WO2017067113A1 - 玻璃镀层结构的制造方法 - Google Patents

玻璃镀层结构的制造方法 Download PDF

Info

Publication number
WO2017067113A1
WO2017067113A1 PCT/CN2016/071768 CN2016071768W WO2017067113A1 WO 2017067113 A1 WO2017067113 A1 WO 2017067113A1 CN 2016071768 W CN2016071768 W CN 2016071768W WO 2017067113 A1 WO2017067113 A1 WO 2017067113A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating layer
oxynitride
titanium
coating
Prior art date
Application number
PCT/CN2016/071768
Other languages
English (en)
French (fr)
Inventor
苏斌
Original Assignee
乐视移动智能信息技术(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视移动智能信息技术(北京)有限公司 filed Critical 乐视移动智能信息技术(北京)有限公司
Publication of WO2017067113A1 publication Critical patent/WO2017067113A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Definitions

  • the invention relates to a method for manufacturing a glass coating structure, in particular to a method for manufacturing a glass coating structure applied to fingerprint detection.
  • fingerprint recognition technology has been applied to products such as mobile terminals (such as computers).
  • the capacitive push fingerprint detection method is widely used, and is specifically divided into active press detection and passive press detection.
  • the basic principle of passive press detection is shown in Figure 1.
  • the entire detection system includes: a capacitive fingerprint sensor 10 at the bottom and an isolation layer (or a protective layer) overlying the capacitive fingerprint sensor 10, which is also the area where the finger is in direct contact.
  • the capacitive fingerprint sensor 10 includes a plurality of capacitor plates arranged in a two-dimensional array (exemplarily labeled 5 capacitor plates P1-P5 in the figure), when the skin of the finger 12 is attached to the isolation layer 11 After the combination, a capacitance is formed between the skin of the finger 12 and the capacitor plate. Due to the presence of the fingerprint, a situation as shown in FIG.
  • the skin of the finger 12 and the surface of the isolation layer 11 form a plurality of ridges and ridges.
  • the distance between the different positions of the skin of the finger 12 and the respective capacitive plates is unequal, whereby different capacitance values are generated between the respective capacitive plates and the skin of the finger 12, such as a capacitance formed at the ankle.
  • the value is Cv
  • the capacitance value formed at the ⁇ is Cr.
  • the principle of active press detection is shown in Fig. 2.
  • a metal ring 13 surrounding the periphery of the isolation layer 11 is added.
  • the metal ring 13 is connected to the bottom circuit, and the metal ring 13 is used to wake up the bottom layer.
  • the capacitive fingerprint sensor 10 and a certain current signal are applied to the finger 12 through the metal ring 13, thereby increasing the power on the skin of the finger 12.
  • the amount of charge which in turn enhances the signal detected by the capacitor plates.
  • FIG. 3 shows a fingerprint image signal presented by detection of a capacitive fingerprint sensor.
  • the upper and lower surfaces of the spacer layer 11 must be formed of an insulating material, otherwise the capacitance between the skin of the finger 12 and the capacitor plate will be destroyed, so that the fingerprint information cannot be detected.
  • the portion of the isolation layer 11 that is in contact with the metal ring 13 must also be insulated. If the isolation layer 11 is electrically conductive, current on the metal ring 13 will flow through the isolation layer 11, thereby The signal is confusing and the fingerprint information cannot be detected.
  • the capacitive fingerprint sensor 10 since the detection range of the capacitive plate array of the capacitive fingerprint sensor 10 is small, the finger 12 needs to be close to the capacitor plate array, that is, the thickness of the isolation layer 11 is not required to be large, or the fingerprint detection effect is affected. Especially for the passive press detection system, the capacitive fingerprint sensor 10 is more sensitive to the thickness of the upper covered isolation layer 11, and the isolation layer 11 having a larger thickness cannot be used.
  • the area covered by the isolation layer 11 is also the area for fingerprint recognition, which is generally located on mobile terminals.
  • the more prominent position, for example, is placed in the middle of the back cover of the mobile phone, or placed in the lower part of the front of the mobile phone. Therefore, the aesthetic appearance of the fingerprint recognition area will directly affect the overall appearance of the mobile phone.
  • the isolation layer 11 of the fingerprint recognition area is mostly made of ceramic or plastic, and the protection capacitor is simply realized in function.
  • the fingerprint sensor 10 functions as an isolation package, but the glass mirror cannot be realized on the fingerprint detecting device.
  • the coating technology of the glass mirror surface is relatively mature.
  • the general mirror coating does not require high insulation and thickness, it is generally adopted by direct metal plating or by multi-layer coating.
  • the effect of the coating layer thus formed is generally thick or non-insulating, and therefore, the thickness requirement for fingerprint detection cannot be satisfied.
  • the fingerprint detection system itself adopts the principle of capacitance detection.
  • the skin of the finger 12 and the array of the capacitor plates respectively serve as the two poles of the capacitor. According to the calculation formula of the capacitance, the size of the capacitor is related to the distance between the capacitor plates.
  • the introduction of the coating layer will increase the amount of medium between the capacitor plates, thereby affecting the size of the capacitance, the thickness of the coating layer The larger the effect, the greater the influence on the capacitance value. Therefore, in order not to have a serious influence on the fingerprint detection, it is objectively impossible to allow the existence of a thick coating layer.
  • An object of the present invention is to provide a method for fabricating a glass plating structure, which can produce a mirror coating effect on a premise that the glass plating structure can have a small influence on the fingerprint detection effect.
  • the present invention provides a glass plating structure comprising a glass substrate, and an alternating layer of a titanium oxynitride coating layer and a silicon oxynitride coating layer are disposed downwardly on a lower surface of the glass substrate, wherein
  • the ratio of nitrogen to oxygen is the same, ranging from 0.4:1 to 1.5:1.
  • the present invention also provides a fingerprint detecting device comprising: a capacitive fingerprint sensor, wherein the glass plating structure is attached to an upper portion of the capacitive fingerprint sensor.
  • the present invention further provides a mobile terminal including the above-mentioned fingerprint detecting device, the back cover of the mobile terminal is provided with an opening for performing fingerprint detection, and the fingerprint detecting device is located at a lower portion of the opening, and the fingerprint detecting device The upper surface of the glass plating structure is exposed from the opening.
  • the invention further provides a method for manufacturing a glass coating structure, comprising:
  • a fixed ratio of nitrogen and oxygen wherein the ratio of nitrogen to oxygen ranges from 0.4:1 to 1.5:1;
  • the titanium oxynitride plating layer forming step and the silicon oxynitride plating layer forming step are alternately performed, and an alternately stacked silicon oxynitride plating layer and a titanium oxynitride coating layer are formed downward on the lower surface of the glass substrate;
  • the titanium oxynitride coating layer forming step includes: exciting a titanium raw material disposed in the sealed space by an electron gun, evaporating the titanium raw material, reacting with nitrogen and oxygen in the sealed space, and then performing a reaction on the glass substrate Forming a titanium oxynitride coating layer downwardly on the lower surface;
  • the silicon oxynitride coating layer forming process includes: exciting a silicon raw material disposed in the sealed space by an electron gun, evaporating the silicon raw material, reacting with nitrogen and oxygen in the sealed space, and then performing a reaction on the glass substrate The lower surface of the lower surface forms a silicon oxynitride coating layer.
  • the method for fabricating a glass coating structure comprises: alternately plating a titanium oxynitride coating layer and a silicon oxynitride coating layer on a lower surface of the glass substrate, and making the plating compound
  • the ratio of nitrogen to oxygen is the same, and the value is in the range of 0.4:1 to 1.5:1, so that the glass coating structure with mirror effect is realized under the premise of ensuring the insulation, and the thickness of the coating itself is opposite to the fingerprint.
  • the effect of the detection is controlled to a very small range.
  • FIG. 1 is a schematic diagram of a prior art fingerprint detection principle
  • FIG. 2 is a second schematic diagram of the principle of fingerprint detection in the prior art
  • FIG. 3 is a schematic diagram of a fingerprint detection image signal of the prior art
  • FIG. 4 is a schematic view showing a structure of a glass plating layer according to an embodiment of the present invention.
  • FIG. 5 is a second schematic view showing the structure of a glass plating layer according to an embodiment of the present invention.
  • FIG. 6 is a schematic view showing a principle of coating a film according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a reflectance curve corresponding to a first group of film structures in Embodiment 2 of the present invention.
  • FIG. 8 is a second schematic diagram of a reflectance curve corresponding to a second group of film structures in Embodiment 2 of the present invention.
  • FIG. 9 is a third schematic diagram of a reflectance curve corresponding to a third group of film structures in Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a reflectance curve corresponding to a first group of film structures in Embodiment 3 of the present invention.
  • FIG. 11 is a second schematic diagram of a reflectance curve corresponding to a second group of film structures in Embodiment 3 of the present invention.
  • FIG. 12 is a third schematic diagram of a reflectance curve corresponding to a third group of film structures in Embodiment 3 of the present invention.
  • FIG. 13 is a schematic diagram of a reflectance curve corresponding to a first group of film structures in Embodiment 4 of the present invention.
  • FIG. 14 is a second schematic diagram of a reflectance curve corresponding to a second group of film structures in Embodiment 4 of the present invention.
  • FIG. 15 is a third schematic diagram of a reflectance curve corresponding to a third group of film structures in Embodiment 4 of the present invention.
  • FIG. 16 is a schematic diagram of a reflectance curve corresponding to a first group of film structures in Embodiment 12 of the present invention.
  • FIG. 17 is a second schematic diagram of a reflectance curve corresponding to a second group of film structures in Embodiment 12 of the present invention.
  • FIG. 18 is a third schematic diagram of a reflectance curve corresponding to a third group of film structures in the twelfth embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a reflectance curve corresponding to a first group of film structures in an eighteenth embodiment of the present invention.
  • 20 is a second schematic diagram of a reflectance curve corresponding to the second group of film structures in the eighteenth embodiment of the present invention.
  • Figure 21 is a third schematic diagram of a reflectance curve corresponding to the third group of film structures in the eighteenth embodiment of the present invention.
  • the principle of the embodiment of the invention is that the mirror effect is achieved by alternately plating the titanium oxynitride coating layer and the silicon oxynitride coating layer on the lower surface of the glass substrate, and at the same time ensuring the insulation and controlling the thickness of the overall coating layer. In a very thin range, thereby reducing the impact on fingerprint detection.
  • the embodiment relates to a glass plating structure, which is mainly used in a capacitive press type fingerprint detecting system, and functions as an isolation layer covering a capacitive fingerprint sensor.
  • the structure of the glass plating layer includes glass.
  • the substrate 1 and the alternately stacked titanium oxynitride coating layer 2 and the silicon oxynitride plating layer 3 disposed on the lower surface of the glass substrate, and the overall coating layer structure formed by the multilayer coating layer are also referred to as a film. system.
  • the glass coating structure of the embodiment of the invention comprises a glass substrate, and an alternating layer of titanium oxynitride coating layer and a silicon oxynitride coating layer are disposed downwardly on the lower surface of the glass substrate, wherein in each coating layer
  • the ratio of nitrogen to oxygen is the same, ranging from 0.4:1 to 1.5:1.
  • the refractive index of the titanium oxynitride is controlled to about 1.8 to 2.1
  • the refractive index of silicon oxynitride is controlled at about 1.3-1.4.
  • the overall coating thickness can be controlled to be thin (can be controlled under the premise that the desired effect is satisfied) Within 1um), therefore, the impact on the capacitance value detection of the fingerprint sensor is small.
  • the magnitude of the capacitance value is also affected by the filled medium between the capacitor plates.
  • the capacitance value is also affected.
  • the plating structure of the embodiment of the present invention only Two kinds of nitrogen oxides are used as the plating layer. Therefore, there are few kinds of substances between the finger skin and the capacitor plate array, and there is no metal plating layer, and the overall thickness of the plating layer is very thin, from between the capacitor plates. From the perspective of the filling material, the effect is also reduced to a small extent.
  • the titanium oxynitride coating layer is located in the first layer, that is, the titanium oxynitride coating layer is first plated, and since the reflectance of the titanium oxynitride is relatively high, setting it on the first layer enables The entire film system is more colorful.
  • a mirror effect can be achieved by using the number of layers, the thickness, and the coating ratio of titanium oxynitride to silicon oxynitride: the titanium oxynitride coating layer and the coating layer of the silicon oxynitride coating layer.
  • the total number is 4-7 layers
  • the total thickness of the plating layer is between 100 nm and 950 nm
  • the ratio of the total thickness of the coating layer of the titanium oxynitride to the total thickness of the coating layer of the silicon oxynitride is between 0.4 and 1.65.
  • the glass plating structure of the present embodiment can be realized by an NCVM (non-conductive vacuum plating) process. Specifically, a vacuum space as shown in FIG. 6 is disposed, and a fixed ratio of nitrogen and oxygen is introduced thereto, wherein the ratio of nitrogen to oxygen ranges from 0.4:1 to 1.5:1, and then titanium nitrogen is alternately executed. In the oxide plating layer forming step and the silicon oxynitride plating layer forming step, a silicon oxynitride plating layer and a titanium oxynitride plating layer which are alternately laminated are formed downward on the lower surface of the glass substrate.
  • NCVM non-conductive vacuum plating
  • the step of forming the titanium oxynitride coating layer is specifically: exciting the titanium raw material provided in the sealed space by an electron gun, evaporating the titanium raw material, reacting with nitrogen and oxygen in the sealed space, and then in the glass.
  • a titanium oxynitride coating layer is formed downward on the lower surface of the substrate.
  • the silicon oxynitride coating layer forming process includes: exciting a silicon raw material disposed in the sealed space by an electron gun, evaporating the silicon raw material, reacting with nitrogen and oxygen in the sealed space, and then under the glass substrate A silicon oxynitride coating layer is formed on the surface downward.
  • the number of times of alternately performing the titanium oxynitride coating layer formation step and the silicon oxynitride coating layer formation step depends on the number of layers to be finally obtained, and the thickness of each layer is controlled by controlling the titanium oxynitride coating layer formation process and silicon nitrogen each time.
  • the oxide plating layer formation step is realized.
  • the ratio of the nitrogen atom to the oxygen atom in the compound of the coating layer is controlled to achieve the reflectance of the titanium oxynitride and the silicon oxynitride. Adjustment, thereby controlling the refractive index of titanium oxynitride to about 1.8-2.1, controlling the refractive index of silicon oxynitride to about 1.3-1.4, and controlling the layer thickness and layer thickness, in the case of thin overall thickness Underneath, a mirror effect with a brighter effect is achieved.
  • This embodiment adopts a process. Since only two common metal and semiconductor materials are used, the process is simple to implement and convenient for batch generation.
  • a titanium oxynitride plating layer forming step is performed so that the titanium oxynitride coating layer is located in the first layer, and since the reflectance of the titanium oxynitride is relatively high, In the first layer, the entire film system can be rendered more vivid colors.
  • the number of layers, the thickness, and the coating ratio of titanium oxynitride to silicon oxynitride can be achieved by control of the process (such as coating time, number of processes, etc.)
  • the total thickness of the coating layer of the silicon oxynitride coating layer is 4-7 layers, and the total thickness of the plating layer is between 100 nm and 950 nm, and the total thickness of the coating layer of the titanium oxynitride and the total coating layer of the silicon oxynitride layer
  • the thickness ratio is between 0.4 and 1.65.
  • Embodiments 1 to 10 correspond to a specific embodiment of the mirror effect of the rose gold
  • Embodiments 11 to 16 correspond to a specific embodiment of the silver mirror effect
  • Embodiments 17 to 22 correspond to the specific mirror effect of the black color.
  • Embodiments, Embodiments Twenty-three and Twenty-four are specific application product embodiments of the glass coating structure of the present invention.
  • the embodiment relates to a glass plating structure, which is mainly used in a capacitive press type fingerprint detecting system, and functions as an isolation layer covering a capacitive fingerprint sensor.
  • the structure of the glass plating layer includes a glass substrate 1 and The entire layer of the titanium oxide layer 2 and the silicon oxynitride layer 3, which are disposed alternately on the lower surface of the glass substrate, and the layer of the coating layer formed by the multilayer coating layer are also referred to as a film system.
  • the ratio of nitrogen to oxygen is approximately between 1.3:1 and 1.5:1. In practical applications, the ratio of nitrogen to oxygen is positioned as a preferred solution.
  • a plating structure in which a titanium oxynitride plating layer and the silicon oxynitride coating layer are alternately laminated is used to realize a mirror effect of the glass substrate, and the thickness can be thinner as a whole while ensuring insulation.
  • the coating is used to achieve a brightly colored mirror effect.
  • the reflectance of titanium oxynitride and silicon oxynitride is adjusted by controlling the ratio of nitrogen atoms to oxygen atoms in titanium oxynitride and silicon oxynitride between 1.3:1 and 1.5:1.
  • the refractive index of titanium oxynitride is controlled to about 1.84, and the refractive index of silicon oxynitride is controlled to about 1.31.
  • the combination of layer number and layer thickness is controlled, and the effect is relatively thin when the overall thickness is thin.
  • the titanium oxynitride coating layer is located in the first layer, that is, the titanium oxynitride coating layer is first plated, and since the reflectance of the titanium oxynitride is relatively high, setting it on the first layer enables The entire film system is more colorful.
  • the total number of coating layers of the titanium oxynitride coating layer 2 and the silicon oxynitride coating layer 3 may be 5-7 layers, and the total thickness of the plating layer may be controlled between 280 nm and 1000 nm. Further, in the embodiment of the invention, the thickness of the glass substrate may be in the range of 170-180 um, preferably 175 um.
  • the total number of the coating layers is 5, the total thickness of the coating layer of the titanium oxynitride and the silicon oxynitridation
  • the ratio of the total thickness of the coating layer of the object is between 1.55 and 1.65. This ratio is guaranteed to achieve the mirror effect of rose gold with only 5 layers of plating, and the total thickness can be controlled below 500 nm. Small impact on capacitance detection.
  • each layer can be distributed as follows:
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 45 to 70 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 55 to 90 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 45 to 70 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 55 to 90 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer, and the thickness ranges from 95 to 150 nm;
  • first layer and the third layer have the same thickness
  • second layer and the fourth layer have the same thickness
  • second layer and the fourth layer have a thickness greater than the thicknesses of the first layer and the third layer.
  • the reflectance curves of the three groups of film structures in the above table are shown in Figs. 7 to 9, in which the horizontal axis coordinate is the wavelength (nm) and the vertical axis is the refractive index (%), and the graphs of the following examples have the same horizontal and vertical coordinates. .
  • This embodiment is based on the first embodiment, and another specific plating structure is given:
  • the total number of coating layers is 6 layers, and the ratio of the total thickness of the coating layer of the titanium oxynitride to the total thickness of the coating layer of the silicon oxynitride is between 0.8 and 0.9, ensuring that the ratio can be plated only.
  • the mirror effect of rose gold is achieved, and the total thickness can be controlled below 600 nm, thereby reducing the influence on the capacitance detection.
  • each layer can be distributed as follows:
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer having a thickness ranging from 75 to 95 nm;
  • the sixth layer coating layer is a silicon oxynitride coating layer having a thickness ranging from 110 to 135 nm;
  • first layer, the third layer and the fifth layer have the same thickness
  • the second layer and the fourth layer have the same thickness
  • the thicknesses of the second layer and the fourth layer are greater than the thicknesses of the third layer and the fifth layer.
  • the total number of the coating layers is 7 layers
  • the total thickness of the coating layer of the titanium oxynitride and the silicon oxynitride is between 1.4 and 1.5. This ratio is ensured to achieve the mirror effect of rose gold with only 7 layers of plating, and the total thickness can be controlled below 950 nm, thereby reducing The effect on capacitance detection.
  • each layer can be distributed as follows:
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer, and the thickness ranges from 65 to 130 nm;
  • the sixth layer coating layer is a silicon oxynitride plating layer, and the thickness ranges from 65 to 130 nm;
  • the seventh layer coating layer is a titanium oxynitride coating layer having a thickness ranging from 80 to 170 nm;
  • the thicknesses of the first layer to the sixth layer are the same, and the thickness of the seventh layer is greater than the thickness of the first layer to the sixth layer.
  • an ink layer is disposed under the entire plating layer, and by providing an ink layer, light shielding can be better, and interference of stray light can be prevented.
  • a certain hollow pattern when printing the gray ink layer, for example, a hollow pattern of the printed fingerprint pattern, a hollow portion and a non-hollow portion, and there is a difference in light transmittance and reflectivity, thereby The upper glass observation will present a corresponding pattern on the mirror background, so that the fingerprint area can be identified or decorated.
  • a pigment different from gray may be further disposed in the hollow pattern, and more preferably, a pigment that contrasts with the gray is filled, thereby making the pattern more conspicuous.
  • This embodiment mainly describes a method for manufacturing the glass plating structure of the first embodiment.
  • the glass plating structure of the present embodiment can be realized by an NCVM (non-conductive vacuum plating) process.
  • a vacuum space as shown in FIG. 6 is disposed, and nitrogen and oxygen (preferably, nitrogen and oxygen in a ratio of 1.4:1) are introduced into the ratio between 1.3:1 and 1.5:1, and then
  • nitrogen and oxygen preferably, nitrogen and oxygen in a ratio of 1.4:1
  • the titanium oxynitride plating layer forming step and the silicon oxynitride plating layer forming step are alternately performed to form an alternately stacked silicon oxynitride plating layer and a titanium oxynitride plating layer on the lower surface of the glass substrate.
  • the step of forming the titanium oxynitride coating layer is specifically: exciting the titanium raw material provided in the sealed space by an electron gun, evaporating the titanium raw material, reacting with nitrogen and oxygen in the sealed space, and then in the glass.
  • a titanium oxynitride coating layer is formed downward on the lower surface of the substrate.
  • the silicon oxynitride coating layer forming process includes: exciting a silicon raw material disposed in the sealed space by an electron gun, evaporating the silicon raw material, reacting with nitrogen and oxygen in the sealed space, and then under the glass substrate A silicon oxynitride coating layer is formed on the surface downward.
  • the number of times of alternately performing the titanium oxynitride coating layer formation step and the silicon oxynitride coating layer formation step depends on the number of layers to be finally obtained, and the thickness of each layer is controlled by controlling the titanium oxynitride coating layer formation process and silicon nitrogen each time.
  • the oxide plating layer formation step is realized.
  • the ratio of the nitrogen atom to the oxygen atom in the compound of the coating layer is controlled to achieve the reflectance of the titanium oxynitride and the silicon oxynitride. Adjusting, so that the refractive index of titanium oxynitride is controlled at about 1.84, and the refractive index of silicon oxynitride is controlled at about 1.31, and the combination of layer number and layer thickness is controlled, and the overall thickness is thin. The mirror effect of the brighter rose gold.
  • This embodiment adopts a process. Since only two common metal and semiconductor materials are used, the process is simple to implement and convenient for batch generation.
  • a titanium oxynitride plating layer forming step is performed so that the titanium oxynitride coating layer is located in the first layer, and since the reflectance of the titanium oxynitride is relatively high, In the first layer, the entire film system can be rendered more vivid colors.
  • the total number of coating layers can be controlled in 5-7 layers, and the total thickness of the plating layer can be controlled between 280 nm and 1000 nm.
  • the thickness of the glass substrate can be 170-180 um. Within the range, it is preferably 175 um.
  • the embodiment relates to a method for manufacturing the plating structure of the second embodiment, which comprises: alternately performing a titanium oxynitride coating layer forming step and a silicon oxynitride coating layer forming step (which can be performed five times alternately).
  • the total number of coating layers is 5 layers, and the ratio of the total thickness of the coating layer of the titanium oxynitride to the total thickness of the coating layer of the silicon oxynitride is between 1.55 and 1.65.
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 45 to 70 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 55 to 90 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 45 to 70 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 55 to 90 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer, and the thickness ranges from 95 to 150 nm;
  • first layer and the third layer have the same thickness
  • second layer and the fourth layer have the same thickness
  • second layer and the fourth layer have a thickness greater than the thicknesses of the first layer and the third layer.
  • the thickness of each layer can be realized by controlling the coating time, and an example of the specific thickness of each layer has been described in the second embodiment, and details are not described herein.
  • the present embodiment relates to a method for producing a plating structure of the above-described third embodiment, which alternately executes a titanium oxynitride plating layer forming step and a silicon oxynitride coating layer forming step (which can be performed alternately six times) to make the coating
  • the total number of layers is 6 layers, and the ratio of the total thickness of the coating layer of the titanium oxynitride to the total thickness of the coating layer of the silicon oxynitride is between 0.8 and 0.9.
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 75 to 95 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer having a thickness ranging from 75 to 95 nm;
  • the sixth layer coating layer is a silicon oxynitride coating layer having a thickness ranging from 110 to 135 nm;
  • first layer, the third layer and the fifth layer have the same thickness
  • the second layer and the fourth layer have the same thickness
  • the thicknesses of the second layer and the fourth layer are greater than the thicknesses of the third layer and the fifth layer.
  • the thickness of each layer can be realized by controlling the coating time, and an example of the specific thickness of each layer has been described in the third embodiment, and details are not described herein.
  • the present embodiment relates to a method for manufacturing the plating structure of the fourth embodiment, which alternately performs a titanium oxynitride coating layer forming step and a silicon oxynitride coating layer forming step (which can be performed alternately seven times), the coating layer
  • the total number is 7 layers, and the ratio of the total thickness of the coating layer of the titanium oxynitride to the total thickness of the coating layer of the silicon oxynitride is between 1.4 and 1.5.
  • a plating structure having the following thickness plating layer is produced:
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 65 to 130 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer, and the thickness ranges from 65 to 130 nm;
  • the sixth layer coating layer is a silicon oxynitride plating layer, and the thickness ranges from 65 to 130 nm;
  • the seventh layer coating layer is a titanium oxynitride coating layer having a thickness ranging from 80 to 170 nm;
  • the thicknesses of the first layer to the sixth layer are the same, and the thickness of the seventh layer is greater than the thickness of the first layer to the sixth layer.
  • the thickness of each layer can be realized by controlling the coating time, and an example of the specific thickness of each layer has been described in the fourth embodiment, and details are not described herein.
  • This embodiment mainly describes the structure of the above-described fifth embodiment.
  • an ink layer is printed on the lower side of the plating layer, whereby light shielding can be performed better.
  • printing a layer of gray ink under the plating layer may include: printing a gray ink layer having a fingerprint pattern hollow pattern, filling a pigment different from gray in a portion having a hollow; or printing only a hollow pattern without filling the pigment.
  • the filling is preferably a pigment which contrasts with the gray color, thereby making the pattern more conspicuous.
  • the embodiment relates to a glass plating structure, which is mainly used in a capacitive press type fingerprint detecting system, and functions as an isolation layer covering a capacitive fingerprint sensor.
  • the structure of the glass plating layer includes a glass basic 1 and The entire layer of the titanium oxide layer 2 and the silicon oxynitride layer 3, which are disposed alternately on the lower surface of the glass substrate, and the layer of the coating layer formed by the multilayer coating layer are also referred to as a film system.
  • a plating structure in which a titanium oxynitride plating layer and the silicon oxynitride coating layer are alternately laminated is used to realize a mirror effect of the glass substrate, and the thickness can be thinner as a whole while ensuring insulation.
  • the coating is used to achieve a brightly colored mirror effect.
  • the reflectance of the titanium oxynitride and the silicon oxynitride is adjusted by controlling the ratio of the nitrogen atom to the oxygen atom in the titanium oxynitride and the silicon oxynitride to be between 0.8:1 and 1:1.
  • the refractive index of titanium oxynitride is controlled to about 1.92
  • the refractive index of silicon oxynitride is controlled to about 1.35.
  • the combination of layer number and layer thickness is controlled, and the effect is relatively thin when the overall thickness is thin. Bright silver mirror effect.
  • the titanium oxynitride coating layer is located in the first layer, that is, the titanium oxynitride coating layer is first plated, and since the reflectance of the titanium oxynitride is relatively high, setting it on the first layer enables The entire film system is more colorful.
  • the total number of coating layers of the titanium oxynitride coating layer 2 and the silicon oxynitride coating layer 3 is 6 layers, and the total thickness of the plating layer can be controlled between 300 nm and 550 nm. Further, in the embodiment of the invention, the thickness of the glass substrate may be in the range of 170-180 um, preferably 175 um.
  • the total number of the coating layers is 6 layers
  • the total thickness of the coating layer of the titanium oxynitride and the silicon oxynitridation The ratio of the total thickness of the coating layer of the object is between 0.4 and 0.5. This ratio is ensured to achieve a silver mirror effect with only 6 layers of plating, and the total thickness can be controlled below 550 nm, thereby reducing The effect on capacitance detection.
  • each layer can be distributed as follows:
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 50 to 80 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 70 to 120 nm;
  • the third layer coating layer is a titanium oxynitride coating layer having a thickness ranging from 20 to 40 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 60 to 105 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer, and the thickness ranges from 30 to 45 nm;
  • the sixth layer coating layer is a silicon oxynitride coating layer having a thickness ranging from 85 to 145 nm;
  • the thickness of the sixth layer is greater than the thickness of any one of the first five layers.
  • the reflectance curves of the three groups of film structures in the above table are shown in Figs. 16 to 18, in which the horizontal axis coordinate is the wavelength (nm) and the vertical axis is the refractive index (%), and the graphs of the following examples have the same horizontal and vertical coordinates. .
  • a black ink layer is disposed under the entire plating layer, and by providing the ink layer, the shading can be better prevented. Interference from stray light.
  • a certain hollow pattern when printing a black ink layer, for example, a hollow pattern of a printed fingerprint pattern, a hollow portion and a non-hollow portion, which differ in light transmittance and reflectivity, thereby The upper glass observation will appear on the mirror background
  • the corresponding pattern enables the identification or decoration of the fingerprint area.
  • a pigment different from black may be further disposed in the hollow pattern, and more preferably, a pigment that contrasts with gray is filled, for example, a white pigment is filled, thereby making the pattern more conspicuous.
  • This embodiment mainly describes the manufacturing method of the glass plating structure of the above eleventh embodiment.
  • the glass plating structure of the present embodiment can be realized by an NCVM (non-conductive vacuum plating) process.
  • a vacuum space as shown in FIG. 6 is disposed, and nitrogen and oxygen are introduced thereto in a ratio of 0.8:1 to 1:1, and then a titanium oxynitride coating layer forming process and a silicon oxynitride coating are alternately performed.
  • a titanium oxynitride coating layer forming process and a silicon oxynitride coating are alternately performed.
  • an alternately stacked silicon oxynitride plating layer and a titanium oxynitride plating layer are formed downward on the lower surface of the glass substrate.
  • the step of forming the titanium oxynitride coating layer is specifically: exciting the titanium raw material provided in the sealed space by an electron gun, evaporating the titanium raw material, reacting with nitrogen and oxygen in the sealed space, and then in the glass.
  • a titanium oxynitride coating layer is formed downward on the lower surface of the substrate.
  • the silicon oxynitride coating layer forming process includes: exciting a silicon raw material disposed in the sealed space by an electron gun, evaporating the silicon raw material, reacting with nitrogen and oxygen in the sealed space, and then under the glass substrate A silicon oxynitride coating layer is formed on the surface downward.
  • the number of times of alternately performing the titanium oxynitride coating layer formation step and the silicon oxynitride coating layer formation step depends on the number of layers to be finally obtained, and the thickness of each layer is controlled by controlling the titanium oxynitride coating layer formation process and silicon nitrogen each time.
  • the oxide plating layer formation step is realized.
  • the ratio of the nitrogen atom to the oxygen atom in the compound of the coating layer is controlled to achieve the reflectance of the titanium oxynitride and the silicon oxynitride. Adjustment, so that the refractive index of titanium oxynitride is controlled at about 1.92, and the refractive index of silicon oxynitride is controlled at about 1.35. At the same time, the combination of layer number and layer thickness is controlled, and the overall thickness is thin. A silvery mirror effect with a brighter effect.
  • This embodiment adopts a process. Since only two common metal and semiconductor materials are used, the process is simple to implement and convenient for batch generation.
  • the titanium oxynitride coating layer is formed.
  • the titanium oxynitride coating layer is located in the first layer, and since the reflectance of the titanium oxynitride is relatively high, providing the first layer in the first layer enables the entire film system to exhibit a more vivid color.
  • the total number of coating layers can be controlled in 6 layers, and the total thickness of the plating layer can be controlled between 300 nm and 550 nm.
  • the thickness of the glass substrate can be in the range of 170-180 um. Preferably, it is 175 um.
  • the present embodiment relates to a method for manufacturing the plating structure of the above-described embodiment 12, comprising: alternately performing a titanium oxynitride coating layer forming step and a silicon oxynitride coating layer forming step (which can be performed six times alternately).
  • the total number of the plating layers is 6 layers, and the ratio of the total thickness of the coating layer of the titanium oxynitride to the total thickness of the coating layer of the silicon oxynitride is between 0.4 and 0.5.
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 50 to 80 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 70 to 120 nm;
  • the third layer coating layer is a titanium oxynitride coating layer having a thickness ranging from 20 to 40 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 60 to 105 nm;
  • the fifth layer coating layer is a titanium oxynitride coating layer, and the thickness ranges from 30 to 45 nm;
  • the sixth layer coating layer is a silicon oxynitride coating layer having a thickness ranging from 85 to 145 nm;
  • the thickness of the sixth layer is greater than the thickness of any one of the first five layers.
  • the thickness of each layer can be realized by controlling the coating time, and an example of the specific thickness of each layer has been described in Embodiment 12, and details are not described herein.
  • This embodiment mainly describes the structure of the above-described thirteenth embodiment.
  • a black ink layer is printed under the plating layer, thereby enabling better shading. To prevent stray light interference.
  • printing a layer of black ink under the plating layer may include: printing with a finger
  • the black ink layer of the pattern hollow pattern is filled with a pigment different from gray in a portion having a hollow; it is also possible to print only a hollow pattern without filling the pigment.
  • the filling is preferably a pigment which contrasts with black, for example, a white pigment is filled, thereby making the pattern more conspicuous.
  • the embodiment relates to a glass plating structure, which is mainly used in a capacitive press type fingerprint detecting system, and functions as an isolation layer covering a capacitive fingerprint sensor.
  • the structure of the glass plating layer includes a glass basic 1 and The entire layer of the titanium oxide layer 2 and the silicon oxynitride layer 3, which are disposed alternately on the lower surface of the glass substrate, and the layer of the coating layer formed by the multilayer coating layer are also referred to as a film system.
  • a plating structure in which a titanium oxynitride plating layer and the silicon oxynitride coating layer are alternately laminated is used to realize a mirror effect of the glass substrate, and the thickness can be thinner as a whole while ensuring insulation.
  • the coating is used to achieve a brightly colored mirror effect.
  • the reflectance of titanium oxynitride and silicon oxynitride is adjusted by controlling the ratio of nitrogen atoms to oxygen atoms in titanium oxynitride and silicon oxynitride to be between 0.4:1 and 0.6:1.
  • the refractive index of titanium oxynitride is controlled to about 2.08, and the refractive index of silicon oxynitride is controlled to about 1.39.
  • the combination of layer number and layer thickness is controlled, and the effect is relatively thin when the overall thickness is thin. Bright, ochre mirror effect.
  • the color of L is 54
  • the value of A is -3.5 to 2.9
  • the value of B is -7.6 to 6.1.
  • the titanium oxynitride coating layer is located in the first layer, that is, the titanium oxynitride coating layer is first plated, and since the reflectance of the titanium oxynitride is relatively high, setting it on the first layer enables The entire film system is more colorful.
  • the total number of coating layers of the titanium oxynitride coating layer 2 and the silicon oxynitride coating layer 3 is 4, and the total thickness of the plating layer can be controlled between 100 nm and 150 nm. Further, in the embodiment of the invention, the thickness of the glass substrate may be in the range of 170-180 um, preferably 175 um.
  • This embodiment provides a specific plating structure on the basis of the seventeenth embodiment: the total number of the coating layers is four, the total thickness of the coating layer of the titanium oxynitride and the silicon oxynitride The ratio of the total thickness of the coating layer is between 0.4 and 0.5. This ratio is ensured to achieve a mirror effect of enamel in the case of plating only 4 layers, and the total thickness can be controlled below 150 nm, thereby reducing The effect on capacitance detection.
  • each layer can be distributed as follows:
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 5 to 10 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 50 to 85 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 25 to 40 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 15 to 25 nm.
  • the reflectance curves of the three groups of film structures in the above table are shown in Figs. 7 to 9, in which the horizontal axis coordinate is the wavelength (nm) and the vertical axis is the refractive index (%), and the graphs of the following examples have the same horizontal and vertical coordinates. .
  • the present embodiment is based on the above-described seventeenth and eighteenth embodiments.
  • a layer of black ink is disposed under the plating layer, and by providing an ink layer, it is possible to better block light and prevent stray light interference.
  • a certain hollow pattern when printing a black ink layer, for example, a hollow pattern of a printed fingerprint pattern, a hollow portion and a non-hollow portion, which differ in light transmittance and reflectivity, thereby The upper glass observation will present a corresponding pattern on the mirror background, so that the fingerprint area can be identified or decorated.
  • a pigment different from black may be further disposed in the hollow pattern, and more preferably, a pigment that contrasts with gray is filled, for example, a white pigment is filled, thereby making the pattern more conspicuous.
  • This embodiment mainly describes the manufacturing method of the glass plating layer structure of the above-mentioned seventeenth embodiment.
  • the glass plating layer structure of the present embodiment can be realized by an NCVM (non-conductive vacuum plating) process.
  • a vacuum space as shown in FIG. 6 is disposed, and nitrogen gas and oxygen gas (preferably, a ratio of nitrogen gas to oxygen gas of 0.5:1) are introduced thereto in a ratio of 0.4:1 to 0.6:1, and then alternated.
  • nitrogen gas and oxygen gas preferably, a ratio of nitrogen gas to oxygen gas of 0.5:1
  • the titanium oxynitride plating layer forming step and the silicon oxynitride plating layer forming step are performed to form an alternately stacked silicon oxynitride plating layer and a titanium oxynitride plating layer on the lower surface of the glass substrate.
  • the step of forming the titanium oxynitride coating layer is specifically: exciting the titanium raw material provided in the sealed space by an electron gun, evaporating the titanium raw material, reacting with nitrogen and oxygen in the sealed space, and then in the glass.
  • a titanium oxynitride coating layer is formed downward on the lower surface of the substrate.
  • the silicon oxynitride coating layer forming process includes: exciting a silicon raw material disposed in the sealed space by an electron gun, evaporating the silicon raw material, reacting with nitrogen and oxygen in the sealed space, and then under the glass substrate A silicon oxynitride coating layer is formed on the surface downward.
  • the number of times of alternately performing the titanium oxynitride coating layer formation step and the silicon oxynitride coating layer formation step depends on the number of layers to be finally obtained, and the thickness of each layer is controlled by controlling the titanium oxynitride coating layer formation process and silicon nitrogen each time.
  • the oxide plating layer formation step is realized.
  • the ratio of the nitrogen atom to the oxygen atom in the compound of the coating layer is controlled to achieve the titanium oxynitride and
  • the reflectance of the silicon oxynitride is adjusted so that the refractive index of the titanium oxynitride is controlled to about 2.08, and the refractive index of the silicon oxynitride is controlled to about 1.39, while controlling the number of layers and the thickness of the layer at the overall thickness. In the case of a thinner case, a mirror effect with a brighter effect is achieved.
  • This embodiment adopts a process. Since only two common metal and semiconductor materials are used, the process is simple to implement and convenient for batch generation.
  • a titanium oxynitride plating layer forming step is performed so that the titanium oxynitride coating layer is located in the first layer, and since the reflectance of the titanium oxynitride is relatively high, In the first layer, the entire film system can be rendered more vivid colors.
  • the total number of coating layers can be controlled in 4 layers, and the total thickness of the plating layer can be controlled between 100 nm and 150 nm.
  • the thickness of the glass substrate can be in the range of 170-180 um. Preferably, it is 175 um.
  • the embodiment relates to a method for manufacturing the plating structure of the second embodiment, comprising: alternately performing a titanium oxynitride coating layer forming step and a silicon oxynitride coating layer forming step (which can be performed four times alternately).
  • the total number of coating layers is 4 layers, and the ratio of the total thickness of the coating layer of the titanium oxynitride to the total thickness of the coating layer of the silicon oxynitride is between 0.4 and 0.5.
  • the first coating layer is a titanium oxynitride coating having a thickness ranging from 5 to 10 nm;
  • the second coating layer is a silicon oxynitride coating having a thickness ranging from 50 to 85 nm;
  • the third coating layer is a titanium oxynitride coating having a thickness ranging from 25 to 40 nm;
  • the fourth coating layer is a silicon oxynitride coating having a thickness ranging from 15 to 25 nm.
  • the thickness of each layer can be realized by controlling the coating time, and an example of the specific thickness of each layer has been described in the eighteenth embodiment, and details are not described herein.
  • This embodiment mainly describes the structure of the above-described nineteenth embodiment.
  • the titanium oxynitride coating layer formation process and silicon oxynitridation are alternately performed by the ink printing apparatus.
  • a black ink layer is printed on the lower side of the plating layer, so that light shielding can be better performed to prevent interference of stray light.
  • printing a layer of black ink under the plating layer may include: printing a black ink layer having a fingerprint pattern hollow pattern, filling a pigment different from gray in a portion having a hollow; or printing only a hollow pattern without filling the pigment.
  • the filling is preferably a pigment which contrasts with black, for example, a white pigment is filled, thereby making the pattern more conspicuous.
  • the embodiment relates to a fingerprint detecting device, including: a capacitive fingerprint sensor, which can be any capacitive fingerprint sensor used in the prior art, and can be an active capacitive fingerprint sensor (for example, The fingerprint sensor produced by FPC can also be a passive capacitive fingerprint sensor.
  • the glass plating structure of each of the above embodiments is attached to the upper portion of the capacitive fingerprint sensor as an isolation layer or a protective layer. The coated side faces the capacitive plate array of the capacitive fingerprint sensor, and the upper surface of the glass is externally used for contact. Fingerprint skin.
  • the embodiment relates to a mobile terminal including the fingerprint detecting device of the eleventh embodiment, such as a mobile phone, a tablet computer, etc., and an opening for performing fingerprint detection is disposed on a back cover of the mobile terminal, and the fingerprint detecting device is located at the The upper portion of the opening is exposed from the opening of the glass plating structure of the fingerprint detecting device.
  • the area where the fingerprint is recognized is placed behind the mobile terminal, and the opening of the back cover is opened to expose the glass of the rose gold color having the mirror effect as the area for fingerprint recognition. Since the glass plating layer of the embodiment of the present invention can present a bright rose gold mirror effect, the fingerprint recognition area of the mobile terminal can be made abnormal and beautiful, and the overall aesthetic effect of the mobile terminal can be improved.

Abstract

一种玻璃镀层结构的制造方法包括:向上部设置有玻璃基板的真空空间中,通入比例固定的氮气和氧气,其中,氮气与氧气的比例的取值范围为0.4:1到1.5:1;交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序,在玻璃基板的下表面向下形成交替层叠的硅氮氧化物镀膜层和钛氮氧化物镀膜层。该方法通过在玻璃基板的下表面交替镀钛氮氧化物镀膜层和硅氮氧化物镀膜层,并使镀层化合物中的氮与氧的比例相同,在0.4:1到1.5:1范围内进行取值,从而在保证绝缘性的前提下,实现了具有镜面效果的玻璃镀层结构,并且将镀层本身的厚度对指纹检测的影响控制在非常小的范围内。

Description

玻璃镀层结构的制造方法
本专利申请要求申请日为2015年10月20日、申请号为2015106832294的中国专利申请的优先权,并将上述专利申请以引用的方式全文引入本文中。
技术领域
本发明涉及一种玻璃镀层结构的制造方法,尤其涉及一种应用于指纹检测的玻璃镀层结构的制造方法。
背景技术
目前,指纹识别技术已经应用于移动终端(如,电脑)等产品上。其中,电容按压式指纹检测方法应用较为广泛,具体又分为主动式按压检测和被动式按压检测。
被动式按压检测的基本原理如图1所示,整个检测系统包括:位于底部的电容式指纹传感器10和覆盖在电容式指纹传感器10之上的隔离层(或者叫保护层,也是手指直接接触的区域)11,其中,电容式指纹传感器10包括以二维阵列排列的多个电容极板(图中示例性的标注出5个电容极板P1-P5),当手指12的皮肤与隔离层11贴合后,手指12的皮肤与电容极板之间形成电容,由于指纹的存在,在微观上形成如图1所示的情形,手指12的皮肤与隔离层11表面形成了多处嵴和峪,手指12的皮肤的不同位置与各个电容极板之间的距离是不相等的,由此,各个电容极板便与手指12的皮肤之间产生了不同的电容值,例如在嵴处形成的电容值为Cv,在峪处形成的电容值为Cr,通过度量这些电容值,能够获得指纹图像信息,即每一个电容极板作为一个像素,来收集指纹图像信息。
主动式按压检测的原理如图2所示,在被动式检测系统的基础上增加了环绕在隔离层周围11的金属环13,金属环13与底层电路连接,金属环13的作用是用来唤醒底层的电容式指纹传感器10以及通过金属环13向手指12施加一定的电流信号,从而增加手指12的皮肤上的电 荷数量,进而增强了电容极板所检测到的信号。如图3所示,其示出了通过电容式指纹传感器的检测所呈现的指纹图像信号。
在上述的指纹检测系统中,隔离层11的上下表面必须要由绝缘材料形成,不然将会破坏手指12的皮肤与电容极板之间的电容,从而无法检测到指纹信息。此外,在带有金属环13的检测系统中,隔离层11与金属环13接触的部分也必须是绝缘的,如果隔离层11导电,金属环13上的电流将会流过隔离层11,从而造成信号混乱,同样无法检测到指纹信息。
此外,由于电容式指纹传感器10的电容极板阵列的检测范围很小,这就需要手指12距离电容极板阵列很近,即要求隔离层11厚度不能很大,不然也会影响指纹检测效果,尤其是对于被动式按压检测的系统,电容式指纹传感器10对上部覆盖的隔离层11的厚度更加敏感,无法使用厚度较大的隔离层11。
随着手机、平板电脑等移动终端的迅速发展,移动终端在趋向于薄型化的同时也不断追究美观效果,隔离层11所覆盖的区域也就是进行指纹识别的区域,其在移动终端上一般处于较为突出的位置,例如设置在手机的后盖中间位置,或者设置在手机正面的下部等。因此,指纹识别区域美观程度将会直接影响手机的整体外观。但是,由于上述的诸多限制,现有技术中的采用电容按压式的指纹检测方式的移动终端,其指纹识别区域的隔离层11大多采用陶瓷或者塑料等材质,在功能上仅仅简单实现了保护电容式指纹传感器10的隔离封装作用,但是,在指纹检测装置上无法实现玻璃镜面。
现有技术中,玻璃镜面的镀膜技术较为成熟,但是,由于一般的镜面镀膜,不会对绝缘性和厚度要求较高,一般会采用直接镀金属的方式,或者通过多层的镀膜来实现想要的效果,这样形成的镀膜层一般较厚或者不绝缘,因此,无法满足指纹检测的厚度要求。此外,上述的指纹检测系统本身采用的是电容检测原理,手指12的皮肤与电容极板阵列分别作为电容的两极,根据电容计算公式可知,电容的大小除了与电容极板之间的距离有关,还与电容极板之间的介质有关,镀膜层的引入将会增加电容极板之间的介质数量,从而影响电容值的大小,镀膜层的厚度 越大,对电容值的影响也越大,因此,为了不对指纹检测造成严重的影响,客观上也无法允许存在很厚的镀膜层存在。
发明内容
本发明的目的在于提供一种玻璃镀层结构的制造方法,其制造出的玻璃镀层结构能够对指纹检测效果影响较小的前提下,使得指纹检测区域呈现镜面效果。
为了实现上述目的,本发明提供了一种玻璃镀层结构,包括一玻璃基板,在所述玻璃基板的下表面向下设置有交替层叠的钛氮氧化物镀膜层和硅氮氧化物镀膜层,其中,在各个镀膜层中的钛氮氧化物与硅氮氧化物的分子式中,氮与氧的比例相同,取值范围为0.4:1到1.5:1。
本发明还提供了一种指纹检测装置,包括:电容式指纹传感器,在所述电容式指纹传感器的上部贴附有上述玻璃镀层结构。
本发明又提供了一种包括上述指纹检测装置的移动终端,所述移动终端的后盖上开设有用于进行指纹检测的开口,所述指纹检测装置位于所述开口下部,所述指纹检测装置的玻璃镀层结构的上面从所述开口露出。
本发明再提供了一种玻璃镀层结构的制造方法,包括:
向上部设置有玻璃基板的真空空间中,通入比例固定的氮气和氧气,其中,氮气与氧气的比例的取值范围为0.4:1到1.5:1;
交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序,在玻璃基板的下表面向下形成交替层叠的硅氮氧化物镀膜层和钛氮氧化物镀膜层;
所述钛氮氧化物镀膜层生成工序包括:通过电子枪激发设置在所述密闭空间中的钛原料,使所述钛原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成钛氮氧化物镀膜层;
所述硅氮氧化物镀膜层生成工序包括:通过电子枪激发设置在所述密闭空间中的硅原料,使所述硅原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成硅氮氧化物镀膜层。
本发明提供的玻璃镀层结构的制造方法以,通过在玻璃基板的下表面交替镀钛氮氧化物镀膜层和硅氮氧化物镀膜层,并使镀层化合物中的 氮与氧的比例相同,且在0.4:1到1.5:1的范围内进行取值,从而在保证绝缘性的前提下,实现了具有镜面效果的玻璃镀层结构,并且将镀层本身的厚度对指纹检测的影响控制在非常小的范围内。
附图说明
图1为现有技术的指纹检测原理的示意图之一;
图2为现有技术的指纹检测原理的示意图之二;
图3为现有技术的指纹检测图像信号的示意图;
图4本发明实施例的玻璃镀层结构的示意图之一;
图5为本发明实施例的玻璃镀层结构的示意图之二;
图6为本发明实施例的镀膜原理示意图;
图7为本发明实施例二中第一组膜系结构对应的反射率曲线示意图之一;
图8为本发明实施例二中第二组膜系结构对应的反射率曲线示意图之二;
图9为本发明实施例二中第三组膜系结构对应的反射率曲线示意图之三;
图10为本发明实施例三中第一组膜系结构对应的反射率曲线示意图之一;
图11为本发明实施例三中第二组膜系结构对应的反射率曲线示意图之二;
图12为本发明实施例三中第三组膜系结构对应的反射率曲线示意图之三;
图13为本发明实施例四中第一组膜系结构对应的反射率曲线示意图之一;
图14为本发明实施例四中第二组膜系结构对应的反射率曲线示意图之二;
图15为本发明实施例四中第三组膜系结构对应的反射率曲线示意图之三;
图16为本发明实施例十二中第一组膜系结构对应的反射率曲线示意图之一;
图17为本发明实施例十二中第二组膜系结构对应的反射率曲线示意图之二;
图18为本发明实施例十二中第三组膜系结构对应的反射率曲线示意图之三;
图19为本发明实施例十八中第一组膜系结构对应的反射率曲线示意图之一;
图20为本发明实施例十八中第二组膜系结构对应的反射率曲线示意图之二;
图21为本发明实施例十八中第三组膜系结构对应的反射率曲线示意图之三。
具体实施方式
下面结合附图对本发明实施例进行详细描述。
本发明实施例的原理在于,通过在玻璃基板的下表面交替镀钛氮氧化物镀膜层和硅氮氧化物镀膜层,来实现镜面效果,同时还要保证绝缘性并且要将整体镀层的厚度控制在非常薄的范围内,从而减小对指纹检测的影响。
具体地,如图3所示,本实施例涉及一种玻璃镀层结构,主要应用于电容按压式指纹检测系统中,充当覆盖在电容式指纹传感器之上的隔离层,该玻璃镀层的结构包括玻璃基板1和在所述玻璃基板的下表面向下设置的交替层叠的钛氮氧化物镀膜层2和硅氮氧化物镀膜层3,多层镀膜层所形成的整体的镀膜层结构也称为膜系。
本发明实施例的玻璃镀层结构,包括一玻璃基板,在所述玻璃基板的下表面向下设置有交替层叠的钛氮氧化物镀膜层和硅氮氧化物镀膜层,其中,在各个镀膜层中的钛氮氧化物与硅氮氧化物的分子式中,氮与氧的比例相同,取值范围为0.4:1到1.5:1。
在上述结构中,通过采用交替层叠的钛氮氧化物镀膜层和硅氮氧化物镀膜层,并通过控制氮与氧的比例相同,将钛氮氧化物的折射率控制在1.8-2.1左右,将硅氮氧化物的折射率控制在1.3-1.4左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了的镜面效果,并且具有绝缘性,不会影响指纹传感器的检测。
具体地,由于电容值的大小受到电容极板之间的距离的影响,在本发明实施例的结构中,能够将整体的镀膜厚度控制得很薄(在满足所需效果的前提下,能够控制在1um以内),因此,对于指纹传感器的电容值检测影响很小。
此外,电容值的大小也会受到电容极板之间的填充的介质的影响,当填充物质种类越多时,也会对电容值造成一定的影响,在本发明的实施例的镀层结构中,仅采用了两种氮氧化物作为镀层,因此,在手指皮肤与电容极板阵列之间的物质的种类较少,并且没有金属类镀层,而且镀层的整体厚度又很薄,从电容极板之间填充物质的角度来说,影响也降低到了很小。
较为优选地,将钛氮氧化物镀膜层位于第一层,即最先镀上钛氮氧化物镀膜层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
具体地,可以采用如下的层数、厚度以及钛氮氧化物与硅氮氧化物的镀膜比,来实现镜面效果:所述钛氮氧化物镀膜层和所述硅氮氧化物镀膜层的镀膜层总数为4-7层,镀层总厚度在100nm至950nm之间,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.4至1.65之间。从上述数据可以看出,通过合理地进行膜系设计,能够将镀膜层的总厚度设置控制在1um以内,对指纹传感器的电容值检测影响很小。
相应地,上述玻璃镀层结构的制作原理如图6所示,本实施例的玻璃镀层结构可以采用NCVM(不导电真空电镀)工艺来实现。具体地,设置如图6所示的真空空间,并向其中通入比例固定的氮气和氧气,其中,氮气与氧气的比例的取值范围为0.4:1到1.5:1,然后交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序,从而在玻璃基板的下表面向下形成交替层叠的硅氮氧化物镀膜层和钛氮氧化物镀膜层。
其中,钛氮氧化物镀膜层生成工序具体为:通过电子枪激发设置在所述密闭空间中的钛原料,使所述钛原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成钛氮氧化物镀膜层。
硅氮氧化物镀膜层生成工序包括:通过电子枪激发设置在所述密闭空间中的硅原料,使所述硅原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成硅氮氧化物镀膜层。
交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序的次数取决于要最终获得的层数,而每层的厚度通过控制每次钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序来实现。
在上述工艺中,通过控制通入的氮气和氧气的比例,来实现对镀膜层的化合物中氮原子和氧原子的比例的控制,从而达到对钛氮氧化物和硅氮氧化物的反射率的调整,从而将钛氮氧化物的折射率控制在1.8-2.1左右,将硅氮氧化物的折射率控制在1.3-1.4左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了效果较为亮丽的镜面效果。本实施例采用工艺,由于仅使用了两种常见的金属和半导体材料,因此,其工艺实现上较为简单,便于进行批量生成。
此外,较为优选地,在镀膜工艺中,首先进行钛氮氧化物镀膜层生成工序,使得钛氮氧化物镀膜层位于第一层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
具体可以通过工序过程的控制(如镀膜时间、工序次数等),实现上述的层数、厚度以及钛氮氧化物与硅氮氧化物的镀膜比,即所述钛氮氧化物镀膜层和所述硅氮氧化物镀膜层的镀膜层总数为4-7层,镀层总厚度在100nm至950nm之间,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.4至1.65之间。
下面分别以玫瑰金、银色以及锖色这三种颜色的镜面镀层结构为例来说明以下本发明的技术方案,其中,三种颜色的结构示意图和制造原理示意图均使用图4至图6来示例性的说明。
其中,实施例一至十对应玫瑰金的镜面效果的具体实施方式,实施例十一至十六对应银色的镜面效果的具体实施方式,实施例十七至二十二对应锖色的镜面效果的具体实施方式,实施例二十三和二十四为本发明的玻璃镀层结构的具体应用产品实施例。
实施例一
如图3所示,本实施例涉及一种玻璃镀层结构,主要应用于电容按压式指纹检测系统中,充当覆盖在电容式指纹传感器之上的隔离层,该玻璃镀层的结构包括玻璃基板1和在所述玻璃基板的下表面向下设置的交替层叠的钛氮氧化物镀膜层2和硅氮氧化物镀膜层3,多层镀膜层所形成的整体的镀膜层结构也称为膜系。
其中,钛氮氧化物与硅氮氧化物的分子式中,氮与氧的比例大致为1.3:1至1.5:1之间,在实际应用中,作为较为选的方案,将氮与氧的比例定位在1.4:1,即钛氮氧化物和硅氮氧化物分子式可以表示为TINxOy和SINxOy,其中x=1.4y。
在上述结构中,采用了钛氮氧化物镀膜层和所述硅氮氧化物镀膜层交替层叠的镀层结构,来实现玻璃基板的镜面效果,在保证绝缘性的前提下,能够以整体厚度较薄的镀层来实现颜色鲜艳的镜面效果。
具体地,通过将钛氮氧化物和硅氮氧化物中氮原子与氧原子的比例控制在1.3:1至1.5:1之间,来对钛氮氧化物和硅氮氧化物的反射率进行调整,将钛氮氧化物的折射率控制在1.84左右,将硅氮氧化物的折射率控制在1.31左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了效果较为亮丽的玫瑰金的镜面效果。这里所说的玫瑰金颜色所对应的光波长大致在565-570nm的范围内,该颜色的L=80、A值=8.65-11.1、B值=0.9-3.4。
较为优选地,将钛氮氧化物镀膜层位于第一层,即最先镀上钛氮氧化物镀膜层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
在本实施例中,所述钛氮氧化物镀膜层2和所述硅氮氧化物镀膜层3的镀膜层总数可以为5-7层,镀层总厚度可以控制在280nm至1000nm之间。另外,在本发明的实施例中,玻璃基板的厚度可以在170-180um的范围内,优选为175um。
实施例二
本实施例在实施例一的基础上,给出了一种具体的镀层结构:所述镀膜层总数为5层,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化 物的镀膜层的总厚度之比在1.55到1.65之间,保证这个比例就能够在仅镀5层镀膜层的情况下实现玫瑰金的镜面效果,并且能够将总厚度控制在500nm以下,从而减小对电容检测的影响。
其中,每层的结构可以采用如下厚度分配:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为45-70nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为55-90nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为45-70nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为55-90nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为95-150nm;
其中,第一层与第三层的厚度相同,第二层与第四层的厚度相同,并且第二层与第四层的厚度大于第一层与第三层的厚度。
具体地,给出下表中三组具体膜系结构示例:
Figure PCTCN2016071768-appb-000001
上表中三组膜系结构的反射率曲线如图7至图9所示,其中横轴坐标为波长(nm),纵轴为折射率(%),以下实施例的曲线图横纵坐标相同。
实施例三
本实施例在实施例一的基础上,给出了另一种具体的镀层结构:所 述镀膜层总数为6层,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.8到0.9之间,保证这个比例就能够在仅镀6层镀膜层的情况下实现玫瑰金的镜面效果,并且能够将总厚度控制在600nm以下,从而减小对电容检测的影响。
其中,每层的结构可以采用如下厚度分配:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为75-95nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为75-95nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为75-95nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为75-95nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为75-95nm;
所述第六层镀膜层为硅氮氧化物镀层,厚度范围为110-135nm;
其中,第一层、第三层以及第五层的厚度相同,第二层与第四层的厚度相同,并且第二层与第四层的厚度大于、第三层以及第五层的厚度。
具体地,给出下表中三组具体膜系结构示例:
Figure PCTCN2016071768-appb-000002
上表中三组膜系结构的反射率曲线如图10至图12所示。
实施例四
本实施例在实施例一的基础上,给出了又一种具体的镀层结构:所述镀膜层总数为7层,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在1.4到1.5之间,保证这个比例就能够在仅镀7层镀膜层的情况下实现玫瑰金的镜面效果,并且能够将总厚度控制在950nm以下,从而减小对电容检测的影响。
其中,每层的结构可以采用如下厚度分配:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为65-130nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为65-130nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为65-130nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为65-130nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为65-130nm;
所述第六层镀膜层为硅氮氧化物镀层,厚度范围为65-130nm;
所述第七层镀膜层为钛氮氧化物镀层,厚度范围为80-170nm;
其中,第一层至第六层的厚度相同,第七层的厚度大于第一层至第六层的厚度。
具体地,给出下表中三组具体膜系结构示例:
Figure PCTCN2016071768-appb-000003
上表中三组膜系结构的反射率曲线如图13至图16所示。
实施例五
如图5所示,本实施例在上述各实施例的基础上,在整个镀层的下方设置有有一层油墨层,通过设置油墨层,能够更好地进行遮光,防止杂光的干扰,针对发明要实现的颜色,优选印刷灰色油墨层,灰色油墨层能够对底色进行调节,从而呈现更好的玫瑰金效果。
进一步地,还可以在印刷灰色油墨层的时候,印刷一定的镂空图案,例如,印刷指纹图形的镂空图案,镂空部分和非镂空的部分,在透光性和反射性上存在差异,从而在从上层玻璃观察将会在镜面背景下呈现出相应的图案,从而能够实现指纹区域进行标识或者装饰。优选地,可以在镂空图案中再设置区别于灰色的颜料,更优选地,填充与灰色形成反差的颜料,从而让图案更加明显。
实施例六
本实施例主要说明制造上述实施例一的玻璃镀层结构制造方法,如6所示,本实施例的玻璃镀层结构可以采用NCVM(不导电真空电镀)工艺来实现。
具体地,设置如图6所示的真空空间,并向其中通入比例在1.3:1至1.5:1之间氮气和氧气(优选地,通入比例为1.4:1的氮气和氧气),然后交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序,从而在玻璃基板的下表面向下形成交替层叠的硅氮氧化物镀膜层和钛氮氧化物镀膜层。
其中,钛氮氧化物镀膜层生成工序具体为:通过电子枪激发设置在所述密闭空间中的钛原料,使所述钛原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成钛氮氧化物镀膜层。
硅氮氧化物镀膜层生成工序包括:通过电子枪激发设置在所述密闭空间中的硅原料,使所述硅原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成硅氮氧化物镀膜层。
交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序的次数取决于要最终获得的层数,而每层的厚度通过控制每次钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序来实现。
在上述工艺中,通过控制通入的氮气和氧气的比例,来实现对镀膜层的化合物中氮原子和氧原子的比例的控制,从而达到对钛氮氧化物和硅氮氧化物的反射率的调整,从而将钛氮氧化物的折射率控制在1.84左右,将硅氮氧化物的折射率控制在1.31左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了效果较为亮丽的玫瑰金的镜面效果。本实施例采用工艺,由于仅使用了两种常见的金属和半导体材料,因此,其工艺实现上较为简单,便于进行批量生成。
此外,较为优选地,在镀膜工艺中,首先进行钛氮氧化物镀膜层生成工序,使得钛氮氧化物镀膜层位于第一层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
此外,在本实施例中,镀膜层总数可以控制在5-7层,镀层总厚度可以控制在280nm至1000nm之间,另外,在本发明的实施例中,玻璃基板的厚度可以在170-180um的范围内,优选为175um。
实施例七
本实施例涉及制造上述实施例二的镀层结构的制造方法,包括:交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序(可以交替执行五次即可实现),使所述镀膜层总数为5层,并且所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在1.55到1.65之间。
具体地,通过交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层工序,生成如下厚度的镀层结构:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为45-70nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为55-90nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为45-70nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为55-90nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为95-150nm;
其中,第一层与第三层的厚度相同,第二层与第四层的厚度相同,并且第二层与第四层的厚度大于第一层与第三层的厚度。
其中,每层的厚度可以通过控制镀膜时间来实现,每层的具体厚度的示例在实施例二中已经说明,在此不在赘述。
实施例八
本实施例涉及制造上述实施例三的镀层结构的制造方法,交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序(可以交替执行六次即可实现),使所述镀膜层总数为6层,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.8到0.9之间。
具体地,通过交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层工序,生成如下厚度的镀层结构:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为75-95nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为75-95nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为75-95nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为75-95nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为75-95nm;
所述第六层镀膜层为硅氮氧化物镀层,厚度范围为110-135nm;
其中,第一层、第三层以及第五层的厚度相同,第二层与第四层的厚度相同,并且第二层与第四层的厚度大于、第三层以及第五层的厚度。
其中,每层的厚度可以通过控制镀膜时间来实现,每层的具体厚度的示例在实施例三中已经说明,在此不在赘述。
实施例九
本实施例涉及制造上述实施例四的镀层结构的制造方法,交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序(可以交替执行七次即可实现),所述镀膜层总数为7层,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在1.4到1.5之间。
具体地,通过交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀 膜层工序,生成如下厚度镀层的镀层结构:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为65-130nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为65-130nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为65-130nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为65-130nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为65-130nm;
所述第六层镀膜层为硅氮氧化物镀层,厚度范围为65-130nm;
所述第七层镀膜层为钛氮氧化物镀层,厚度范围为80-170nm;
其中,第一层至第六层的厚度相同,第七层的厚度大于第一层至第六层的厚度。
其中,每层的厚度可以通过控制镀膜时间来实现,每层的具体厚度的示例在实施例四中已经说明,在此不在赘述。
实施例十
本实施例主要说明制作上述实施例五涉及的结构。在本实施例中通过油墨印刷设备,在交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序后,在镀层的下方印刷一层油墨层,从而能够更好地进行遮光,防止杂光的干扰,针对发明要实现的颜色,优选印刷灰色油墨层,能够对底色进行调节,从而呈现更好的玫瑰金效果。
进一步地,在镀层下方印刷一层灰色油墨层可以包括:印刷具有指纹图形镂空图案的灰色油墨层,在具有镂空的部分填充区别于灰色的颜料;也可以只印刷镂空图案而不填充颜料。其中,填充优选与灰色形成反差的颜料,从而让图案更加明显。
实施例十一
如图4所示,本实施例涉及一种玻璃镀层结构,主要应用于电容按压式指纹检测系统中,充当覆盖在电容式指纹传感器之上的隔离层,该玻璃镀层的结构包括玻璃基本1和在所述玻璃基板的下表面向下设置的交替层叠的钛氮氧化物镀膜层2和硅氮氧化物镀膜层3,多层镀膜层所形成的整体的镀膜层结构也称为膜系。
其中,钛氮氧化物与硅氮氧化物的分子式中,氮与氧的比例大致在0.8:1至1:1之间,在实际应用中,较为优选地,将氮与氧的比例定位在0.9:1,即钛氮氧化物和硅氮氧化物分子式可以表示为TINxOy和SINxOy,其中x=0.9y。
在上述结构中,采用了钛氮氧化物镀膜层和所述硅氮氧化物镀膜层交替层叠的镀层结构,来实现玻璃基板的镜面效果,在保证绝缘性的前提下,能够以整体厚度较薄的镀层来实现颜色鲜艳的镜面效果。
具体地,通过将钛氮氧化物和硅氮氧化物中氮原子与氧原子的比例控制在0.8:1至1:1之间,来对钛氮氧化物和硅氮氧化物的反射率进行调整,将钛氮氧化物的折射率控制在1.92左右,将硅氮氧化物的折射率控制在1.35左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了效果较为亮丽的银色的镜面效果。这里所说的银色的L=75、A值=-1.5-0.8、B值=-2.5-5.6。
较为优选地,将钛氮氧化物镀膜层位于第一层,即最先镀上钛氮氧化物镀膜层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
在本实施例中,所述钛氮氧化物镀膜层2和所述硅氮氧化物镀膜层3的镀膜层总数为6层,镀层总厚度可以控制在300nm至550nm之间。另外,在本发明的实施例中,玻璃基板的厚度可以在170-180um的范围内,优选为175um。
实施例十二
本实施例在实施例石十一的基础上,给出了一种具体的镀层结构:所述镀膜层总数为6层,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.4到0.5之间,保证这个比例就能够在仅镀6层镀膜层的情况下实现银色的镜面效果,并且能够将总厚度控制在550nm以下,从而减小对电容检测的影响。
其中,每层的结构可以采用如下厚度分配:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为50-80nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为70-120nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为20-40nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为60-105nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为30-45nm;
所述第六层镀膜层为硅氮氧化物镀层,厚度范围为85-145nm;
其中,第六层的厚度大于前五层任意一层的厚度。
具体地,给出下表中三组具体膜系结构示例:
Figure PCTCN2016071768-appb-000004
上表中三组膜系结构的反射率曲线如图16至图18所示,其中横轴坐标为波长(nm),纵轴为折射率(%),以下实施例的曲线图横纵坐标相同。
实施例十三
如图5所示,本实施例在上述各实施例十一和实施例十二的基础上,在整个镀层的下方设置有一层黑色油墨层,通过设置油墨层,能够更好地进行遮光,防止杂光的干扰。
进一步地,还可以在印刷黑色油墨层的时候,印刷一定的镂空图案,例如,印刷指纹图形的镂空图案,镂空部分和非镂空的部分,在透光性和反射性上存在差异,从而在从上层玻璃观察将会在镜面背景下呈现出 相应的图案,从而能够实现指纹区域进行标识或者装饰。优选地,可以在镂空图案中再设置区别于黑色的颜料,更优选地,填充与灰色形成反差的颜料,例如,填充白色颜料,从而让图案更加明显。
实施例十四
本实施例主要说明制造上述实施例十一的玻璃镀层结构制造方法,如6所示,本实施例的玻璃镀层结构可以采用NCVM(不导电真空电镀)工艺来实现。
具体地,设置如图6所示的真空空间,并向其中通入比例在0.8:1至1:1之间氮气和氧气,然后交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序,从而在玻璃基板的下表面向下形成交替层叠的硅氮氧化物镀膜层和钛氮氧化物镀膜层。
其中,钛氮氧化物镀膜层生成工序具体为:通过电子枪激发设置在所述密闭空间中的钛原料,使所述钛原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成钛氮氧化物镀膜层。
硅氮氧化物镀膜层生成工序包括:通过电子枪激发设置在所述密闭空间中的硅原料,使所述硅原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成硅氮氧化物镀膜层。
交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序的次数取决于要最终获得的层数,而每层的厚度通过控制每次钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序来实现。
在上述工艺中,通过控制通入的氮气和氧气的比例,来实现对镀膜层的化合物中氮原子和氧原子的比例的控制,从而达到对钛氮氧化物和硅氮氧化物的反射率的调整,从而将钛氮氧化物的折射率控制在1.92左右,将硅氮氧化物的折射率控制在1.35左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了效果较为亮丽的银色的镜面效果。本实施例采用工艺,由于仅使用了两种常见的金属和半导体材料,因此,其工艺实现上较为简单,便于进行批量生成。
此外,较为优选地,在镀膜工艺中,首先进行钛氮氧化物镀膜层生 成工序,使得钛氮氧化物镀膜层位于第一层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
此外,在本实施例中,镀膜层总数可以控制在6层,镀层总厚度可以控制在300nm至550nm之间,另外,在本发明的实施例中,玻璃基板的厚度可以在170-180um的范围内,优选为175um。
实施例十五
本实施例涉及制造上述实施例十二的镀层结构的制造方法,包括:交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序(可以交替执行六次即可实现),使所述镀膜层总数为6层,并且所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.4到0.5之间。
具体地,通过交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层工序,生成如下厚度的镀层结构:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为50-80nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为70-120nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为20-40nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为60-105nm;
所述第五层镀膜层为钛氮氧化物镀层,厚度范围为30-45nm;
所述第六层镀膜层为硅氮氧化物镀层,厚度范围为85-145nm;
其中,第六层的厚度大于前五层任意一层的厚度。
其中,每层的厚度可以通过控制镀膜时间来实现,每层的具体厚度的示例在实施例十二中已经说明,在此不在赘述。
实施例十六
本实施例主要说明制作上述实施例十三涉及的结构。在本实施例中通过油墨印刷设备,在交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序后,在镀层的下方印刷一层黑色油墨层,从而能够更好地进行遮光,防止杂光的干扰。
进一步地,在镀层下方印刷一层黑色油墨层可以包括:印刷具有指 纹图形镂空图案的黑色油墨层,在具有镂空的部分填充区别于灰色的颜料;也可以只印刷镂空图案而不填充颜料。其中,填充优选与黑色形成反差的颜料,例如,填充白色颜料,从而让图案更加明显。
实施例十七
如图4所示,本实施例涉及一种玻璃镀层结构,主要应用于电容按压式指纹检测系统中,充当覆盖在电容式指纹传感器之上的隔离层,该玻璃镀层的结构包括玻璃基本1和在所述玻璃基板的下表面向下设置的交替层叠的钛氮氧化物镀膜层2和硅氮氧化物镀膜层3,多层镀膜层所形成的整体的镀膜层结构也称为膜系。
其中,钛氮氧化物与硅氮氧化物的分子式中,氮与氧的比例大致在0.4:1到0.6:1之间,在实际应用中,较为优选地,将氮与氧的比例定位在0.5:1,即钛氮氧化物和硅氮氧化物分子式可以表示为TINxOy和SINxOy,其中x=0.5y。
在上述结构中,采用了钛氮氧化物镀膜层和所述硅氮氧化物镀膜层交替层叠的镀层结构,来实现玻璃基板的镜面效果,在保证绝缘性的前提下,能够以整体厚度较薄的镀层来实现颜色鲜艳的镜面效果。
具体地,通过将钛氮氧化物和硅氮氧化物中氮原子与氧原子的比例控制在0.4:1到0.6:1之间,来对钛氮氧化物和硅氮氧化物的反射率进行调整,将钛氮氧化物的折射率控制在2.08左右,将硅氮氧化物的折射率控制在1.39左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了效果较为亮丽的锖色的镜面效果。这里所说的锖色的L=54、A值=-3.5-2.9、B值=-7.6-6.1。
较为优选地,将钛氮氧化物镀膜层位于第一层,即最先镀上钛氮氧化物镀膜层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
在本实施例中,所述钛氮氧化物镀膜层2和所述硅氮氧化物镀膜层3的镀膜层总数为4层,镀层总厚度可以控制在100nm至150nm之间。另外,在本发明的实施例中,玻璃基板的厚度可以在170-180um的范围内,优选为175um。
实施例十八
本实施例在实施例十七的基础上,给出了一种具体的镀层结构:所述镀膜层总数为4层,所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.4到0.5之间,保证这个比例就能够在仅镀4层镀膜层的情况下实现锖色的镜面效果,并且能够将总厚度控制在150nm以下,从而减小对电容检测的影响。
其中,每层的结构可以采用如下厚度分配:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为5-10nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为50-85nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为25-40nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为15-25nm。
具体地,给出下表中三组具体膜系结构示例:
Figure PCTCN2016071768-appb-000005
上表中三组膜系结构的反射率曲线如图7至图9所示,其中横轴坐标为波长(nm),纵轴为折射率(%),以下实施例的曲线图横纵坐标相同。
实施例十九
如图5所示,本实施例在上述实施例十七和十八的基础上,在整个 镀层的下方设置有有一层黑色油墨层,通过设置油墨层,能够更好地进行遮光,防止杂光的干扰。
进一步地,还可以在印刷黑色油墨层的时候,印刷一定的镂空图案,例如,印刷指纹图形的镂空图案,镂空部分和非镂空的部分,在透光性和反射性上存在差异,从而在从上层玻璃观察将会在镜面背景下呈现出相应的图案,从而能够实现指纹区域进行标识或者装饰。优选地,可以在镂空图案中再设置区别于黑色的颜料,更优选地,填充与灰色形成反差的颜料,例如,填充白色颜料,从而让图案更加明显。
实施例二十
本实施例主要说明制造上述实施例十七的玻璃镀层结构制造方法,如6所示,本实施例的玻璃镀层结构可以采用NCVM(不导电真空电镀)工艺来实现。
具体地,设置如图6所示的真空空间,并向其中通入比例在0.4:1到0.6:1之间的氮气和氧气(优选地,氮气和氧气的比例为0.5:1),然后交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序,从而在玻璃基板的下表面向下形成交替层叠的硅氮氧化物镀膜层和钛氮氧化物镀膜层。
其中,钛氮氧化物镀膜层生成工序具体为:通过电子枪激发设置在所述密闭空间中的钛原料,使所述钛原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成钛氮氧化物镀膜层。
硅氮氧化物镀膜层生成工序包括:通过电子枪激发设置在所述密闭空间中的硅原料,使所述硅原料蒸发,与所述密闭空间中的氮气和氧气发生反应后,在玻璃基板的下表面向下形成硅氮氧化物镀膜层。
交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序的次数取决于要最终获得的层数,而每层的厚度通过控制每次钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序来实现。
在上述工艺中,通过控制通入的氮气和氧气的比例,来实现对镀膜层的化合物中氮原子和氧原子的比例的控制,从而达到对钛氮氧化物和 硅氮氧化物的反射率的调整,从而将钛氮氧化物的折射率控制在2.08左右,将硅氮氧化物的折射率控制在1.39左右,同时结合层数和层厚的控制,在整体厚度较薄的情况下,实现了效果较为亮丽的锖色的镜面效果。本实施例采用工艺,由于仅使用了两种常见的金属和半导体材料,因此,其工艺实现上较为简单,便于进行批量生成。
此外,较为优选地,在镀膜工艺中,首先进行钛氮氧化物镀膜层生成工序,使得钛氮氧化物镀膜层位于第一层,由于钛氮氧化物的反射率比较高,因此,将其设在第一层能够使整个膜系呈现出更加艳丽的颜色。
此外,在本实施例中,镀膜层总数可以控制在4层,镀层总厚度可以控制在100nm至150nm之间,另外,在本发明的实施例中,玻璃基板的厚度可以在170-180um的范围内,优选为175um。
实施例二十一
本实施例涉及制造上述实施例二的镀层结构的制造方法,包括:交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序(可以交替执行四次即可实现),使所述镀膜层总数为4层,并且所述钛氮氧化物的镀膜层的总厚度与所述硅氮氧化物的镀膜层的总厚度之比在0.4到0.5之间。
具体地,通过交替执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层工序,生成如下厚度的镀层结构:
所述第一层镀膜层为钛氮氧化物镀层,厚度范围为5-10nm;
所述第二层镀膜层为硅氮氧化物镀层,厚度范围为50-85nm;
所述第三层镀膜层为钛氮氧化物镀层,厚度范围为25-40nm;
所述第四层镀膜层为硅氮氧化物镀层,厚度范围为15-25nm。
其中,每层的厚度可以通过控制镀膜时间来实现,每层的具体厚度的示例在实施例十八中已经说明,在此不在赘述。
实施例二十二
本实施例主要说明制作上述实施例十九涉及的结构。在本实施例中通过油墨印刷设备,在交替执行钛氮氧化物镀膜层生成工序和硅氮氧化 物镀膜层生成工序后,在镀层的下方印刷一层黑色油墨层,从而能够更好地进行遮光,防止杂光的干扰。
进一步地,在镀层下方印刷一层黑色油墨层可以包括:印刷具有指纹图形镂空图案的黑色油墨层,在具有镂空的部分填充区别于灰色的颜料;也可以只印刷镂空图案而不填充颜料。其中,填充优选与黑色形成反差的颜料,例如,填充白色颜料,从而让图案更加明显。
实施例二十三
本实施例涉及一种指纹检测装置,包括:电容式指纹传感器,该电容式指纹传感器可以为现有技术中采用的任一一款电容式指纹传感器,可以是主动式的电容式指纹传感器(例如FPC公司生产的指纹传感器),也可以是被动式电容式指纹传感器。在上述电容式指纹传感器的上部贴附有上述各实施例的玻璃镀层结构,以作为隔离层或者保护层,镀膜的一面朝向电容式指纹传感器的电容极板阵列,玻璃的上面对外,用于接触指纹皮肤。
实施例二十四
本实施例涉及一种包含实施例十一的指纹检测装置的移动终端,例如手机、平板电脑等,在移动终端的后盖上开设有用于进行指纹检测的开口,所述指纹检测装置位于所述开口下部,所述指纹检测装置的玻璃镀层结构的上面从所述开口露出。上述结构中,将指纹识别的区域设置在了移动终端的后面,通过在后盖上开设开口,让具有镜面效果的玫瑰金颜色的玻璃露出,作为指纹识别的区域。由于本发明实施例的玻璃镀层能够呈现亮丽的玫瑰金镜面效果,因此,能够使得移动终端的指纹识别区域异常明显和美观,能够提成移动终端的整体美观效果。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种玻璃镀层结构的制造方法,其特征在于,包括:
    向一侧设置有玻璃基板的密闭空间中,通入氮气和氧气,所述密闭空间为真空空间;其中,通入的氮气与氧气的比例在0.4:1到1.5:1之间;
    执行氮氧化合物生成工序,在所述玻璃基板的一侧形成氮氧化合物镀膜层。
  2. 根据权利要求1所述的制造方法,其特征在于,所述执行氮氧化合物生成工序,在所述玻璃基板的一侧形成氮氧化合物镀膜层包括:
    交替地执行氮氧化合物生成工序,在所述玻璃基板的一侧形成交替层叠的氮氧化合物镀膜层。
  3. 根据权利要求2所述的制造方法,其特征在于,所述交替地执行氮氧化合物生成工序,在所述玻璃基板的一侧形成交替层叠的氮氧化合物镀膜层包括:
    交替地执行至少两种氮氧化合物的生成工序,在所述玻璃基板的一侧形成交替层叠的至少两种氮氧化合物的镀膜层。
  4. 根据权利要求3所述的制造方法,其特征在于,所述交替地执行至少两种氮氧化合物的生成工序,在所述玻璃基板的一侧形成交替层叠的至少两种氮氧化合物的镀膜层包括:
    交替地执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序,在所述玻璃基板的一侧形成交替层叠的硅氮氧化物镀膜层和钛氮氧化物镀膜层。
  5. 根据权利要求4所述的制造方法,其特征在于,所述执行钛氮氧化物镀膜层生成工序包括:
    通过电子枪激发设置在所述密闭空间中的钛原料,使所述钛原料蒸发,与所述密闭空间中的氮气和氧气发生反应后形成钛氮氧化物镀膜层。
  6. 根据权利要求4所述的制造方法,其特征在于,所述执行硅氮氧化物镀膜层生成工序包括:
    通过电子枪激发设置在所述密闭空间中的硅原料,使所述硅原料 蒸发,与所述密闭空间中的氮气和氧气发生反应形成硅氮氧化物镀膜层。
  7. 根据权利要求4所述的制造方法,其特征在于,所述交替地执行钛氮氧化物镀膜层生成工序和硅氮氧化物镀膜层生成工序包括:
    先执行镀钛氮氧化物镀膜层生成工序,再执行硅氮氧化物镀膜层生成工序。
  8. 根据权利要求4所述的制造方法,其特征在于,所述交替地执行的所述钛氮氧化物镀膜层生成工序和所述硅氮氧化物镀膜层生成工序的总次数为4-7次,使所述钛氮氧化物镀膜层和所述硅氮氧化物镀膜层的镀膜层的总层数为4-7层,镀层总厚度在100nm至950nm之间,并且所述钛氮氧化物镀膜层的总厚度与所述硅氮氧化物镀膜层的总厚度之比在0.4至1.65之间。
  9. 根据权利要求1至8任一所述的制造方法,其特征在于,在最后一次生成的镀膜层的一侧印刷一层灰色油墨层。
  10. 根据权利要求9所述的制造方法,其特征在于,所述在最后一次生成的镀膜层的一侧印刷一层灰色油墨层包括:
    在最后一次生成的镀膜层的一侧印刷具有镂空图案的黑色油墨层。
  11. 根据权利要求10所述的制造方法,其特征在于,所述镂空图案为指纹图形的镂空图案。
  12. 根据权利要求10所述的制造方法,其特征在于,在所述镂空图案中具有镂空的部分填充区别于灰色的颜料。
  13. 根据权利要求1至8任一所述的制造方法,其特征在于,所述玻璃基板的厚度在170-180um。
  14. 根据权利要求13所述的制造方法,其特征在于,所述玻璃基板的厚度为175um。
PCT/CN2016/071768 2015-10-20 2016-01-22 玻璃镀层结构的制造方法 WO2017067113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510683229 2015-10-20
CN201510683229.4 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017067113A1 true WO2017067113A1 (zh) 2017-04-27

Family

ID=56580568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071768 WO2017067113A1 (zh) 2015-10-20 2016-01-22 玻璃镀层结构的制造方法

Country Status (2)

Country Link
CN (1) CN105837057A (zh)
WO (1) WO2017067113A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177191A (zh) * 2019-05-10 2019-08-27 惠州市航泰光电有限公司 一种用于3d摄像头人脸识别模块的盖板及其生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88101654A (zh) * 1987-03-26 1988-11-02 Ppg工业公司 氮氧钛喷镀膜
CN101400619A (zh) * 2006-03-10 2009-04-01 法国圣戈班玻璃厂 在反射中具有中性色的抗反射透明基材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285033A (ja) * 1991-03-12 1992-10-09 Central Glass Co Ltd TiSiON系多層薄膜被覆ガラスおよびその製法
KR101005989B1 (ko) * 2002-06-11 2011-01-05 코니카 미놀타 홀딩스 가부시키가이샤 표면 처리 방법 및 광학 부품
CN102615875B (zh) * 2012-03-22 2014-11-12 东莞劲胜精密组件股份有限公司 一种不连续金属质感银白色薄膜及其镀膜方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88101654A (zh) * 1987-03-26 1988-11-02 Ppg工业公司 氮氧钛喷镀膜
CN101400619A (zh) * 2006-03-10 2009-04-01 法国圣戈班玻璃厂 在反射中具有中性色的抗反射透明基材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110177191A (zh) * 2019-05-10 2019-08-27 惠州市航泰光电有限公司 一种用于3d摄像头人脸识别模块的盖板及其生产方法
CN110177191B (zh) * 2019-05-10 2024-02-06 惠州市航泰光电有限公司 一种用于3d摄像头人脸识别模块的盖板及其生产方法

Also Published As

Publication number Publication date
CN105837057A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
TWI503710B (zh) 觸控面板及其蓋板結構
CN104216547B (zh) 一种触控面板及其制造方法
TWI549814B (zh) 金屬結構體及其製造方法
CN203025672U (zh) 触控面板及其盖板结构
WO2014169730A1 (zh) 触控面板及其制造方法
TW201439720A (zh) 觸控面板
CN203746036U (zh) 触控板
CN104142762A (zh) 一种电容式触摸屏及其制备方法
CN104461185B (zh) 触控面板
TW201443724A (zh) 觸控面板及其製作方法
CN109343752A (zh) 一种触控屏及显示装置
US10928664B2 (en) Display substrate, method for manufacturing the same and display device
WO2017067111A1 (zh) 玻璃镀层结构的制造方法
WO2017067113A1 (zh) 玻璃镀层结构的制造方法
WO2017067114A1 (zh) 玻璃镀层结构的制造方法
WO2017067078A1 (zh) 玻璃镀层结构、指纹检测装置及移动终端
CN205917178U (zh) 玻璃镀层结构、指纹检测装置及移动终端
WO2017067075A1 (zh) 玻璃镀层结构、指纹检测装置及移动终端
WO2017067112A1 (zh) 玻璃镀层结构的制造方法
TWM461835U (zh) 觸控面板
TWI472981B (zh) 觸控面板及其製作方法
WO2017067076A1 (zh) 玻璃镀层结构、指纹检测装置及移动终端
CN205295160U (zh) 玻璃镀层结构、指纹检测装置及移动终端
US10996799B2 (en) Touch screen assembly and electronic device with improved light transmittance
WO2017067077A1 (zh) 玻璃镀层结构、指纹检测装置及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856561

Country of ref document: EP

Kind code of ref document: A1