WO2017067025A1 - 一种脱除结晶盐的方法及其设计方法和用途 - Google Patents

一种脱除结晶盐的方法及其设计方法和用途 Download PDF

Info

Publication number
WO2017067025A1
WO2017067025A1 PCT/CN2015/094113 CN2015094113W WO2017067025A1 WO 2017067025 A1 WO2017067025 A1 WO 2017067025A1 CN 2015094113 W CN2015094113 W CN 2015094113W WO 2017067025 A1 WO2017067025 A1 WO 2017067025A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
water injection
water
temperature
concentration
Prior art date
Application number
PCT/CN2015/094113
Other languages
English (en)
French (fr)
Inventor
李苏安
邓清宇
王坤朋
Original Assignee
北京中科诚毅科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京中科诚毅科技发展有限公司 filed Critical 北京中科诚毅科技发展有限公司
Publication of WO2017067025A1 publication Critical patent/WO2017067025A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation

Definitions

  • the invention relates to a method for removing the crystal salt in the hydrogenation equipment and the pipeline, a design method thereof and a use thereof, and also can remove the blockage of the metal salt and other by-products, and belongs to the fields of petrochemical industry and coal chemical industry.
  • reaction material forms a crystalline salt, a metal salt, and other by-products such as ammonium hydrogencarbonate or ammonium sulfide during the hydrogenation reaction, these salts crystallize at a low temperature, and are deposited together with other by-products on the pipe wall to block the pipe. , wear equipment and pump valves, resulting in downtime and other adverse consequences.
  • sulfur, nitrogen, metal and other impurities of the raw materials processed by heavy oil slurry bed hydrogenation, coal direct liquefaction and oil coal mixing process tend to be higher, and the crystals formed after hydrogenation reaction
  • the amount of by-products such as substances is larger. If these substances are not removed in time, the blockage and wear of the hydrogenation unit and pipelines may occur, and even the equipment may be stopped for maintenance, which seriously affects the production schedule of the entire plant and increases production costs.
  • the solution to this problem is usually to use the conventional hydrogenation reaction method, that is, using a desalted water to flush the blocked pipe to remove the crystalline salt, and the desalinated water means removing the hydroxide ion, sodium ion and sulfuric acid in the soft water.
  • a kind of water quality made of root ions, soft water refers to the water quality formed by removing calcium and magnesium ions from fresh water.
  • the water injection pipe is arranged between the heat exchanger before the high pressure separator and the air cooling period, and usually only one water injection pipe is provided, and the high pressure separator is generally 1 or 2.
  • the flushing method includes two methods of continuous or irregular random washing. The continuous flushing method is to flush the blocked pipe all the time.
  • the prior art does not have a reasonable plan for the treatment of the crystallization salt in the hydrogenation unit and the pipeline, nor can it meet the requirements for the removal of the plugging by the slurry bed hydrogenation reaction.
  • the present invention provides a method for removing the crystal salt in the hydrogenation equipment and the pipeline, selecting a suitable water injection point to set the water injection pipeline, and determining the water injection amount according to the solubility of the crystalline material in the water, thereby ensuring Its concentration is much lower than the saturation concentration.
  • the crystals contained in the reactor outlet oil and other substances that may be clogged are effectively separated and sent to the wastewater treatment device.
  • a method for removing a crystallization salt in a hydrogenation device and a pipeline characterized in that at least a concentration detector is disposed in a waste water outlet pipe of the last stage separator to detect a concentration of a crystalline salt in the wastewater condensed after water injection and rinsing at a water injection position, Then, according to the crystal salt concentration, the water injection amount of the water injection position is controlled to be 50-1500 times of the water content of the crystal salt saturation concentration, which is located between the pipe and/or the separator and/or the separator between the reactor and the separator. Pipeline.
  • the separator comprises a plurality of high pressure separators in which the light component outlets are serially connected, the temperature is sequentially decreased, and a plurality of atmospheric pressure separators respectively connected in series with the light component outlets corresponding to the high pressure separators, each of the high pressures.
  • the heavy component outlet of the separator is in communication with the light component outlet of the atmospheric separator of the same temperature.
  • Further preferred separators include a high temperature and high pressure separator, a medium temperature high pressure separator, a normal temperature high pressure separator, and a low pressure high temperature separator, a low pressure intermediate temperature separator and a low pressure normal temperature separator which are sequentially connected in series, and the water injection positions are respectively
  • the pipeline before the inlet of the high temperature and high pressure separator, the pipeline between the respective high pressure separators, and the last stage separator is a normal temperature atmospheric pressure separator.
  • a valve and a sensor are provided on the water injection conduit, the sensor being coupled to the concentration detector.
  • the valve is preferably a self-control valve and/or a hand valve.
  • the water injection water quality is preferably desalinated water.
  • the preferred water injection temperature is 15-200 ° C and the pressure is 1.0-25.0 MPa.
  • the above-mentioned method for removing the crystal salt in the hydrogenation equipment and the pipeline is characterized by a reactor and a separator for a heavy oil hydrogenation process, a coal direct liquefaction process and a coal-oil mixing process, and the heavy oil hydrogenation process
  • the heavy oil hydrogenation process Refers to the processing of one or more combinations of residual oil, catalytic oil slurry, deoiled asphalt and coal tar
  • the oil coal mixing process refers to crude oil, residual oil, catalytic oil slurry, deoiled asphalt and coal.
  • One or more combinations of tar are processed in combination with one or more of lignite and bituminous coal, and the ratio of oil to coal ranges from 97-30:3 to 70.
  • the invention discloses a design method for removing the crystal salt in the hydrogenation equipment and the pipeline, which is characterized in that at least a concentration detector is arranged in the waste water outlet pipe of the last stage separator, and the crystal salt in the wastewater collected after the water injection flushing is detected at the water injection position. Concentration, then controlling the water injection amount of each water injection position according to the plug concentration to be 50-1500 times the water content of each blockage saturation concentration, the water injection position being located between the reactor and the separator and/or the separator and/or Or a pipe between the separators.
  • the invention discloses a method for removing the crystal salt in the hydrogenation equipment and the pipeline, and a concentration detector is arranged on the waste water outlet pipe of the last stage separator to detect the concentration of the discharged wastewater, thereby reacting the entire hydrogenation system.
  • Crystallization due to the complexity of the system, crystals may partially crystallization in some pipelines or reactors due to temperature and pressure changes or local system failures. In addition, the system may not The possibility of precipitation of other solid substances is avoided, and the reasonable water injection amount of the invention can ensure that all the crystals which may be generated are dissolved, and other insoluble substances which may cause clogging can be flushed out to complete the clogging substances. Remove.
  • the type of salt can be judged from the raw material feeding. When the device is initially operated, when there are less plugs such as sediment and rust in the system, the water injection amount is 50-800 times, and the water injection amount is taken into consideration. The concentration drops far below the saturation concentration to avoid the possibility of crystallization.
  • the method can understand the condition of plugging and continuous water injection in real time, timely and fully remove the blockage in the petroleum intermediate product in the production stage, and adjust the amount of water injection according to the condition of the most easily blocked crystal salt, the cost is controllable, and the water is saved. .
  • the water injection location is distributed between the separators that make up the separation system before the hydrogenation separation system, so that the pipeline and equipment that may be blocked by the hydrogenation product are flushed, completely covering the plugging position, so that the separated liquid oil intermediate product is Nitrogen and heavy metal content are reduced.
  • the sensor receives a concentration signal from a concentration sensor and adjusts the valve to control the amount of water injected.
  • a plurality of water injection pipelines are provided to properly arrange the water injection pipeline to reduce the water injection pipeline. The impact simultaneously achieves a better flushing effect.
  • the method for monitoring and removing the crystal salt in the hydrogenation equipment and the pipeline of the invention is directed to the problem of the large amount of by-products such as crystal materials formed after the hydrogenation reaction in the slurry bed hydrogenation process, and is designed in the last separator
  • the wastewater outlet set concentration monitor monitors the crystal content in real time, and controls the water injection amount according to the concentration, sets multiple water injection positions, and timely monitors and removes the added water. Blockages in hydrogen equipment and pipelines overcome the above-mentioned technical problems by overcoming the possibility that they may deposit on the pipe wall, block the pipeline, cause wear on the equipment and the pump valve, and cause downtime.
  • Figure 1 is a schematic illustration of an embodiment of a plug in a separation system in a slurry bed dehydrogenation process of the present invention.
  • 1-High temperature and high pressure separator 2-intermediate high pressure separator, 3-normal temperature high pressure separator, 4-low pressure high temperature separator, 5-low pressure medium temperature separator, 6-low pressure normal temperature separator, 7-reaction product, 8-cooling Agent, 9-demineralized water, 10-cycle hydrogen, 11-tail gas, 12-normal temperature oil, 13-waste water, 14-medium temperature oil, 15-high temperature oil.
  • this embodiment is a method for removing plugging in a high pressure separation system, and the separation system belongs to a separation process in a slurry bed hydrogenation reaction process.
  • the high pressure separation system consists of six different separators, namely a high temperature and high pressure separator 1, a medium temperature high pressure separator 2, a normal temperature high pressure separator 3, a low pressure high temperature separator 4, a low pressure intermediate temperature separator 5, and a low pressure normal temperature separator 6.
  • the normal temperature low pressure separator 6 is horizontally placed horizontally, and the remaining separators are vertically placed vertically.
  • the water injection position of the embodiment is located in the pipeline between the separators, and two water injection positions are provided, and the water injection pipe of the first water injection position is connected between the high temperature and high pressure separator 1 and the medium temperature high pressure separator 2; the second The water injection pipe at the water injection position is connected to the pipe between the intermediate temperature high pressure separator 2 and the normal temperature high pressure separator 3 to remove the blockage which may be contained in the pipe.
  • the present embodiment sets the concentration in the wastewater outlet pipe of the normal temperature low pressure separator 6
  • a detector DEN is provided with a sensor and a valve on the water injection pipe, and the concentration detector is connected to a sensor on each water injection pipe.
  • the concentration detector can detect the density of the crystalline salt in the wastewater, and then transmit the concentration signal to the sensor on the water injection pipe to adjust the water injection valve.
  • the injecting water is selected from demineralized water, the temperature is 40 ° C, the pressure is 20 MPa, and the water injection amount is adjusted to be about 500 times the saturated concentration of the crystal in water.
  • the conventional desalination process 1.
  • the water consumption is large, 2.
  • the wastewater treatment load is too large, usually exceeds the design value, the safety hazard is large, and the production cost is high.
  • the reaction product 7 is cooled by the coolant 8 and then enters the high-temperature high-pressure separator 1.
  • the operating temperature is 420 ° C
  • the operating pressure is 18.7 MPa
  • the gas phase separated from the upper portion of the high-temperature high-pressure separator 1 is cooled and injected into the medium-temperature high-pressure separator 2
  • the liquid phase is adjusted by the liquid level control valve and then enters the high temperature and low pressure separator 4.
  • the water injection amount ensures that the crystal salt in the pipeline between the high-temperature high-pressure separator 1 and the medium-temperature high-pressure separator 2 is dissolved and taken away, and at the same time, the insoluble matter is washed away, and the temperature of the gas-phase medium after the water injection is not lower than 250 ° C.
  • the operating temperature of the medium-temperature high-pressure separator 2 is 285 ° C, and the operating pressure is 18.6 MPa.
  • the gas phase separated from the upper part is cooled, the brine is desorbed and the secondary cooling is performed, and then enters the normal-temperature high-pressure separator 3, and the liquid phase is adjusted by the liquid level control valve.
  • the water injection amount is used to ensure that the crystal salt in the pipe between the medium-temperature high-pressure separator 2 and the normal-temperature high-pressure separator 3 is dissolved and taken away, and at the same time, the insoluble matter is taken away by washing.
  • the operating temperature of the normal temperature high pressure separator 3 is 55 ° C, the operating pressure is 18.5 MPa, the gas phase separated in the upper portion is used as the circulating hydrogen gas 10, and the liquid phase in the lower portion of the normal temperature high pressure separator 3 is adjusted by the liquid level control valve to enter the normal temperature low pressure separator 6
  • the operating temperature of the high temperature and low pressure separator 4 is 420 ° C, the operating pressure is 3.0 MPa, the gas phase separated from the upper part is cooled and then enters the medium temperature low pressure separator 5, and the liquid phase is adjusted by the liquid level control valve as a high temperature oil 15 out separation system;
  • the operating temperature of the medium temperature low pressure separator 5 is 285 ° C, the operating pressure is 2.9 MPa, the upper gas phase is cooled and then enters the normal temperature low pressure separator 6, the liquid phase is adjusted by the liquid level control valve as a medium temperature oil 14 out separation system; the normal temperature low pressure separator 6
  • the operating temperature is 55 ° C, the operating pressure is 2.8 MPa
  • the water injection pipe may be disposed on the separator to wash the clogging material such as crystal salt therein.
  • a water injection pipe may be provided in the pipe before the hydrogenation reaction product enters the separation system, that is, before the high temperature and high pressure separator 1.
  • the removal method of the present invention can also be applied to a conventional hydrogenation process to remove plugging in a hydrogenation unit and a pipe, dissolve crystals, and wash away insoluble matter.
  • the method for removing the hydrogenation equipment and the crystalline salt in the pipeline of the present invention is used to monitor the wastewater condition in real time, and the desalinated water, the appropriate water temperature and the water are reasonably selected according to the concentration and type of the plug.
  • the pressure and water injection amount is 50-1500 times of the saturation concentration of each crystal salt, and multiple water injection positions are set to remove the plugging materials in the hydrogenation equipment and the pipeline in time. Precise control, easy to operate and practical. It is possible to separate the substances which may cause clogging in the product after the slurry bed hydrogenation reaction, to avoid clogging the pipeline and causing shutdown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种脱除结晶盐的方法,在最后一级分离器的废水出口管道中设置至少一个浓度检测器,检测注水位置注水冲洗后汇聚的废水中堵塞物的浓度,并确定堵塞物质的种类,然后根据堵塞物浓度和种类控制每个注水位置的注水量为各堵塞物饱和浓度需水量的50-1000倍,注水位置位于反应器和分离器之间的管道和/或分离器和/或分离器之间的管道。该脱除方法应用于浆态床加氢工艺中的设备和管道,解决加氢产物中结晶物质等副产物的量大的问题,使加氢产物中以及分离的液态油中间产物中的氮、重金属含量降低。

Description

一种脱除结晶盐的方法及其设计方法和用途 技术领域
本发明涉及一种脱除加氢设备和管道中结晶盐的方法及其设计方法和用途,同时还可脱除金属盐以及其它副产物等堵塞物,属于石油化工和煤化工领域。
背景技术
近年来重质油(包括渣油、催化油浆、脱油沥青和煤焦油)浆态床加氢技术、油煤混炼和煤直接液化技术(核心工艺均为浆态床加氢)的研究方兴未艾,主要原因是浆态床加氢工艺可以有效利用重质油资源和煤炭资源,脱除原料中的硫、氮和重金属等杂质,同时提高轻油的收率和质量,进而提高加工企业的经济效益。然而,由于反应物料在加氢反应时会生成碳酸氢铵、硫化铵等结晶盐、金属盐以及其它副产物,这些盐在低温时会结晶析出,和其它副产物一起沉积到管壁上堵塞管道、磨损设备和泵阀,造成停工等不良后果。相比常规加氢装置,重油浆态床加氢、煤直接液化和油煤混炼工艺所处理原料的含硫、氮、金属量及其它杂质往往是更高的,加氢反应后生成的结晶物质等副产物的量更大,这些物质若不及时脱除掉,造成对加氢装置和管道的堵塞和磨损,甚至造成设备停止检修,严重影响整个工厂的生产进度,加大生产成本。
目前,对这一问题的解决方法通常是采用常规加氢反应中的办法,即采用脱盐水冲洗堵塞管道脱除结晶盐,脱盐水是指脱除软水中的氢氧根离子、钠离子、硫酸根离子而制成的一种水质,软水是指脱除新鲜水中的钙、镁离子而形成的水质。一般将注水管道设在位于高压分离器之前的换热器和空冷期之间,并且通常只设置一个注水管道,高压分离器一般为1~2个。冲洗方式包括连续或不定期随意冲洗两种方式,其中连续冲洗方式是对堵塞管道一直放水冲洗,这样做的好处是冲洗效果较好,但脱盐水持续冲洗,严重浪费水资源。不定期随意冲洗方式是当发现液态油产品中含有较多的铵盐或金属离子时或发现设备或管道发生堵塞时,才放水进行冲洗,虽然可有效节省水资源,但对已经堵塞的管道中的堵塞物冲洗不彻底,尤其是对微溶和不溶于水的物质,造成设备和管道磨损和堵塞,所以炼油厂会经常更换反应器之后的换热器和空冷器的换热管。另外,即使进行冲洗也是亡羊补牢的做法,之前的中间产品已经含有结晶盐和金属盐等杂质,并进入下一个工序而无法补救,而且一个注水点太少, 导致脱除结晶盐不彻底。因此,现有技术对加氢装置和管道中结晶盐的处理方式没有合理的规划,也不能满足浆态床加氢反应对脱除堵塞物的要求。
发明内容
基于现有技术中存在的问题,本发明提供一种脱除加氢设备和管道中的结晶盐的方法,选择合适的注水点设置注水管道,并根据结晶物质在水中的溶解度确定注水量,保证其浓度远低于饱和浓度。有效地将反应器出口油中所含结晶物及其它可能堵塞的物质分离出来,送去废水处理装置。
本发明的技术方案:
一种脱除加氢设备和管道中结晶盐的方法,其特征在于至少在最后一级分离器的废水出口管道中设置浓度检测器,检测注水位置注水冲洗后汇聚的废水中结晶盐的浓度,然后根据结晶盐浓度控制注水位置的注水量为结晶盐饱和浓度需水量的50-1500倍,所述注水位置位于反应器和分离器之间的管道和/或分离器和/或分离器之间的管道。
优选的所述分离器包括轻组分出口依次串连、温度依次降低的多个高压分离器和与高压分离器分别对应的轻组分出口依次串连的多个常压分离器,每个高压分离器的重组分出口与相对应的温度相同的常压分离器的轻组分出口相通。
进一步优选的分离器包括依次串连的高温高压分离器、中温高压分离器、常温高压分离器,以及依次串连的低压高温分离器、低压中温分离器和低压常温分离器,注水位置分别为所述高温高压分离器入口之前的管道、所述各个高压分离器之间的管道,所述最后一级分离器为常温常压分离器。
优选的在所述注水管道上设置阀门和传感器,所述传感器与所述浓度检测器连接。
所述阀门优选为自控阀和/或手阀。
在每个注水位置优选具有1-8个注水管路。
所述注水水质优选为脱盐水。
优选的注水温度为15-200℃,压力为1.0-25.0MPa。
上述的脱除加氢设备和管道中结晶盐的方法的用途,其特征在于用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺的反应器和分离器,所述重油加氢工艺指以渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合为原料进行加工;所述油煤混炼工艺指以原油、渣油、催化油浆、脱油沥青和煤焦油中的一种或者多种组合与褐煤、烟煤中的一种或者多种组合为原料进行加工,油与煤的比例范围为97-30:3-70。
一种脱除加氢设备和管道中结晶盐的设计方法,其特征在于设计至少在最后一级分离器的废水出口管道中设置浓度检测器,检测注水位置注水冲洗后汇聚的废水中结晶盐的浓度,然后根据堵塞物浓度控制每个注水位置的注水量为各堵塞物饱和浓度需水量的50-1500倍,所述注水位置位于反应器和分离器之间的管道和/或分离器和/或分离器之间的管道。
本发明的技术效果:
本发明的一种脱除加氢设备和管道中结晶盐的方法,在最后一级分离器的废水出口管道上设置浓度检测器,检测其排出的废水浓度,从而可反应整个加氢系统中加氢产物和分离出的液态油中的可能发生堵塞的结晶盐的含量情况。因此本方法可实时在线检测可能发生堵塞的结晶盐的浓度,从而控制注水量为各堵塞物饱和浓度需水量的50倍以上,一方面完全溶解管道和设置中的结晶物,控制其尽量不发生结晶,另一方面,由于系统的复杂性,结晶物在某些管路或反应器中由于温度和压力的变化或者系统局部的故障也可能在某些位置会发生部分结晶,此外,系统中不可避免的还会有其它固体物质发生沉淀的可能,本发明合理的注水量可以保证将可能产生的结晶全部溶解,同时还能将可能产生堵塞的其它不溶物冲洗出来,实现对各堵塞物质的完全脱除。盐的种类大概从原料进料时可以判断出来,当装置初运行时,系统内的泥沙、铁锈等堵塞物较少时,注水量为50-800倍,注水量一是考虑到需要将盐的浓度降到远远低于饱和浓度,以避免结晶的可能性,再者是考虑到结晶盐水溶液的离子,比如Cl-,NO3会对设备造成腐蚀,所以要将其浓度降到足够稀;-当装置运行半年以上,泥沙、铁锈堵塞物多时,需要更多的水来将其冲洗掉,需要注入800-1500倍的水。
本方法实时在线了解堵塞物情况、连续注水,及时、充分地脱除生产阶段石油中间产品中的堵塞物,同时根据最容易堵塞的结晶盐的情况调节注水量的大小,成本可控,节约用水。注水位置分布于加氢分离系统之前、组成分离系统的分离器之间使得加氢产物流经的可能发生堵塞的管道和设备得到冲洗,完全覆盖堵塞位置,使得分离得到的液态油中间产品中的氮、重金属含量降低。
所述传感器接收浓度传感器发出的浓度信号并调节所述阀门以控制注水量。
根据被注水的设备和管道与注水管路的尺寸比例以及注水量,在注水量大且被注水管路较小时,设置多根注水管路,以合理布局注水管路,减轻对被注水管路的冲击同时实现更好的冲洗效果。
本发明的一种监测和脱除加氢设备和管道中结晶盐的方法针对浆态床加氢工艺中加氢反应后生成的结晶物质等副产物的量大的问题,设计在最后一个分离器的废水出口设置浓度监测器实时监控结晶物含量,并根据浓度控制注水量、设置多个注水位置,及时监测和脱除加 氢设备和管道中的堵塞物,克服其可能沉积到管壁上堵塞管道、对设备和泵阀造成磨损,造成停工等不良后果,解决了上述技术问题。
附图说明
图1为本发明的脱除浆态床加氢工艺中的分离系统中堵塞物的实施例简图。
图中各标号列示如下:
1-高温高压分离器,2-中温高压分离器,3-常温高压分离器,4-低压高温分离器,5-低压中温分离器,6-低压常温分离器,7-反应产物,8-冷却剂,9-脱盐水,10-循环氢气,11-尾气,12-常温油,13-废水,14-中温油,15-高温油。
具体实施方式
为进一步阐述本发明的技术内容,将结合附图和具体实施例加以说明。
如图1所示,本实施例为脱除高压分离系统中的堵塞物的方法,分离系统属于浆态床加氢反应工艺中的分离工艺。高压分离系统由六台不同的分离器组成,分别为高温高压分离器1、中温高压分离器2、常温高压分离器3、低压高温分离器4、低压中温分离器5和低压常温分离器6。所述常温低压分离器6为卧式水平放置,其余分离器为立式竖直放置。为达到脱除浆态床反应设备和管道中的结晶盐等堵塞物,需要选择合适的水质、水温、水压、注水点,除此之外,还要根据结晶物质在水中的溶解度确定注水量,保证其浓度远低于饱和浓度。本实施例的注水位置位于分离器之间的管道,设置了两个注水位置,第一个注水位置的注水管道连接位于高温高压分离器1与中温高压分离器2之间的管道;第二个注水位置的注水管道连接中温高压分离器2和常温高压分离器3之间的管道,以脱除管道中可能含有的堵塞物。
为了实时监控废水的浓度和废水中结晶盐等堵塞物的分布情况,并合理调控注水量,不浪费水资源同时实现良好的脱除效果,本实施例在常温低压分离器6废水出口管道设置浓度检测器(DEN),同时在注水管道上设置传感器和阀门,所述浓度检测器与各注水管道上的传感器连接。所述浓度检测器可检测出废水中结晶盐的密度,然后将浓度信号传递给注水管道上的传感器,调节注水阀。
在本实施例中,当温度为50℃,DEN=1.36kg/l时,判断盐为氯化钠,氯化钾,对应的浓度为27wt%,需要将浓度稀释至0.03wt%,此时对应的DEN为1.01kg/l,当注水量达到能够使DEN=1.01kg/l时,注水量合适。注入水选用脱盐水,温度为40℃,压力为20MPa,调节注水量为结晶物在水中饱和浓度的约500倍。
如此在用水量保持较少的情况下,不会对设备造成大的腐蚀。
常规的除盐的工艺:1、耗水量大,2、废水处理负荷过大,通常会超过设计值,安全隐患大,生产成本高。
本实施例的脱除浆态床加氢工艺中的分离器之间的管道中的结晶盐等堵塞物的工作流程如下:
反应产物7经冷却剂8冷却至后进入高温高压分离器1,操作温度是420℃,操作压力是18.7MPa,高温高压分离器1上部分离出的气相经冷却、注水后进入中温高压分离器2,液相经液位控制阀调节后进入高温低压分离器4。注水量保证高温高压分离器1与中温高压分离器2之间的管道中的结晶盐被溶解带走,同时保证不溶物被冲洗带走,同时保证注水后的气相介质温度不低于250℃。中温高压分离器2操作温度是285℃,操作压力是18.6MPa,上部分离出的气相经冷却、注脱盐水9和二次冷却后进入常温高压分离器3,液相经液位控制阀调节后进入中温低压分离器5,所用注水量保证中温高压分离器2和常温高压分离器3之间的管道中的结晶盐被溶解带走,同时保证不溶物被冲洗带走。常温高压分离器3操作温度是55℃,操作压力是18.5MPa,上部分离出的气相作为循环氢气10使用,常温高压分离器3下部的液相经液位控制阀调节后进入常温低压分离器6;高温低压分离器4操作温度是420℃,操作压力是3.0MPa,上部分离出的气相经冷却后进入中温低压分离器5,液相经液位控制阀调节后作为高温油15出分离系统;中温低压分离器5操作温度是285℃,操作压力是2.9MPa,上部气相经冷却后进入常温低压分离器6,液相经液位控制阀调节后作为中温油14出分离系统;常温低压分离器6操作温度是55℃,操作压力是2.8MPa,上部气相作为尾气11出分离系统进入气体处理装置,下部液相作为常温油12出分离系统,集液包里含有结晶物质及其它副产物的废水13去废水处理装置。经过累积达6000小时的中试验证,各设备和管道中无堵塞现象,可以实现装置的长周期连续运行。
当然本发明的方法也可根据实际情况,若分离器中发生堵塞,也可在分离器上设置注水管道,冲洗其内的结晶盐等堵塞物。或者也可在加氢反应产物进入分离系统之前即高温高压分离器1之前的管道中设置注水管道。
本发明的脱除方法也可应用于常规加氢工艺中,脱除加氢装置和管道中的堵塞物,溶解结晶物,冲洗掉不溶物。
从上述实施例可以看出,使用本发明的一种脱除加氢设备和管道中结晶盐的方法实时在线监控废水情况,并根据堵塞物浓度和种类合理地选择脱盐水、合适的水温和水压、注水量为各结晶盐饱和浓度的50-1500倍,设置多个注水位置及时脱除加氢设备和管道中的掉堵塞物, 精确控制、操作简便且实用。能够将浆态床加氢反应后生成物中可能产生堵塞的物质分离出来,避免堵塞管道,造成停工。

Claims (10)

  1. 一种脱除加氢设备和管道中结晶盐的方法,其特征在于至少在最后一级分离器的废水出口管道中设置浓度检测器,检测注水位置注水冲洗后汇聚的废水中结晶盐的浓度,然后根据结晶盐浓度控制注水位置的注水量为结晶盐饱和浓度需水量的50-1500倍,所述注水位置位于反应器和分离器之间的管道和/或分离器和/或分离器之间的管道。
  2. 根据权利要求1所述的方法,其特征在于分离器包括轻组分出口依次串连、温度依次降低的多个高压分离器和与高压分离器分别对应的轻组分出口依次串连的多个常压分离器,每个高压分离器的重组分出口与相对应的温度相同的常压分离器的轻组分出口相通。
  3. 根据权利要求2所述的方法,其特征在于分离器包括依次串连的高温高压分离器、中温高压分离器、常温高压分离器,以及依次串连的低压高温分离器、低压中温分离器和低压常温分离器,注水位置分别为所述高温高压分离器入口之前的管道、所述各个高压分离器之间的管道,所述最后一级分离器为常温常压分离器。
  4. 根据权利要求1-3任一所述的方法,其特征在于在所述注水管道上设置阀门和传感器,所述传感器与所述浓度检测器连接。
  5. 根据权利要求4所述的方法,其特征在于所述阀门为自控阀和/或手阀。
  6. 根据权利要求1所述的方法,其特征在于在每个注水位置具有1-8个注水管路。
  7. 根据权利要求1所述的方法,其特征在于所述注水水质为脱盐水。
  8. 根据权利要求1所述的方法,其特征在于注水温度为15-200℃,压力为1.0-25.0MPa。
  9. 权利要求1-8任一的一种脱除加氢设备和管道中结晶盐的方法的用途,其特征在于用于重油加氢工艺、煤直接液化工艺和油煤混炼工艺的反应器和分离器,所述重油加氢工艺指以渣油、催化油浆、脱油沥青、煤焦油的一种或者多种组合为原料进行加工;所述油煤混炼工艺指以原油、渣油、催化油浆、脱油沥青和煤焦油中的一种或者多种组合与褐煤、烟煤中的一种或者多种组合为原料进行加工,油与煤的比例范围为97-30:3-70。
  10. 一种脱除加氢设备和管道中结晶盐的设计方法,其特征在于设计至少在最后一级分离器的废水出口管道中设置浓度检测器,检测注水位置注水冲洗后汇聚的废水中结晶盐的浓度,然后根据堵塞物浓度控制每个注水位置的注水量为各堵塞物饱和浓度需水量的50-1500倍,所述注水位置位于反应器和分离器之间的管道和/或分离器和/或分离器之间的管道。
PCT/CN2015/094113 2015-10-23 2015-11-09 一种脱除结晶盐的方法及其设计方法和用途 WO2017067025A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510696047.0A CN105273759B (zh) 2015-10-23 2015-10-23 一种脱除结晶盐的方法及其设计方法和用途
CN201510696047.0 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017067025A1 true WO2017067025A1 (zh) 2017-04-27

Family

ID=55143607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094113 WO2017067025A1 (zh) 2015-10-23 2015-11-09 一种脱除结晶盐的方法及其设计方法和用途

Country Status (2)

Country Link
CN (1) CN105273759B (zh)
WO (1) WO2017067025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040815A (zh) * 2019-12-18 2020-04-21 大连福佳·大化石油化工有限公司 脱戊烷塔脱盐防腐系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110215742A (zh) * 2018-03-01 2019-09-10 中石化广州工程有限公司 一种加氢装置脱氯的方法
CN110218580A (zh) * 2018-03-01 2019-09-10 中石化广州工程有限公司 一种加氢反应流出物脱氯的方法
CN108275822A (zh) * 2018-03-20 2018-07-13 山东奥能电力科技有限公司 一种浓盐废水雾化浓缩循环结晶零排放系统及工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028910A1 (fr) * 2001-10-03 2003-04-10 Pierre Descloux Procede de traitement contre la corrosion et les depots dans des installations d'eau sanitaire et appareil pour la mise en oeuvre du procede
CN101639688A (zh) * 2009-08-17 2010-02-03 浙江理工大学 防止nh4hs冲蚀的加氢反应流出物空冷器系统优化方法
CN101655336A (zh) * 2009-07-27 2010-02-24 浙江理工大学 一种加氢反应流出物空冷器系统注水的优化方法
CN104808614A (zh) * 2015-03-02 2015-07-29 浙江理工大学 防止NH4Cl垢下腐蚀的加氢反应流出物空冷器系统优化方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896435A (zh) * 2007-11-13 2010-11-24 阿克佐诺贝尔股份有限公司 使油田中硫酸盐结垢最小化的方法
CN101880543B (zh) * 2010-07-02 2013-07-17 沈阳石蜡化工有限公司 一种常压塔塔盘结盐的在线清洗方法
CN104845664A (zh) * 2015-05-08 2015-08-19 北京中科诚毅科技发展有限公司 一种多重优化的分离器组合系统与使用方法及设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028910A1 (fr) * 2001-10-03 2003-04-10 Pierre Descloux Procede de traitement contre la corrosion et les depots dans des installations d'eau sanitaire et appareil pour la mise en oeuvre du procede
CN101655336A (zh) * 2009-07-27 2010-02-24 浙江理工大学 一种加氢反应流出物空冷器系统注水的优化方法
CN101639688A (zh) * 2009-08-17 2010-02-03 浙江理工大学 防止nh4hs冲蚀的加氢反应流出物空冷器系统优化方法
CN104808614A (zh) * 2015-03-02 2015-07-29 浙江理工大学 防止NH4Cl垢下腐蚀的加氢反应流出物空冷器系统优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, JIAMING: "PETROCHEMICAL EQUIPMENT DESIGN HANDBOOK (1", 31 March 2012, pages: 1099 - 1100 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040815A (zh) * 2019-12-18 2020-04-21 大连福佳·大化石油化工有限公司 脱戊烷塔脱盐防腐系统

Also Published As

Publication number Publication date
CN105273759B (zh) 2018-04-17
CN105273759A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2017067025A1 (zh) 一种脱除结晶盐的方法及其设计方法和用途
CN103359840B (zh) 一种硫酸钙垢化学清洗剂、制备方法及应用
CN104266170A (zh) 热电厂锅炉排污水综合利用方法
CN104098150B (zh) 水溶液的蒸发处理方法
CN204815724U (zh) 变换工艺冷凝液汽提优化装置
KR101848697B1 (ko) 상압 탑 오일가스 열교환 장치 및 열교환 방법
CN103517965A (zh) 用于在焦炭鼓单元中获得由凝固石油焦制成的可销售石油焦块的封闭焦炭料浆系统和方法
WO2020169120A2 (zh) 一种加氢装置分馏系统在线工艺防腐的方法
CN104787946B (zh) 一种轧钢废酸全资源循环利用工艺
US9545649B2 (en) Method for safely and quickly shutting down and cleaning a hydroprocessing reactor of spent catalyst via a water flooding technique
CN110595259A (zh) 一种用重芳烃在线清洗加氢裂化装置中ω环密封结构高压换热器系统及清洗方法
CN212403586U (zh) 一种间接空冷系统循环水智能净化系统
CN105236680A (zh) 一种煤气水净化的工艺方法
WO2016197537A1 (zh) 一种反冲洗方法及其设计方法和用途
CN210752586U (zh) 废盐酸制氯化钙溶液连续反应的生产装置
CN102003915B (zh) 处理低温甲醇洗粗煤气预冷系统压差升高的装置和方法
CN102245831B (zh) 防止连续蒸煮器的过滤结构发生堵塞的方法
CN110642314A (zh) 一种延迟焦化装置综合利用原油电脱盐污水的工艺装置
CA2838147C (en) Heat exchanger descaling system using blowdown
WO2016179895A1 (zh) 一种多重优化的分离器组合系统与使用方法及设计方法
CN203474575U (zh) 一种煤气化废水化工分离的设备系统
CN213885627U (zh) 一种煤制乙二醇生产中VOCs的回收装置
CN111732982B (zh) 天然气脱蜡方法及装置
CN112337183A (zh) 一种用于炼化企业的多功能防腐撬装装置及应用方法
CN111977758A (zh) 一种间接空冷系统循环水智能净化系统及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906542

Country of ref document: EP

Kind code of ref document: A1