WO2017067072A1 - 一种高强度uvb荧光粉及其制备方法 - Google Patents

一种高强度uvb荧光粉及其制备方法 Download PDF

Info

Publication number
WO2017067072A1
WO2017067072A1 PCT/CN2015/099500 CN2015099500W WO2017067072A1 WO 2017067072 A1 WO2017067072 A1 WO 2017067072A1 CN 2015099500 W CN2015099500 W CN 2015099500W WO 2017067072 A1 WO2017067072 A1 WO 2017067072A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphate
nitric acid
cerium oxide
intensity
cerium
Prior art date
Application number
PCT/CN2015/099500
Other languages
English (en)
French (fr)
Inventor
王晶
尹向南
胡程
徐达
Original Assignee
东台市天源荧光材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东台市天源荧光材料有限公司 filed Critical 东台市天源荧光材料有限公司
Publication of WO2017067072A1 publication Critical patent/WO2017067072A1/zh

Links

Images

Definitions

  • the invention belongs to the technical field of medical illumination, and in particular relates to a novel high-efficiency UVB phosphor and a preparation method thereof.
  • the UVB phosphor is an aluminate magnesium strontium aluminate: strontium phosphor, which has low strength, half width, wavelength of 310-315 nm, and a starting wavelength containing a UVC component.
  • the UVB energy output of the lamp is low, and a partial UVC energy output is generated, which can cause pink eye disease and has a risk of skin cancer.
  • the UVB phosphor on the market is a wide-wave phosphor with a large half-width, so the initial band has a UVC spectrum, so the lamp contains UVC energy output, and UVC irradiation may have the risk of pink eye and skin cancer.
  • the UVB phosphor intensity on the existing market is very low, and the UVB intensity of the fluorescent lamp produced is not high, and the UVB content at a certain height cannot be full. 3.
  • the spectrum is purely UVB, and the visible light spectrum color rendering index (RA) is very high. Low, simple is a discontinuous spectrum, and can not be fully spectrally full coverage like the solar spectrum.
  • the present invention is to provide a high intensity UVB phosphor in order to overcome the above disadvantages.
  • Another object of the present invention is to provide a process for preparing the high intensity UVB phosphor.
  • a high-intensity UVB phosphor which mainly uses a cerium oxide, a cerium nitrate and a diammonium phosphate as a raw material to form a phosphate co-precipitate powder, and under the reducing condition, at 1200-1250 ° C Sintered; yttrium oxide,
  • the molar ratio of cerium nitrate and diammonium phosphate is 0.5-1.0:0.01-0.05:1.0-1.5.
  • the method for preparing the above high-intensity UVB phosphor comprises the steps of: dissolving cerium oxide in nitric acid, adding a solution of cerium nitrate solution, adjusting pH 3-4, and adding diammonium hydrogen phosphate under heating at 80-90 ° C.
  • the solution is stirred evenly and allowed to stand for 3-4 hours to form a phosphate coprecipitate-precipitate, filtered, washed and dried, and passed through a 80-120 mesh sieve to obtain a phosphate co-precipitate powder and a phosphate co-precipitate powder.
  • the body is then sintered under the conditions of reduction at 1200-1250 ° C.
  • the specific step of dissolving cerium oxide in nitric acid is: mixing cerium oxide with water molar volume ratio of 0.5-0.8:1 mol/l, and then adding 2-4 times molar amount of nitric acid to the cerium oxide, wherein the mass fraction of nitric acid It is 69.2% or more.
  • the preferred step of dissolving cerium oxide in nitric acid is to mix cerium oxide with water molar volume ratio of 0.5:1 mol/l, and then add cerium oxide three times molar amount of nitric acid, wherein the mass fraction of nitric acid is 69.2% or more.
  • the concentration of the diammonium hydrogen phosphate solution and the cerium nitrate solution of the present invention is not limited at all.
  • the above refers specifically to 5-10% hydrogen conditions under reducing conditions.
  • the solvent used for the above washing is deionized water.
  • the materials used in the present invention are all high purity of 99.99% or more.
  • the technical principle adopted by the invention is as follows: by dissolving nitric acid, the cerium oxide and the cerium nitrate are added to the dilute hydrogen phosphate solution at a wet pH value for effective co-precipitation, so that the phosphoric acid is combined with the effective Achillium. Effective crystal bonding before the high temperature solid phase reaction of the phosphor is achieved.
  • the invention combines raw materials more closely through the co-precipitation technology.
  • the present invention abandons the use of the conventional physical mixing method, using the element coprecipitation technique, which can sufficiently mix various materials before the high temperature solid phase reaction step, allowing the raw materials to enter the lattice By sintering, the phosphor forms crystals better, and the activator cerium can be more completely excited to achieve high-intensity UVB phosphor.
  • the phosphor of the invention is particularly suitable for fluorescent tubes for calcium supplementation.
  • Figure 1 is a graph showing the ultraviolet detection spectrum of the products obtained in Examples 1, 2 and 3.
  • 1 indicates the product corresponding to the embodiment 1
  • 2 indicates the product corresponding to the embodiment 2
  • 3 indicates the product corresponding to the embodiment 3.
  • the UV intensity of the product of Example 1 was 110%, the UV intensity of the product of Example 2 was 100%, and the UV intensity of the product of Example 3 was 40%.
  • the UV intensity of the product obtained in Example 3 is only about 40%, and the UVB phosphor of the phosphate produced by the method of the present invention has an ultraviolet intensity of 100% or more, even as high as 110% as in the case of Example 1. It is a three-fold improvement in the UVB energy output of the phosphor produced by the comparative method.

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种高强度UVB荧光粉及其制备方法,该高强度UVB荧光粉主要以氧化镧、硝酸亚铈和磷酸氢二铵为原料生成磷酸盐共沉物粉体,再在还原的条件下,在1200-1250℃烧结而成;氧化镧、硝酸亚铈和磷酸氢二铵三者摩尔比为0.5-1.0:0.01-0.05:1.0-1.5。本发明使用元素共沉淀技术,在高温固相反应前步骤就已经可以充分混合各种材料,让原材料已经进入晶格,通过烧结,荧光粉更好的形成晶体,激活剂铈可以更完全的激发,从而达到高强度UVB荧光粉,本发明荧光粉特别适用于补钙用的荧光灯管。

Description

一种高强度UVB荧光粉及其制备方法 技术领域
本发明属于医疗照明技术领域,具体涉及一种新型高效UVB荧光粉及其制备方法。
背景技术
目前UVB荧光粉为铝酸盐体系的铝酸镁铈:铈荧光粉,该荧光粉强度低,半宽度款,波长310-315nm,起始波长含UVC成分。做成灯管UVB能量输出低,并且产生部分UVC能量输出,能导致红眼病,有皮肤癌风险。还有一种磷酸盐体系的磷酸镧铈,半宽度窄,不包含UVC能量,但是目前制备工艺简单,导致荧光粉UVB能量输出低。
发明内容
目前市场上面的UVB荧光粉是宽波荧光粉,半宽度很大,因此起始波段有UVC光谱,所以灯管含有UVC能量输出,UVC辐照会有红眼病,皮肤癌的风险。而且,现有市场上的UVB荧光粉强度很低,生产出的荧光灯UVB强度不高,不能满度一定高度下的UVB含量数值3.光谱只是单纯有UVB,可见光光谱显色指数(RA)很低,单纯的是间断式光谱,不能象太阳光光谱一样完全光谱全覆盖。
本发明是为了克服上述不足之处提供一种高强度UVB荧光粉。
本发明的另一目的是提供该高强度UVB荧光粉的制备方法。
本发明的目的是通过以下方式实现的:
一种高强度UVB荧光粉,该高强度UVB荧光粉主要以氧化镧、硝酸亚铈和磷酸氢二铵为原料生成磷酸盐共沉物粉体,再在还原的条件下,在1200-1250℃烧结而成;氧化镧、 硝酸亚铈和磷酸氢二铵三者摩尔比为0.5-1.0:0.01-0.05:1.0-1.5。
上述高强度UVB荧光粉的制备方法,该方法包括以下步骤:将氧化镧溶解于硝酸中,加入硝酸亚铈溶液搅拌,调整pH 3-4,在80-90℃加热条件下加入磷酸氢二铵溶液,搅拌均匀,静置3-4小时,生成磷酸盐共沉淀―沉淀物,过滤,洗涤后烘干,过80-120目筛,得到磷酸盐共沉物粉体,磷酸盐共沉物粉体再在还原的条件下,在1200-1250℃烧结而成。
所述的将氧化镧溶解于硝酸具体步骤为:将氧化镧与水按摩尔体积比0.5-0.8:1mol/l混合,再加入氧化镧2-4倍摩尔量的硝酸,其中,硝酸的质量分数为69.2%以上。将氧化镧溶解于硝酸优选步骤为:将氧化镧与水按摩尔体积比0.5:1mol/l混合,再加入氧化镧3倍摩尔量的硝酸,其中,硝酸的质量分数为69.2%以上。
本发明对磷酸氢二铵溶液及硝酸亚铈溶液的浓度无任何限制。
上述在还原的条件下具体是指5-10%氢气条件。
上述洗涤所使用的溶剂是去离子水。
本发明所用的材料均为高纯99.99%以上。
本发明所采用的技术原理如下:通过硝酸溶解,让氧化镧和硝酸亚铈在湿法的pH值下,加入磷酸氢二铵溶液进行有效的共沉,让磷酸跟有效的跟镧铈结合,达到在荧光粉高温固相反应前有效的晶体结合。本发明通过共沉技术,让原材料相互结合更加紧密。
与现有技术比较本发明的有益效果:本发明放弃使用传统的物理混料法,使用元素共沉淀技术,在高温固相反应前步骤就已经可以充分混合各种材料,让原材料已经进入晶格,通过烧结,荧光粉更好的形成晶体,激活剂铈可以更完全的激发,从而达到高强度UVB荧光粉,本发明荧光粉特别适用于补钙用的荧光灯管。
附图说明
图1为实施例1、2、3得到的产品紫外分析光谱检测图。
图中,1标示对应实施例1产品;2标示对应实施例2产品;3标示对应实施例3产品。
实施例1产品紫外强度在110%,实施例2产品紫外强度在100%,实施例3产品紫外强度在40%。
具体实施方式
以下通过具体实施例对本发明进行进一步解释说明,该实施例对本发明并不构成限制:
实施例1
将1mol氧化镧加水2000ml,溶解于3mol硝酸,加入0.03mol硝酸亚铈溶液搅拌,调整pH3-4,在80℃加热条件下加入1.1mol磷酸氢二铵溶液,静置3-4小时,生成磷酸盐共沉淀。沉淀物经过过滤,去离子水洗涤后烘干,过120目筛网,磷酸盐共沉物粉体然后在5-10%氢气还原的条件下,在1200℃烧结而成。
实施例2
将1mol氧化镧加水2000ml,溶解于4mol硝酸,加入0.02mol硝酸亚铈溶液搅拌,调整pH3-4,在80℃加热条件下加入1mol磷酸氢二铵溶液,静置3-4小时,生成磷酸盐共沉淀。沉淀物经过过滤,去离子水洗涤后烘干,过120目筛网,磷酸盐共沉物粉体然后在5-10%氢气还原的条件下,在1200℃烧结而成。
实施例3
将1mol氧化镧加水2000ml,溶解于3mol硝酸,加入0.05mol硝酸亚铈溶液搅拌,调整PH 3-4,在80℃加热条件下加入1.5mol磷酸氢二铵溶液,搅拌均匀,静置3-4小时,生成磷酸盐共沉淀―沉淀物,过滤,洗涤后烘干,过80目筛网得到磷酸盐共沉物粉体,磷酸盐共沉物粉体再在5-10%氢气还原的条件下,在1250℃烧结而成
对比例
称取1mol氧化镧,0.02mol氧化铈,1.1mol的磷酸氢二铵原料,助熔添加剂的重量为原料重量的0.5%硼酸,均匀混料30-40小时后,装入刚玉坩埚中放在5-10%氢气还原的 条件下,在1220℃烧结而成。
由图1所示,实施例3得到的产品的紫外强度仅在40%左右,本发明方法生产出的磷酸盐的UVB荧光粉紫外强度在100%以上,甚至如实施例1则高达110%,是对比例方法生产出的荧光粉UVB能量输出近3倍。

Claims (6)

  1. 一种高强度UVB荧光粉,其特征在于该高强度UVB荧光粉主要以氧化镧、硝酸亚铈和磷酸氢二铵为原料生成磷酸盐共沉物粉体,再在还原的条件下,在1200-1250℃烧结而成;氧化镧、硝酸亚铈和磷酸氢二铵三者摩尔比为0.5-1.0:0.01-0.05:1.0-1.5。
  2. 一种权利要求1所述的高强度UVB荧光粉的制备方法,其特征在于该方法包括以下步骤:将氧化镧溶解于硝酸中,加入硝酸亚铈溶液搅拌,调整pH 3-4,在80-90℃加热条件下加入磷酸氢二铵溶液,搅拌均匀,静置3-4小时,生成磷酸盐共沉淀―沉淀物,过滤,洗涤后烘干,过80-120目筛,得到磷酸盐共沉物粉体,磷酸盐共沉物粉体再在还原的条件下,在1200-1250℃烧结而成。
  3. 根据权利要求1所述的高强度UVB荧光粉的制备方法,其特征在于所述的将氧化镧溶解于硝酸中具体为:将氧化镧与水按摩尔体积比0.5-0.8:1mol/l混合,再加入氧化镧2-4倍摩尔量的硝酸,其中,硝酸的质量分数为69.2%以上。
  4. 根据权利要求3所述的高强度UVB荧光粉的制备方法,其特征在于所述的将氧化镧溶解于硝酸中具体为:将氧化镧与水按摩尔体积比0.5:1mol/l混合,再加入氧化镧3倍摩尔量的硝酸,其中,硝酸的质量分数为69.2%以上。
  5. 根据权利要求2-4任意一项权利要求所述的高强度UVB荧光粉的制备方法,其特征在于在还原的条件下具体是指5-10%氢气条件。
  6. 根据权利要求2-4任意一项权利要求所述的高强度UVB荧光粉的制备方法,其特征在于洗涤所使用的溶剂是去离子水。
PCT/CN2015/099500 2015-10-23 2015-12-29 一种高强度uvb荧光粉及其制备方法 WO2017067072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510698095.3 2015-10-23
CN201510698095.3A CN105441079B (zh) 2015-10-23 2015-10-23 一种高强度uvb荧光粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2017067072A1 true WO2017067072A1 (zh) 2017-04-27

Family

ID=55551733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099500 WO2017067072A1 (zh) 2015-10-23 2015-12-29 一种高强度uvb荧光粉及其制备方法

Country Status (2)

Country Link
CN (1) CN105441079B (zh)
WO (1) WO2017067072A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235723A1 (ja) * 2017-06-20 2018-12-27 大電株式会社 紫外線発光蛍光体、発光素子、及び発光装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467209A (zh) * 2018-04-19 2018-08-31 王建蕊 一种健康汽车玻璃
CN108467198A (zh) * 2018-04-20 2018-08-31 郭沐坤 一种增进健康的玻璃
CN117143601A (zh) * 2023-08-16 2023-12-01 东台市天源光电科技有限公司 一种颜色可调的纳米级稀土防伪荧光粉及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974718A (zh) * 2006-11-16 2007-06-06 复旦大学 一种铈激活的稀土磷酸盐紫外发射荧光粉及其制备方法
CN101967378A (zh) * 2009-07-28 2011-02-09 苏振彪 一种掺杂铈的稀土磷酸盐发光材料及其制备方法
CN102443393A (zh) * 2011-07-12 2012-05-09 厦门通士达新材料有限公司 一种六棱柱状磷酸镧铈铽荧光粉的制备方法
CN104194789A (zh) * 2014-08-26 2014-12-10 长春理工大学 一种磷酸镧陶瓷荧光材料制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3104226A (en) * 1961-05-29 1963-09-17 Rca Corp Short luminescence delay time phosphors
US5091110A (en) * 1990-05-14 1992-02-25 Gte Products Corporation Method of making lanthanum cerium terbium phosphate phosphor
FR2938523B1 (fr) * 2008-11-20 2011-01-07 Rhodia Operations Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci
FR2938524B1 (fr) * 2008-11-20 2011-01-07 Rhodia Operations Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci
FR2938525B1 (fr) * 2008-11-20 2011-01-07 Rhodia Operations Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974718A (zh) * 2006-11-16 2007-06-06 复旦大学 一种铈激活的稀土磷酸盐紫外发射荧光粉及其制备方法
CN101967378A (zh) * 2009-07-28 2011-02-09 苏振彪 一种掺杂铈的稀土磷酸盐发光材料及其制备方法
CN102443393A (zh) * 2011-07-12 2012-05-09 厦门通士达新材料有限公司 一种六棱柱状磷酸镧铈铽荧光粉的制备方法
CN104194789A (zh) * 2014-08-26 2014-12-10 长春理工大学 一种磷酸镧陶瓷荧光材料制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235723A1 (ja) * 2017-06-20 2018-12-27 大電株式会社 紫外線発光蛍光体、発光素子、及び発光装置
JPWO2018235723A1 (ja) * 2017-06-20 2019-06-27 大電株式会社 紫外線発光蛍光体、発光素子、及び発光装置
US11555148B2 (en) 2017-06-20 2023-01-17 Dyden Corporation Ultraviolet-emitting phosphor, light-emitting element, and light-emitting device

Also Published As

Publication number Publication date
CN105441079A (zh) 2016-03-30
CN105441079B (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
Gupta et al. Lanthanide-doped lanthanum hafnate nanoparticles as multicolor phosphors for warm white lighting and scintillators
WO2017067072A1 (zh) 一种高强度uvb荧光粉及其制备方法
Gupta et al. Combustion synthesis of YAG: Ce and related phosphors
CN103421511B (zh) 一种稀土离子掺杂的卤氧化铋发光材料及其制备方法
Han et al. Structure dependent luminescence characterization of green–yellow emitting Sr2SiO4: Eu2+ phosphors for near UV LEDs
Thomas et al. Novel powellite-based red-emitting phosphors: CaLa1− xNbMoO8: xEu3+ for white light emitting diodes
Yan et al. NaY (MoO4) 2: Eu3+ and NaY0. 9Bi0. 1 (MoO4) 2: Eu3+ submicrometer phosphors: Hydrothermal synthesis assisted by room temperature-solid state reaction, microstructure and photoluminescence
Zhang et al. Blue luminescence of nanocrystalline CaZrO3: Tm phosphors synthesized by a modified Pechini sol–gel method
BRPI0621262A2 (pt) métodos para a produção de nanopartìculas de óxido de metal com propriedades controladas, e nanopartìculas e preparações produzidas por meio das mesmas
Wang et al. 3D-hierachical spherical LuVO4: Tm3+, Dy3+, Eu3+ microcrystal: synthesis, energy transfer, and tunable color
Bai et al. Effects of Bi3+ ions on luminescence of dumbbell-like SrMoO4 and SrMoO4: Eu3+ microcrystals
Singh et al. Sm3+ doped calcium orthovanadate Ca3 (VO4) 2-A spectral study
Raju et al. Synthesis and luminescent properties of low concentration Dy3+: GAP nanophosphors
Zhang et al. Energy transfer from Bi 3+ to Ho 3+ triggers brilliant single green light emission in LaNbTiO 6: Ho 3+, Bi 3+ phosphors
Liu et al. Effect of Zn2+ and Li+ codoping ions on nanosized Gd2O3: Eu3+ phosphor
Singh et al. Effects of annealing temperature on structural and luminescence properties of CdMoO4: Dy3+ phosphor synthesized at room temperature by co-precipitation method
An et al. Preparation and photoluminescence of Sm3+ and Eu3+ doped Lu2O3 phosphor
CN104071845B (zh) 一种slton钙钛矿型氮氧化物粉体的制备方法
CN101439869B (zh) 一种铈激活稀土铝酸盐紫外发射荧光粉的制备方法
Xia et al. Sol-gel method for preparing a novel red-emitting phosphor YVO4: Sm3+, Eu3+ with ideal red color emission
CN101182415A (zh) 一种黄色荧光粉及其制备方法
JP2014019860A (ja) 蛍光体前駆体の製造方法、蛍光体の製造方法及び波長変換部品
CN107201228A (zh) 一种Eu3+离子激活的钒硅酸盐材料及制备方法和应用
CN103113889A (zh) 一种钼酸盐红色荧光粉及其制备方法
Wang et al. Synthesis process dependent photoluminescent properties of Zn2SiO4: Mn2+ upon VUV region

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906588

Country of ref document: EP

Kind code of ref document: A1