WO2017067163A1 - 车辆制动方法及其装置和车辆 - Google Patents

车辆制动方法及其装置和车辆 Download PDF

Info

Publication number
WO2017067163A1
WO2017067163A1 PCT/CN2016/083370 CN2016083370W WO2017067163A1 WO 2017067163 A1 WO2017067163 A1 WO 2017067163A1 CN 2016083370 W CN2016083370 W CN 2016083370W WO 2017067163 A1 WO2017067163 A1 WO 2017067163A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging radar
brake
vehicle
obstacle
radar
Prior art date
Application number
PCT/CN2016/083370
Other languages
English (en)
French (fr)
Inventor
徐勇
李文锐
林伟
邹禹
勾晓菲
刘鹏
李丹
Original Assignee
乐视控股(北京)有限公司
乐卡汽车智能科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视控股(北京)有限公司, 乐卡汽车智能科技(北京)有限公司 filed Critical 乐视控股(北京)有限公司
Publication of WO2017067163A1 publication Critical patent/WO2017067163A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes

Definitions

  • the present application relates to vehicle engineering, and more particularly to a vehicle braking method and apparatus therefor and a vehicle.
  • V2X Vehicle to X
  • V2X Vehicle to X
  • a series of traffic information to improve driving safety, reduce congestion, improve traffic efficiency, and provide in-vehicle entertainment information.
  • V2X In the technical standard of V2X, emergency braking is a typical application scenario of V2X, but in the process of implementing the above-mentioned vehicle braking, the inventors found that at least the following problems exist in the prior art: although V2X has strong real-time performance, data security is poor. The lack of communication authentication and authentication is easy to receive other signal interference and lead to misjudgment. At the same time, when a malicious pseudo base station sends an emergency braking command, the V2X standard protocol is completely indistinguishable, which will become a criminal harm. The social means, therefore, when the prior art uses V2X technology to achieve emergency braking, the risk factor is high.
  • the embodiment of the present application provides a vehicle braking method, a device thereof and a vehicle, which solve the technical problem that the risk coefficient is high when the emergency braking is implemented by using the V2X technology in the prior art.
  • a vehicle braking apparatus comprising: a communication module, a processor, a ranging radar, and a brake; the communication module, the ranging radar, and the brake are respectively electrically connected to the processor;
  • the communication module is configured to receive a braking command from a surrounding vehicle based on a V2X communication manner
  • the ranging radar is configured to detect whether there is an obstacle in the preset safety distance, and send an indication signal to the processor when detecting an obstacle in the preset safety distance;
  • the processor when receiving the braking command by the communication module, and receiving an indication signal sent by the ranging radar, sending a start signal to the brake to trigger the brake to start ;
  • the brake is configured to perform braking when the start signal is received.
  • the vehicle braking device as described above, the ranging radar comprises: at least one of a millimeter wave ranging radar and a laser ranging radar.
  • the vehicle braking device as described above, if the ranging radar comprises a millimeter wave ranging radar and a laser ranging radar, the ranging module further comprises: a determining circuit; the determining circuit respectively The millimeter wave ranging radar and the laser ranging radar are electrically connected;
  • the determining circuit is configured to determine whether the millimeter wave ranging radar and the laser ranging radar both determine an obstacle within a preset safety distance, and in the millimeter wave ranging radar and the laser ranging The radar transmits the indication signal to the processor when it is determined that there is an obstacle in the preset safety distance.
  • the vehicle braking device is configured to: after receiving the braking command by the communication module, instructing the ranging radar to detect whether a preset safety distance is within a preset safety distance There is an obstacle, and upon receiving the indication signal sent by the ranging radar, an activation signal is sent to the brake to trigger the brake to start.
  • the vehicle braking device is specifically configured to detect whether there is an obstacle in a preset safety distance in real time, and when an obstacle exists in the preset safety distance is detected, Sending an indication signal to the processor;
  • the processor is configured to send a start signal to the communication module when the brake command is received by the communication module within a preset time period before or after receiving the indication signal sent by the ranging radar.
  • the brake is activated to trigger the brake;
  • the processor is configured to send a start signal if the indication signal sent by the ranging radar is received within a preset time period before or after the braking command is received by the communication module. A signal is applied to the brake to trigger activation of the brake.
  • the processor passes through a controller area network A controller (Controller) network controller (CAN) bus controller and a CAN bus are connected to the brake.
  • Controller Controller
  • CAN controller area network A controller
  • CAN network controller
  • the vehicle brake device as described above, the device further comprising: an alarm; the alarm is electrically connected to the processor;
  • the processor is further configured to trigger the alarm to emit an audible and visual alarm when the indication signal is received.
  • a vehicle including a vehicle brake device as described above.
  • a vehicle braking method including:
  • a ranging radar to detect whether there is an obstacle within a preset safety distance
  • the brake is triggered to brake.
  • the distance measuring radar is used to measure whether there is an obstacle in the preset safety distance, and if an obstacle is detected within the preset safety distance, When the brake is triggered, the brake is triggered. Since the obstacle radar installed in the vehicle is used to measure whether there is an obstacle in the preset safety distance before braking, the probability of the brake misjudgment is reduced, thereby solving the problem of using the V2X technology to realize the emergency braking in the prior art. Technical problems with high risk factors.
  • FIG. 1 is a schematic structural view of a vehicle brake device according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural diagram of another vehicle brake device according to Embodiment 2 of the present application.
  • FIG. 3 is a schematic flow chart of a vehicle braking method according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the vehicle braking process.
  • the vehicle brake device in this embodiment includes: a communication module 11 , a processor 12 , a ranging radar 13 , and Brake 14.
  • the communication module 11, the brake 14, and the ranging radar 13 are electrically connected to the processor 12, respectively.
  • the communication module 11 is configured to receive a braking command from a surrounding vehicle based on the V2X communication mode.
  • the preceding vehicle can send a braking command to the vehicle based on the V2X communication mode, instructing the vehicle to take corresponding braking measures, thereby avoiding the situation of rear-end collision.
  • the vehicle brake device in this embodiment can communicate with the surrounding vehicle by the communication module 11 to receive the brake command.
  • the ranging radar 13 is configured to detect whether there is an obstacle in the preset safety distance, and send an indication signal to the processor 12 when an obstacle exists in the preset safety distance.
  • the ranging radar may have at least one probe installed around the vehicle body to measure whether there is an obstacle within a preset safety distance.
  • the processor 12 is configured to, when receiving the braking command by the communication module 11, and receive an indication signal sent by the ranging radar 13, send an activation signal to the brake 14 to trigger the The brake 14 is activated.
  • the processor 12 may trigger the ranging radar 13 to start when the communication module 11 receives the braking command. Further, when the instruction signal transmitted from the ranging radar 13 is received, the trigger brake 14 is activated. That is, the processor 12 is specifically configured to, after receiving the braking command by the communication module 11, instruct the ranging radar 13 to detect whether there is an obstacle within a preset safety distance, and receive the When the indication signal transmitted by the ranging radar 13 is sent, an activation signal is sent to the brake 14 to trigger the activation of the brake 14.
  • the ranging radar 13 is in an operating state for detecting an obstacle in real time, and transmits an indication signal to the processor 12 when an obstacle is detected. If the processor 12 receives the brake command within the preset time period before and after receiving the indication signal, the trigger brake 14 is activated; or, if the processor 12 receives the brake command before and after the preset time period, the processor 12 receives Upon the indication signal, a start signal is sent to the brake 14 to trigger the brake 14 to start. That is to say, the ranging radar 13 is specifically configured to detect whether there is an obstacle in the preset safety distance in real time, and send an indication signal to the processor 12 when an obstacle exists in the preset safety distance.
  • the processor 12 is specifically configured to preset a period of time before or after receiving the indication signal sent by the ranging radar 13 If the braking command is received by the communication module 11, an activation signal is sent to the brake 14 to trigger the brake to be activated; or the processor 12 is specifically configured to receive through the communication module 11 If the indication signal sent by the ranging radar 13 is received within a preset time period before or after the braking command, an activation signal is sent to the brake 14 to trigger the brake 14 to start.
  • the brake 14 is configured to perform braking when the start signal is received.
  • the processor 12 connects the brake 14 through a CAN bus controller and a CAN bus.
  • the processor 12 sends a start signal that triggers the activation of the brake 14 to the brake 14, which in turn sends a start signal to the brake 14 via the CAN bus via the CAN bus controller.
  • the distance measuring radar is used to measure whether there is an obstacle in the preset safety distance, and if an obstacle exists in the preset safety distance, , the brake is triggered to brake. Since the obstacle radar installed in the vehicle is used to measure whether there is an obstacle in the preset safety distance before braking, the probability of the brake misjudgment is reduced, thereby solving the problem of using the V2X technology to realize the emergency braking in the prior art. Technical problems with high risk factors.
  • FIG. 2 is a schematic structural diagram of another vehicle braking device according to Embodiment 2 of the present application.
  • the ranging radar 13 in the embodiment includes: a millimeter wave ranging radar 131, and a laser measurement. From the radar 132 and the judgment circuit 133.
  • the judging circuit 133 is electrically connected to the millimeter wave ranging radar 131 and the laser ranging radar 132, respectively.
  • the millimeter wave ranging radar 131 transmits a 77 GHz microwave signal, and uses the arrival time of the reflected wave to calculate the distance of the obstacle in front of the vehicle.
  • the microwave signal has the strongest penetrating ability and can adapt to different weather conditions. Ranging work, but the microwave ranging is easily interfered by the reflection of vehicles in the adjacent lanes, thus judging the distance error.
  • the laser ranging radar 132 uses the reflection time of the emitted laser to measure the distance.
  • the laser is widely used in the automatic driving technology, and has high accuracy and is not susceptible to interference. However, the attenuation of the laser in the fog is large and the measurement accuracy is low.
  • the determining circuit 133 is configured to determine whether the millimeter wave ranging radar 131 and the laser ranging radar 132 both determine an obstacle within the preset safety distance, and the millimeter wave measurement When the distance radar 131 and the laser ranging radar 132 both determine that there is an obstacle in the preset safety distance, the indication signal is sent to the processor 12.
  • the processor 12 is in a standby state under normal conditions, and does not send any data to the CAN bus, nor does it send an emergency brake start command to the CAN bus.
  • the processor 12 simultaneously triggers the millimeter wave ranging radar 131 and the laser ranging radar 132 to be turned on.
  • the millimeter wave ranging radar 131 and the laser ranging radar 132 detect whether there is an obstacle within the preset safety distance, and the processor 12 determines the state of the current front road.
  • the judging circuit 133 transmits an indication signal, so that the processor 12 receives the safety for indicating the preset.
  • the indication signal of the obstacle is present in the distance, and the processor 12 will send a start signal for triggering the activation of the brake 14 to the CAN bus through the CAN bus controller.
  • the brake 14 performs emergency braking after receiving the start signal to ensure safe driving of the vehicle.
  • the two radars Due to the use of millimeter-wave ranging radar and laser ranging radar for radar ranging, the two radars can adapt to different environments and achieve complementary effects, so that radar ranging can work stably in various environments, reducing The probability of an error.
  • vehicle brake device in this embodiment further includes an alarm device 15.
  • the alarm 15 is electrically coupled to the processor 12.
  • the alarm device 15 is used for sound and light alarm.
  • the processor 12 is further configured to trigger the alarm 15 to emit an audible and visual alarm when the indication signal is received.
  • the processor 12 triggers the activation of the brake 14, the alarm 15 is triggered to perform an audible and visual alarm, thereby providing a prompting effect to the driver and the passenger in the vehicle so as to pay attention to the driver and the passenger in the vehicle.
  • the distance measuring radar is used to measure whether there is an obstacle in the preset safety distance, and if an obstacle exists in the preset safety distance, , the brake is triggered to brake. Since the obstacle radar installed in the vehicle is used to measure whether there is an obstacle in the preset safety distance before braking, the probability of the brake misjudgment is reduced, thereby solving the problem of using the V2X technology to realize the emergency braking in the prior art.
  • Technical problems with high risk factors due to the millimeter wave measurement Radar ranging from radar and laser ranging radar, the two radars can adapt to different environments and achieve complementary effects, so that radar ranging can work stably in various environments and reduce the probability of errors.
  • Embodiment 3 of the present application further provides a vehicle, including the vehicle brake device provided by the foregoing embodiment.
  • the vehicle in this embodiment can receive the braking command sent by the preceding vehicle based on the V2X mode by installing the device in the foregoing embodiment; and further detecting whether there is an obstacle in the preset safety distance by using the ranging radar; When there is an obstacle in the preset safety distance, the brake is triggered to brake.
  • the ranging radar is used to detect whether there is an obstacle in the preset safety distance. Further, if an obstacle is detected in the preset safety distance, braking is performed.
  • the vehicle is in an active state to detect an obstacle in real time. If the vehicle detects the obstacle within the preset safety distance by using the ranging radar within a preset period of time before and after receiving the brake command, the brake is performed.
  • the distance measuring radar is used to measure whether there is an obstacle in the preset safety distance, and if an obstacle exists in the preset safety distance, , the brake is triggered to brake. Since the obstacle radar installed in the vehicle is used to measure whether there is an obstacle in the preset safety distance before braking, the probability of the brake misjudgment is reduced, thereby solving the problem of using the V2X technology to realize the emergency braking in the prior art. Technical problems with high risk factors.
  • FIG. 3 is a schematic flowchart of a vehicle braking method according to Embodiment 4 of the present application. As shown in FIG. 3, the method includes:
  • the preceding vehicle may send a braking command to the vehicle based on the V2X communication mode, instructing the vehicle to take corresponding braking measures. Shi, so as to avoid the situation of rear-end collision.
  • the ranging radar includes a millimeter wave ranging radar and a laser ranging radar.
  • both the millimeter wave ranging radar and the laser ranging radar determine that there is an obstacle in the preset safety distance, it is determined that there is an obstacle in the preset safety distance.
  • the millimeter wave ranging radar emits a 77 GHz microwave signal, and uses the arrival time of the reflected wave to calculate the distance of the obstacle in front of the vehicle.
  • the microwave signal has the strongest penetrating ability and can adapt to the ranging work under different weather conditions.
  • the microwave ranging is easily interfered by the reflection of the vehicles in the adjacent lanes, thereby judging the distance error.
  • Laser ranging radar is widely used in autonomous driving technology, and uses the reflection time of the emitted laser to measure the distance with high accuracy and is not susceptible to interference.
  • the attenuation of the laser in the fog is large and the measurement accuracy is low. Due to the simultaneous use of millimeter-wave ranging radar and laser ranging radar for radar ranging, the two radars can adapt to different environments and achieve complementary effects, so that radar ranging can work stably in various environments and reduce The probability of an error.
  • the ranging radar is used to detect whether there is an obstacle in the preset safety distance. Further, if an obstacle is detected in the preset safety distance, braking is performed.
  • the vehicle is in an active state to detect an obstacle in real time. If the vehicle detects the obstacle within the preset safety distance by using the ranging radar within a preset period of time before and after receiving the brake command, the brake is performed.
  • FIG. 4 is a schematic diagram of a vehicle braking process, as shown in FIG. 4, including:
  • the braking command is received based on the V2X communication method.
  • the millimeter wave ranging radar and the laser ranging radar are simultaneously activated to enable the two radars to detect whether there is an obstacle within a preset safety distance.
  • step 403. Determine whether the millimeter wave ranging radar and the laser ranging radar determine that there is an obstacle in the preset safety distance. If yes, determine that there is an obstacle in the preset safety distance, and then perform step 404; otherwise, perform step 405.
  • the millimeter wave ranging radar and the laser ranging radar determine that there is an obstacle in the preset safety distance, it is determined that there is an obstacle in the preset safety distance.
  • the millimeter wave ranging radar and the laser ranging radar are used for radar ranging.
  • the two radars can adapt to different environments and achieve complementary effects, so that the radar ranging can work stably in various environments and reduce the occurrence. The probability of an error.
  • the braking command is a false judgment and no braking is taken.
  • the distance measuring radar is used to measure whether there is an obstacle in the preset safety distance, and if an obstacle exists in the preset safety distance, , the brake is triggered to brake. Since the obstacle radar installed in the vehicle is used to measure whether there is an obstacle in the preset safety distance before braking, the probability of the brake misjudgment is reduced, thereby solving the problem of using the V2X technology to realize the emergency braking in the prior art.
  • Technical problems with high risk factors due to the use of millimeter-wave ranging radar and laser ranging radar for radar ranging, the two radars can adapt to different environments and achieve complementary effects, so that radar ranging can work stably in various environments. Reduce the probability of errors.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Traffic Control Systems (AREA)
  • Regulating Braking Force (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种车辆制动方法及其装置和车辆,通过车辆制动装置在基于V2X方式,接收制动指令之后,利用测距雷达(13)测量预设的安全距离内是否存在障碍物,若测量到预设的安全距离内存在障碍物时,则触发制动器(14)进行制动。由于在制动之前,利用车辆所安装的测距雷达(13)测量预设的安全距离内是否存在障碍物,降低了制动误判的概率,从而解决了现有技术中采用V2X技术实现紧急制动时,危险系数较高的技术问题。

Description

车辆制动方法及其装置和车辆
本专利申请要求申请日为2015年10月23日、申请号为2015106981829的中国专利申请的优先权,并将上述专利申请以引用的方式全文引入本文中。
技术领域
本申请涉及车辆工程,尤其涉及一种车辆制动方法及其装置和车辆。
背景技术
车辆对周围设备(Vehicle to X,V2X),是未来智能交通运输系统的关键技术,它使得车与车、车与基站、基站与基站之间能够通信,从而获得实时路况、道路信息、行人信息等一系列交通信息,从而提高驾驶安全性、减少拥堵、提高交通效率、提供车载娱乐信息等。
在V2X的技术标准中,紧急制动是V2X的典型应用场景,但是在实现上述车辆制动的过程中,发明人发现现有技术中至少存在如下问题:尽管V2X实时性强,但是数据安全性差,通信鉴权和身份验证缺失,容易接收到其他信号干扰导致误判,同时,在有恶意的伪基站发送紧急制动的指令时,V2X标准的协议根本完全无法区分,这会成为不法分子危害社会的手段,因而,现有技术中采用V2X技术实现紧急制动时,危险系数较高。
发明内容
本申请的实施例提供一种车辆制动方法及其装置和车辆,解决现有技术中采用V2X技术实现紧急制动时,危险系数较高的技术问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种车辆制动装置,包括:通信模块、处理器、测距雷达和制动器;所述通信模块、所述测距雷达和所述制动器分别与所述处理器电连接;
所述通信模块,用于基于V2X通信方式,接收来自周围车辆的一制动指令;
所述测距雷达,用于探测预设的安全距离内是否存在障碍物,并在探测到预设的安全距离内存在障碍物时,向所述处理器发送一指示信号;
所述处理器,用于在通过所述通信模块接收到所述制动指令时,且接收到所述测距雷达发送的指示信号时,发送一启动信号给所述制动器以触发所述制动器启动;
所述制动器,用于在接收到所述启动信号时,进行制动。
可选的,如上所述的车辆制动装置,所述测距雷达,包括:毫米波测距雷达和激光测距雷达中的至少一个。
可选的,如上所述的车辆制动装置,若所述测距雷达,包括毫米波测距雷达和激光测距雷达,则所述测距模块还包括:判断电路;所述判断电路分别与所述毫米波测距雷达和所述激光测距雷达电连接;
所述判断电路,用于判断所述毫米波测距雷达和所述激光测距雷达是否均确定预设的安全距离内存在障碍物,并在所述毫米波测距雷达和所述激光测距雷达均确定预设的安全距离内存在障碍物时,向所述处理器发送所述指示信号。
可选的,如上所述的车辆制动装置,所述处理器,具体用于在通过所述通信模块接收到所述制动指令后,指示所述测距雷达探测预设的安全距离内是否存在障碍物,在接收到所述测距雷达发送的指示信号时,发送一启动信号给所述制动器以触发所述制动器启动。
可选的,如上所述的车辆制动装置,所述测距雷达,具体用于实时探测预设的安全距离内是否存在障碍物,并在探测到预设的安全距离内存在障碍物时,向所述处理器发送一指示信号;
所述处理器,具体用于在接收到所述测距雷达发送的指示信号之前或者之后的预设时间段内,若通过所述通信模块接收到所述制动指令,则发送一启动信号给所述制动器以触发所述制动器启动;
或者,所述处理器,具体用于在通过所述通信模块接收到所述制动指令之前或者之后的预设时间段内,若接收到所述测距雷达发送的指示信号,则发送一启动信号给所述制动器以触发所述制动器启动。
可选的,如上所述的车辆制动装置,所述处理器通过控制器局域网 络(Controller Area Network,CAN)总线控制器以及CAN总线连接所述制动器。
可选的,如上所述的车辆制动装置,所述装置,还包括:报警器;所述报警器与所述处理器电连接;
所述处理器,还用于在接收到所述指示信号时,触发所述报警器发出声光报警。
第二方面,提供了一种车辆,包括如上所述的车辆制动装置。
第三方面,提供了一种车辆制动方法,包括:
基于V2X通信方式,接收来自周围车辆的一制动指令;
利用测距雷达探测预设的安全距离内是否存在障碍物;
若探测到预设的安全距离内存在障碍物时,触发制动器进行制动。
本申请实施例中,通过车辆制动装置在基于V2X方式,接收制动指令之后,利用测距雷达测量预设的安全距离内是否存在障碍物,若测量到预设的安全距离内存在障碍物时,则触发制动器进行制动。由于在制动之前,利用车辆所安装的测距雷达测量预设的安全距离内是否存在障碍物,降低了制动误判的概率,从而解决了现有技术中采用V2X技术实现紧急制动时,危险系数较高的技术问题。
附图说明
图1为本申请实施例一提供的一种车辆制动装置的结构示意图;
图2为本申请实施例二提供的另一种车辆制动装置的结构示意图;
图3为本申请实施例提供的一种车辆制动方法的流程示意图;
图4为车辆制动流程示意图。
具体实施方式
下面结合附图对本申请实施例所提供的车辆制动方法及其装置和车辆进行详细描述。
实施例一
图1为本申请实施例一提供的一种车辆制动装置的结构示意图,如图1所示,本实施例中的车辆制动装置包括:通信模块11、处理器12、测距雷达13和制动器14。其中,通信模块11、制动器14、测距雷达13分别和处理器12电连接。
通信模块11,用于基于V2X通信方式,接收来自周围车辆的一制动指令。
具体的,车辆在行驶过程中,若前车出现紧急制动,前车可以基于V2X通信方式向本车辆发送制动指令,指示本车辆采取相应的制动措施,从而避免追尾相撞的情况出现。本实施例中的车辆制动装置可利用通信模块11与周围车辆进行通信,接收该制动指令。
测距雷达13,用于探测预设的安全距离内是否存在障碍物,并在探测到预设的安全距离内存在障碍物时,向所述处理器12发送一指示信号。
具体的,测距雷达可具有至少一个探头,探头安装在车身四周,从而测量预设的安全距离内是否存在障碍物。
处理器12,用于在通过所述通信模块11接收到所述制动指令时,且接收到所述测距雷达13发送的指示信号时,发送一启动信号给所述制动器14以触发所述制动器14启动。
具体的,作为一种可能的实现方式,处理器12可以在通信模块11接收到制动指令时,触发测距雷达13启动。进而若接收到测距雷达13发送的指示信号,则触发制动器14启动。也就是说,处理器12具体用于在通过所述通信模块11接收到所述制动指令后,指示所述测距雷达13探测预设的安全距离内是否存在障碍物,在接收到所述测距雷达13发送的指示信号时,发送一启动信号给所述制动器14以触发所述制动器14启动。
或者,具体的,作为另一种可能的实现方式,测距雷达13处于实时探测障碍物的工作状态,在探测到障碍物则向处理器12发送指示信号。若处理器12接收到指示信号的前后预设时间段内,又接收到制动指令,则触发制动器14启动;或者,若处理器12接收到制动指令的前后预设时间段内,又接收到指示信号,则发送一启动信号给制动器14,以触发制动器14启动。也就是说,测距雷达13具体用于实时探测预设的安全距离内是否存在障碍物,并在探测到预设的安全距离内存在障碍物时,向所述处理器12发送一指示信号。相应的,处理器12具体用于在接收到所述测距雷达13发送的指示信号之前或者之后的预设时间段 内,若通过所述通信模块11接收到所述制动指令,则发送一启动信号给所述制动器14以触发所述制动器启动;或者,处理器12具体用于在通过所述通信模块11接收到所述制动指令之前或者之后的预设时间段内,若接收到所述测距雷达13发送的指示信号,则发送一启动信号给所述制动器14以触发所述制动器14启动。
制动器14,用于在接收到启动信号时,进行制动。
具体的,处理器12通过CAN总线控制器以及CAN总线连接所述制动器14。处理器12将触发制动器14启动的启动信号发送给制动器14,进而由CAN总线控制器通过CAN总线向制动器14发送启动信号。
本实施例中,通过车辆制动装置在基于V2X方式,接收制动指令之后,利用测距雷达测量预设的安全距离内是否存在障碍物,若测量到预设的安全距离内存在障碍物时,则触发制动器进行制动。由于在制动之前,利用车辆所安装的测距雷达测量预设的安全距离内是否存在障碍物,降低了制动误判的概率,从而解决了现有技术中采用V2X技术实现紧急制动时,危险系数较高的技术问题。
实施例二
图2为本申请实施例二提供的另一种车辆制动装置的结构示意图,在上一实施例的基础上,本实施例中的测距雷达13包括:毫米波测距雷达131、激光测距雷达132和判断电路133。判断电路133分别与所述毫米波测距雷达131和所述激光测距雷达132电连接。
其中,毫米波测距雷达131,发射77GHz微波信号,并利用反射波的到达时间计算车辆前方障碍物的距离,在一般情况下,微波信号的穿透能力最强,能够适应不同天气条件下的测距工作,但是微波测距容易受到邻近车道车辆的反射干扰,从而判断距离出现错误。
激光测距雷达132,利用发射激光的反射时间进行距离测定,激光被广泛应用于自动驾驶技术,准确度高,不易受到干扰。但是激光在雾天衰减较大测量精度低。
判断电路133,用于判断所述毫米波测距雷达131和所述激光测距雷达132是否均确定预设的安全距离内存在障碍物,并在所述毫米波测 距雷达131和所述激光测距雷达132均确定预设的安全距离内存在障碍物时,向所述处理器12发送所述指示信号。
具体的,作为一种可能的实现方式,处理器12在正常情况下处于待机状态,并不会向CAN总线发送任何数据,也不会向CAN总线发送紧急制动启动指令。当通信模块11收到前方车辆发送的制动指令后,处理器12同时触发毫米波测距雷达131和激光测距雷达132开启。通过毫米波测距雷达131和激光测距雷达132探测预设的安全距离内是否存在障碍物,处理器12确定当前前方道路的状态。当且仅当毫米波测距雷达131和激光测距雷达132均探测到前方出现车辆,并且车辆的距离过近,判断电路133发送指示信号,从而处理器12接收到用于指示预设的安全距离内存在障碍物的指示信号,进而处理器12将会通过CAN总线控制器向CAN总线发送触发制动器14启动的启动信号。制动器14接收到启动信号后实施紧急制动,保证车辆行车安全。
由于采用了毫米波测距雷达和激光测距雷达进行雷达测距,两种雷达分别能够适应不同的环境,达到的互补的效果,从而使得雷达测距能够在各种环境下稳定工作,降低了出现差错的概率。
进一步,本实施例中的车辆制动装置,还包括:报警器15。所述报警器15与所述处理器12电连接。
报警器15,用于进行声光报警。
处理器12,还用于在接收到所述指示信号时,触发所述报警器15发出声光报警。
在处理器12触发制动器14启动的同时,触发报警器15进行声光报警,从而起到对车内驾驶员以及乘客的提示作用,以使对车内驾驶员以及乘客注意安全。
本实施例中,通过车辆制动装置在基于V2X方式,接收制动指令之后,利用测距雷达测量预设的安全距离内是否存在障碍物,若测量到预设的安全距离内存在障碍物时,则触发制动器进行制动。由于在制动之前,利用车辆所安装的测距雷达测量预设的安全距离内是否存在障碍物,降低了制动误判的概率,从而解决了现有技术中采用V2X技术实现紧急制动时,危险系数较高的技术问题。同时,由于采用了毫米波测 距雷达和激光测距雷达进行雷达测距,两种雷达分别能够适应不同的环境,达到的互补的效果,从而使得雷达测距能够在各种环境下稳定工作,降低了出现差错的概率。
实施例三
本申请实施例三还提供了一种车辆,包括前述实施例提供的车辆制动装置。
本实施例中的车辆,由于安装了前述实施例中的装置,能够基于V2X方式,接收前车发送的制动指令;进而利用测距雷达探测预设的安全距离内是否存在障碍物;若探测到预设的安全距离内存在障碍物时,触发制动器进行制动。
具体的,作为一种可能的实现方式,车辆接收到制动指令时,利用测距雷达探测预设的安全距离内是否存在障碍物。进而若探测到预设的安全距离内存在障碍物,则进行制动。
或者,具体的,作为另一种可能的实现方式,车辆处于实时探测障碍物的工作状态。若接收到制动指令的前后预设时间段内,车辆利用测距雷达探测到预设的安全距离内存在障碍物,则进行制动。
本实施例中,通过车辆制动装置在基于V2X方式,接收制动指令之后,利用测距雷达测量预设的安全距离内是否存在障碍物,若测量到预设的安全距离内存在障碍物时,则触发制动器进行制动。由于在制动之前,利用车辆所安装的测距雷达测量预设的安全距离内是否存在障碍物,降低了制动误判的概率,从而解决了现有技术中采用V2X技术实现紧急制动时,危险系数较高的技术问题。
实施例四
图3为本申请实施例四提供的一种车辆制动方法的流程示意图,如图3所示,包括:
301、基于V2X通信方式,接收来自周围车辆的一制动指令。
具体的,车辆在行驶过程中,若前车出现紧急制动,前车可以基于V2X通信方式向本车辆发送制动指令,指示本车辆采取相应的制动措 施,从而避免追尾相撞的情况出现。
302、利用测距雷达探测预设的安全距离内是否存在障碍物。
其中,测距雷达包括毫米波测距雷达和激光测距雷达。
具体的,在毫米波测距雷达和激光测距雷达均确定预设的安全距离内存在障碍物时,则判定预设的安全距离内存在障碍物。
毫米波测距雷达发射77GHz微波信号,并利用反射波的到达时间计算车辆前方障碍物的距离,在一般情况下,微波信号的穿透能力最强,能够适应不同天气条件下的测距工作,但是微波测距容易受到邻近车道车辆的反射干扰,从而判断距离出现错误。激光测距雷达被广泛应用于自动驾驶技术,利用发射激光的反射时间进行距离测定,准确度高,不易受到干扰。但是激光在雾天衰减较大测量精度低。由于同时采用了毫米波测距雷达和激光测距雷达进行雷达测距,两种雷达分别能够适应不同的环境,达到的互补的效果,从而使得雷达测距能够在各种环境下稳定工作,降低了出现差错的概率。
303、若接收到制动指令且探测到预设的安全距离内存在障碍物时,则进行制动。
具体的,作为一种可能的实现方式,车辆接收到制动指令时,利用测距雷达探测预设的安全距离内是否存在障碍物。进而若探测到预设的安全距离内存在障碍物,则进行制动。
或者,具体的,作为另一种可能的实现方式,车辆处于实时探测障碍物的工作状态。若接收到制动指令的前后预设时间段内,车辆利用测距雷达探测到预设的安全距离内存在障碍物,则进行制动。
为了清楚说明本实施例,本实施例还提供了一种可能的车辆制动流程,图4为车辆制动流程示意图,如图4所示,包括:
401、接收来自周围车辆的一制动指令。
具体的,基于V2X通信方式接收该制动指令。
402、启动毫米波测距雷达和激光测距雷达探测预设的安全距离内是否存在障碍物。
具体的,接收到制动指令之后,同时启动毫米波测距雷达和激光测距雷达,以使两雷达探测预设的安全距离内是否存在障碍物。
需要说明的是,前述同时并不是绝对时间上的同时,可以是步骤上的并行探测预设的安全距离内是否存在障碍物。
403、判断毫米波测距雷达和激光测距雷达是否均确定预设的安全距离内存在障碍物,若是,则判定预设的安全距离内存在障碍物,进而执行步骤404,否则执行步骤405。
具体的,在毫米波测距雷达和激光测距雷达均确定预设的安全距离内存在障碍物时,则判定预设的安全距离内存在障碍物。同时采用毫米波测距雷达和激光测距雷达进行雷达测距,两种雷达分别能够适应不同的环境,达到的互补的效果,从而使得雷达测距能够在各种环境下稳定工作,降低了出现差错的概率。
404、启动制动器进行制动。
405、确定该制动指令为误判。
具体的,在通过毫米波测距雷达和激光测距雷达确定预设的安全距离内不存在障碍物时,则确定该制动指令为误判,不采取制动。
本实施例中,通过车辆制动装置在基于V2X方式,接收制动指令之后,利用测距雷达测量预设的安全距离内是否存在障碍物,若测量到预设的安全距离内存在障碍物时,则触发制动器进行制动。由于在制动之前,利用车辆所安装的测距雷达测量预设的安全距离内是否存在障碍物,降低了制动误判的概率,从而解决了现有技术中采用V2X技术实现紧急制动时,危险系数较高的技术问题。同时,由于采用了毫米波测距雷达和激光测距雷达进行雷达测距,两种雷达分别能够适应不同的环境,达到的互补的效果,从而使得雷达测距能够在各种环境下稳定工作,降低了出现差错的概率。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领 域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种车辆制动装置,其特征在于,包括:通信模块、处理器、测距雷达和制动器;所述通信模块、所述测距雷达和所述制动器分别与所述处理器电连接;
    所述通信模块,用于基于V2X通信方式,接收来自周围车辆的一制动指令;
    所述测距雷达,用于探测预设的安全距离内是否存在障碍物,并在探测到预设的安全距离内存在障碍物时,向所述处理器发送一指示信号;
    所述处理器,用于在通过所述通信模块接收到所述制动指令时,且接收到所述测距雷达发送的指示信号时,发送一启动信号给所述制动器以触发所述制动器启动;
    所述制动器,用于在接收到所述启动信号时,进行制动。
  2. 根据权利要求1所述的车辆制动装置,其特征在于,所述测距雷达,包括:毫米波测距雷达和激光测距雷达中的至少一个。
  3. 根据权利要求2所述的车辆制动装置,其特征在于,若所述测距雷达,包括毫米波测距雷达和激光测距雷达,则所述测距模块还包括:判断电路;所述判断电路分别与所述毫米波测距雷达和所述激光测距雷达电连接;
    所述判断电路,用于判断所述毫米波测距雷达和所述激光测距雷达是否均确定预设的安全距离内存在障碍物,并在所述毫米波测距雷达和所述激光测距雷达均确定预设的安全距离内存在障碍物时,向所述处理器发送所述指示信号。
  4. 根据权利要求1所述的车辆制动装置,其特征在于,
    所述处理器,具体用于在通过所述通信模块接收到所述制动指令后,指示所述测距雷达探测预设的安全距离内是否存在障碍物,在接收到所述测距雷达发送的指示信号时,发送一启动信号给所述制动器以触发所述制动器启动。
  5. 根据权利要求1所述的车辆制动装置,其特征在于,
    所述测距雷达,具体用于实时探测预设的安全距离内是否存在障 碍物,并在探测到预设的安全距离内存在障碍物时,向所述处理器发送一指示信号;
    所述处理器,具体用于在接收到所述测距雷达发送的指示信号之前或者之后的预设时间段内,若通过所述通信模块接收到所述制动指令,则发送一启动信号给所述制动器以触发所述制动器启动;
    或者,所述处理器,具体用于在通过所述通信模块接收到所述制动指令之前或者之后的预设时间段内,若接收到所述测距雷达发送的指示信号,则发送一启动信号给所述制动器以触发所述制动器启动。
  6. 根据权利要求1-5任一项所述的车辆制动装置,其特征在于,所述处理器通过CAN总线控制器以及CAN总线连接所述制动器。
  7. 根据权利要求1-5任一项所述的车辆制动装置,其特征在于,所述装置,还包括:报警器;所述报警器与所述处理器电连接;
    所述处理器,还用于在接收到所述指示信号时,触发所述报警器发出声光报警。
  8. 一种车辆,其特征在于,包括如权利要求1-7任一项所述的车辆制动装置。
  9. 一种车辆制动方法,其特征在于,包括:
    基于V2X通信方式,接收来自周围车辆的一制动指令;
    利用测距雷达探测预设的安全距离内是否存在障碍物;
    若接收到所述制动指令且探测到预设的安全距离内存在障碍物时,则进行制动。
  10. 根据权利要求9所述的车辆制动方法,其特征在于,所述测距雷达包括毫米波测距雷达和激光测距雷达,则所述利用测距雷达测量预设的安全距离内是否存在障碍物,包括:
    在毫米波测距雷达和激光测距雷达均确定预设的安全距离内存在障碍物时,则判定预设的安全距离内存在障碍物。
PCT/CN2016/083370 2015-10-23 2016-05-25 车辆制动方法及其装置和车辆 WO2017067163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510698182.9 2015-10-23
CN201510698182.9A CN105882630A (zh) 2015-10-23 2015-10-23 车辆制动方法及其装置和车辆

Publications (1)

Publication Number Publication Date
WO2017067163A1 true WO2017067163A1 (zh) 2017-04-27

Family

ID=57001781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083370 WO2017067163A1 (zh) 2015-10-23 2016-05-25 车辆制动方法及其装置和车辆

Country Status (3)

Country Link
US (1) US20170113666A1 (zh)
CN (1) CN105882630A (zh)
WO (1) WO2017067163A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200853A1 (de) * 2016-01-21 2017-07-27 Volkswagen Aktiengesellschaft Verfahren und Steuervorrichtung für eine Selbstbremsung eines Kraftfahrzeugs
CN107009964B (zh) * 2017-04-18 2019-02-15 吉林工程技术师范学院 一种高精度的车辆驻停辅助装置
CN109383374B (zh) * 2018-10-23 2022-01-07 侯静阳 一种货车安全预警制动系统
CN109532670B (zh) * 2018-11-28 2022-02-22 广州市网拓信息技术有限公司 一种车载安全距离判断装置及其软件使用原理
CN111796285A (zh) * 2020-06-15 2020-10-20 北京汽车研究总院有限公司 车辆的障碍物检测方法和装置
CN115083205A (zh) * 2022-04-27 2022-09-20 一汽奔腾轿车有限公司 一种具备识别红绿灯功能的aeb
CN115946607B (zh) * 2023-02-16 2024-09-27 上汽通用五菱汽车股份有限公司 紧急制动警示方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016372A1 (en) * 2005-07-14 2007-01-18 Gm Global Technology Operations, Inc. Remote Perspective Vehicle Environment Observation System
JP2010158924A (ja) * 2009-01-06 2010-07-22 Toyota Motor Corp 車間距離制御装置
CN102616235A (zh) * 2012-04-09 2012-08-01 北京航空航天大学 一种基于车车通信的协同避撞装置及避撞方法
CN103209851A (zh) * 2010-08-11 2013-07-17 丰田自动车株式会社 车辆控制装置和车辆控制方法
CN103839444A (zh) * 2014-03-05 2014-06-04 南京通用电器有限公司 一种基于车车通信的主动防碰撞系统和方法
CN203825192U (zh) * 2014-04-10 2014-09-10 河海大学 一种实现车与车通信的汽车防撞雷达系统
CN205186122U (zh) * 2015-10-23 2016-04-27 乐卡汽车智能科技(北京)有限公司 车辆制动装置和车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8169338B2 (en) * 2008-07-25 2012-05-01 GM Global Technology Operations LLC Inter-vehicle communication feature awareness and diagnosis system
US20100250346A1 (en) * 2009-03-31 2010-09-30 Gm Global Technology Operations, Inc. Using v2x in-network message distribution and processing protocols to enable geo-service advertisement applications
JP5152244B2 (ja) * 2010-04-06 2013-02-27 トヨタ自動車株式会社 追従対象車特定装置
CN202623947U (zh) * 2012-06-14 2012-12-26 广州进强电子科技有限公司 一种车辆安全系统
CN102756730B (zh) * 2012-07-26 2017-10-31 深圳市赛格导航科技股份有限公司 一种基于毫米波检测的汽车防撞装置、系统和方法
DE202013006196U1 (de) * 2013-07-09 2014-10-13 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Fahrerassistenzsystem für ein Kraftfahrzeug und Kraftfahrzeug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016372A1 (en) * 2005-07-14 2007-01-18 Gm Global Technology Operations, Inc. Remote Perspective Vehicle Environment Observation System
JP2010158924A (ja) * 2009-01-06 2010-07-22 Toyota Motor Corp 車間距離制御装置
CN103209851A (zh) * 2010-08-11 2013-07-17 丰田自动车株式会社 车辆控制装置和车辆控制方法
CN102616235A (zh) * 2012-04-09 2012-08-01 北京航空航天大学 一种基于车车通信的协同避撞装置及避撞方法
CN103839444A (zh) * 2014-03-05 2014-06-04 南京通用电器有限公司 一种基于车车通信的主动防碰撞系统和方法
CN203825192U (zh) * 2014-04-10 2014-09-10 河海大学 一种实现车与车通信的汽车防撞雷达系统
CN205186122U (zh) * 2015-10-23 2016-04-27 乐卡汽车智能科技(北京)有限公司 车辆制动装置和车辆

Also Published As

Publication number Publication date
CN105882630A (zh) 2016-08-24
US20170113666A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2017067163A1 (zh) 车辆制动方法及其装置和车辆
EP3609765B1 (en) A train traffic situation display system
EP3134888B1 (en) False warning reduction using location data
US9019115B2 (en) Warning horn control system, radar system, and method
WO2006069550A1 (fr) Procede de prevention passive de collision avec l'avant du vehicule suivant, et systeme correspondant
CN110505631A (zh) 利用到达角进行恶意无线安全消息的检测
JP2010256198A (ja) 車両用物体検知装置および車両用走行制御装置
KR20140012303A (ko) 차량용 근접 장애물 감지 장치 및 그 방법
CN105894858A (zh) 一种车辆紧急刹车预警系统
US20230091772A1 (en) Method and device for controlling a transmit power of an active vehicle surround sensor
CN108831189A (zh) 一种基于毫米波雷达防撞的智能预警方法
CN117099012A (zh) 基于拥塞测量调整雷达参数的方法和系统
KR101238702B1 (ko) 디텍터를 이용한 철도건널목 지장물 검지장치 및 동 장치를 이용한 검지방법
CN105632243B (zh) 一种预警处理方法、装置及系统
TWI541151B (zh) 車輛碰撞偵測系統與方法
JP2009018680A (ja) 相対関係測定システム及び車載相対関係測定装置
KR101978121B1 (ko) 주차공간 인식용 초음파 장치 및 그 제어방법
CN205186122U (zh) 车辆制动装置和车辆
KR102188567B1 (ko) 3차원 레이저 스캐너를 이용한 도로 감시 시스템
CN114049793A (zh) 车辆避让系统和车辆避让方法
KR102064000B1 (ko) 잡음 감지 기능을 갖는 장애물 감지 장치와 잡음 감지 방법
JP2004098984A (ja) 踏切障害物検知装置及び踏切障害物検知方法
US11879991B2 (en) Device and method for controlling radar sensor
KR102567152B1 (ko) 차량의 장애물 인식 속도 평가 시스템 및 장애물 출현 장치
KR102575328B1 (ko) 차량의 장애물 인식 속도 평가 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856604

Country of ref document: EP

Kind code of ref document: A1