TWM434312U - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TWM434312U
TWM434312U TW100222195U TW100222195U TWM434312U TW M434312 U TWM434312 U TW M434312U TW 100222195 U TW100222195 U TW 100222195U TW 100222195 U TW100222195 U TW 100222195U TW M434312 U TWM434312 U TW M434312U
Authority
TW
Taiwan
Prior art keywords
switch
turned
switching device
battery
heating circuit
Prior art date
Application number
TW100222195U
Other languages
Chinese (zh)
Inventor
Yao-Chuan Han
wen-hui Xu
Wei Feng
Qin-Yao Yang
Wen-Jin Xia
shi-bin Ma
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Publication of TWM434312U publication Critical patent/TWM434312U/en

Links

Classifications

    • Y02E60/12

Abstract

A battery heating circuit is provided. The battery heating circuit comprises: a switchgear, a switch control module, a first damping element and an energy storage circuit. The energy storage circuit for connecting with the battery comprises a first current storage element and a first charge storage element. The first damping element, the switchgear, the first current storage element and the first charge storage element are connected in series. The switch control module is connected with the switchgear for controlling the switchgear to switch on and off so as to control energy to flow between the battery and the energy storage circuit. The heating circuit provided in the disclosure can improve charge-discharge performance of the battery, improve security when heating the battery and effectively protect the battery.

Description

M434312 五、新型說明: 【新型所屬之技術領域】 [0001]本新型屬於電子5又備技術領域,尤其涉及一種電池的加 熱電路。 [先前技術] [0002]考慮到汽車需要在複雜的路況和環境條件了行駛,或者 有些電子設備需要在較差的環境條件中使用的情況,所 以,作為電動車或電子設備電源的電池就需要適應這些 複雜的狀況。而且除了需要考慮這些狀況,還需考慮電 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子设備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輪入輪出功率性能。 一般而言,如果在低溫條件下對電池充電的話,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降,最終導致電池壽命的降低。 【新型内容】 [0003]本新型的目的是針對電池在低溫條件下會導致電池的阻 抗増大,極化增強,由此導致電池的容量下降的問題, 提供一種電池的加熱電路。為了保持電池在低溫條件下 的容量,提高電池的充放電性能,本新型提供了 一種電 池的加熱電路。 本新型提供的電池的加熱電路包括開關裝置、開關控制 模組、第一阻尼元件R1以及儲能電路,所述儲能電路用 於與所述電池連接,所述儲能電路包括電流記憶元件L1 和電荷記憶元件,所述第一阻尼元件R1、開關裝置、電 10022219#單编號Α〇1ί)1 帛4頁/共28頁 1013064685-0 M434312 流記憶元件L1和第一電荷記憶元件Cl串聯,所述開關控 制模組與開關裝置連接,用於控制開關裝置導通和關斷 ,以控制能量在所述電池與所述儲能電路之間的流動。 本新型提供的加熱電路能夠提高電池的充放電性能,並 且由於在該加熱電路中,儲能電路與電池串聯,當給電 池加熱時,由於串聯的電荷記憶元件的存在,能夠避免 開關裝置失效短路引起的安全性問題,能夠有效地保護 電池。 本新型的其他特徵和優點將在隨後的具體實施方式部分 予以詳細說明。 【實施方式】 [0004] 以下結合附圖對本新型的具體實施方式進行詳細說明。 應當理解的是,此處所描述的具體實施方式僅用於說明 和解釋本新型,並不用於限制本新型。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模组”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電訊號實現 通斷控制或者根據元裝置自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)或帶有反並續流二極體的IGBT (Insulated 1013064685-0 1()()22219#單編號A0101 第5頁/共28頁 M434312M434312 V. New description: [New technical field] [0001] The present invention belongs to the field of electronic 5 and further technical fields, and particularly relates to a heating circuit for a battery. [Prior Art] [0002] Considering that a car needs to travel under complicated road conditions and environmental conditions, or some electronic devices need to be used in poor environmental conditions, a battery that is a power source for an electric vehicle or an electronic device needs to be adapted. These complicated situations. In addition to the need to consider these conditions, you also need to consider the battery life and battery charge and discharge loop performance, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more necessary to have excellent low temperature charge and discharge performance and High round-in turn-out power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery, which ultimately leads to a decrease in battery life. [New content] [0003] The purpose of the present invention is to provide a heating circuit for a battery in which the battery causes a large impedance of the battery under low temperature conditions and polarization is increased, thereby causing a decrease in the capacity of the battery. In order to maintain the capacity of the battery under low temperature conditions and improve the charge and discharge performance of the battery, the present invention provides a heating circuit for the battery. The heating circuit of the battery provided by the present invention comprises a switching device, a switch control module, a first damping element R1 and an energy storage circuit, the energy storage circuit is for connecting with the battery, and the energy storage circuit comprises a current memory element L1 And a charge memory element, the first damping element R1, the switching device, the electric 10022219# single number Α〇1ί)1 帛 4 pages / a total of 28 pages 1013064685-0 M434312 the stream memory element L1 and the first charge memory element C1 in series The switch control module is coupled to the switch device for controlling the switch device to be turned on and off to control the flow of energy between the battery and the energy storage circuit. The heating circuit provided by the present invention can improve the charge and discharge performance of the battery, and since the energy storage circuit is connected in series with the battery in the heating circuit, when the battery is heated, due to the existence of the series of charge memory elements, the switching device can be prevented from being short-circuited. The resulting safety problem can effectively protect the battery. Other features and advantages of the novel will be described in detail in the Detailed Description that follows. Embodiments [0004] Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. It is to be understood that the specific embodiments described herein are merely illustrative and not restrictive of the invention. It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control that can be realized by an electric signal or according to a The switch of the device itself can realize the on-off control, and can be a one-way switch, for example, a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor field. Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or IGBT with anti-freewheeling diode (Insulated 1013064685-0 1()()22219#单单A0101 Page 5 of 28 M434312

Gate Bipolar Transistor,絕緣柵雙極型電晶體)等 :當下文中提及時,術語“雙向開關”指的是可以通過 電訊號實現通斷控制或者根據元裝置自身的特性實現通 斷控制的可雙嚮導通的開關,例如M0SFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 :當下文中提及時,術語“電荷記憶元件”指任意可以 實現電荷存儲的裝置,例如電容等;當下文中提及時, 術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向,術語“反向”指能量 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、驗性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如可以為電阻等;當下文中提及時,術語“主回路 ”指的是電池與阻尼元件、開關裝置以及儲能電路串聯 組成的回路。 這裏還需要特別說明的是,考慮到不同類型的電池的不 同特性,在本新型中,“電池”可以指不包含内部寄生 電阻和寄生電感、或者内部寄生電阻的阻值和寄生電感 的電感值較小的理想電池,也可以指包含有内部寄生電 阻和寄生電感的電池包。因此,本領域技術人員應當理 解的是,當“電池”為不包含内部寄生電阻和寄生電感 、或者内部寄生電阻的阻值和寄生電感的電感值較小的 10022219^魏删1 第6頁/共28頁 1013064685-0 M434312 理想電池時,第一阻尼元件R1指的是電池外接的阻尼元 件,電流記憶元件L1指的是電池外接的電流記憶元件; 當“電池”為包含有内部寄生電阻和寄生電感的電池包 時,第一阻尼元件R1既可以指電池外部的阻尼元件,也 可以指電池包内部的寄生電阻,同樣地,電流記憶元件 L1既可以指電池外部的電流記憶元件,也可以指電池包 内部的寄生電感。 在本新型的實施例中,為了保證電池的使用壽命,需要 在低溫情況下對電池進行加熱,當達到加熱條件時,控 制加熱電路開始工作,對電池進行加熱,當達到停止加 熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 為了對處於低溫環境中的電池E進行加熱,本新型提供了 一種電池E的加熱電路,如第1圖所示,該加熱電路包括 開關裝置1、開關控制模組100、第一阻尼元件R1以及儲 能電路,該儲能電路與電池E連接。在本新型的一個實施 例中,該儲能電路包括電流記憶元件L1和第一電荷記憶 元件C1,其中,第一阻尼元件R1、開關裝置1、電流記憶 元件L1和第一電荷記憶元件C1串聯,開關控制模組100與 開關裝置1連接,用於控制開關裝置1的導通和關斷,以 控制能量在電池E與儲能電路之間的流動。需要說明的是 ,上述儲能電路僅為本新型的優選實施方式,該儲能電 路只要能滿足能量的存儲即可,從而與電池E之間進行能 10022219^^ A〇101 第7頁/共28頁 1013064685-0 M434312 置流動°因此本領域技術人員可基於此思想對上述儲能 電路進行等同的修改或變化以達到儲能的效果,這些均 應包含在本新型的保護之内。 根據本新型的技術方案,當達到加熱條件時,開關控制 拉組100控制開關裝置1導通,電池Ε與儲能電路串聯構成 回路,電池Ε可以通過該回路放電,即對第一電荷記憶元 件C1進行充電。當該回路中的電流經過電流峰值後正向 為零時,第一電荷記憶元件C1開始通過該回路放電,即 疋對電池Ε充電;而在電池Ε的充放電過程中,回路中的 電流正向、反向均能流過第一阻尼元件^,從而通過第 —阻尼元件R1的發熱可以達到給電池£加熱的目的。本新 型實施例可以通過控制開關裝置1的導通和關斷時間,從 而可以控制電池Ε僅通過放電來加熱,或者通過放電和充 電兩種方式來加熱》當達到停止加熱條件時,開關控制 模組100可以控制開關裝置1關、斷,加熱電路停止工作。 為了避免第一電荷記憶元件C1給處於低溫情況下的電池Ε 充電,保證電池Ε的充放電性能,作為本新型提供加熱電 路的一種優選實施方式,所述開關控制模組100用於控制 開關裝置1導通和關斷,以控制能量僅從電池Ε流向儲能 電路,由此,可以避免第一電荷記憶元件^對電池Ε充電 〇 在本新型的一個實施例中,為了讓電路迴圈工作,需要 在每一次開關裝置1關斷時,將第一電荷記憶元件^中存 儲的能量消耗掉一部分,因此,如第2圖所示,所述加熱 電路還包括與所述第一電荷記憶元件C1並聯的能量消耗 單元’該能量消耗單元用於在開關裝置1導通後再關斷時 10022219#單編號A01〇l 第8頁/共28頁 1013064685-0 M434-312 ,對第一電荷記憶元件ci中的能量進行消耗。 根據本新型的一種實施方式,如第3圖所示,該能量消耗 單元包括電壓控制單元101,該電壓控制單元101用於在 開關裝置1導通後再關斷時,將第一電荷記憶元件C1兩端 的電壓值轉換成電壓設定值。該電壓設定值可以根據實 際操作的需要進行設定。 根據本新型一種具體實施方式,如第3圖所示,所述電壓 控制單元101包括第三阻尼元件R5和第三開關K8,第三阻 尼元件R 5和第三開關K 8彼此串聯之後並聯在第一電荷記 憶元件C1的兩端,且開關控制模組100與第三開關K8連接 ,開關控制模組100還用於在控制開關裝置1導通後再關 斷時控制第三開關K8導通。由此,每一次開關裝置1控制 開關裝置1關斷後,第一電荷記憶元件C1中的能量可以通 過第三阻尼元件R5進行消耗。 對於能量僅從電池E流向儲能電路的實施方式,開關控制 模組100用於在開關裝置1導通後流經開關裝置1的電流為 零時或為零前控制開關裝置1關斷,只要保證電流僅從電 池E流向第一電荷記憶元件C1即可。 為了控制能量僅從電池E流向第一電荷記憶元件C1,根據 本新型的一種實施方式,如第4圖所示,開關裝置1包括 第一開關K1和第一單向半導體元件D1,第一開關K1和第 一單向半導體元件D1彼此串聯之後串聯在儲能電路中, 開關控制模組100與第一開關K1連接,用於通過控制第一 開關K1的導通和關斷來控制開關裝置1導通和關斷。通過 串聯第一單向半導體元件D1,在第一開關K1失效的情況 下,可以阻止第一電荷記憶元件C1中的能量回流,避免 10022219产單編號 A0101 第9頁/共28頁 1013064685-0 M434312 - - ---. _ 對電池E充電。 由於第-開關K1關斷時導致的電流下降速率較高會在電 流記憶元件L1上感應出較高的過電壓容易導致第一開 關Κ1關斷時由於其電流、電壓超出安全工作區而損壞。 因此,優選情況下,開關控制模組1〇〇用於在開關裝置^ 導通後流經開關裝置i的電流為零時控制第一開關K i關斷 〇 為了提高加熱效率’優選情況下,根據本新型的另一種 實施方式,如第5風所示,開關控制模組1〇〇用於在開關 裝置1導通後流經開關裝置丨的電流為零前控制開關裝置i 關斷,開關裝置1包括第二單向半導體元件D9、第三單向 半導體元件D10、第二開關1(2、第二阻尼元件R4w及第二 電荷記憶元件C3。其中,第二單向半導體元件])9與第二 開關K2順次串聯在儲能電路中_,第二阻尼元件R4與第二 電荷記憶元件C3串聯之後並聯在第二開關ο的兩端,第 三單向半導體元件D10並聯在第二阻尼元件R4的兩端,用 於在第二開關K2關斷時對電流記憶元件L1進行續流,開 關控制模組100與第二開關K2連接,用於通過控制第二開 關K2的導通和關斷來控制開關裝置1導通和關斷》 第三單向半導體元件Dl〇、第二阻尼元件R4以及第二電荷 記憶元件C3组成了吸收回路,用於在第二開關Κ2關斷時 降低儲能電路中電流的下降速率》由此,當第二開關Κ2 關斷時,電流記憶元件L1上產生的感應電壓會迫使第三 單向半導體元件D10導通並通過第二電荷記憶元件C3實現 續流,使得電流記憶元件L1中電流變化速率降低,限制 了電流記憶元件L1兩端的感應電壓’從而可以保證第二 A0101 第10頁/共28頁 1013064685-0 M434312 開關K2兩端的電壓在安全工作區内。並且當第二開關Κ2 再次導通時,存儲在第二電荷記憶元件C3上的能量可以 通過第二阻尼元件R4進行消耗。 為了提高加熱電路的工作效率,可以控制能量在電池Ε與 儲能電路之間往復流動,利用電流正向和反向流經第一 阻尼元件R1來實現加熱。 因此,作為本新型提供的加熱電路的一種優選實施方式 ,開關控制模組100用於控制開關裝置1導通和關斷,以 使得當開關裝置1導通時,能量能夠在電池Ε與儲能電路 之間往復流動。 為了實現能量在電池Ε與儲能電路之間的往復流動,根據 一種實施方式,開關裝置1為第一雙向開關Κ3,如第6圖 所示,由開關控制模組100控制第一雙向開關Κ3的導通與 關斷,當需要對電池Ε加熱時,導通第一雙向開關Κ3即可 ,如暫停加熱或者不需要加熱時關斷第一雙向開關Κ3即 *5J~ 〇 單獨使用一個第一雙向開關K3實現開關裝置1,電路簡單 ,佔用系統面積小,容易實現,但是為了實現對反向電 流的關斷,本新型還提供了如下開關裝置1的優選實施方 式。 優選地,開關裝置1包括用於實現能量從電池E流向儲能 電路的第一單向支路和用於實現能量從儲能電路流向電 池E的第二單向支路,開關控制模組100與該第一單向支 路和第二單向支路中的一者或兩者分別連接,用以控制 所連接的支路的導通和關斷。 當電池需要加熱時,導通第一單向支路和第二單向支路 1002221#單織删1 第11頁/共28頁 1013064685-0 M434312 兩者,如暫停加熱可以選擇關斷第一單向支路和第二單 向支路中的一者或兩者,當不需要加熱時,可以關斷第 一單向支路和第二單向支路兩者。優選地,第一單向支 路和第二單向支路兩者都能夠受開關控制模組1 〇〇的控制 ,這樣,可以靈活實現能量正向流動和反向流動時關斷 〇 作為開關裝置1的另一種實施方式,如第7圖所示,開關 裝置1可以包括第二雙向開關K4和第三雙向開關K5,。其 中,第二雙向開關K4和第三雙向開關K5彼此反向串聯以 構成第一單向支路和第二單向支路,開關控制模組100與 第二雙向開關K4和第三雙向開關K5分別連接,用於通過 控制第二雙向開關K4和第三雙向開關K5的導通和關斷來 控制第一單向支路和第二單向支路的導通和關斷。 當需要對電池E加熱時,導通第二雙向開關K4和K5即可, 如暫停加熱可以選擇關斷第二雙向開關K4和第三雙向開 關K5中的一者或者兩者,在不需要加熱時關斷第二雙向 開關K4和第三雙向開關K5即可。這種開關裝置1的實現方 式能夠分別控制第一單向支路和第二單向支路的導通和 關斷,靈活實現電路的正向和反向能量流動時關斷。 作為開關裝置1的另一種實施方式,如第8圖所示,開關 裝置1可以包括第四開關K6、第四單向半導體元件D11以 及第五單向半導體元件D12,第四開關K6和第四單向半導 體元件D11彼此串聯以構成第一單向支路,第五單向半導 體元件D12構成第二單向支路,開關控制模組100與第四 開關K6連接,用於通過控制第四開關K6的導通和關斷來 控制第一單向支路的導通和關斷。在如第8圖所示的開關 10022219#單编號 A〇101 第12頁/共28頁 1013064685-0 M434312 裝置1令,δ需要加熱時,導通第四開關K6即可,不需要 加熱時,關斷第四開關}(6即可。 圖中所示的開關裝置1的實現方式雖然實現了能量往 返沿著相嵙獨立的支路流動,但是還不能實現能量反向 流動時的關斷功能。本新型還提出了開關裝置^另—種 實施方式,如第9圖所示,開關裝置1還可以包括位於第 二單向支路中的第五開關Κ7,該第五開關Κ7與第五單向 半導體元件M2串聯,開關控制模組100還與第五開關Κ7 連接,用於通過控制第五開關以的導通和關斷來控制第 二單南支路的導通和關斷。這樣在第9圖示出的開關裝置 1中,由於兩個單向支路上均存在開關(即第四開關Κ6和 第五開關Κ7),同時具備能量正向和反向流動時的關斷 功能。 優選地,開關裝置1還可以包括與第一單向支路和/或第 二單向支路串聯的電阻,用於減小電池£加熱回路的電流 ,避免回路中電流過大對電池Ε造成損害。例如,可以在 第7圖中不出的開關裝置1中添加與第二雙向開關Κ4和第 三雙向開關Κ5串聯的電阻R6,得到開關裝置丨的另一種實 現方式’如第10圖所示。第丨丨圖中也示出了開關裝置1的 一種實施方式’其是在第9圖中示出的開關裝置1中的兩 個單向支路上分別串聯電阻R2、電阻R3得到的》 對於能量在電池Ε與儲能電路之間往復流動的實施方式, 開關裝置1導通時,能量先由電池£流入儲能電路,然後 由儲能電路流回電池Ε,如此往復流動以對電池ε加熱。 在從儲能電路流回電池Ε時,第一電荷記憶元件ci中的能 量不會完全流回電池Ε,而是會有一些能量餘留在第一電 1013064685-0 10022219#單編號A01〇l 第13頁/共28頁 M434312 荷記憶元件π中,最終使得第—電荷記憶元件π的電壓 接近或等於電池E的電壓,使得從電池E向第—電荷記憶 元件C1的能量流動不能進行,因此不利於加熱電路的迴 圈工作* 因此’優選情況下’在該實施方式中,加熱電路還包括 與第一電荷記憶元件C1連接的能量消耗單元,該能量消 耗單元用於在開關裝置1導通後再關斷時,對第一電荷記 憶元件C1中的能量進行消耗。該能量消耗單元的實施方 式已在上文中具體闡述,在此不再贅述。 對於能量在電池E與儲能電路之間往復流動的實施方式, 開關裝置1可以在-個週期或多個週期内的任意時間點關 斷,開關裝置1的關斷時刻可以是任何時刻,例如流經開 關裝置1的電流為正向/反向時、為零時/不為零時均可以 貫施關斷。根據所需要的關斷策略可以選擇開關裝置i的 不同的實現形式’如果只需要實現正向電流流動時關斷 ,則選用例如第6圖、第8圖所示的開關裝置i的實現形式 即可,如果需要實現正向電流和反向電流時均可以關斷 ,則需要選用如第7圖、第9圖所示的兩個單向支路均可 控的開關裝置。 優選地,開關控制模組100用於在在開關裝置1導通後流 經開關裝置1的電流為零時或為零後控制開關裝置1關斷 。更加優選地,開關控制模組1〇〇用於在在開關裝置1導 通後流經開關裝置1的電流為零時控制開關裝置1關斷, 這樣零時關斷對整個電路影響較小》 開關控制模組100可以為一個單獨的控制器,通過對其内 部程式的設置,可以實現對不同的外接開關的通斷控制 1013064685-0 10022219#單编號A〇101 第14頁/共28頁 M434312 ,開關控制模組100也可以為多個控制器,例如針對每一 個外接開關設置對應的開關控制模組1〇〇, 模組⑽也可以集成為一體,因此本新型無需:= 模組100的實現形式作出任何限定。 下面結合第12圖和第13圖對電池E的加熱電路的實施方式 的工作方式進行簡單介紹。需要注意的是,雖然本新型 的特徵和元素參考第12圖和第13圖以特定的結合進行了 描述,但每個特徵或元素可以在沒有其他特徵和元素的 情況下單獨使用,或在與或不與其他特徵和元素結合的 各種情況下使用。本新型提供的電池E的加熱電路的實施 方式並不限於第12圖和第13圖所示的實現方式。 在第12圖中所示的電池E的加熱電路中,第一開關K1和第 一單向半導體元件D1構成了開關,裝置j,儲能電路包括電 流記憶元件L1和第一電荷記憶元件C1。其中,第一阻尼 元件R1和開關裝置1與儲能電路串聯,第三阻尼元件“和 第二開關K8構成了能量消耗單元中的電壓控制單元1〇1 ( &quot;T參照第3圖),開.關控制模组1 〇 〇可以控制第一開關κ 1 和第三開關K8的導通和關斷。第13圖為與第12圖的加熱 電路對應的波形時序圖,.其中,vci指的是第一電荷記憶 70件C1的電壓值,I主指的是流經第一開關^的電流的電 流值。第12圖中的加熱電路的工作過程如下: a)當需要對電池E進行加熱時,開關控制模組1〇〇控制第 一開關K1導通,電池E通過第一開關κ 1、第一單向半導體 元件D1和第一電荷記憶元件ci組成的回路放電,如第I〗 圖中所示的tl時間段;開關控制模組1〇〇在流經第一開關 Κ1的電流為零時控制第一開關κ 1關斷,如第丨3圖中所示 1013064685-0 10022219#單織删1 帛15頁/共28頁 M434312 的t2時間段; b) 當第一開關K1關斷後,開關控制模組1〇〇控制第三開 關K8導通,第-電荷記憶元件π通過第三阻尼元件^和 第三開關Κ8組成的回路放電,實現第—電荷記憶元件^ 的能量消耗’之後開關控制模組⑽控制第三開關關斷 ’如第13圖中所示的t2時間段; c) 重複步驟a)和b),電池E不斷通過放電實現加熱, 直至電池E達到停止加熱條件為止。 本新型提供的加熱電路能夠提高了電池E的充放電性能, 並且在該加熱電财,能電路與電⑽串聯當給電池 E加熱時’由於串聯的第—電荷記憶元和的存在,能夠 避免開關裝置1失效短路引起的安全性問題,從而能夠有 效地保護電池E » 以上結合附料細描述了本新型的優選實施方式,但是 ,本新型並不限於上述實施方式中的具體細節,在本新 型的技術構思範_,可以對本新型的技術方案進行多 種簡單變型,k些簡單變型均屬於本新型的保護範圍。 另外需要說明的是’在上述具體實施方式中所描述的各 個具體技術特徵,在不矛盾的情況下 可以通過任何合 適的方式進行組合,為了避免不必要的重複,本新型對 各種可能的組合方式不再另行說明。此外,本新型的各 種不同的實施方式之間也可以進行意組合,只要其不 違背本新型的思想,其同樣應當視為本新型所公開的内 容。 【圖式簡單說明】 步理解,並且構成說明 [0005] 附圖是用來提供對本新型的進— 10022219#單编號删1 第16頁/共28頁 1013064685-0 M434312 書的一部分,與下面的具體實施方式—起用於解釋本新 型,但並不構成對本新型的限制《在附圖中: 第1圖為本新型提供的電池的加熱電路的示意圖; 第2圖為本新型提供的電池的加熱電路的一種優選實施方 式的示意圖; 第3圖為第2圖中的能量消耗單元的一種實施方式的示意 圖; 第4圖為第1圖中的開關裝置的一種實施方式的示意圖; 第5圖為第1圖中的開關裝置的一種實施方式的示意圖; 第6圖為第1圖中的開關裝置的一種實施方式的示意圖; 第7圖為第1圖中的開關裝置的一種實施方式的示意圖; 第8圖為第1圖中的開關裝置的一種實施方式的示意圖; 第9圖為第1圖中的開關裝置的一種實施方式的示意圖; 第10圖為第1圖中的開關裝置的一種實施方式的示意圖; 第11圖為第1圖中的開關裝置的一種實施方式的示意圖; 第12圖為本新型提供的電池的加熱電路的一種實施方式 的示意圖;以及 第13圖為第12圖的加熱電路所對應的波形時序圖。 【主要元件符號說明】 [0006] L1 :電流記憶元件 R1 :第一阻尼元件 C1 :第一電荷記憶元件 E :電池 1 :開關裝置 100 :開關控制模組 101 :電壓控制單元 1013064685-0 10022219^MSt Α0101 $ π 胃 / u 頁 M434312 C3 :第二電荷記憶元件 D1 :第一單向半導體元件 D9 :第二單向半導體元件 D10 :第三單向半導體元件 D11 :第四單向半導體元件 D12 :第五單向半導體元件 K1 :第一開關 K2 :第二開關 K3 :第一雙向開關 K4 :第二雙向開關 K5 :第三雙向開關 K6 :第四開關 K7 :第五開關 K8 :第三開關 (7 R6/R2/R3 :電阻 R4 :第二阻尼元件 R5 :第三阻尼元件 V ,:第一電荷記憶元件C1的電壓值 cl I 士 :指的是流經第一開關κι的電流的電流值 10022219^^^^* A〇101 第18頁/共28頁 1013064685-0Gate Bipolar Transistor, Insulated Gate Bipolar Transistor), etc.: As mentioned below, the term "bidirectional switch" refers to a dual-guide that can be controlled by an electrical signal to achieve on-off control or to achieve on-off control according to the characteristics of the metadevice itself. a switch, such as a MOSFET or an IGBT with an anti-freewheeling diode; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor component having a unidirectional conduction function, such as a diode or the like: In time, the term "charge memory element" refers to any device that can implement charge storage, such as a capacitor, etc.; as referred to hereinafter, the term "current memory element" refers to any device that can store current, such as an inductor, etc.; The term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to the direction in which energy flows from the tank circuit to the battery; as referred to hereinafter, the term "battery" includes a primary battery (eg, a dry battery) , test batteries, etc.) and secondary batteries (such as lithium-ion batteries, nickel-cadmium batteries, nickel-metal hydride batteries or lead) Acid battery, etc.; as used hereinafter, the term "damping element" refers to any device that, by obstructing the flow of current to achieve energy consumption, such as may be a resistor or the like; when referred to hereinafter, the term "main circuit" refers to It is a circuit composed of a battery in series with a damping element, a switching device and a storage circuit. It should also be noted here that, considering the different characteristics of different types of batteries, in the present invention, "battery" may refer to an inductance value that does not include internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. A smaller ideal battery can also be a battery pack that contains internal parasitic resistance and parasitic inductance. Therefore, those skilled in the art should understand that when the "battery" is a transformer value that does not contain internal parasitic resistance and parasitic inductance, or the resistance of the internal parasitic resistance and the parasitic inductance is small, the number of the inductance is small. A total of 28 pages 1013064685-0 M434312 ideal battery, the first damping element R1 refers to the battery external damper element, the current memory element L1 refers to the battery external current memory element; when the "battery" contains internal parasitic resistance and In the case of a battery pack with parasitic inductance, the first damper element R1 may be referred to as a damper element outside the battery or a parasitic resistance inside the battery pack. Similarly, the current memory element L1 may be referred to as a current memory element outside the battery, or Refers to the parasitic inductance inside the battery pack. In the embodiment of the present invention, in order to ensure the service life of the battery, it is necessary to heat the battery at a low temperature. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated, and when the heating condition is stopped, the control is started. The heating circuit stops working. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E. As shown in FIG. 1, the heating circuit includes a switching device 1, a switch control module 100, a first damping element R1, and A storage circuit that is connected to the battery E. In an embodiment of the present invention, the energy storage circuit includes a current memory element L1 and a first charge memory element C1, wherein the first damping element R1, the switching device 1, the current memory element L1 and the first charge memory element C1 are connected in series The switch control module 100 is connected to the switch device 1 for controlling the on and off of the switch device 1 to control the flow of energy between the battery E and the tank circuit. It should be noted that the above-mentioned energy storage circuit is only a preferred embodiment of the present invention, and the energy storage circuit can satisfy the energy storage, so as to perform energy with the battery E 10022219^^ A〇101 page 7 / total </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; According to the technical solution of the present invention, when the heating condition is reached, the switch control pull group 100 controls the switching device 1 to be turned on, and the battery port and the energy storage circuit are connected in series to form a loop, and the battery port can be discharged through the circuit, that is, the first charge memory element C1 Charge it. When the current in the loop passes through the current peak and the positive direction is zero, the first charge memory element C1 starts to discharge through the loop, that is, the battery pack is charged; and during the charge and discharge of the battery pack, the current in the loop is positive. Both the forward and the reverse flow can flow through the first damper element ^, so that the heating of the first damper element R1 can achieve the purpose of heating the battery. The novel embodiment can control the conduction and off time of the switching device 1, so that the battery can be controlled to be heated only by discharge, or by discharging and charging. When the heating condition is stopped, the switch control module 100 can control the switching device 1 to be turned off and off, and the heating circuit stops working. In order to prevent the first charge storage element C1 from charging the battery pack at a low temperature to ensure the charge and discharge performance of the battery pack, as a preferred embodiment of the present invention, the switch control module 100 is used to control the switch device. 1 turning on and off to control the energy flow only from the battery to the energy storage circuit, thereby preventing the first charge storage element from charging the battery pack. In one embodiment of the present invention, in order to make the circuit work, It is necessary to consume a portion of the energy stored in the first charge storage element ^ every time the switching device 1 is turned off. Therefore, as shown in FIG. 2, the heating circuit further includes the first charge storage element C1. Parallel energy consuming unit 'The energy consuming unit is used when the switching device 1 is turned on and then turned off 10022219# single number A01〇l page 8 / total 28 pages 1013064685-0 M434-312 for the first charge memory element ci The energy in the consumption is consumed. According to an embodiment of the present invention, as shown in FIG. 3, the energy consuming unit includes a voltage control unit 101 for using the first charge memory element C1 when the switching device 1 is turned on and then turned off. The voltage values at both ends are converted to voltage settings. This voltage setting can be set according to the needs of the actual operation. According to a specific embodiment of the present invention, as shown in FIG. 3, the voltage control unit 101 includes a third damper element R5 and a third switch K8, and the third damper element R5 and the third switch K8 are connected in series after being connected in parallel The two ends of the first charge memory element C1, and the switch control module 100 is connected to the third switch K8. The switch control module 100 is further configured to control the third switch K8 to be turned on when the switch device 1 is turned on and then turned off. Thus, each time the switching device 1 controls the switching device 1 to be turned off, the energy in the first charge storage element C1 can be consumed by the third damping element R5. For the embodiment in which the energy flows only from the battery E to the energy storage circuit, the switch control module 100 is used to control the switching device 1 to be turned off when the current flowing through the switching device 1 after the switching device 1 is turned on is zero or zero, as long as the power is turned off. The current flows only from the battery E to the first charge storage element C1. In order to control energy flow only from the battery E to the first charge memory element C1, according to an embodiment of the present invention, as shown in FIG. 4, the switching device 1 includes a first switch K1 and a first unidirectional semiconductor element D1, the first switch K1 and the first unidirectional semiconductor component D1 are connected in series with each other in a tank circuit, and the switch control module 100 is connected to the first switch K1 for controlling the conduction of the switching device 1 by controlling the turning on and off of the first switch K1. And shutting down. By connecting the first unidirectional semiconductor element D1 in series, in the case where the first switch K1 fails, the energy backflow in the first charge memory element C1 can be prevented, avoiding 10022219 production order number A0101 page 9 / total 28 pages 1013064685-0 M434312 - - ---. _ Charge battery E. Since the higher current drop rate caused by the first switch K1 is turned off, a higher overvoltage is induced on the current memory element L1, which easily causes the first switch Κ1 to be broken due to its current and voltage exceeding the safe working area. Therefore, preferably, the switch control module 1 is configured to control the first switch K i to be turned off when the current flowing through the switch device i is zero after the switch device is turned on, in order to improve the heating efficiency. In another embodiment of the present invention, as shown in the fifth wind, the switch control module 1 is configured to control the switch device i to be turned off before the current flowing through the switch device 为零 after the switch device 1 is turned on, and the switch device 1 is turned off. The second unidirectional semiconductor element D9, the third unidirectional semiconductor element D10, the second switch 1 (2, the second damper element R4w, and the second charge memory element C3. wherein the second unidirectional semiconductor element]) 9 and The second switch K2 is sequentially connected in series in the tank circuit, the second damping element R4 is connected in series with the second charge memory element C3, and is connected in parallel at both ends of the second switch ο, and the third unidirectional semiconductor element D10 is connected in parallel to the second damper element R4. The two ends are used for freewheeling the current memory element L1 when the second switch K2 is turned off, and the switch control module 100 is connected to the second switch K2 for controlling by turning on and off the second switch K2. Switching device 1 is turned on And the third unidirectional semiconductor element D1〇, the second damper element R4, and the second charge memory element C3 constitute an absorption loop for reducing the rate of current drop in the tank circuit when the second switch 关2 is turned off. Thus, when the second switch Κ2 is turned off, the induced voltage generated on the current memory element L1 forces the third unidirectional semiconductor element D10 to be turned on and the freewheeling is performed by the second charge memory element C3, so that the current in the current memory element L1 The rate of change is reduced, limiting the induced voltage across the current memory element L1' to ensure that the voltage across the second A0101 page 10/28 page 1013064685-0 M434312 switch K2 is within the safe operating area. And when the second switch Κ2 is turned on again, the energy stored on the second charge storage element C3 can be consumed by the second damper element R4. In order to improve the operating efficiency of the heating circuit, energy can be controlled to reciprocate between the battery pack and the tank circuit, and the current is forwardly and reversely flowed through the first damping element R1 to effect heating. Therefore, as a preferred embodiment of the heating circuit provided by the present invention, the switch control module 100 is used to control the switching device 1 to be turned on and off, so that when the switching device 1 is turned on, energy can be in the battery and the energy storage circuit. Reciprocating flow. In order to realize the reciprocating flow of energy between the battery pack and the energy storage circuit, according to an embodiment, the switch device 1 is the first bidirectional switch Κ3. As shown in FIG. 6, the first bidirectional switch Κ3 is controlled by the switch control module 100. Turning on and off, when the battery pack needs to be heated, the first bidirectional switch Κ3 can be turned on, such as suspending heating or turning off the first bidirectional switch 即3, ie, *5J~ 〇 using a first bidirectional switch separately K3 realizes the switching device 1, has a simple circuit, occupies a small system area, and is easy to implement, but in order to achieve the shutdown of the reverse current, the present invention also provides a preferred embodiment of the switching device 1 as follows. Preferably, the switching device 1 comprises a first one-way branch for realizing energy flow from the battery E to the energy storage circuit and a second one-way branch for realizing energy flow from the energy storage circuit to the battery E, the switch control module 100 One or both of the first one-way branch and the second one-way branch are respectively connected to control the turning on and off of the connected branch. When the battery needs to be heated, the first one-way branch and the second one-way branch 1002221# single weave 1 page 11 / 28 pages 1013064685-0 M434312 are turned on, and if the heating is suspended, the first single can be turned off. One or both of the branch and the second one-way branch may turn off both the first one-way branch and the second one-way branch when heating is not required. Preferably, both the first one-way branch and the second one-way branch can be controlled by the switch control module 1 ,, so that the energy can be flexibly realized when the energy is forward flow and the reverse flow is turned off as a switch In another embodiment of the device 1, as shown in Fig. 7, the switching device 1 may include a second bidirectional switch K4 and a third bidirectional switch K5. Wherein, the second bidirectional switch K4 and the third bidirectional switch K5 are reversely connected in series to form a first one-way branch and a second one-way branch, and the switch control module 100 and the second bidirectional switch K4 and the third bidirectional switch K5 Connected separately for controlling the turning on and off of the first one-way branch and the second one-way branch by controlling the turning on and off of the second bidirectional switch K4 and the third bidirectional switch K5. When the battery E needs to be heated, the second bidirectional switches K4 and K5 may be turned on, and if the heating is suspended, one or both of the second bidirectional switch K4 and the third bidirectional switch K5 may be selectively turned off, when heating is not required. The second bidirectional switch K4 and the third bidirectional switch K5 can be turned off. The implementation of the switching device 1 is capable of controlling the turn-on and turn-off of the first one-way branch and the second one-way branch, respectively, to flexibly turn off the forward and reverse energy flows of the circuit. As another embodiment of the switching device 1, as shown in FIG. 8, the switching device 1 may include a fourth switch K6, a fourth unidirectional semiconductor element D11 and a fifth unidirectional semiconductor element D12, a fourth switch K6 and a fourth The unidirectional semiconductor elements D11 are connected in series to each other to form a first one-way branch, the fifth unidirectional semiconductor element D12 constitutes a second one-way branch, and the switch control module 100 is connected to the fourth switch K6 for controlling the fourth switch The turn-on and turn-off of K6 controls the turn-on and turn-off of the first one-way branch. In the switch as shown in Fig. 8, the switch 10022219# single number A 〇 101 page 12 / 28 pages 1013064685-0 M434312 device 1 command, when δ needs heating, the fourth switch K6 can be turned on, without heating, Turn off the fourth switch} (6. The implementation of the switching device 1 shown in the figure realizes the energy reciprocating flow along the independent branch, but the shutdown function when the energy reverse flow is not realized. The present invention also proposes a switch device, and as shown in FIG. 9, the switch device 1 may further include a fifth switch Κ7 located in the second one-way branch, the fifth switch Κ7 and the fifth The unidirectional semiconductor component M2 is connected in series, and the switch control module 100 is further connected to the fifth switch Κ7 for controlling the turning on and off of the second single south branch by controlling the turning on and off of the fifth switch. In the switching device 1 shown in Fig. 9, since there are switches (i.e., the fourth switch Κ6 and the fifth switch Κ7) on both of the one-way branches, the shutdown function is provided with both forward and reverse flow of energy. The switching device 1 may further include a first one-way branch / or a resistor connected in series with the second one-way branch, used to reduce the current of the battery heating circuit, to avoid damage to the battery pack caused by excessive current in the loop. For example, it can be added to the switch device 1 not shown in FIG. The resistor R6 connected in series with the second bidirectional switch Κ4 and the third bidirectional switch Κ5 obtains another implementation of the switching device ' as shown in Fig. 10. An embodiment of the switching device 1 is also shown in the figure. 'It is obtained by series-connecting the resistor R2 and the resistor R3 on the two one-way branches in the switching device 1 shown in FIG. 9". The embodiment of the energy reciprocating between the battery pack and the tank circuit, the switch When the device 1 is turned on, the energy first flows from the battery into the energy storage circuit, and then flows back to the battery port by the energy storage circuit, so that the flow reciprocates to heat the battery ε. When flowing back from the energy storage circuit to the battery, the first charge memory element The energy in ci will not flow back completely into the battery, but there will be some energy remaining in the first electric 1013064685-0 10022219# single number A01〇l page 13 / 28 pages M434312 load memory element π, and finally make First charge The voltage of the memory element π is close to or equal to the voltage of the battery E, so that the energy flow from the battery E to the first charge storage element C1 cannot be performed, thus which is disadvantageous for the loop operation of the heating circuit*, so 'preferably' in this embodiment The heating circuit further includes an energy consuming unit connected to the first charge storage element C1, and the energy consuming unit is configured to consume energy in the first charge storage element C1 when the switching device 1 is turned on and then turned off. The embodiment of the energy consuming unit has been specifically described above and will not be described here. For the embodiment in which the energy flows back and forth between the battery E and the energy storage circuit, the switching device 1 can be in one cycle or multiple cycles. The off time of the switching device 1 can be any time, for example, when the current flowing through the switching device 1 is forward/reverse, and zero or non-zero can be turned off. Different implementations of the switching device i can be selected according to the required shutdown strategy. 'If only the forward current flow is required to be turned off, then the implementation of the switching device i shown in FIGS. 6 and 8 is selected. However, if both forward current and reverse current need to be turned off, it is necessary to select two unidirectional branches as shown in Fig. 7 and Fig. 9 to control the switching device. Preferably, the switch control module 100 is configured to control the switch device 1 to turn off when the current flowing through the switch device 1 after the switch device 1 is turned on is zero or zero. More preferably, the switch control module 1 is configured to control the switch device 1 to be turned off when the current flowing through the switch device 1 after the switch device 1 is turned on is zero, so that the zero-time turn-off has less influence on the entire circuit. The control module 100 can be a single controller. Through the setting of its internal program, the on/off control of different external switches can be realized. 1013064685-0 10022219#单号A〇101 Page 14 of 28 M434312 The switch control module 100 can also be a plurality of controllers. For example, a corresponding switch control module 1 is provided for each external switch, and the module (10) can also be integrated into one body, so the present invention does not need: = the module 100 The implementation form is subject to any restrictions. The mode of operation of the embodiment of the heating circuit of the battery E will be briefly described below with reference to Figs. 12 and 13. It should be noted that although the features and elements of the present invention are described with reference to FIG. 12 and FIG. 13 in a specific combination, each feature or element can be used alone or without other features and elements. Or not in combination with other features and elements in various situations. The embodiment of the heating circuit of the battery E provided by the present invention is not limited to the implementations shown in Figs. 12 and 13. In the heating circuit of the battery E shown in Fig. 12, the first switch K1 and the first unidirectional semiconductor element D1 constitute a switch, and the device j, the tank circuit includes a current memory element L1 and a first charge memory element C1. Wherein, the first damper element R1 and the switching device 1 are connected in series with the energy storage circuit, and the third damper element "and the second switch K8 constitute a voltage control unit 1 〇 1 in the energy consuming unit ( &quot;T refer to Fig. 3), The on/off control module 1 〇〇 can control the on and off of the first switch κ 1 and the third switch K8. Fig. 13 is a waveform timing diagram corresponding to the heating circuit of Fig. 12, wherein vci refers to It is the voltage value of the first charge memory 70 piece C1, and the I main point refers to the current value of the current flowing through the first switch ^. The operation process of the heating circuit in Fig. 12 is as follows: a) When the battery E needs to be heated When the switch control module 1〇〇 controls the first switch K1 to be turned on, the battery E is discharged through the loop formed by the first switch κ 1, the first unidirectional semiconductor component D1 and the first charge memory component ci, as shown in FIG. The tl time period shown; the switch control module 1 控制 controls the first switch κ 1 to turn off when the current flowing through the first switch 为零 1 is zero, as shown in FIG. 3, 1013064685-0 10022219# Delete 1 帛 15 pages / 28 pages of M434312 t2 time period; b) When the first switch K1 is turned off The switch control module 1 〇〇 controls the third switch K8 to be turned on, and the first-charge memory element π is discharged through the loop formed by the third damper element ^ and the third switch Κ8 to realize the energy consumption of the first-charge memory element ^ after the switch The control module (10) controls the third switch to turn off 't2 time period as shown in Fig. 13; c) repeat steps a) and b), and the battery E continuously heats by discharge until the battery E reaches the stop heating condition. The heating circuit provided by the present invention can improve the charge and discharge performance of the battery E, and in the heating power, the circuit can be prevented from being connected to the electricity (10) in series when the battery E is heated, due to the presence of the first-stage charge memory element in series. The safety problem caused by the failure of the switching device 1 to be short-circuited, so that the battery E can be effectively protected. The above preferred embodiments of the present invention are described in detail in conjunction with the accompanying materials. However, the present invention is not limited to the specific details in the above embodiments. A new type of technical concept can make a variety of simple variants of the new technical solution, and some simple variants fall within the scope of this new type of protection. It should be noted that the specific technical features described in the above specific embodiments may be combined in any suitable manner without contradiction. In order to avoid unnecessary repetition, the present invention does not have various possible combinations. In addition, various combinations of the various embodiments of the present invention can also be combined, as long as they do not contradict the idea of the present invention, and should also be regarded as the disclosure of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are provided to provide a portion of the present invention, which is incorporated herein by reference in its entirety in its entirety in The present invention is not limited to the present invention. In the drawings: FIG. 1 is a schematic view of a heating circuit of a battery provided by the present invention; FIG. 2 is a preferred embodiment of a heating circuit for a battery provided by the present invention. 3 is a schematic diagram of an embodiment of the energy consuming unit in FIG. 2; FIG. 4 is a view in FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a schematic view showing an embodiment of a switch device in FIG. 1; FIG. 6 is a schematic view showing an embodiment of a switch device in FIG. 1; 1 is a schematic view of an embodiment of a switching device in the drawing; FIG. 8 is a schematic view showing an embodiment of the switching device in FIG. 1; FIG. 9 is a schematic view showing an embodiment of the switching device in FIG. 1; 10 is a schematic view of an embodiment of the switching device of FIG. 1; FIG. 11 is a schematic view of an embodiment of the switching device of FIG. 1; FIG. 12 is an embodiment of a heating circuit for a battery provided by the present invention A schematic diagram of the mode; and FIG. 13 is a waveform timing diagram corresponding to the heating circuit of FIG. [Main component symbol description] [0006] L1: current memory element R1: first damping element C1: first charge memory element E: battery 1: switching device 100: switching control module 101: voltage control unit 1013064685-0 10022219^ MSt Α0101 $ π Stomach / u page M434312 C3 : second charge memory element D1 : first unidirectional semiconductor element D9 : second unidirectional semiconductor element D10 : third unidirectional semiconductor element D11 : fourth unidirectional semiconductor element D12 : Fifth unidirectional semiconductor element K1: first switch K2: second switch K3: first bidirectional switch K4: second bidirectional switch K5: third bidirectional switch K6: fourth switch K7: fifth switch K8: third switch ( 7 R6/R2/R3: Resistor R4: Second damper element R5: Third damper element V, : Voltage value of the first charge memory element C1 cl I: Refers to the current value of the current flowing through the first switch κι 10022219^^^^* A〇101 Page 18 of 28 1013064685-0

Claims (1)

M434312 六、申請專利範圍: .-種電池的加熱電路,該加熱電路包括: 開關裝置; 第一阻尼元件; 以及 儲能電路,所述館能電路用於與電池連接,所述館能電路 包括電流記憶元件和第-電荷記憶it件,朗述第—阻尼 元件、開«置、電流記憶元件和第—電荷記憶辑串^ 開關控制核組,所述開關控制模組與開關裝置連接,用於 控制開關裝置導通和關斷,以控制能量在所述電池與所述 儲能電路之間的流動。 .如申請專利範園第1項所述的加熱電路,Μ,所述第一 阻尼元件為所述電池内部的寄生電阻,所述電流記憶元件 為所述電池内部的寄生電感。 •如申5青專利範圍第1項所述的加熱電路,其中,所述第一 阻尼元件為外接電阻,所述電流記憶元件為外接電感,所 述第一電荷記憶元件為電容。 .如申請專利範圍第3項所述的加熱電路,其中,所述開關 控制模組用於控制開關裝置導通和關斷,以控制能量僅從 所述電池流向所述儲能電路,所述加熱電路還包括與所述 第一電荷記憶元件並聯的能量消耗單元,所述能量消耗單 元用於在開關裝置導通後再關斷時,對所述第一電荷記憶 元件中的能量進行消耗。 .如申請專利範圍第4項所述的加熱電路,其中,所述開關 裝置包括第一開關和第一單向半導體元件,所述第一開關 和第一單向半導體元件彼此串聯之後串聯在所述儲能電路 10022219#單編號Α0101 第19頁/共28頁 1013064685-0 M434312 中,所述開關控制模組與所述第一開關連接,用於通過控 制所述第一開關的導通和關斷來控制所述開關裝置導通和 關斷。 6. 如申請專利範圍第4項所述的加熱電路,其中,所述開關 控制模組用於在開關裝置導通後流經開關裝置的電流為零 時或為零前控制開關裝置關斷。 7. 如申請專利範圍第6項所述的加熱電路,其中,所述開關 控制模組用於在所述開關裝置導通後流經所述開關裝置的 電流為零前控制所述開關裝置關斷,所述開關裝置包括第 二單向半導體元件、第三單向半導體元件、第二開關、第 二阻尼元件以及第二電荷記憶元件,所述第二單向半導體 元件與第二開關順次串聯在所述儲能電路中,且所述第二 阻尼元件與所述第二電荷記憶元件串聯之後並聯在所述第 二開關的兩端,所述第三單向半導體元件並聯在所述第二 阻尼元件的兩端,用於在所述第二開關關斷時對所述電流 記憶元件進行續流,所述開關控制模組與所述第二開關連 接,用於通過控制所述第二開關的導通和關斷來控制開關 裝置導通和關斷。 8 .如申請專利範圍第3項所述的加熱電路,其中,所述開關 控制模組用於控制所述開關裝置導通和關斷,以使得當所 述開關裝置導通時,能量在所述電池與所述儲能電路之間 往復流動。 9.如申請專利範圍第8項所述的加熱電路,其中,所述加熱 電路還包括與所述第一電荷記憶元件連接的能量消耗單元 ,所述能量消耗單元用於在所述開關裝置導通後再關斷時 ,對所述第一電荷記憶元件中的能量進行消耗。 10㈣單編號删1 第20頁/共28頁 1013064685-0 M434.312 10.如申請專利範圍第4或9項所述的加熱電路,其中,所述能 量消耗單元包括電壓控制單元,所述電壓控制單元用於在 所述開關裝置導通後再關斷時,將所述第一電荷記憶元件 兩端的電壓值轉換成電壓設定值。 11 .如申請專利範圍第10項所述的加熱電路,其中,所述電壓 控制單元包括第三阻尼_元件和第三開關,所述第三阻尼元 件和第三開關彼此串聯之後並聯在所述第一電荷記憶元件 的兩端,所述開關控制模組還與所述第三開關連接,所述 開關控制模組還用於在控制開關裝置導通後再關斷時控制 所述第三開關導通。 12 .如申請專利範圍第8項所述的加熱電路,其中,所述開關 裝置為第一雙向開關。 13.如申請專利範圍第8項所述的加熱電路,其中,所述開關 裝置包括用於實現能量從所述電池流向所述儲能電路的第 一單向支路和用於實現能量從所述儲能電路流向所述電池 的第二單向支路,所述開關控制模組與所述第一單向支路 和第二單向支路中的一者或兩者分別連接,用於通過控制 所連接的支路的導通和關斷來控制所述開關裝置導通和關 斷。 14 .如申請專利範圍第13項所述的加熱電路,其中,所述開關 裝置包括第二雙向開關和第三雙向開關,所述第二雙向開 關和第三雙向開關彼此反向串聯以構成所述第一單向支路 和第二單向支路,所述開關控制模組與所述第二雙向開關 和第三雙向開關分別連接,用於通過控制所述第二雙向開 關和第三雙向開關的導通和關斷來控制所述第一單向支路 和第二單向支路的導通和關斷。 22219产單編號A0101 第21頁/共28頁 1013064685-0 5.如申請專利範圍第13項料的加熱電路,其巾,所述開關 裝置包括第四開關、第四單向半導體元件以及第五單向半 導體元件,所述第四開關和所述第四單向半導體元件彼此 串聯以構成所述第-單向支路,所述第五單向半導體元件 構成所述第二單向支路,所述開關控制模組與所述第四開 關連接,用於通過控制所述第四開關的導通和關斷來控制 第一單向支路的導通和關斷。 16 .如申請專利範圍第15項所述的加熱電路,其中,所述開關 裝置還包括位於所述第二單向支路中的第五開關,所述第 五開關與所述第五單向半導體元件串聯,所述開關控制模 組還與所述第五開關連接,用於通過控制所述第五開關的 導通和關斷來控制第二單向支路的導通和關斷。 17 ·如申請專利範圍第13項所述的加熱電路,其中,所述開關 裝置還包括與所述第一單向支路和/或第二單向支路串聯 的電阻。 18 ·如申請專利範圍第8項所述的加熱電路,其中,所述開關 控制模組用於在所述開關裝置導通後且流經所述開關裝置 的電流為零時或為零後控制所述開關裝置關斷。 10022219#單编號 A0101 第22頁/共28頁 1013064685-0M434312 VI. Patent application scope: - A heating circuit for a battery, the heating circuit comprising: a switching device; a first damping element; and a storage circuit, the library circuit is for connecting with a battery, and the library circuit comprises a current memory element and a first-charge memory device, a description of the damping element, the opening, the current memory element and the first-charge memory string control switch core group, the switch control module is connected with the switch device, The switching device is controlled to be turned on and off to control the flow of energy between the battery and the energy storage circuit. The heating circuit according to claim 1, wherein the first damping element is a parasitic resistance inside the battery, and the current memory element is a parasitic inductance inside the battery. The heating circuit of claim 1, wherein the first damper element is an external resistor, the current memory element is an external inductor, and the first charge memory element is a capacitor. The heating circuit of claim 3, wherein the switch control module is configured to control the switching device to be turned on and off to control energy flow only from the battery to the energy storage circuit, the heating The circuit also includes an energy consuming unit in parallel with the first charge storage element, the energy consuming unit for consuming energy in the first charge storage element when the switching device is turned off and then turned off. The heating circuit of claim 4, wherein the switching device comprises a first switch and a first unidirectional semiconductor component, the first switch and the first unidirectional semiconductor component being connected in series after being connected in series In the energy storage circuit 10022219#单号Α0101, page 19/28, 1013064685-0, M434312, the switch control module is connected to the first switch for controlling the first switch to be turned on and off. To control the switching device to be turned on and off. 6. The heating circuit of claim 4, wherein the switch control module is configured to control the switch device to turn off when the current flowing through the switch device after the switch device is turned on is zero or before zero. 7. The heating circuit of claim 6, wherein the switch control module is configured to control the switching device to be turned off before the current flowing through the switching device is zero after the switching device is turned on. The switching device includes a second unidirectional semiconductor component, a third unidirectional semiconductor component, a second switch, a second damper component, and a second charge memory component, wherein the second unidirectional semiconductor component and the second switch are sequentially connected in series In the energy storage circuit, the second damping element is connected in series with the second charge storage element and then connected in parallel at both ends of the second switch, and the third unidirectional semiconductor element is connected in parallel to the second damping The two ends of the component are used for freewheeling the current memory component when the second switch is turned off, and the switch control module is connected to the second switch for controlling the second switch Turns on and off to control the switching device to turn on and off. 8. The heating circuit of claim 3, wherein the switch control module is configured to control the switching device to be turned on and off, such that when the switching device is turned on, energy is in the battery Reciprocating flow with the energy storage circuit. 9. The heating circuit of claim 8, wherein the heating circuit further comprises an energy consuming unit coupled to the first charge storage element, the energy consuming unit for conducting at the switching device The energy in the first charge storage element is then consumed when it is turned off again. The heating circuit of claim 4 or claim 9, wherein the energy consuming unit comprises a voltage control unit, the voltage The control unit is configured to convert the voltage value across the first charge storage element into a voltage set value when the switch device is turned off and then turned off. The heating circuit of claim 10, wherein the voltage control unit comprises a third damping element and a third switch, the third damping element and the third switch being connected in series after being connected in parallel The switch control module is further connected to the third switch, and the switch control module is further configured to control the third switch to be turned on when the control switch device is turned on and then turned off. . The heating circuit of claim 8, wherein the switching device is a first bidirectional switch. 13. The heating circuit of claim 8, wherein the switching device comprises a first one-way branch for achieving energy flow from the battery to the energy storage circuit and for achieving energy from the Said storage circuit flowing to a second one-way branch of said battery, said switch control module being respectively connected to one or both of said first one-way branch and said second one-way branch, for The switching device is controlled to be turned on and off by controlling the turning on and off of the connected branch. 14. The heating circuit of claim 13, wherein the switching device comprises a second bidirectional switch and a third bidirectional switch, the second bidirectional switch and the third bidirectional switch being connected in reverse series to each other to constitute The first one-way branch and the second one-way branch, the switch control module is respectively connected to the second bidirectional switch and the third bidirectional switch, for controlling the second bidirectional switch and the third bidirectional The switch is turned on and off to control the turning on and off of the first one-way branch and the second one-way branch. 22219Product No. A0101 Page 21 / Total 28 Page 1013064685-0 5. The heating circuit of claim 13 of the patent application, the switch device comprising a fourth switch, a fourth unidirectional semiconductor component and a fifth a unidirectional semiconductor element, the fourth switch and the fourth unidirectional semiconductor element being connected in series to each other to constitute the first one-way branch, and the fifth unidirectional semiconductor element constitutes the second one-way branch The switch control module is coupled to the fourth switch for controlling the turning on and off of the first one-way branch by controlling the turning on and off of the fourth switch. The heating circuit of claim 15, wherein the switching device further comprises a fifth switch located in the second one-way branch, the fifth switch and the fifth one-way The semiconductor components are connected in series, and the switch control module is further connected to the fifth switch for controlling the turning on and off of the second one-way branch by controlling the turning on and off of the fifth switch. The heating circuit of claim 13, wherein the switching device further comprises a resistor in series with the first one-way branch and/or the second one-way branch. The heating circuit of claim 8, wherein the switch control module is configured to control the switch after the switch device is turned on and the current flowing through the switch device is zero or zero The switching device is turned off. 10022219#单号 A0101 Page 22 of 28 1013064685-0
TW100222195U 2010-12-23 2011-11-24 Battery heating circuit TWM434312U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010060365 2010-12-23

Publications (1)

Publication Number Publication Date
TWM434312U true TWM434312U (en) 2012-07-21

Family

ID=46882655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100222195U TWM434312U (en) 2010-12-23 2011-11-24 Battery heating circuit

Country Status (1)

Country Link
TW (1) TWM434312U (en)

Similar Documents

Publication Publication Date Title
CA2805797C (en) Battery heating circuit
TWI477026B (en) Battery heating circuit
US9209644B2 (en) Circuits and methods for heating batteries in series using resonance components in series
TWI477027B (en) Battery heating circuit
TWI433429B (en) Battery heating circuit
TWM434312U (en) Battery heating circuit
TWI493830B (en) Battery heating circuit
TWI430536B (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI465002B (en) Battery heating circuit
TWI469473B (en) Battery heating circuit
TWI433428B (en) Battery heating circuit
TWM438034U (en) Battery heating circuit
TWM437537U (en) Battery heating circuit
TW201322586A (en) Battery heating circuit
TWM442586U (en) Battery heating circuit
TWM433983U (en) Battery heating circuit
TW201232998A (en) Battery heating circuit

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model