實施方式的示意圖;
第11圖為第9圖中的極性反轉單元的一種實施方式的示意圖;
第12圖為第9圖中的極性反轉單元的一種實施方式的示意圖;
第13圖為第12圖中的第一DC-DC模組的一種實施方式的示意圖;
第14圖為本發明提供的電池的加熱電路的一種優選實施方式的示意圖;
第15圖為本發明提供的電池的加熱電路的一種優選實施方式的示意圖;
第16圖為第15圖中的電量回灌單元的一種實施方式的示意圖;
第17圖為第16圖中的第二DC-DC模組的一種實施方式的示意圖;
第18圖為本發明提供的電池的加熱電路的一種優選實施方式的示意圖;
第19圖為第18圖中的能量疊加和轉移單元的一種優選實施方式的示意圖;
第20圖為本發明提供的電池的加熱電路的一種優選實施方式的示意圖;
第21圖為第20圖中的能量消耗單元的一種實施方式的示意圖;
第22圖為本發明提供的電池的加熱電路的一種實施方式的示意圖;
第23圖為第22圖所示的電池的加熱電路所對應的波形時序圖;
第24圖為本發明提供的電池的加熱電路的一種實施方式的示意圖;
第25圖為第24圖所示的電池的加熱電路所對應的波形時序圖;
第26圖為本發明提供的電池的加熱電路的一種實施方式的示意圖;
第27圖為第26圖所示的電池的加熱電路所對應的波形時序圖;
第28圖為本發明提供的電池的加熱電路的一種實施方式的示意圖;
第29圖為第28圖所示的電池的加熱電路所對應的波形時序圖;
第30圖為本發明提供的電池的加熱電路的一種實施方式的示意圖;
第31圖為第28圖所示的電池的加熱電路所對應的波形時序圖。
The drawings are intended to provide a further understanding of the invention, and are intended to be a In the drawing:
1 is a schematic view of a heating circuit of a battery provided by the present invention;
Figure 2 is a schematic view showing an embodiment of the switching device of Figure 1;
Figure 3 is a schematic view showing an embodiment of the switching device of Figure 1;
Figure 4 is a schematic view showing an embodiment of the switching device of Figure 1;
Figure 5 is a schematic view showing an embodiment of the switching device of Figure 1;
Figure 6 is a schematic view showing an embodiment of the switching device of Figure 1;
Figure 7 is a schematic view showing an embodiment of the switching device of Figure 1;
Figure 8 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention;
Figure 9 is a schematic illustration of an embodiment of the energy stacking unit of Figure 8;
Figure 10 is a schematic diagram of an embodiment of the polarity inversion unit in Figure 9;
Figure 11 is a schematic view showing an embodiment of the polarity inversion unit in Figure 9;
Figure 12 is a schematic view showing an embodiment of the polarity inversion unit in Figure 9;
Figure 13 is a schematic diagram of an embodiment of the first DC-DC module in Figure 12;
Figure 14 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention;
Figure 15 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention;
Figure 16 is a schematic diagram of an embodiment of the power refill unit in Figure 15;
Figure 17 is a schematic diagram of an embodiment of the second DC-DC module in Figure 16;
Figure 18 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention;
Figure 19 is a schematic illustration of a preferred embodiment of the energy stacking and transferring unit of Figure 18;
Figure 20 is a schematic view showing a preferred embodiment of a heating circuit for a battery provided by the present invention;
Figure 21 is a schematic diagram of an embodiment of the energy consuming unit of Figure 20;
Figure 22 is a schematic view showing an embodiment of a heating circuit of a battery provided by the present invention;
Figure 23 is a waveform timing chart corresponding to the heating circuit of the battery shown in Figure 22;
Figure 24 is a schematic view showing an embodiment of a heating circuit of a battery provided by the present invention;
Figure 25 is a waveform timing chart corresponding to the heating circuit of the battery shown in Figure 24;
Figure 26 is a schematic view showing an embodiment of a heating circuit of a battery provided by the present invention;
Figure 27 is a waveform timing chart corresponding to the heating circuit of the battery shown in Figure 26;
Figure 28 is a schematic view showing an embodiment of a heating circuit of a battery provided by the present invention;
Figure 29 is a waveform timing chart corresponding to the heating circuit of the battery shown in Figure 28;
Figure 30 is a schematic view showing an embodiment of a heating circuit of a battery provided by the present invention;
Fig. 31 is a waveform timing chart corresponding to the heating circuit of the battery shown in Fig. 28.

100...開關控制模組100. . . Switch control module

1...開關裝置1. . . Switching device

L1...電流記憶元件L1. . . Current memory element

C1...電荷記憶元件C1. . . Charge memory element

R1...阻尼元件R1. . . Damping element

E...電池E. . . battery

Claims (33)

一種電池的加熱電路,所述加熱電路包括:
開關裝置;
阻尼元件;
儲能電路,所述儲能電路與所述電池連接,所述儲能電路包括第一電流記憶元件和第一電荷記憶元件,所述開關裝置、所述第一電流記憶元件和所述第一電荷記憶元件串聯;以及
開關控制模組,所述開關控制模組與所述開關裝置連接,用於控制所述開關裝置導通和關斷,以使得當所述開關裝置導通時,能量在所述電池與所述儲能電路之間往復流動。
A heating circuit for a battery, the heating circuit comprising:
Switching device
Damping element
a tank circuit, the tank circuit being coupled to the battery, the tank circuit including a first current memory element and a first charge memory element, the switch device, the first current memory element, and the first a charge memory device connected in series; and a switch control module, the switch control module being coupled to the switch device for controlling the switch device to be turned on and off, such that when the switch device is turned on, energy is A battery reciprocates between the battery and the energy storage circuit.
如申請專利範圍第1項所述的加熱電路,其中,所述阻尼元件為所述電池內部的寄生電阻,所述第一電流記憶元件為所述電池內部的寄生電感。The heating circuit of claim 1, wherein the damping element is a parasitic resistance inside the battery, and the first current memory element is a parasitic inductance inside the battery. 如申請專利範圍第1項所述的加熱電路,其中,所述開關裝置為第一雙向開關。The heating circuit of claim 1, wherein the switching device is a first bidirectional switch. 如申請專利範圍第1項所述的加熱電路,其中,所述開關裝置包括用於實現能量從所述電池流向所述儲能電路的第一單向支路和用於實現能量從所述儲能電路流向所述電池的第二單向支路,所述開關控制模組與所述第一單向支路和所述第二單向支路中的一者或兩者分別連接,用以控制所連接的支路的導通和關斷。The heating circuit of claim 1, wherein the switching device includes a first one-way branch for achieving energy flow from the battery to the energy storage circuit and for implementing energy from the reservoir The power circuit can be connected to the second one-way branch of the battery, and the switch control module is respectively connected to one or both of the first one-way branch and the second one-way branch Controls the turn-on and turn-off of the connected branch. 如申請專利範圍第4項所述的加熱電路,其中,所述開關裝置包括第二雙向開關和第三雙向開關,所述第二雙向開關和所述第三雙向開關彼此反向串聯以構成所述第一單向支路和所述第二單向支路,所述開關控制模組與所述第二雙向開關和所述第三雙向開關分別連接,用於通過控制所述第二雙向開關和所述第三雙向開關的導通和關斷來控制所述第一單向支路和所述第二單向支路的導通和關斷。The heating circuit of claim 4, wherein the switching device comprises a second bidirectional switch and a third bidirectional switch, the second bidirectional switch and the third bidirectional switch being connected in reverse series to each other to constitute The first one-way branch and the second one-way branch, the switch control module is respectively connected to the second bidirectional switch and the third bidirectional switch, for controlling the second bidirectional switch And turning on and off of the third bidirectional switch to control turning on and off of the first one-way branch and the second one-way branch. 如申請專利範圍第4項所述的加熱電路,其中,所述開關裝置包括第一開關、第一單向半導體元件以及第二單向半導體元件,所述第一開關和所述第一單向半導體元件彼此串聯以構成所述第一單向支路,所述第二單向半導體元件構成所述第二單向支路,所述開關控制模組與所述第一開關連接,用於通過控制所述第一開關的導通和關斷來控制所述第一單向支路的導通和關斷。The heating circuit of claim 4, wherein the switching device comprises a first switch, a first unidirectional semiconductor component, and a second unidirectional semiconductor component, the first switch and the first one-way The semiconductor elements are connected in series to each other to form the first one-way branch, the second one-way semiconductor component constitutes the second one-way branch, and the switch control module is connected to the first switch for passing The first switch is turned on and off to control the on and off of the first one-way branch. 如申請專利範圍第6項所述的電池的加熱電路,其中,所述開關裝置還包括位於所述第二單向支路中的第二開關,所述第二開關與所述第二單向半導體元件串聯,所述開關控制模組還與所述第二開關連接,用於通過控制所述第二開關的導通和關斷來控制所述第二單向支路的導通和關斷。The heating circuit of the battery of claim 6, wherein the switching device further comprises a second switch located in the second one-way branch, the second switch and the second one-way The semiconductor components are connected in series, and the switch control module is further connected to the second switch for controlling the on and off of the second one-way branch by controlling the on and off of the second switch. 如申請專利範圍第4項所述的加熱電路,其中,所述開關裝置還包括與所述第一單向支路和/或所述第二單向支路串聯的電阻。The heating circuit of claim 4, wherein the switching device further comprises a resistor in series with the first one-way branch and/or the second one-way branch. 如申請專利範圍第1項所述的加熱電路,所述加熱電路還包括能量疊加單元,所述能量疊加單元與所述儲能電路連接,用於在所述開關控制模組控制所述開關裝置導通再關斷後,將所述儲能電路中的能量與所述電池中的能量進行疊加。The heating circuit of claim 1, wherein the heating circuit further comprises an energy superimposing unit, wherein the energy superimposing unit is connected to the energy storage circuit, and is configured to control the switching device in the switch control module After the turn-on and then turn off, the energy in the energy storage circuit is superimposed with the energy in the battery. 如申請專利範圍第9項所述的加熱電路,其中,所述能量疊加單元包括極性反轉單元,所述極性反轉單元與所述儲能電路連接,用於在所述開關裝置導通再關斷後,對所述第一電荷記憶元件的電壓極性進行反轉。The heating circuit of claim 9, wherein the energy superimposing unit comprises a polarity inversion unit, and the polarity inversion unit is connected to the energy storage circuit for turning on and off the switching device After the break, the voltage polarity of the first charge storage element is inverted. 如申請專利範圍第1項所述的加熱電路,所述加熱電路還包括能量轉移單元,所述能量轉移單元與所述儲能電路連接,用於在所述開關裝置導通再關斷後,將所述儲能電路中的能量轉移至所述儲能元件中。The heating circuit of claim 1, wherein the heating circuit further comprises an energy transfer unit, wherein the energy transfer unit is connected to the energy storage circuit, and after the switch device is turned on and off, Energy in the energy storage circuit is transferred to the energy storage element. 如申請專利範圍第11項所述的加熱電路,所述儲能元件為所述電池,所述能量轉移單元包括電量回灌單元,所述電量回灌單元與所述儲能電路連接,用於在所述開關裝置導通再關斷後,將所述儲能電路中的電能轉移至所述儲能元件中。The heating circuit of claim 11, wherein the energy storage component is the battery, the energy transfer unit comprises a power regenerative unit, and the power regenerative unit is connected to the energy storage circuit for After the switching device is turned on and then turned off, the electrical energy in the energy storage circuit is transferred to the energy storage element. 如申請專利範圍第1項所述的加熱電路,所述加熱電路還包括與所述儲能電路連接的能量疊加和轉移單元;所述能量疊加和轉移單元用於在所述開關裝置導通再關斷後,所述能量疊加和轉移單元將所述儲能電路中的能量轉移至所述儲能元件中,之後將所述儲能電路中的剩餘能量與所述電池中的能量進行疊加。The heating circuit of claim 1, wherein the heating circuit further comprises an energy superimposing and transferring unit connected to the energy storage circuit; the energy superimposing and transferring unit is configured to be turned on and off at the switching device After the interruption, the energy superposition and transfer unit transfers energy in the energy storage circuit to the energy storage element, and then superimposes the remaining energy in the energy storage circuit with the energy in the battery. 如申請專利範圍第13項所述的加熱電路,其中所述能量疊加和轉移單元包括能量疊加單元和能量轉移單元,所述能量轉移單元與所述儲能電路連接,用於在所述開關裝置導通再關斷後,將所述儲能電路中的能量轉移至所述儲能元件中,所述能量疊加單元與所述儲能電路連接,用於在所述能量轉移單元進行能量轉移之後,將所述儲能電路中的剩餘能量與所述電池中的能量進行疊加。The heating circuit of claim 13, wherein the energy superimposing and transferring unit comprises an energy superimposing unit and an energy transfer unit, the energy transfer unit being connected to the energy storage circuit for the switching device After the turn-on and then turn off, energy in the energy storage circuit is transferred to the energy storage element, and the energy superposition unit is connected to the energy storage circuit for performing energy transfer after the energy transfer unit The remaining energy in the energy storage circuit is superimposed with the energy in the battery. 如申請專利範圍第14項所述的加熱電路,其中,所述儲能元件為所述電池,所述能量轉移單元包括電量回灌單元,所述電量回灌單元與所述儲能電路連接,用於在所述開關裝置導通再關斷後,將儲能電路中的能量轉移至所述儲能元件中,所述能量疊加單元包括極性反轉單元,所述極性反轉單元與所述儲能電路連接,用於在所述電量回灌單元進行能量轉移之後,對所述第一電荷記憶元件的電壓極性進行反轉。The heating circuit of claim 14, wherein the energy storage component is the battery, the energy transfer unit comprises a power refill unit, and the power recharge unit is connected to the energy storage circuit. For transferring energy in the energy storage circuit to the energy storage element after the switching device is turned on and off again, the energy superimposing unit includes a polarity inversion unit, and the polarity inversion unit and the storage The circuit can be connected to reverse the voltage polarity of the first charge storage element after the power recirculation unit performs energy transfer. 如申請專利範圍第13項所述的加熱電路,其中,所述能量疊加和轉移單元包括DC-DC模組,所述DC-DC模組與所述第一電荷記憶元件和所述電池分別連接,所述開關控制模組還與所述DC-DC模組連接,用於通過控制所述DC-DC模組工作來將所述第一電荷記憶元件中的能量轉移至所述儲能元件中,之後將所述第一電荷記憶元件中的剩餘能量與所述電池中的能量進行疊加。The heating circuit of claim 13, wherein the energy superimposing and transferring unit comprises a DC-DC module, and the DC-DC module is respectively connected to the first charge storage element and the battery The switch control module is further coupled to the DC-DC module for transferring energy in the first charge storage element to the energy storage element by controlling operation of the DC-DC module The remaining energy in the first charge storage element is then superimposed with the energy in the battery. 如申請專利範圍第10或15項所述的加熱電路,其中,所述極性反轉單元包括第一單刀雙擲開關和第二單刀雙擲開關,所述第一單刀雙擲開關和所述第二單刀雙擲開關分別位於所述第一電荷記憶元件兩端,所述第一單刀雙擲開關的入線連接在所述儲能電路中,所述第一單刀雙擲開關的第一出線連接所述第一電荷記憶元件的第一極板,所述第一單刀雙擲開關的第二出線連接所述第一電荷記憶元件的第二極板,所述第二單刀雙擲開關的入線連接在所述儲能電路中,所述第二單刀雙擲開關的第一出線連接所述第一電荷記憶元件的第二極板,所述第二單刀雙擲開關的第二出線連接在所述第一電荷記憶元件的第一極板,所述開關控制模組還與所述第一單刀雙擲開關和第二單刀雙擲開關分別連接,用於通過改變所述第一單刀雙擲開關和所述第二單刀雙擲開關各自的入線和出線的連接關係來對所述第一電荷記憶元件的電壓極性進行反轉。The heating circuit of claim 10 or 15, wherein the polarity inversion unit comprises a first single pole double throw switch and a second single pole double throw switch, the first single pole double throw switch and the first Two single-pole double-throw switches are respectively located at two ends of the first charge memory element, and an input line of the first single-pole double-throw switch is connected in the energy storage circuit, and a first outlet connection of the first single-pole double-throw switch a first plate of the first charge memory element, a second output line of the first single-pole double-throw switch is connected to a second plate of the first charge memory element, and an input line of the second single-pole double-throw switch Connected to the tank circuit, a first outlet of the second single pole double throw switch is connected to a second plate of the first charge memory element, and a second outlet of the second single pole double throw switch is connected In the first plate of the first charge memory element, the switch control module is further connected to the first single-pole double-throw switch and the second single-pole double-throw switch, respectively, for changing the first single-pole double a throw switch and the second single pole double throw switch The connection relationship between the incoming and outgoing lines reverses the voltage polarity of the first charge storage element. 如申請專利範圍第10或15項所述的加熱電路,其中,所述極性反轉單元包括第三單向半導體元件、第二電流記憶元件以及第三開關,所述第一電荷記憶元件、所述第二電流記憶元件和所述第三開關順次串聯形成回路,所述第三單向半導體元件串聯在所述第一電荷記憶元件與所述第二電流記憶元件或所述第二電流記憶元件與所述第三開關之間,所述開關控制模組還與所述第三開關連接,用於通過控制所述第三開關導通來對所述第一電荷記憶元件的電壓極性進行反轉。The heating circuit of claim 10 or 15, wherein the polarity inversion unit comprises a third unidirectional semiconductor element, a second current memory element, and a third switch, the first charge memory element, The second current storage element and the third switch are sequentially connected in series to form a loop, and the third unidirectional semiconductor element is connected in series to the first charge storage element and the second current storage element or the second current storage element The switch control module is further connected to the third switch for inverting a voltage polarity of the first charge storage element by controlling the third switch to be turned on. 如申請專利範圍第10或15項所述的加熱電路,其中,所述極性反轉單元包括第一DC-DC模組和第二電荷記憶元件,所述第一DC-DC模組與所述第一電荷記憶元件和所述第二電荷記憶元件分別連接,所述開關控制模組還與所述第一DC-DC模組連接,用於通過控制所述第一DC-DC模組工作來將所述第一電荷記憶元件中的能量轉移至所述第二電荷記憶元件,再將所述第二電荷記憶元件中的能量反向轉移回所述第一電荷記憶元件,以實現對所述第一電荷記憶元件的電壓極性的反轉。The heating circuit of claim 10 or 15, wherein the polarity inversion unit comprises a first DC-DC module and a second charge memory element, the first DC-DC module and the The first charge storage element and the second charge storage element are respectively connected, and the switch control module is further connected to the first DC-DC module for controlling the operation of the first DC-DC module. Transferring energy in the first charge storage element to the second charge storage element, and then transferring energy in the second charge storage element back to the first charge storage element to achieve Inversion of the voltage polarity of the first charge storage element. 如申請專利範圍第12或15項所述的加熱電路,其中,所述電量回灌單元包括第二DC-DC模組,所述第二DC-DC模組與所述第一電荷記憶元件和所述電池分別連接,所述開關控制模組還與所述第二DC-DC模組連接,用於通過控制所述第二DC-DC模組工作來將所述第一電荷記憶元件中的能量轉移到所述電池中。The heating circuit of claim 12 or 15, wherein the power refill unit comprises a second DC-DC module, the second DC-DC module and the first charge storage element and The batteries are respectively connected, and the switch control module is further connected to the second DC-DC module, for controlling the operation of the second DC-DC module to be used in the first charge storage element. Energy is transferred to the battery. 如申請專利範圍第1項所述的加熱電路,其中,所述加熱電路還包括與所述第一電荷記憶元件連接的能量消耗單元,所述能量消耗單元用於在所述開關裝置導通再關斷後,對所述第一電荷記憶元件中的能量進行消耗。The heating circuit of claim 1, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, wherein the energy consuming unit is configured to be turned on and off at the switching device. After the break, the energy in the first charge storage element is consumed. 如申請專利範圍第21項所述的加熱電路,其中,所述能量消耗單元包括電壓控制單元,所述電壓控制單元與所述第一電荷記憶元件連接,用於在所述開關裝置導通再關斷後,將所述第一電荷記憶元件兩端的電壓值轉換成電壓設定值。The heating circuit of claim 21, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for turning on and off the switching device After the disconnection, the voltage value across the first charge storage element is converted to a voltage set value. 如申請專利範圍第9項所述的加熱電路,其中,所述加熱電路還包括與所述第一電荷記憶元件連接的能量消耗單元,所述能量消耗單元用於在所述開關裝置導通再關斷後、所述能量疊加單元進行能量疊加之前,對所述第一電荷記憶元件中的能量進行消耗。The heating circuit of claim 9, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, wherein the energy consuming unit is configured to be turned on and off at the switching device After the breaking, the energy superimposing unit consumes energy in the first charge storage element before performing energy superposition. 如申請專利範圍第23項所述的加熱電路,其中,所述能量消耗單元包括電壓控制單元,所述電壓控制單元與所述第一電荷記憶元件連接,用於在所述開關裝置導通再關斷後、所述能量疊加單元進行能量疊加之前,將所述第一電荷記憶元件兩端的電壓值轉換成電壓設定值。The heating circuit of claim 23, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for turning on and off the switching device After the disconnection, the energy superimposing unit converts the voltage value across the first charge storage element into a voltage set value. 如申請專利範圍第11項所述的加熱電路,其中,所述加熱電路還包括與所述第一電荷記憶元件連接的能量消耗單元,所述能量消耗單元用於在所述開關裝置導通再關斷後、所述能量轉移單元進行能量轉移之前,對所述第一電荷記憶元件中的能量進行消耗,或者在所述能量轉移單元進行能量轉移之後,對所述第一電荷記憶元件中的能量進行消耗。The heating circuit of claim 11, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit being configured to be turned on and off at the switching device After the energy is removed, the energy in the first charge storage element is consumed, or after the energy transfer unit performs energy transfer, the energy in the first charge storage element Consumption. 如申請專利範圍第25項所述的加熱電路,其中,所述能量消耗單元包括電壓控制單元,所述電壓控制單元與所述第一電荷記憶元件連接,用於在所述開關裝置導通再關斷後、所述能量轉移單元進行能量轉移之前,將所述第一電荷記憶元件兩端的電壓值轉換成電壓設定值,或者在所述能量轉移單元進行能量轉移之後,將所述第一電荷記憶元件兩端的電壓值轉換成電壓設定值。The heating circuit of claim 25, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for turning on and off the switching device After the energy transfer unit performs energy transfer, converting the voltage value across the first charge storage element into a voltage set value, or after the energy transfer unit performs energy transfer, the first charge memory The voltage value across the component is converted to a voltage setpoint. 如申請專利範圍第13項所述的加熱電路,其中,所述加熱電路還包括與所述第一電荷記憶元件連接的能量消耗單元,所述能量消耗單元用於在所述開關裝置導通再關斷後、所述能量疊加和轉移單元進行能量轉移之前,對所述第一電荷記憶元件中的能量進行消耗,或者在所述能量疊加和轉移單元進行能量轉移之後進行能量疊加之前,對所述第一電荷記憶元件中的能量進行消耗。The heating circuit of claim 13, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consuming unit being configured to be turned on and off at the switching device After the breaking, before the energy superposition and transfer unit performs energy transfer, the energy in the first charge storage element is consumed, or before the energy superposition and transfer unit performs energy transfer, before the energy superposition is performed, The energy in the first charge storage element is consumed. 如申請專利範圍第27項所述的加熱電路,其中,所述能量消耗單元包括電壓控制單元,所述電壓控制單元與所述第一電荷記憶元件連接,用於在所述開關裝置導通再關斷後、所述能量疊加和轉移單元進行能量轉移之前,將所述第一電荷記憶元件兩端的電壓值轉換成電壓設定值,或者在所述能量疊加和轉移單元進行能量轉移之後進行能量疊加之前,將所述第一電荷記憶元件兩端的電壓值轉換成電壓設定值。The heating circuit of claim 27, wherein the energy consuming unit comprises a voltage control unit, the voltage control unit being coupled to the first charge storage element for turning on and off the switching device After the interruption, before the energy superposition and transfer unit performs energy transfer, converting the voltage value across the first charge storage element into a voltage set value, or before performing energy superposition after the energy superposition and transfer unit performs energy transfer And converting a voltage value across the first charge storage element into a voltage set value. 如申請專利範圍第22、24、26或28項中任一項申請專利範圍所述的加熱電路,其中,所述電壓控制單元包括電阻和第四開關,所述電阻和所述第四開關彼此串聯之後並聯在所述第一電荷記憶元件的兩端,所述開關控制模組還與所述第四開關連接,所述開關控制模組還用於在控制所述開關裝置導通再關斷後,控制所述第四開關導通。A heating circuit according to any one of claims 22, 24, 26 or 28, wherein the voltage control unit comprises a resistor and a fourth switch, the resistor and the fourth switch being in contact with each other Parallelly connected to both ends of the first charge memory element, the switch control module is further connected to the fourth switch, and the switch control module is further configured to: after controlling the switch device to be turned on and off again And controlling the fourth switch to be turned on. 如申請專利範圍第9-16和21-28項中任一項申請專利範圍所述的加熱電路,其中,所述開關控制模組在所述開關裝置導通後流經所述開關裝置的電流為零時或為零後控制所述開關裝置關斷。The heating circuit according to any one of claims 9-16 and 21-28, wherein the current of the switch control module flowing through the switching device after the switching device is turned on is The switching device is controlled to be turned off after zero hour or zero. 如申請專利範圍第1-8、9-16、21-28項中任一項申請專利範圍所述的加熱電路,其中所述第一電荷記憶元件和所述開關裝置均有多個,且所述第一電荷記憶元件與所述開關裝置一一對應串聯構成多個支路,所述多個支路彼此並聯之後與所述第一電流記憶元件、所述阻尼元件串聯。A heating circuit according to any one of claims 1-8, 9-16, and 21-28, wherein the first charge storage element and the switching device are plural, and The first charge memory element and the switching device are connected in series to form a plurality of branches, and the plurality of branches are connected in series with the first current memory element and the damping element. 如申請專利範圍第31項所述的加熱電路,其中,所述開關控制模組控制多個所述開關裝置以使得能量從電池同時流向各個所述儲能電路並且能量從各個所述儲能電路依次流向所述電池。The heating circuit of claim 31, wherein the switch control module controls a plurality of the switching devices to cause energy to flow from the battery to each of the energy storage circuits simultaneously and energy from each of the energy storage circuits Flow to the battery in sequence. 如申請專利範圍第1項所述的加熱電路,其中,所述阻尼元件為電阻,所述第一電流記憶元件為電感,所述第一電荷記憶元件為電容。The heating circuit of claim 1, wherein the damping element is a resistor, the first current memory element is an inductor, and the first charge memory element is a capacitor.
TW100143130A 2010-12-23 2011-11-24 Battery heating circuit TWI465000B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106047770A CN102074762B (en) 2010-07-30 2010-12-23 Heating circuit of battery

Publications (2)

Publication Number Publication Date
TW201232996A TW201232996A (en) 2012-08-01
TWI465000B true TWI465000B (en) 2014-12-11

Family

ID=47226540

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100143130A TWI465000B (en) 2010-12-23 2011-11-24 Battery heating circuit
TW100222187U TWM436949U (en) 2010-12-23 2011-11-24 Battery heating circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100222187U TWM436949U (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (2) TWI465000B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362942A (en) * 1993-08-24 1994-11-08 Interdigital Technology Corporation Battery heating system using internal battery resistance
TW269727B (en) * 1995-04-03 1996-02-01 Electrosource Inc Battery management system
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
CN1291518C (en) * 1999-05-17 2006-12-20 松下电器产业株式会社 Protective circuit and device for protecting secondary battery
CN201435426Y (en) * 2009-04-20 2010-03-31 赛恩斯能源科技有限公司 Battery group with thermal management unit
CN201667552U (en) * 2010-03-30 2010-12-08 比亚迪股份有限公司 Battery heating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362942A (en) * 1993-08-24 1994-11-08 Interdigital Technology Corporation Battery heating system using internal battery resistance
TW269727B (en) * 1995-04-03 1996-02-01 Electrosource Inc Battery management system
US6340879B1 (en) * 1999-02-03 2002-01-22 Nokia Mobile Phones Ltd. Device for reactivating an electric battery
CN1291518C (en) * 1999-05-17 2006-12-20 松下电器产业株式会社 Protective circuit and device for protecting secondary battery
CN201435426Y (en) * 2009-04-20 2010-03-31 赛恩斯能源科技有限公司 Battery group with thermal management unit
CN201667552U (en) * 2010-03-30 2010-12-08 比亚迪股份有限公司 Battery heating apparatus

Also Published As

Publication number Publication date
TWM436949U (en) 2012-09-01
TW201232996A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US8941357B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
TWI556995B (en) An electric vehicle running control system
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
TWI551486B (en) A electric vehicle running control system
TWI465000B (en) Battery heating circuit
TWI465001B (en) Battery heating circuit
TWI454012B (en) Battery heating circuit
TWI433429B (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TWI493830B (en) Battery heating circuit
TWI433428B (en) Battery heating circuit
TWI464999B (en) Battery heating circuit
TWI427894B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI430536B (en) Battery heating circuit
TWI469473B (en) Battery heating circuit
TW201322586A (en) Battery heating circuit