WO2017067405A1 - 太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置 - Google Patents

太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置 Download PDF

Info

Publication number
WO2017067405A1
WO2017067405A1 PCT/CN2016/101773 CN2016101773W WO2017067405A1 WO 2017067405 A1 WO2017067405 A1 WO 2017067405A1 CN 2016101773 W CN2016101773 W CN 2016101773W WO 2017067405 A1 WO2017067405 A1 WO 2017067405A1
Authority
WO
WIPO (PCT)
Prior art keywords
film structure
semiconductor layer
solar film
conductive
semiconductor
Prior art date
Application number
PCT/CN2016/101773
Other languages
English (en)
French (fr)
Inventor
陈柏颕
陈俋瑾
陈俋锡
Original Assignee
陈柏颕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈柏颕 filed Critical 陈柏颕
Publication of WO2017067405A1 publication Critical patent/WO2017067405A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar film structure produced by a coating method, a method of fabricating the solar film structure, and a device for fabricating the solar film structure.
  • silicon-based solar cells In today's solar cell related process technology has been vigorously developing, and there are many types of solar thin film batteries, among which silicon-based solar cells are the most common, usually silicon-based solar cells have P/N diode layers (P/N Basic structure such as diode), antireflection layer, front contact electrode, and back contact electrode.
  • P/N Basic structure such as diode
  • antireflection layer In today's solar cell related process technology has been vigorously developing, and there are many types of solar thin film batteries, among which silicon-based solar cells are the most common, usually silicon-based solar cells have P/N diode layers (P/N Basic structure such as diode), antireflection layer, front contact electrode, and back contact electrode.
  • P/N Basic structure such as diode
  • the electron (Electron) hole of the silicon atom is freed by the excitation of sunlight, and the free electrons are accelerated and separated by the built-in electric field between the P/N diodes, and are even
  • the built-in electric field between the P/N diodes affects the electrons and holes that are attracted to the upper and lower ends of the metal wires, thus forming a power generation and conduction loop.
  • the solar cell of the conventional silicon substrate is manufactured in a manufacturing process such as a P/N diode layer or an antireflection layer, a front contact electrode, a back contact electrode, a depleted layer, and the like.
  • a manufacturing process such as a P/N diode layer or an antireflection layer, a front contact electrode, a back contact electrode, a depleted layer, and the like.
  • this production method greatly limits the overall use of solar cells, and is not even easy to process on the surface of flexible substrates or flexible substrates in the future.
  • the solar film made of the conventional solid material has the following disadvantages:
  • the solar film manufactured by the semiconductor process technology also needs to increase the flow device for controlling the increase of impurities, which greatly increases the production cost.
  • the sun-illuminated surface of a conventional solar film is a single surface, which is conventionally based on a bulk material.
  • the power generation structure it is impossible to provide a solar irradiation area per unit area more effectively, and the current power generation efficiency of solar energy cannot be broken.
  • the current solar film is made of a bulk coating, the hardness will also be produced when the thickness reaches a certain level, and it cannot be used on the material, and the availability of the product cannot be obtained. Upgrade.
  • the focus of solar power generation is on the improvement of light and electricity conversion efficiency, and the light and electricity conversion efficiency is determined by the amount of surface area of the sun exposure of the semiconductor material exposed to the light exposure layer, regardless of whether the traditional solar or thin film solar power generation method is The use of intrinsic semiconductor materials has a minimum surface area, and for this reason, the current solar power generation efficiency cannot be broken.
  • the solar film made by the traditional solid materials is not only high in hardness, but also has high power generation efficiency and manufacturing cost. How to improve the power generation efficiency and manufacturing cost, and effectively improve the product implementability, can become a related technology. The goal of personnel is hard to work hard.
  • an object of the present invention is to provide a solar film structure suitable for absorbing energy of a daylight into an electrical energy output, including a conductive underlayer, a first semiconductor layer, a second semiconductor layer, and a conductive top layer. .
  • the conductive underlayer is composed of a first conductive material.
  • the first semiconductor layer is disposed above the conductive underlayer and includes a first transparent conductive paste, a first essential material in a powder state, and a first impurity material in a powder state, the first essential material and the The first impurity material is uniformly distributed in the first light-transmitting conductive paste.
  • the second semiconductor layer is disposed above the first semiconductor layer and includes a second transparent conductive paste, a second intrinsic material in a powder state, and a second impurity material in a powder state, the second essential material And the second impurity material is uniformly distributed in the second light-transmitting conductive paste.
  • the conductive top layer is disposed above the second semiconductor layer and is composed of a second conductive material having a high light transmission property.
  • the solar film structure further includes a third semiconductor layer disposed between the first semiconductor layer and the second semiconductor layer and comprising a third transparent conductive paste, and A third essential material in a powder state.
  • the solar film structure further includes an anti-reflection layer disposed between the second semiconductor layer and the conductive top layer for reducing the amount of escape of the sunlight into the solar film structure.
  • Another object of the present invention is to provide a method for fabricating a solar film structure suitable for fabricating a solar film structure comprising a first filming step, a first applying step, a second applying step, and a second film. step.
  • the first filming step is performed, and a first conductive material is screen printed on a substrate to form a conductive underlayer.
  • the second filming step is performed, and a second conductive material is screen printed on the second semiconductor layer to form a conductive top layer.
  • a further technical means of the present invention is that the method for manufacturing a solar film structure further comprises: uniformly mixing a powder state by a third application step between the first applying step and the second applying step
  • the third transparent conductive paste of the third intrinsic material is stirred and mixed, and is applied onto the conductive underlayer to form a third semiconductor layer.
  • the method for fabricating a solar film structure further includes a baking step after the second filming step, heating the solar film structure to make the structure more compact, and The substrate is separated from the first semiconductor layer.
  • Another object of the present invention is to provide a device for fabricating a solar film structure, which is suitable for a method for fabricating a solar film structure, and using the semiconductor material to form the solar film structure, comprising a substrate portion, a showerhead portion, and a a heating portion, an oscillating portion and a moving portion.
  • the substrate portion includes a substrate.
  • the nozzle portion is disposed above the substrate and includes a tube body, a feeding port at one end of the tube body, and a discharge port at the other end of the tube body, and the semiconductor material enters the tube from the feeding port body.
  • the heating portion includes a heating member disposed on the tube body for heating the semiconductor material in the tube body to form the semiconductor material in a molten state.
  • the oscillating portion includes an oscillating member disposed on the discharge port for oscillating the semiconductor material in a molten state in the tube body, so that the semiconductor material flows out from the discharge port.
  • the moving portion includes at least one moving member connected to the head portion for moving a coordinate position of the head portion to apply a semiconductor material flowing out of the discharging port to the substrate.
  • the nozzle portion further includes a colloidal feed disposed at the feed port. a tube, and a powder feed tube spaced from the colloid feed tube.
  • the nozzle portion further includes a stirring member disposed in the tube body.
  • the heating portion further includes a preheating member disposed on the colloidal feed tube.
  • the material of the solar film is ground into a nano-scale powder and uniformly dispersed in the transparent conductive adhesive, which can increase the surface area of the solar radiation per unit area and surround the nano-grade powder. More than 100% of the electrons excited by the solar film can effectively enhance the efficiency of solar power generation.
  • the method and apparatus for manufacturing the solar film structure can also effectively shorten the manufacturing time of the solar power generation product and reduce the cost of product manufacturing.
  • FIG. 1 is a schematic structural view showing a solar film structure of the present invention, and a first preferred embodiment of a method and apparatus for fabricating the solar film structure;
  • FIG. 2 is a schematic structural view showing a second preferred embodiment of the solar film structure of the present invention, and a method and apparatus for fabricating the solar film structure;
  • FIG. 3 is a schematic view showing a third preferred embodiment of the solar film structure of the present invention, and a method and apparatus for fabricating the solar film structure;
  • FIG. 4 is a schematic view showing a fourth preferred embodiment of the solar film structure of the present invention, and a method and apparatus for fabricating the solar film structure;
  • FIG. 5 is a schematic view of a device, illustrating a solar film structure of the present invention, and a fifth preferred embodiment of the method and apparatus for fabricating the solar film structure;
  • Figure 6 is a schematic view showing a cross-sectional aspect of the fifth preferred embodiment.
  • Figure 7 is a schematic view of a sixth preferred embodiment of the solar film structure of the present invention and a method and apparatus for fabricating the solar film structure.
  • the first preferred embodiment is a solar film structure produced by a coating method. Suitable for absorbing a daylight 30 to convert the energy of the daylight 30 into an electrical energy output with an effective surface of the semiconductor P ⁇ N interface, and comprising a conductive underlayer 31, a first semiconductor layer 32, a second semiconductor layer 33, and A conductive top layer 34.
  • the conductive underlayer 31 is composed of a first conductive material.
  • the first semiconductor layer 32 is disposed above the conductive underlayer 31, and includes a first transparent conductive paste 321 heated to a molten state, a first intrinsic material 322 in a powder state, and a first powder state.
  • the first intrinsic material 322 and the first impurity material 323 are uniformly distributed in the first transparent conductive paste 321 .
  • the second semiconductor layer 33 is disposed above the first semiconductor layer 32 and includes a second transparent conductive paste 331 heated to a molten state, a second intrinsic material 332 in a powder state, and a powder state.
  • the second impurity material 333, the second intrinsic material 332 and the second impurity material 333 are evenly distributed in the second light-transmitting conductive paste 331.
  • the first transparent conductive adhesive 321 and the second transparent conductive adhesive 331 have a solid state at normal temperature and can be melted after heating.
  • the first transparent conductive adhesive 321 and The second transparent conductive adhesive 331 forms a solid state below 100 ° C to resist the high temperature generated by the sunlight 30.
  • the first transparent conductive adhesive 321 and the second transparent temperature can also be selected.
  • the photoconductive adhesive 331 is also a soft colloid at room temperature and should not be limited thereto.
  • the conductive top layer 34 is disposed above the second semiconductor layer 33 and is composed of a second conductive material having a high light transmission property, and the conductive top layer 34 is a sunlight 30 illumination surface of the solar film structure 3,
  • the conductive top layer 34 is composed of a network of metal thin wires, so that the sunlight 30 penetrates and extracts electrons excited by the second semiconductor layer 33.
  • the conductive top layer 34 is also Other transparent conductive technologies such as transparent conductive film (ITO) or graphene may be used, and should not be limited thereto.
  • the first intrinsic material 322 and the second intrinsic material 332 are the same semiconductor intrinsic material, and the first impurity material 323 is a P-type impurity material corresponding to the first intrinsic material 322, and the second impurity material 333 is corresponding to the first
  • the N-type impurity material of the intrinsic material 332 is such that the interface between the first semiconductor layer 32 and the second semiconductor layer 33 is a P/N semiconductor interface, and when the P/N semiconductor interface receives the illumination of the sunlight 30, An electron hole pair is generated and a voltage is generated for externally emitting power.
  • the first impurity material 323 may also be an N-type impurity material corresponding to the first intrinsic material 322, and the second impurity material 333 is The P-type impurity material corresponding to the second intrinsic material 332 should not be limited thereto.
  • the first intrinsic material 322 and the second intrinsic material 332 use silicon
  • the first impurity material 323 uses a boron compound
  • the second impurity material 333 uses an arsenic compound or a phosphorus compound to make the first semiconductor layer 32.
  • a P-type semiconductor is formed, and the second semiconductor layer 33 forms an N-type semiconductor, so that the solar thin film structure 3 forms a basic solar power generation battery. Since the solar energy base material is numerous, it is not the focus of the present invention. Products to select other solar power materials should not be limited to this.
  • the first intrinsic material 322 and the second intrinsic material 332 are manufactured into a nanometer grade powder, and the first impurity material 323 and the second impurity material 333 are also manufactured in nanometer scale. Powders are uniformly mixed into the first light-transmitting conductive paste 321 and the second light-transmitting conductive paste 331 according to a ratio, so that the first semiconductor layer 32 surrounds the plurality of first essential materials 322 powder. And the first transparent conductive paste 321 of the powder of the first impurity material 323, and the second semiconductor layer 33 is a layer of a second light that surrounds the powder of the plurality of second essential materials 332 and the powder of the second impurity material 333 Conductive adhesive 331.
  • the surface area of the sunlight 30 can be effectively increased, thereby improving power generation efficiency.
  • the first transparent conductive adhesive 321 and the second transparent conductive adhesive 331 surrounding the nano-scale powder can not only effectively enhance the effect of the electric field, but also immediately grasp the electrons excited by the P/N semiconductor interface electron hole pair. It can effectively reduce the absorption rate of electrons by semiconductor materials and further improve the efficiency of power generation.
  • the second preferred embodiment is substantially the same as the first preferred embodiment, and the same is This is not described again, except that the solar film structure 3 further includes a third semiconductor layer 35 and an anti-reflection layer 36.
  • the third semiconductor layer 35 is disposed between the first semiconductor layer 32 and the second semiconductor layer 33, and includes a third transparent conductive paste 351 which is heated to be in a molten state, and a third essence in a powder state.
  • the second insulative material 332 is the same, and the third semiconductor layer 35 is the light energy absorbing layer of the second preferred embodiment, which can effectively enhance the solar film structure 3 to absorb the day. The efficiency of light 30.
  • the anti-reflective layer 36 is disposed between the second semiconductor layer 33 and the conductive top layer 34 for reducing the amount of escape of the sunlight 30 into the solar film structure.
  • the anti-reflective layer 36 uses a nitrogen-containing compound ( Si3N4) acts to refract and reflect the light of the daylight 30, reducing the reflection so that the light can stay longer in the P/N semiconductor interface and the third semiconductor layer 35, generating more electrons and improving The absorption rate of the daylight 30.
  • the anti-reflective layer 36 may also be disposed above the conductive top layer 34, and should not be limited thereto.
  • the anti-reflective layer 36 may also use a silicon-containing compound having a rough surface for enhancing the scattering of the daylight 30 so that the daylight 30 can stay in the solar film structure 3 due to the anti-reflective layer 36.
  • a silicon-containing compound having a rough surface for enhancing the scattering of the daylight 30 so that the daylight 30 can stay in the solar film structure 3 due to the anti-reflective layer 36.
  • the conductive bottom layer 31 and the conductive top layer 34 are metal mesh wires in a honeycomb shape, which not only allows the sunlight 30 to penetrate and output external power, but also has an anti-electromagnetic wave effect.
  • the solar film structure 3 can be attached to a general glass, so that the glass to which the solar film structure 3 is attached has the functions of light transmission, power generation, and electromagnetic resistance, and has high industrial applicability, and practical.
  • the conductive underlayer 31 and the conductive top layer 34 may also use various related flexible conductive materials such as a transparent conductive film (ITO) and a polymer conductive material (graphene), and should not be limited thereto.
  • ITO transparent conductive film
  • graphene polymer conductive material
  • the third semiconductor layer 35 may be appropriately added to one or a combination of the first impurity material 323 and the second impurity material 333 according to the structure, the material, or the process conditions for optimal power generation. Benefits of solar film structure 3.
  • the solar film structure 3 is a third preferred embodiment of a solar film structure of the present invention, and a method and apparatus for fabricating the solar film structure.
  • the third preferred embodiment is a method for fabricating a solar film structure, which is suitable for manufacturing.
  • the solar film structure 3 of the first preferred embodiment comprises a first filming step 901, a first applying step 902, a second applying step 903, and a second filming step 904.
  • the first filming step 901 is performed to print a first conductive material on a substrate 511 and form a conductive underlayer 31.
  • the surface of the substrate 511 has anti-stick properties so that the articles attached to the surface of the substrate 511 can be completely torn off.
  • the first conductive material is a conductive metal, and is formed into a mesh shape by thin wires, and is attached to the surface of the substrate 511 by a screen printing technique.
  • the first smearing step 902 is performed, and a first essential material 322 uniformly mixed in a powder state and a first transparent conductive paste 321 of a first impurity material 323 in a powder state are stirred and mixed, and applied to the conductive underlayer 31.
  • a first semiconductor layer 32 is formed on the upper side.
  • the second applying step 903 to uniformly mix the second essential material 332 in a powder state, and
  • the second light-transmitting conductive paste 331 of the second impurity material 333 in a powder state is stirred and mixed, applied to the first semiconductor layer 32, and a second semiconductor layer 33 is formed.
  • the second semiconductor layer 33 is naturally formed by meltingly flowing over the first semiconductor layer 32 due to melting characteristics.
  • the second smearing step 905 can heat smear the second transparent conductive paste 331 when the first semiconductor layer 32 is not completely hardened, so that the second semiconductor layer 33 and the first The junction of the semiconductor layer 32 is more compact, which can enhance the efficiency of solar power generation.
  • the smear action can be spray, coating or 3D printing, etc., and the smear is only an overall superficial noun, and should not be limited in practice.
  • the second filming step 904 is performed to screen a second conductive material on the second semiconductor layer 33 and form a conductive top layer 34.
  • the second conductive material is a mesh-shaped metal thin wire, and the second conductive material is printed on the upper surface of the second semiconductor layer 33 by a screen printing technique.
  • the conductive thin film structure 3, the first semiconductor layer 32, the second semiconductor layer 33, and the conductive top layer 34 are formed from the bottom to the top of the solar film structure 3.
  • the present invention uses the technique of screen printing to attach the conductive underlayer 31 and the conductive top layer 34, and the technical means thereof is only one of a plurality of metal plating films. In actual implementation, other metal plating or film processing techniques can also be used. It should not be limited to this.
  • the method for manufacturing the solar film structure further includes a third smearing step 905 between the first smear step 902 and the second smear step 903, and a second film affixing The baking step 906 after step 904.
  • a third transparent conductive paste 351 of a third intrinsic material 352 uniformly mixed in a powder state is stirred and mixed, and is applied onto the conductive underlayer 31 to form a third semiconductor layer 35.
  • the third semiconductor layer 35 may also be appropriately added to one or a combination of the first impurity material 323 and the second impurity material 333 according to the structure, the material, or the process conditions for obtaining the optimal power generation benefit.
  • the third intrinsic material 352 is the same as the first intrinsic material 322 and the second intrinsic material 332, and the third transparent conductive adhesive 351 and the first transparent conductive adhesive 321 and the first transparent light
  • the conductive adhesive 321 is made of the same material, so that the junction surfaces of the first semiconductor layer 32, the second semiconductor layer 33, and the third semiconductor layer 35 are in the same configuration, and the junctions of the above structures can be more perfectly bonded. Together.
  • the solar film structure 3 is heated, so that the first transparent conductive adhesive 321, the second transparent conductive adhesive 331, and the third transparent conductive adhesive 351 are more closely structured with each other.
  • the conductive underlayer 31 can be further attached to the first semiconductor layer 32, the conductive top layer 34 is further attached to the second semiconductor layer 33, and further, when the first semiconductor layer 32 has heat, the substrate 511 is The first semiconductor layer 32 is separated.
  • FIG. 6 which is a fifth preferred embodiment of the solar film structure of the present invention, and a method and apparatus for fabricating the solar film structure.
  • the fifth preferred embodiment is a device for manufacturing a solar film structure. Suitable for a method for manufacturing a solar film structure, and manufacturing the solar film structure 3 using a semiconductor material, comprising a substrate portion 51, a showerhead portion 52, a heating portion 53, an oscillating portion 54, and a moving portion 55.
  • the substrate portion 51 includes a substrate 511.
  • the substrate 511 is a continuous conveyor belt, and the surface has anti-stick properties.
  • the substrate 511 may also be a plurality of boards. limit.
  • the nozzle portion 52 is disposed above the substrate 511 and includes a tube body 521, a feeding port 522 at one end of the tube body 521, a discharge port 523 at the other end of the tube body 521, and a tube disposed on the tube a stirring member 526 in the body 521, a colloidal feeding tube 524 disposed at the feeding port 522, and a powder feeding tube 525 spaced apart from the colloid feeding tube 524, the semiconductor material is fed by the material Port 522 enters the body 521.
  • the semiconductor material is a light-transmitting colloid having a molten state after heating, and a powder of a nanometer grade, and the light-transmitting colloid of the semiconductor material is the second preferred.
  • One of the first light-transmitting conductive paste 321 , the second light-transmitting conductive paste 331 , and the third light-transmitting conductive adhesive 351 in the embodiment, the nano-scale powder of the semiconductor material is the second preferred embodiment
  • the heating unit 53 includes a heating member 531 disposed on the tube body 521 and a preheating member 532 disposed on the colloid feeding tube 524 for heating the semiconductor material in the tube body 521.
  • the semiconductor material-shaped light-transmitting colloid is brought into a molten state.
  • the light-transmitting colloid of the semiconductor material After the light-transmitting colloid of the semiconductor material is heated, it enters the tube body 521 through the colloidal feed tube 524, and the nano-scale powder of the semiconductor material enters the tube body 521 via the powder feeding tube 525, and is disposed on the tube body 521
  • the agitating member 526 of the tube body 521 sufficiently stirs the light-transmitting colloid of the semiconductor material and the nano-scale powder to uniformly disperse the plurality of nano-scale powders in the light-transmitting colloid of the semiconductor material, and the stirring member
  • the surface of the 526 has a downward spiral score, which not only can sufficiently agitate the articles in the tubular body 521, but also provides a downward force of the article in the tubular body 521, and the molten colloid is discharged from the discharge opening. 523 extrusion.
  • the oscillating portion 54 includes an oscillating member 541 disposed on the discharge port 523 for oscillating the semiconductor material in the molten state of the tube body 521 to cause the semiconductor material to flow out through the discharge port 523.
  • the oscillating member 541 is an oscillator of the ultrasonic oscillator, and the semiconductor material in the discharge port 523 is oscillated by using ultrasonic waves to prevent the semiconductor material from hardening at the discharge port 523, thereby blocking the discharge. Port 523.
  • the moving portion 55 includes at least one moving member 551 connected to the head portion 52 for moving the coordinate position of the head portion 52, and the semiconductor material flowing out of the discharging port 523 is applied to the substrate 511.
  • the substrate 511 is provided with a platform for moving left and right. Therefore, the moving member 551 of the fifth preferred embodiment is provided.
  • a motor that provides movement back and forth, and a motor that provides high and low movements are similar to those of a general printer, and are familiar to the industry, and will not be described in detail herein.
  • a mesh metal thin wire composed of the first conductive material is printed on the surface of the substrate 511 by a screen printing technique, and a conductive underlayer 31 is formed.
  • the showerhead portion 52 containing the first transparent conductive paste 321 uniformly mixed with the first intrinsic material 322 and the first impurity material 323 is applied to the conductive underlayer 31 by the moving portion 55.
  • the first light-transmitting conductive paste 321 is applied to the conductive underlayer 31, it melts and flows over the conductive underlayer 31 due to the melting property, and a flat first semiconductor layer 32 is naturally formed.
  • the third semiconductor layer 35 and the second semiconductor layer 33 are also separately fabricated using the above-described techniques and stacked up. Then, the anti-reflective layer 36 and the conductive top layer 34 are attached by a screen printing technique. Finally, after the substrate 511 is separated from the conductive underlayer 31, the solar thin film structure 3 is successfully formed.
  • the device 5 for manufacturing a solar film structure further includes a feed control portion 56 at the feed port 522 for controlling the amount of semiconductor material entering the tube 521, thereby The amount of discharge of the discharge port 523 is controlled.
  • the first intrinsic material 322 and the first impurity material 323 are uniformly distributed in the first transparent conductive paste 321 before the process, or
  • the second intrinsic material 332 and the second impurity material 333 are evenly distributed in the second transparent conductive adhesive 331 , or the third intrinsic material 352 is evenly distributed in the third transparent conductive adhesive 351 to
  • the semiconductor material is formed to dispense a good feed line.
  • the stirring member 526 is not required to be provided in the sixth preferred embodiment, and the feeding port 522 is also simply disposed in one.
  • the feed control unit 56 located in the feed port 522 controls the semiconductor material forming the feed line to be pushed into the tube body 521, and is heated and melted to be extruded from the discharge port 523. Since the control of the entry of the feed line to control colloidal extrusion has been well known in the industry, it will not be repeated here.
  • the solar film structure of the present invention and the method and apparatus for fabricating the solar film structure do have the following advantages:
  • the invention uses the technology similar to the printer and the technology of screen printing to quickly make the solar film structure 3, which consumes less energy and relatively lower cost than the semiconductor process technology such as conventional evaporation or sputtering. The expenditure is also low.
  • the invention utilizes the nanometer-scale essential material and the impurity material, uniformly distributes in the light-transmitting conductive film, forms a molten state by a small volume heating method, and coats the upper and lower electrodes by using the screen printing technology. Quickly printed out, effective in rapid manufacturing.
  • the solar film structure 3 When the solar film structure 3 is changed from an early bulk (Bulk) to a nano-scale powder and uniformly dispersed, the P/N interface that receives the sunlight 30 has been lifted from a surface to a powder volume surface. Effectively increase the area illuminated by the daylight 30.
  • the transparent conductive film surrounding the semiconductor material of the nano powder can not only effectively enhance the effect of the electric field, but also immediately grasp the electrons excited by the P/N semiconductor interface, and can effectively capture electrons to reduce the electron absorption rate of the material. .
  • the light-transmitting conductive adhesive is made of a soft material, and the upper and lower conductive layers are made of graphene or a mesh-like metal thin wire, it has a reproducible property and is suitable for being attached to other soft materials.
  • the present invention utilizes a light-transmitting conductive film surrounding a plurality of nano-scale solar power materials, which not only improves the receiving area of light energy absorbing the sunlight 30, but also effectively prevents the conventional solid materials from absorbing the excited electrons. Effectively improve the efficiency of solar power generation.
  • the semiconductor material is coated on the substrate 511 by heating the transparent conductive paste to form the solar film structure 3, thereby effectively increasing the speed of the process and reducing the cost, so that the object of the present invention can be achieved. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置,该太阳能薄膜结构利用涂布方式生产,包括一导电底层、一第一半导体层、一第二半导体层及一导电顶层。该导电底层由一第一导电材料所组成。该第一半导体层设置于该导电底层上方,并包括第一透光导电胶、一呈粉末状态的第一本质材料,及一呈粉末状态的第一杂质材料。该第二半导体层设置于该第一半导体层上方,并包括一第二透光导电胶、一呈粉末状态的第二本质材料,及一呈粉末状态的第二杂质材料。该导电顶层设置于该第二半导体层上方,并由一第二导电材料所组成,该导电顶层具透光特性。本发明可提升单位面积下接收该日光的表面积,有效的提升太阳能发电效率。

Description

太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置 技术领域
本发明是有关于一种利用涂布方式生产的太阳能薄膜结构,以及制造该太阳能薄膜结构的方法与制造该太阳能薄膜结构的装置。
背景技术
在现今太阳能电池的相关制程技术一直保持着蓬勃的发展,且一般太阳能薄膜电池的类型繁多,其中,又以硅基太阳能电池最为常见,通常硅基太阳能电池具有P/N二极管层(P/N diode)、抗反射层(antireflection)、正面电极(front contact electrode)及背面电极(back contact electrode)等基本结构。
在上述结构中,硅原子的电子(Electron)电洞(Hole)对因受太阳光所激发而致游离,游离后的电子会受P/N二极管间之内建电场影响被加速分离,甚至被P/N二极管间之内建电场影响电子与电洞会分别被吸引至其上、下二端的金属导线,如此就此形成发电与导电回路。
在传统硅基材的太阳能电池在生产制造过程不管是P/N二极管层或抗反射层(antireflection)、正面电极(front contact electrode)及背面电极(back contact electrode)、空乏层等基本结构的材料通常是为固态材料所组成,此生产方法大大限制整体太阳能电池的使用型态,甚至不易于未来加工于软性基板或可挠性基板表面。
由上述说明可知,传统固态材料所制成的太阳能薄膜具有下列缺点:
无法有效捕捉电子
于半导体材料中有叙述,日光照射于半导体P/N接口时,P型半导体所产生的电子必须越过多个P型半导体分子才能到达电极,但所激发出的电子约有一半会被半导体分子抓住无法对外发出,使日光所激发出的电子电洞对无法有效的利用。
量产速度慢
早期太阳能薄膜都是以蒸镀或溅镀等半导体制程技术,将材料以分子的型态一层层的堆栈上去,为了达到厚度必须精准的控制镀膜时间,此外,也必须控制成长速度以避免太阳能固态材料成长失败。
成本较高
以半导体制程技术来制造的太阳能薄膜为了控制载子浓度,其设备也需增加控制增加杂质的流量设备,大大都提高了生产的成本。
发电效益受限日光照射面积
一般来说,传统太阳能薄膜的日光照射面都是为一个面,在传统以块材(Bulk)的基 本发电结构下,无法更有效的提供单位面积下的日光照射面积,导致目前太阳能的发电效率都无法突破。
硬度无法降低
由于目前制造太阳能薄膜是以块材(Bulk)来进行镀膜施作,当厚度到达一定程度时其硬度也会随之而生,无法使用于可饶型材质上,对于产品的可利用度将无法提升。
发电效率低
太阳能发电的重点在光、电转化效率的提升,而光、电转化效率决定在受光曝晒层的本质半导体材料曝晒迎面太阳光的表面积多寡来决定,而不管是传统太阳能或薄膜太阳能发电方法均是使用本质半导体材料其表面积是最小比例,也因为这个原因导致目前太阳能的发电效率都无法突破。
由上述说明可知,目前传统固态材料所制成太阳能薄膜不仅硬度较高,其发电效益及制造成本都比较高,如何提升发电效益及制造成本,并有效提高产品的可实施性,可成为相关技术人员亟需努力的目标。
发明内容
有鉴于此,本发明的一目的是在于提供一种太阳能薄膜结构,适用于吸收一日光的能量转换成电能输出,包括一导电底层、一第一半导体层、一第二半导体层及一导电顶层。
该导电底层由一第一导电材料所组成。
该第一半导体层设置于该导电底层上方,并包括一第一透光导电胶、一呈粉末状态的第一本质材料,及一呈粉末状态的第一杂质材料,该第一本质材料及该第一杂质材料均匀地分布于该第一透光导电胶之中。
该第二半导体层设置于该第一半导体层上方,并包括一第二透光导电胶、一呈粉末状态的第二本质材料,及一呈粉末状态的第二杂质材料,该第二本质材料及该第二杂质材料均匀地分布于该第二透光导电胶的中。
该导电顶层设置于该第二半导体层上方,并由一第二导电材料所组成,该导电顶层具高透光特性。
本发明的又一技术手段,是在于上述的太阳能薄膜结构还包括一第三半导体层,设置于该第一半导体层及该第二半导体层之间,并包括一第三透光导电胶,及一呈粉末状态的第三本质材料。
本发明的另一技术手段,是在于上述的太阳能薄膜结构还包括一抗反射层,设置于该第二半导体层与该导电顶层之间,用以降低该日光进入该太阳能薄膜结构的散逸量。
本发明的另一目的是在于提供一种制造太阳能薄膜结构的方法,适用于制造一太阳能薄膜结构,包括一第一贴膜步骤、一第一涂抹步骤、一第二涂抹步骤,及一第二贴膜步骤。
首先执行该第一贴膜步骤,将一第一导电材料网印于一基板上并形成一导电底层。
接着执行该第一涂抹步骤,将一均匀混合一粉末状态的第一本质材料,及一粉末状态的第一杂质材料的第一透光导电胶搅拌混合,涂抹于该导电底层上并形成一第一半导体层。
然后执行该第二涂抹步骤,将一均匀混合一粉末状态的第二本质材料,及一粉末状态的第二杂质材料的第二透光导电胶搅拌混合,涂抹于该第一半导体层上并形成一第二半导体层。
最后执行该第二贴膜步骤,将一第二导电材料网印于该第二半导体层上并形成一导电顶层。
本发明的再一技术手段,是在于上述的制造太阳能薄膜结构的方法还包括一藉于该第一涂抹步骤及该第二涂抹步骤之间的第三涂抹步骤,将一均匀混合一粉末状态的第三本质材料的第三透光导电胶搅拌混合,涂抹于该导电底层上并形成一第三半导体层。
本发明的又一技术手段,是在于上述的制造太阳能薄膜结构的方法还包括一于该第二贴膜步骤之后的烘烤步骤,对该太阳能薄膜结构加热,以使结构更为紧密,并将该基板与该第一半导体层分离。
本发明的另一目的是在于提供一种制造太阳能薄膜结构的装置,适用于一制造太阳能薄膜结构的方法,并使用一半导体材料制成该太阳能薄膜结构,包括一基板部、一喷头部、一加热部、一振荡部及一移动部。
该基板部包括一基板。
该喷头部设置于该基板上方,并包括一管体、一于该管体一端的进料口,及一于该管体另一端的出料口,该半导体材料由该进料口进入该管体。
该加热部包括一设置于该管体上的加热件,用以加热该管体中的半导体材料,使该半导体材形成熔融状态。
该振荡部包括一设置于该出料口上的振荡件,用以振荡该管体中熔融状态的半导体材料,使该半导体材料由该出料口流出。
该移动部包括至少一与该喷头部连接的移动件,用以移动该喷头部的坐标位置,使该出料口流出的半导体材料涂抹于该基板上。
本发明的再一技术手段,是在于上述的喷头部还包括一设置于该进料口的胶体进料 管,及一与该胶体进料管间隔设置的粉体进料管。
本发明的又一技术手段,是在于上述的喷头部还包括一设置于该管体之中的搅拌件。
本发明的另一技术手段,是在于上述的加热部还包括一设置于该胶体进料管上的预热件。
本发明的有益效果在于:
本发明将该太阳能薄膜的材料成分磨成纳米等级的粉末,并均匀地分散于透光导电胶之中,可提升单位面积下接收该日光的表面积,并包围住纳米等级粉末的透光导电胶更百分之百即抓住太阳能薄膜所激发出的电子,有效的提升太阳能发电效率。此外,应用于制造该太阳能薄膜结构的方法及装置也可有效缩短太阳能发电产品的制程时间,以及降低产品制造的成本。
附图说明
图1是一结构示意图,说明本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第一较佳实施例;
图2是一结构示意图,说明本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第二较佳实施例;
图3是一步骤示意图,说明本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第三较佳实施例;
图4是一步骤示意图,说明本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第四较佳实施例;
图5是一装置示意图,说明本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第五较佳实施例;
图6是一装置示意图,说明该第五较佳实施例的剖面态样;及
图7是一装置示意图,说明本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第六较佳实施例。
图中:
3太阳能薄膜结构;30日光;31导电底层;32第一半导体层;
321第一透光导电胶;322第一本质材料;323第一杂质材料;
33第二半导体层;331第二透光导电胶;332第二本质材料;
333第二杂质材料;34导电顶层;35第三半导体层;
351第三透光导电胶;352第三本质材料;36抗反射层;
5制造太阳能薄膜结构的装置;51基板部;511基板;52喷头部;
521管体;522进料口;523出料口;524胶体进料管;
525粉体进料管;526搅拌件;53加热部;531加热件;
532预热件;54振荡部;541振荡件;55移动部;
551移动件;56进料控制部;901~906步骤。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参阅图1,为本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第一较佳实施例,该第一较佳实施例为一种利用涂布方式生产的太阳能薄膜结构3,适用于吸收一日光30以半导体P\N接口的有效碰面而将该日光30的能量转换成电能输出,并包括一导电底层31、一第一半导体层32、一第二半导体层33,及一导电顶层34。该导电底层31由一第一导电材料所组成。
该第一半导体层32设置于该导电底层31上方,并包括一加热后成熔融状态的第一透光导电胶321、一呈粉末状态的第一本质材料322,及一呈粉末状态的第一杂质材料323,该第一本质材料322及该第一杂质材料323均匀地分布于该第一透光导电胶321之中。
该第二半导体层33设置于该第一半导体层32上方,并包括一加热后成熔融状态的第二透光导电胶331、一呈粉末状态的第二本质材料332,及一呈粉末状态的第二杂质材料333,该第二本质材料332及该第二杂质材料333均匀地分布于该第二透光导电胶331之中。
其中,上述的第一透光导电胶321及第二透光导电胶331具有常温下为固体型态,而加热后可成熔融的态样,较佳地,该第一透光导电胶321及第二透光导电胶331于100℃以下形成固体态样,以对抗该日光30照射下所产生的高温,实际实施时,也可以选择其他溶解温度的第一透光导电胶321及第二透光导电胶331,或是于室温中也为软质胶体,不应以此为限。
该导电顶层34设置于该第二半导体层33上方,并由一第二导电材料所组成,该导电顶层34具高透光特性,该导电顶层34为该太阳能薄膜结构3的日光30照射面,较佳地,该导电顶层34是以网状的金属细线所组成,以利该日光30穿透并撷取该第二半导体层33所激发出的电子,实际实施时,该导电顶层34也可使用透明导电膜(ITO)或石墨烯等其他透光导电技术,不应以此为限。
该第一本质材料322与该第二本质材料332为相同的半导体本质材料,该第一杂质材料323为对应该第一本质材料322的P型杂质材料,该第二杂质材料333为对应该第二本质材料332的N型杂质材料,使该第一半导体层32与该第二半导体层33的接面为P/N半导体界面,当其P/N半导体界面接受到该日光30的照射时,将产生出电子电洞对并产生电压,用以对外发出电力,实际实施时,该第一杂质材料323也可以是对应该第一本质材料322的N型杂质材料,该第二杂质材料333是对应该第二本质材料332的P型杂质材料,不应以此为限。
举例来说,该第一本质材料322与该第二本质材料332使用硅,而该第一杂质材料323使用硼化合物,第二杂质材料333使用砷化合物或磷化合物,使该第一半导体层32会形成P型半导体,该第二半导体层33会形成N型半导体,以使该太阳能薄膜结构3形成基本太阳能发电电池,由于太阳能基础材料众多,也并非本发明的重点,实际实施时,可以依据产品来选择所其他太阳能发电材料,不应以此为限。
值得一提的是,本发明是将该第一本质材料322与该第二本质材料332制造成纳米等级的粉末,且该第一杂质材料323与该第二杂质材料333也制造成纳米等级的粉末,并依据比例均匀地分别混入该第一透光导电胶321及该第二透光导电胶331之中,以使该第一半导体层32为一层包围着该复数第一本质材料322粉末及该第一杂质材料323粉末的第一透光导电胶321,而该第二半导体层33为一层包围着该复数第二本质材料332粉末及该第二杂质材料333粉末的第二透光导电胶331。
续上所述,当该太阳能薄膜结构3由早期的块材(Bulk)变成纳米等级的粉末且均匀地分散设置时,能有效提升该日光30所迎面照射的表面积,进而提升发电效率,此外包围着纳米等级粉末的第一透光导电胶321及第二透光导电胶331不仅可以有效提升电场的效果,还能立即抓住P/N半导体接口电子电洞对所激发出的电子,更能有效减少电子被半导体材料的吸收率,进一步提升发电的效率。
参阅图2,为本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第二较佳实施例,该第二较佳实施例与该第一较佳实施大致相同,相同处在此不再赘述,不同之处在于该太阳能薄膜结构3还包括一第三半导体层35,及一抗反射层36。
该第三半导体层35设置于该第一半导体层32及该第二半导体层33之间,并包括一加热后成熔融状态的第三透光导电胶351,及一呈粉末状态的第三本质材料352,其中,该第三透光导电胶351与该第一透光导电胶321及该第二透光导电胶331相同材质,该第三本质材料352与该第一本质材料322及该第二本质材料332相同,该第三半导体层35为该第二较佳实施例的光能吸收层,可以有效提升该太阳能薄膜结构3吸收该日 光30的效率。
该抗反射层36设置于该第二半导体层33与该导电顶层34之间,用以降低该日光30进入该太阳能薄膜结构的散逸量,较佳地,该抗反射层36使用含氮化合物(Si3N4),作用是在使本来会将该日光30的光线折射与反射的表面,减少反射让光可以在P/N半导体接口及该第三半导体层35停留更久,产生更多电子,能提升该日光30的吸收率。实际实施时,该抗反射层36也可以设置于该导电顶层34的上方,不应以此为限。
此外,该抗反射层36也可以使用具有粗糙表面的含硅化合物,用以提高该日光30的散射,以使该日光30能停留于该太阳能薄膜结构3之中,由于该抗反射层36的技术繁多,在此不再一一赘述。
在该第二较佳实施例中,该导电底层31及该导电顶层34是使用以蜂巢形状的金属网线,不仅可以使该日光30穿透并对外输出电力,更具有抗电磁波的效果,在产品应用上,可以将该太阳能薄膜结构3贴附在一般玻璃上,以使上述贴有该太阳能薄膜结构3的玻璃具有透光、发电,及抗电磁的功效,具有很高的产业利用性,实际实施时,该导电底层31及该导电顶层34也可以使用透明导电膜(ITO)及高分子导电材料(石墨烯)等多种相关的软性导电材质,不应以此为限。
此外,该第三半导体层35也可以依据结构、材质,或是制程条件,适当的添加该第一杂质材料323及该第二杂质材料333其中之一或其组合,用以取得最佳的发电效益的太阳能薄膜结构3。
参阅图3,为本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第三较佳实施例,该第三较佳实施例为一种制造太阳能薄膜结构的方法,适用于制造出该第一较佳实施例的太阳能薄膜结构3,并包括一第一贴膜步骤901、一第一涂抹步骤902、一第二涂抹步骤903,及一第二贴膜步骤904。
首先进行该第一贴膜步骤901,将一第一导电材料网印于一基板511上,并形成一导电底层31。较佳地,该基板511的表面具有防沾黏的特性,以使贴附于该基板511的表面的物品可以完整的被撕下来。该第一导电材料为导电金属,并以细线形成网状,再以网印的技术贴附于该基板511的表面上。
接着进行该第一涂抹步骤902,将一均匀混合一粉末状态的第一本质材料322,及一粉末状态的第一杂质材料323的第一透光导电胶321搅拌混合,涂抹于该导电底层31上并形成一第一半导体层32。该第一透光导电胶321涂抹于该导电底层31上时会因为熔融的特性于该导电底层31上方熔融地流动,自然地形成一个平整的第一半导体层32。
然后进行该第二涂抹步骤903,将一均匀混合一粉末状态的第二本质材料332,及 一粉末状态的第二杂质材料333的第二透光导电胶331搅拌混合,涂抹于该第一半导体层32上并形成一第二半导体层33。该第二透光导电胶331涂抹于该第一半导体层32上时会因为熔融的特性于该第一半导体层32上方熔融地流动,自然地形成一个平整的第二半导体层33。
值得一提的是,该第二涂抹步骤905可以于该第一半导体层32还没完全硬化时将该第二透光导电胶331加热涂抹上去,以使该第二半导体层33与该第一半导体层32的接面更为紧密,可以提升太阳能发电的效益。此外,涂抹的动作可以是喷洒、涂覆或是3D打印等等其他方式,涂抹只是一个总括的上位名词,实际实施时,不应受限于此。
最后进行该第二贴膜步骤904,将一第二导电材料网印于该第二半导体层33上,并形成一导电顶层34。较佳地,该第二导电材料为网状的金属细线,并以网印的技术将该第二导电材料印于该第二半导体层33的上表面。以使该太阳能薄膜结构3由下而上形成该导电底层31、该第一半导体层32、该第二半导体层33,及该导电顶层34。
此外,本发明使用网印的技术将该导电底层31及该导电顶层34贴附上去,其技术手段只是众多的金属镀膜之一,实际实施时,也可以使用其他的金属镀膜或贴膜的制程技术,不应以此为限。
参阅图4,为本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第四较佳实施例,该第四较佳实施例与该第三较佳实施大致相同,相同处在此不再赘述,不同之处在于该制造太阳能薄膜结构的方法还包括一藉于该第一涂抹步骤902及该第二涂抹步骤903之间的第三涂抹步骤905,及一于该第二贴膜步骤904之后的烘烤步骤906。
在该第三涂抹步骤905中,将一均匀混合一粉末状态的第三本质材料352的第三透光导电胶351搅拌混合,涂抹于该导电底层31上并形成一第三半导体层35。该第三半导体层35也可以依据结构、材质,或是制程条件,适当的添加该第一杂质材料323及该第二杂质材料333其中之一或其组合,用以取得最佳的发电效益的太阳能薄膜结构3。
较佳地,该第三本质材料352与该第一本质材料322及该第二本质材料332相同,且该第三透光导电胶351与该第一透光导电胶321及该第一透光导电胶321材料相同,以使该第一半导体层32、该第二半导体层33,及该第三半导体层35的接面为同构型的接面,能上述结构接面能更完美地接合在一起。
在该烘烤步骤906,对太阳能薄膜结构3加热,以使该第一透光导电胶321、该第二透光导电胶331,及该第三透光导电胶351彼此结构更为紧密,也可以让该导电底层31更贴附于该第一半导体层32,该导电顶层34更贴附于该第二半导体层33,此外,在该第一半导体层32具有热量时将该基板511与该第一半导体层32分离。
参阅图5、图6,为本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第五较佳实施例,该第五较佳实施例为一种制造太阳能薄膜结构的装置5,适用于一制造太阳能薄膜结构的方法,并使用一半导体材料制造出该太阳能薄膜结构3,其包括一基板部51、一喷头部52、一加热部53、一振荡部54,及一移动部55。
该基板部51包括一基板511,较佳地,该基板511为一连续式输送带,且表面具有防沾黏的特性,实际实施时,该基板511也可以是复数板子,不应以此为限。
该喷头部52设置于该基板511上方,并包括一管体521、一于该管体521一端的进料口522、一于该管体521另一端的出料口523、一设置于该管体521之中的搅拌件526、一设置于该进料口522的胶体进料管524,及一与该胶体进料管524间隔设置的粉体进料管525,该半导体材料由该进料口522进入该管体521中。
在该第五较佳实施例中,该半导体材料分别为一具有加热后呈熔融态样的透光胶体,及一制造成纳米等级的粉末,该半导体材料的透光胶体为该第二较佳实施例中的第一透光导电胶321、第二透光导电胶331、第三透光导电胶351其中之一,该半导体材料的纳米等级的粉末为该第二较佳实施例中的该第一本质材料322、第二本质材料332、第三本质材料352及该第一杂质材料323、第二杂质材料333其中之一或其组合。
该加热部53包括一设置于该管体521上的加热件531、及一设置于该胶体进料管524上的预热件532,该加热件531用以加热该管体521中的半导体材料,使该半导体材形的透光胶体成熔融状态。
当该半导体材料的透光胶体加热后,经由该胶体进料管524进入该管体521中,该半导体材料的纳米等级的粉末经由该粉体进料管525进入该管体521中,设置于该管体521之中的搅拌件526将该半导体材料的透光胶体及纳米等级的粉末充分搅拌,以使复数纳米等级的粉末均匀地分散在该半导体材料的透光胶体中,且该搅拌件526的表面具有向下螺旋的刻痕,不仅能将该管体521中的物品充分搅拌,也可以提供该管体521中的物品一向下的力量,将熔融态样的胶体从该出料口523挤出。
该振荡部54包括一设置于该出料口523上的振荡件541,用以振荡该管体521中熔融状态的半导体材料,使该半导体材料由该出料口523流出。较佳地,该振荡件541为超音波振荡器的发振子,使用超音波振荡该出料口523中的半导体材料,避免该半导体材料于该出料口523硬化,而堵住了该出料口523。
该移动部55包括至少一与该喷头部52连接的移动件551,用以移动该喷头部52的坐标位置,使该出料口523流出的半导体材料涂抹于该基板511上。在该第五较佳实施例中,该基板511以提供左右移动的平台,因此,该第五较佳实施例的移动件551包 括有一提供前后移动的马达,及一提供高低移动的马达,此做动方式类似一般打印机的作动方式,并为业界所熟悉的技术,在此不再详加赘述。
当制造该太阳能薄膜结构3时,首先利用网印的技术,将该第一导电材料所组成的网状金属细线印于该基板511的表面上,并形成一导电底层31。
接着,将盛装有该均匀混合该第一本质材料322,及该第一杂质材料323的第一透光导电胶321的喷头部52,借由该移动部55涂抹于该导电底层31上,该第一透光导电胶321涂抹于该导电底层31上时会因为熔融的特性于该导电底层31上方熔融地流动,自然地形成一个平整的第一半导体层32。
然后,该第三半导体层35,及该第二半导体层33也使用上述的技术分别加以制造,并向上层叠。接着,再将该抗反射层36及该导电顶层34以网印的技术加以贴合。最后,再将该基板511与该导电底层31分离后,成功形成该太阳能薄膜结构3。
参阅图7,为本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置的一第六较佳实施例,该第六较佳实施例与该第五较佳实施大致相同,相同处在此不再赘述,不同之处在于该制造太阳能薄膜结构的装置5还包括一位于该进料口522处的进料控制部56,用以控制进入该管体521中的半导体材料的量,进而控制该出料口523出料的量。
在该第六较佳实施例中,该半导体材料已于制程前将该第一本质材料322及该第一杂质材料323均匀地分布于该第一透光导电胶321之中,或是该第二本质材料332及该第二杂质材料333均匀地分布于该第二透光导电胶331之中,或是该第三本质材料352均匀地分布于该第三透光导电胶351之中,以使该半导体材料形成以调配好的料线。
由上述说明可知,该半导体材料已形成调配好的料线,因此,该第六较佳实施例中无需设置该搅拌件526,且该进料口522也单纯的设置成一个。位于该进料口522中的进料控制部56控制形成料线的半导体材料推入该管体521之中,再加热型成熔融的态样后由该出料口523对外挤出。由于控制料线的进入以控制胶体挤出已为业界所熟悉的技术,在此便不再一一赘述。
由上述说明可知,本发明太阳能薄膜结构,及制造该太阳能薄膜结构的方法与装置确实具有以下优点:
成本较低
本发明使用类似打印机的技术,以及网印的技术,快速地制做出该太阳能薄膜结构3,相较于传统蒸镀或溅镀等半导体制程技术,所耗损的能量较低,相对的成本的支出也较低。
制造速度较快
本发明利用磨成纳米等级的本质材料及杂质材料,均匀地分布于透光导电膜之中,以小体积加热的方式形成熔融的态样加以涂布,其该上下电极也是利用网印的技术快速的印出来,有效的快速生产制造。
增加日光照射面积
当该太阳能薄膜结构3由早期的块材(Bulk)变成纳米等级的粉末,且均匀地分散设置时,接受该日光30的P/N接口已由一个面提升为粉体体积的表面,能有效提升该日光30所照射的面积。
有效捕捉电子
本发明包围着纳米粉末的半导体材料的透光导电膜,不仅可以有效提升电场的效果,还能立即抓住P/N半导体接口所激发出的电子,可有效捕捉电子以减少材料的电子吸收率。
具有可饶的特性
当该透光导电胶使用软质的材质,搭配上下导电层以石墨烯或网状的金属细线,将具有可饶的特性,适用贴附于其他软质材料上。
综上所述,本发明利用包围着复数纳米等级太阳能发电材质的透光导电膜,不仅可以提高吸收该日光30的光能的接收面积,还能有效避免传统固态材料吸收了所激发出的电子,有效提升太阳能的发电效率。此外,利用加热透光导电胶的方式将该半导体材料涂附于该基板511上,用以形成该太阳能薄膜结构3,有效提升制程的速度并减少成本的支出,故确实能达到本发明的目的。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种太阳能薄膜结构,适用于吸收一日光的能量转换成电能输出,其特征在于,包括:一导电底层,由一第一导电材料所组成;
    一第一半导体层,设置于该导电底层上方,并包括一第一透光导电胶、一呈粉末状态的第一本质材料,及一呈粉末状态的第一杂质材料,该第一本质材料及该第一杂质材料均匀地分布于该第一透光导电胶之中;
    一第二半导体层,设置于该第一半导体层上方,并包括一第二透光导电胶、一呈粉末状态的第二本质材料,及一呈粉末状态的第二杂质材料,该第二本质材料及该第二杂质材料均匀地分布于该第二透光导电胶之中;及
    一导电顶层,设置于该第二半导体层上方,并由一第二导电材料所组成,该导电顶层具高透光特性。
  2. 根据权利要求1所述的太阳能薄膜结构,其特征在于,还包括一第三半导体层,设置于该第一半导体层及该第二半导体层之间,并包括一第三透光导电胶,及一呈粉末状态的第三本质材料。
  3. 根据权利要求2所述的太阳能薄膜结构,其特征在于,还包括一抗反射层,设置于该第二半导体层与该导电顶层之间,用以降低该日光进入该太阳能薄膜结构的散逸量。
  4. 一种制造太阳能薄膜结构的方法,适用于制造一太阳能薄膜结构,其特征在于,包括下列步骤:
    一第一贴膜步骤,将一第一导电材料网印于一基板上并形成一导电底层;
    一第一涂抹步骤,将一均匀混合一粉末状态的第一本质材料,及一粉末状态的第一杂质材料的第一透光导电胶搅拌混合,涂抹于该导电底层上并形成一第一半导体层;
    一第二涂抹步骤,将一均匀混合一粉末状态的第二本质材料,及一粉末状态的第二杂质材料的第二透光导电胶搅拌混合,涂抹于该第一半导体层上并形成一第二半导体层;一第二贴膜步骤,将一第二导电材料网印于该第二半导体层上并形成一导电顶层。
  5. 根据权利要求4所述的制造太阳能薄膜结构的方法,其特征在于,还包括一处于该第一涂抹步骤及该第二涂抹步骤之间的第三涂抹步骤,将一均匀混合一粉末状态的第三本质材料的第三透光导电胶搅拌混合,涂抹于该导电底层上并形成一第三半导体层。
  6. 根据权利要求5所述的制造太阳能薄膜结构的方法,其特征在于,还包括一于该第二贴膜步骤之后的烘烤步骤,对该太阳能薄膜结构加热,以使结构更为紧密,并将该基板与该第一半导体层分离。
  7. 一种制造太阳能薄膜结构的装置,适用于一制造太阳能薄膜结构的方法,并使用一半导体材料制成该太阳能薄膜结构,其特征在于,包括:
    一基板部,包括一基板;
    一喷头部,设置于该基板上方,并包括一管体、一于该管体一端的进料口,及一于该管体另一端的出料口,该半导体材料由该进料口进入该管体中;
    一加热部,包括一设置于该管体上的加热件,用以加热该管体中的半导体材料,使该半导体材形成熔融状态;
    一振荡部,包括一设置于该出料口上的振荡件,用以振荡该管体中熔融状态的半导体材料,使该半导体材料由该出料口流出;及
    一移动部,包括至少一与该喷头部连接的移动件,用以移动该喷头部的坐标位置,使该出料口流出的半导体材料涂抹于该基板上。
  8. 根据权利要求7所述的制造太阳能薄膜结构的装置,其特征在于,其中,该喷头部还包括一设置于该进料口的胶体进料管,及一与该胶体进料管间隔设置的粉体进料管。
  9. 根据权利要求8所述的制造太阳能薄膜结构的装置,其特征在于,其中,该喷头部还包括一设置于该管体之中的搅拌件。
  10. 根据权利要求9所述的制造太阳能薄膜结构的装置,其特征在于,其中,该加热部还包括一设置于该胶体进料管上的预热件。
PCT/CN2016/101773 2015-10-19 2016-10-11 太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置 WO2017067405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510674880.5A CN106611800A (zh) 2015-10-19 2015-10-19 太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置
CN201510674880.5 2015-10-19

Publications (1)

Publication Number Publication Date
WO2017067405A1 true WO2017067405A1 (zh) 2017-04-27

Family

ID=58556744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101773 WO2017067405A1 (zh) 2015-10-19 2016-10-11 太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置

Country Status (2)

Country Link
CN (1) CN106611800A (zh)
WO (1) WO2017067405A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231922A (zh) * 2018-01-12 2018-06-29 莆田市超维二维科技发展有限公司 一种新型石墨烯光伏电池
CN109781596A (zh) * 2019-02-19 2019-05-21 南京银纳新材料科技有限公司 一种微型可控温的自动加热除湿插片制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488531A (zh) * 2009-02-27 2009-07-22 湖南大学 一种硅基薄膜太阳能电池及其制作方法
CN101488537A (zh) * 2009-02-27 2009-07-22 湖南大学 一种硅基异质结薄膜太阳能电池的制作方法
WO2013015745A1 (en) * 2011-07-25 2013-01-31 Nanyang Technological University Cu-zn-sn-s/se thin film and methods of forming the same
CN103426938A (zh) * 2013-07-25 2013-12-04 苏州大学 一种新型结构的硅纳米材料太阳能电池及其制备方法
CN105238101A (zh) * 2014-06-26 2016-01-13 陈柏颕 半导体纳米涂料组成物及其用于制成太阳能电池的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517718B2 (en) * 2006-01-12 2009-04-14 International Business Machines Corporation Method for fabricating an inorganic nanocomposite
AU2007217091A1 (en) * 2006-02-16 2007-08-30 Solexant Corp. Nanoparticle sensitized nanostructured solar cells
CN102593237A (zh) * 2006-02-23 2012-07-18 纳米太阳能公司 从金属间微米薄片颗粒的半导体前体层的高生产量印刷
CN101299446A (zh) * 2008-05-30 2008-11-05 南开大学 硒化物前驱薄膜与快速硒硫化热处理制备薄膜电池方法
TWI523246B (zh) * 2009-09-21 2016-02-21 納克公司 用於薄膜太陽能電池形成之矽墨水、對應方法及太陽能電池結構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488531A (zh) * 2009-02-27 2009-07-22 湖南大学 一种硅基薄膜太阳能电池及其制作方法
CN101488537A (zh) * 2009-02-27 2009-07-22 湖南大学 一种硅基异质结薄膜太阳能电池的制作方法
WO2013015745A1 (en) * 2011-07-25 2013-01-31 Nanyang Technological University Cu-zn-sn-s/se thin film and methods of forming the same
CN103426938A (zh) * 2013-07-25 2013-12-04 苏州大学 一种新型结构的硅纳米材料太阳能电池及其制备方法
CN105238101A (zh) * 2014-06-26 2016-01-13 陈柏颕 半导体纳米涂料组成物及其用于制成太阳能电池的方法

Also Published As

Publication number Publication date
CN106611800A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
US9713254B2 (en) Device components with surface-embedded additives and related manufacturing methods
US7235736B1 (en) Monolithic integration of cylindrical solar cells
US9694422B2 (en) Deposition and post-processing techniques for transparent conductive films
CN1150353C (zh) 形成氧化锌薄膜的方法和使用此薄膜制备半导体元件基体和光电元件的方法
CN102714903A (zh) 用于光电和电子装置的透明导电涂层
CN109080281B (zh) 基于浸润性基底精细喷墨打印制备柔性透明导电膜的方法
WO2017067405A1 (zh) 太阳能薄膜结构及制造该太阳能薄膜结构的方法与装置
US20180138337A1 (en) Transparent Conductive Adhesive Materials
TW201303895A (zh) 用於形成電極之銀膠組成物及其製備方法
Bai et al. One-pot synthesis of high-quality AgGaS2/ZnS-based photoluminescent nanocrystals with widely tunable band gap
CN112509747B (zh) 一种基于低电压驱动液膜嵌入式电喷射3d打印的柔性透明导电薄膜制造方法
US20130341611A1 (en) Methods of Applying Polymers to Surfaces and Surfaces Coated by Polymers
Yin et al. Copper nanowire dispersion through an electrostatic dispersion mechanism for high-performance flexible transparent conducting films and optoelectronic devices
CN105340098A (zh) 有机薄膜太阳能电池及有机薄膜太阳能电池的制造方法
JPWO2018135430A1 (ja) 太陽電池用ペースト組成物
TWI565086B (zh) 太陽能薄膜結構,及製造該太陽能薄膜結構的方法與裝置
TW201720759A (zh) 適用於薄膜太陽能電池主動層之鈣鈦礦施體層製造方法
JP6762848B2 (ja) ペースト組成物
Wang et al. Effects of screen printing and sintering processing of front side silver grid line on the electrical performances of multi-crystalline silicon solar cells
TWI481676B (zh) 具電磁波遮蔽效果之半導體奈米塗料組成物及其用於製成太陽能電池之方法
US9755178B2 (en) Method for forming a conductor path structure on an electrode surface of an electronic component
Peng et al. Inexpensive transparent nanoelectrode for crystalline silicon solar cells
WO2018187176A1 (en) Flexible integrated concentrators for solar cells
JP2020071997A (ja) 導電性ペースト及び太陽電池
Ahmed Towards Fabrication of Flexible Solar Cells Using PN-Junction GaAs Nanowires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856838

Country of ref document: EP

Kind code of ref document: A1