WO2017066915A1 - Procédé et dispositif de mesure de positionnement en navigation satellitaire et véhicule aérien sans pilote - Google Patents

Procédé et dispositif de mesure de positionnement en navigation satellitaire et véhicule aérien sans pilote Download PDF

Info

Publication number
WO2017066915A1
WO2017066915A1 PCT/CN2015/092243 CN2015092243W WO2017066915A1 WO 2017066915 A1 WO2017066915 A1 WO 2017066915A1 CN 2015092243 W CN2015092243 W CN 2015092243W WO 2017066915 A1 WO2017066915 A1 WO 2017066915A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
carrier
antennas
ambiguity
double difference
Prior art date
Application number
PCT/CN2015/092243
Other languages
English (en)
Chinese (zh)
Inventor
林灿龙
张伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2015/092243 priority Critical patent/WO2017066915A1/fr
Priority to CN201580060906.5A priority patent/CN107003386B/zh
Publication of WO2017066915A1 publication Critical patent/WO2017066915A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems

Definitions

  • the invention relates to the field of satellite navigation technology, and in particular to a satellite navigation attitude measuring method and device and a drone.
  • the embodiment of the invention provides a satellite navigation attitude measuring method and device and a drone to improve the accuracy of the obtained attitude data, and to simplify the attitude measuring method and reduce the cost.
  • the carrier double difference is obtained, and the unit vector double difference of the antenna to the satellite is obtained based on the position of the ephemeris and the antenna;
  • the whole-circumference ambiguity is obtained based on the carrier double difference, the antenna-to-satellite unit vector double difference, and the baseline length between the two antennas;
  • the attitude angle is derived based on the position of the antenna and the baseline vector between the three antennas.
  • a second aspect of the present invention provides a satellite navigation apparatus for testing a posture of a drone, wherein the drone is provided with three antennas not on the same straight line, and the apparatus includes:
  • An acquisition module configured to obtain a raw observation of a satellite signal, an ephemeris, and a position of an antenna, the original observation including a carrier observation and a pseudorange observation;
  • a calculation module for deriving a unit vector between the antenna and the satellite according to the position of the ephemeris and the antenna; deriving a carrier double difference based on the carrier observation, and obtaining a unit vector double difference of the antenna to the satellite based on the position of the ephemeris and the antenna;
  • the whole-circumference ambiguity is obtained based on the carrier double difference, the antenna-to-satellite unit vector double difference, and the baseline length between the two antennas; based on the whole-circumference ambiguity, the antenna-to-satellite unit vector double difference, and the carrier double difference
  • a baseline vector between the three antennas; the attitude angle is derived based on the position of the antenna and the baseline vector between the three antennas.
  • a third aspect of the present invention provides a drone, comprising: a body, at least three antennas disposed on the body and not on a same straight line, and the at least three antennas are respectively connected to at least three receivers, The at least three receivers are coupled to a flight control system, the flight control system for:
  • the position derives the unit vector between the antenna and the satellite; based on the carrier observation, the carrier double difference is obtained, and the unit vector double difference of the antenna to the satellite is obtained based on the position of the ephemeris and the antenna; the unit vector based on the carrier double difference and the antenna to the satellite Double-difference and baseline length between two antennas to obtain full-circumference ambiguity; base vector between three antennas based on the whole-circumference ambiguity, antenna-to-satellite unit vector double difference, and carrier double difference; The position and the baseline vector between the three antennas yield the attitude angle.
  • the satellite navigation attitude measurement method uses data such as carrier double difference obtained from satellite signals to solve the whole-circumference ambiguity and the baseline vector between the antennas, and calculates the attitude angle according to the baseline vector.
  • data such as carrier double difference obtained from satellite signals to solve the whole-circumference ambiguity and the baseline vector between the antennas, and calculates the attitude angle according to the baseline vector.
  • the satellite signal is used to test the attitude of the drone.
  • the accuracy of the attitude data is improved, and the problems of the magnetic declination and magnetic field interference of the compass pointing are avoided.
  • the least squares search method based on the baseline distance constraint is used to solve the whole-circumference ambiguity.
  • the single-frequency receiver which is lower than the dual-frequency receiver used in the prior art.
  • the calculation method is simplified and the computational complexity is reduced.
  • FIG. 1 is a flowchart of a satellite navigation attitude measurement method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the relationship between a baseline vector and a satellite distance
  • Figure 3 is a schematic diagram of a drone and an antenna
  • the technical solution of the embodiment of the invention is applicable to various unmanned aerial vehicles, such as unmanned aerial vehicles, unmanned vehicles, etc., especially the navigation and attitude measurement of various small unmanned aerial vehicles.
  • the unmanned aerial vehicle may be a helicopter drone or a fixed-wing drone. Detailed description will be made below through specific embodiments.
  • the satellite navigation device may include an attitude solving processor for decomposing the attitude data of the drone according to the original observation of the acquired satellite signal, the ephemeris and the position of the antenna, and transmitting the attitude data to the flight control system.
  • the flight control system can control the drone flight based on the obtained attitude data.
  • the satellite navigation device can also be regarded as part of the flight control system.
  • the method of the embodiment of the present invention may be performed by the satellite navigation device, or by the posture
  • the state solver executes the processor.
  • the specific process of the satellite navigation attitude measurement method provided by the embodiment of the present invention may include:
  • the GPS receiver can acquire satellite pseudorange observations, carrier observations, and satellite ephemeris.
  • the satellite position can be calculated from the received ephemeris. As long as there are more than 4 satellite pseudoranges, the receiver's time, position and speed can be calculated. Therefore, the satellite navigation device can acquire the carrier observation value and the pseudorange observation value of the satellite signal, the position of the ephemeris and the antenna, and the time and speed of the receiver from the GPS receiver.
  • Satellite-related errors including satellite ephemeris error, satellite clock error, satellite antenna phase center deviation, and relativistic effect error
  • errors related to signal propagation including ionospheric delay error, tropospheric delay error, and signal multipath error;
  • the first type of error can only correct the relativistic effect error
  • the second type of error can repair part of the ionospheric delay error and partial tropospheric delay error
  • the third type of error is reduced by the hardware and software design of the receiver.
  • the error of single point positioning can only guarantee the accuracy within 10m.
  • the distance between two antennas installed by the drone will not exceed 10m.
  • the coordinates of the two antennas cannot be determined by single point positioning, and then the direction is calculated.
  • the carrier difference observation is a new combined observation obtained by deriving the carrier phase observations of the same frequency in a certain way.
  • the carrier phase double difference observation value is used, that is, the difference between the antennas is one time, the satellite related error and the signal propagation error can be eliminated, and the difference between the satellites can be eliminated, and the receiver clock difference can be eliminated.
  • the whole-circumference ambiguity can be obtained based on the carrier double difference, the antenna-to-satellite unit vector double difference, and the baseline length between the two antennas.
  • the full-circumference ambiguity is solved by a least squares search method with a baseline distance constraint. This method is suitable for short-range fixed-length baseline attitudes and can be used with single-frequency receivers. Compared to the use of dual-frequency receivers, the use of a single-frequency receiver can effectively reduce costs.
  • the least squares search method using a baseline distance constraint to solve the whole-circumference ambiguity may include: dividing the tracked satellite into a main star and a redundant star, where the main star includes Four, and one of the four main stars is used as a reference star, and the reference star has the highest elevation angle; constructing a double-difference equation of the reference star and other main stars to determine the double-difference ambiguity search range of the main star carrier double difference equation Calculating a possible solution of the baseline vector; constructing a carrier double difference equation of the reference star and the redundant star, and substituting the baseline vector possible solution into the redundant star carrier double difference equation to determine the double difference ambiguity of the redundant star; The double-difference ambiguity of the satellite determines the ambiguity of the whole week.
  • the baseline vector includes: a first baseline vector from a first antenna to a second antenna of the three antennas, and a second baseline vector of the first antenna to the third antenna; Deriving the attitude angle based on the position of the antenna and the baseline vector between the three antennas includes calculating a heading angle and a pitch of the drone based on the positions of the first antenna and the second antenna and the first baseline vector An angle of the drone of the drone is calculated based on the positions of the first and third antennas and the second baseline vector.
  • the method before the obtaining the original observation of the received satellite signal, the method further comprises: receiving, by the single frequency receiver, the satellite signal through the antenna.
  • the method further includes: fusing the obtained attitude angle and the inertial navigation data to obtain an optimized estimation of the attitude angle for performing the attitude control of the drone.
  • the drone further includes an inertial measurement device, the inertial navigation data being measured by the inertial measurement device.
  • the embodiment of the present invention discloses a satellite navigation attitude measurement method, which uses data such as carrier double difference obtained based on satellite signals to solve the whole-circumference ambiguity and the baseline vector between the antennas, and calculates the attitude angle according to the baseline vector.
  • the technical solution has achieved the following technical effects:
  • the least squares search method based on the baseline distance constraint is used to solve the whole-circumference ambiguity.
  • the single-frequency receiver which is lower than the dual-frequency receiver used in the prior art.
  • the calculation method is simplified and the computational complexity is reduced.
  • the unit vector between antenna 1 and satellite k is The unit vector between antenna 2 and satellite k is For the distance from antenna 1 to satellite k minus the distance from antenna 2 to satellite k, b is the vector between the two antennas.
  • the distance between the two antennas is less than 40Km, it is much smaller than the distance from the antenna to the satellite (about 20000Km). It can be considered then
  • Equation 1 Equation 1 can be rewritten as
  • the reference star is set to j.
  • the frequency of the same frequency point is the same, and the frequency change caused by Doppler influence is negligible, then the double difference observation model can be expressed as
  • y is the double difference observation, which can be obtained based on the original observation
  • a is the whole week ambiguity
  • e is the noise
  • a and B can be understood as the coefficient matrix, specifically, A is the ambiguity weight matrix.
  • the main part of the noise e is the observation error.
  • the tracking loop When the tracking loop is stable, it can be considered to be less than 1 mm, and it is unbiased white noise, and can be taken as 0 in the calculation.
  • each element in the vector a When the receiver keeps continuously observation of the satellite carrier, each element in the vector a is an integer and does not change with time and remains unchanged.
  • the key to solving equation (4) is to solve the whole-circumference ambiguity a. After solving a solution, the baseline vector b can be calculated with an error of millimeters.
  • the key to solving the carrier-phase double-difference equation is to determine the full-circumference ambiguity.
  • the installation position of the UAV antenna is fixed, and the baseline length is short, and the least square search method based on the baseline distance constraint is used to solve the whole-circumference ambiguity, which is suitable for the short-distance fixed-length baseline attitude measurement, and the single frequency can be used.
  • the least squares search method divides the observation satellite into four main stars and redundant stars, the four main stars include one reference star, and the other satellites construct a double difference equation with the reference star. After determining the ambiguity search range of the main star carrier phase double difference equation, the calculation base The line may be solved, and then substituted into the redundant star observation equation to determine the double-difference ambiguity of the redundant satellite.
  • the selection of the four main stars is very critical.
  • the reference star generally selects the satellite with the highest elevation angle, and the other three select satellites with a certain elevation angle and carrier-to-noise ratio, and the GDOP (Geometric Dilution Precision) value is small.
  • the baseline vector and the double difference ambiguity are unknown, and the rest are known quantities.
  • L is the lower triangular matrix and can be expressed as
  • This method is effective at short baselines, and the whole-circumference ambiguity is limited to the range of baseline limits, which is suitable for UAV attitude measurement.
  • the receiver receives the antenna signal, calculates the antenna position, and transmits the position information and the raw observation to the attitude solving processor.
  • the attitude calculation processor calculates the antenna 1 to antenna 2 vector, the antenna 1 to the antenna 3 vector based on the coordinates of the antenna 1, and finally calculates the heading angle, the elevation angle and the roll angle of the drone by the formula.
  • the attitude information can be used as the measurement information of the optimal estimation algorithm such as Kalman filter, and is combined with other attitude data such as inertial navigation to obtain the optimal estimation value of the attitude, and further improve the attitude estimation accuracy.
  • the calculated flight control data is transmitted to the flight control system.
  • the current global satellite navigation system includes Russia's GLONASS, China's Beidou, and Europe's GALILEO.
  • GPS Globalstar Satellite Navigation System
  • other satellite navigation systems can be used, or multiple satellite navigation systems can be used to implement the solution.
  • the embodiment of the present invention provides an implementation scheme of satellite navigation and attitude measurement on a drone, which improves the accuracy of flight attitude estimation, solves the magnetic field interference problem of the compass, and can be used for flight control of the drone.
  • the embodiment of the present invention uses a least squares search method with a baseline distance constraint to solve the whole-circumference ambiguity and carrier phase double difference equation, which is suitable for single-frequency and dual-frequency receivers, when using a single-frequency receiver It can effectively reduce the cost of the product, and at the same time simplify the calculation method and reduce the computational complexity.
  • a second embodiment of the present invention provides a satellite navigation device for testing a posture of a drone, and the drone is provided with three antennas that are not on the same straight line.
  • the number of antennas installed on the UAV can also be more than three, and more than three antennas can be used as redundancy, and can also participate in the attitude calculation processing.
  • the device can include:
  • the calculation module 520 is configured to obtain a unit vector between the antenna and the satellite according to the position of the ephemeris and the antenna; the carrier double difference is obtained based on the carrier observation, and the unit vector double difference of the antenna to the satellite is obtained based on the position of the ephemeris and the antenna ; based on carrier double difference, antenna-to-satellite unit vector double difference and baseline length between two antennas to obtain full-circumference ambiguity; based on the whole-circumference ambiguity, antenna-to-satellite unit vector double difference
  • the carrier double difference results in a baseline vector between the three antennas; the attitude angle is derived based on the position of the antenna and the baseline vector between the three antennas.
  • the calculating module 520 includes:
  • the ambiguity calculation unit is configured to solve the whole-circumference ambiguity by a least squares search method using a baseline distance constraint.
  • the ambiguity calculation unit is specifically configured to:
  • the tracked satellites are divided into a main star and a redundant star, the main star includes four, and one of the four main stars serves as a reference star, and the reference star has the highest elevation angle;
  • the full-circumference ambiguity is determined based on the double-difference ambiguity of all satellites.
  • the ambiguity calculation unit is further configured to:
  • the baseline vector includes: a first baseline vector from a first antenna to a second antenna of the three antennas, and a second baseline vector of the first antenna to the third antenna;
  • the calculation module 520 includes: an attitude data calculation unit, configured to calculate a heading angle and a pitch angle of the drone based on the positions of the first antenna and the second antenna and the first baseline vector; The position of the first antenna and the third antenna and the second baseline vector calculate the roll angle of the drone.
  • the apparatus further includes:
  • the fusion module 530 is configured to fuse the obtained attitude angle and the inertial navigation data to obtain an optimized estimation of the attitude angle for performing the attitude control of the drone.
  • a satellite navigation apparatus which is based on data such as carrier double difference obtained by satellite signals, and solves the whole-circumference ambiguity and the baseline between the antennas.
  • the vector, the technical solution for calculating the attitude angle from the baseline vector, achieves the following technical effects:
  • the satellite signal is used to test the attitude of the drone.
  • the accuracy of the attitude data is improved, and the problems of the magnetic declination and magnetic field interference of the compass pointing are avoided.
  • the least squares search method based on the baseline distance constraint is used to solve the whole-circumference ambiguity.
  • it is suitable for the single-frequency receiver, compared with the dual-frequency receiver used in the prior art. Reduced costs; on the other hand, simplified calculation methods and reduced computational complexity.
  • the flight control system is used to:
  • the position derives the unit vector between the antenna and the satellite; based on the carrier observation, the carrier double difference is obtained, and the unit vector double difference of the antenna to the satellite is obtained based on the position of the ephemeris and the antenna; the unit vector based on the carrier double difference and the antenna to the satellite Double-difference and baseline length between two antennas to obtain full-circumference ambiguity; base vector between three antennas based on the whole-circumference ambiguity, antenna-to-satellite unit vector double difference, and carrier double difference; The position and the baseline vector between the three antennas yield the attitude angle.
  • the drone can also include a power system and an electrical system.
  • the drone is a fixed wing drone, a helicopter drone, or an unmanned vehicle.
  • the airframe includes a central portion, an arm on both sides of the central portion, a nose and a tail; three antennas are respectively disposed on the nose and the machine Tail and one arm.
  • the flight control system is further specifically configured to:
  • the tracked satellites are divided into a main star and a redundant star, the main star includes four, and one of the four main stars serves as a reference star, and the reference star has the highest elevation angle;
  • the full-circumference ambiguity is determined based on the double-difference ambiguity of all satellites.
  • the flight control system is further configured to: substitute the double-difference ambiguity of all satellites into the medium-carrier double-difference equation, calculate the sum of squared residuals of the equation, and minimize the residual in all possible solutions.
  • the whole-circumference ambiguity corresponding to the difference square sum is taken as the solution to be determined.
  • multiple epochs obtain the same to-be-determined solution, it is confirmed that the to-be-determined solution is a fixed solution.
  • the baseline vector includes: a first baseline vector from a first antenna to a second antenna of the three antennas, and a second baseline vector of the first antenna to the third antenna;
  • the flight control system is further configured to calculate a heading angle and a pitch angle of the drone based on the positions of the first antenna and the second antenna and the first baseline vector; based on the first antenna and the third The position of the antenna and the second baseline vector calculate the roll angle of the drone.
  • the flight control system is further configured to receive satellite signals through the antenna using a single frequency receiver.
  • the flight control system is configured to fuse the derived attitude angle and the inertial navigation data to obtain an optimized estimate of the attitude angle for performing the attitude control of the drone.
  • the drone further includes an inertial measurement device, the inertial navigation data being measured by the inertial measurement device.
  • the least squares search method based on the baseline distance constraint is used to solve the whole-circumference ambiguity.
  • it is suitable for the single-frequency receiver, compared with the dual-frequency receiver used in the prior art. Reduced costs; on the other hand, simplified calculation methods and reduced computational complexity.
  • the fifth embodiment of the present invention further provides a processor for testing the posture of the drone, wherein the drone is provided with three antennas not on the same straight line, and the processor can perform the following steps:
  • the carrier double difference is obtained, and the unit vector double difference of the antenna to the satellite is obtained based on the position of the ephemeris and the antenna;
  • the attitude angle is derived based on the position of the antenna and the baseline vector between the three antennas.
  • the processor is further configured to: solve the whole-circumference ambiguity by a least squares search method with a baseline distance constraint.
  • the processor is further configured to:
  • the tracked satellites are divided into a main star and a redundant star, the main star includes four, and one of the four main stars serves as a reference star, and the reference star has the highest elevation angle;
  • the full-circumference ambiguity is determined based on the double-difference ambiguity of all satellites.
  • the processor is further configured to:
  • the baseline vector includes: a first baseline vector from a first antenna to a second antenna of the three antennas, and a second baseline vector of the first antenna to the third antenna;
  • the processor is further configured to: calculate a heading angle and a pitch angle of the drone based on the positions of the first antenna and the second antenna and the first baseline vector; based on the first antenna and the third The position of the antenna and the second baseline vector calculate the roll angle of the drone.
  • the processor is further configured to: fuse the obtained attitude angle and the inertial navigation data to obtain an optimized estimation of the attitude angle, and perform the attitude control of the drone.
  • a sixth embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes some or all of the steps of the satellite navigation attitude measurement method described in the foregoing method embodiments.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

La présente invention concerne un procédé et un dispositif de mesure de positionnement en navigation satellitaire et un véhicule aérien sans pilote, qui sont utilisés pour améliorer la précision de données de positionnement obtenues et simplifier le procédé de mesure de positionnement. Le procédé comprend : l'obtention d'observations originales d'un signal satellitaire, une éphéméride et la position d'une antenne, les observations originales comprenant une valeur d'observation de porteuse et une valeur d'observation de pseudo-distance (110) ; en fonction de l'éphéméride et de la position de l'antenne, l'obtention d'un vecteur unitaire de l'antenne vers un satellite ; l'obtention d'une double différence de porteuse sur la base de la valeur d'observation de porteuse, et l'obtention d'une double différence de vecteur unitaire de l'antenne vers le satellite sur la base de l'éphéméride et de la position de l'antenne (120) ; la résolution d'une ambiguïté entière sur la base de la double différence de porteuse, la double différence de vecteur unitaire de l'antenne vers le satellite, et la longueur de ligne de base entre deux antennes (130) ; l'obtention d'un vecteur de ligne de base entre trois antennes sur la base de l'ambiguïté entière, la double différence de vecteur unitaire de l'antenne vers le satellite et la double différence de porteuse (140) ; et l'obtention d'un angle de positionnement sur la base de la position de l'antenne et du vecteur de ligne de base entre les trois antennes (150).
PCT/CN2015/092243 2015-10-20 2015-10-20 Procédé et dispositif de mesure de positionnement en navigation satellitaire et véhicule aérien sans pilote WO2017066915A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/092243 WO2017066915A1 (fr) 2015-10-20 2015-10-20 Procédé et dispositif de mesure de positionnement en navigation satellitaire et véhicule aérien sans pilote
CN201580060906.5A CN107003386B (zh) 2015-10-20 2015-10-20 一种卫星导航测姿方法和装置及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/092243 WO2017066915A1 (fr) 2015-10-20 2015-10-20 Procédé et dispositif de mesure de positionnement en navigation satellitaire et véhicule aérien sans pilote

Publications (1)

Publication Number Publication Date
WO2017066915A1 true WO2017066915A1 (fr) 2017-04-27

Family

ID=58556617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092243 WO2017066915A1 (fr) 2015-10-20 2015-10-20 Procédé et dispositif de mesure de positionnement en navigation satellitaire et véhicule aérien sans pilote

Country Status (2)

Country Link
CN (1) CN107003386B (fr)
WO (1) WO2017066915A1 (fr)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248891A (zh) * 2017-06-13 2017-10-13 施浒立 一种用于移动通信天线指向监测的测向测姿装置
CN107632316A (zh) * 2017-09-11 2018-01-26 北京数码汇博科技有限公司 一种利用卫星定位测量车身姿态的方法及结构
CN108230722A (zh) * 2017-12-02 2018-06-29 山东大学 北斗精准时空公交站台实时信息服务融合处理工作方法及系统装置
CN108363084A (zh) * 2018-01-18 2018-08-03 和芯星通科技(北京)有限公司 利用卫星定位的方法和装置、卫星导航接收机、存储介质
CN109444924A (zh) * 2018-12-24 2019-03-08 哈尔滨工程大学 一种基于短基线多参考接收机的卫星星历故障监测方法
WO2019203677A1 (fr) * 2018-04-18 2019-10-24 Limited Liability Company "Topcon Positioning Systems" Détermination d'attitude avec des antennes multiples au moyen d'une relaxation de programmation semi-définie
CN110554373A (zh) * 2019-08-25 2019-12-10 中国科学院国家授时中心 干涉时间测量与测距方法
CN110986937A (zh) * 2019-12-19 2020-04-10 北京三快在线科技有限公司 用于无人设备的导航装置、方法及无人设备
CN111221013A (zh) * 2019-11-29 2020-06-02 中国兵器装备集团自动化研究所 一种可变基线双天线定向系统及其使用方法
CN111323804A (zh) * 2020-04-22 2020-06-23 北京国泰星云科技有限公司 一种基于北斗系统的船舶姿态测量设备及测量方法
CN111381256A (zh) * 2020-03-10 2020-07-07 上海卫星工程研究所 主动遥感卫星天线相位中心偏移误差计算的方法和系统
CN111624584A (zh) * 2020-03-20 2020-09-04 中国人民解放军火箭军工程大学 一种非协作目标激光诱偏距离测量系统及方法
CN112327342A (zh) * 2020-10-16 2021-02-05 山东省科学院海洋仪器仪表研究所 一种基于平滑器滤波模型的mimu辅助gnss测姿方法
CN112382844A (zh) * 2020-11-13 2021-02-19 成都戎星科技有限公司 一种低轨卫星通信系统的天线伺服电机控制方法和系统
CN113064195A (zh) * 2021-03-16 2021-07-02 西南交通大学 一种利用多天线几何特征的高精度低计算载体测姿方法
CN113064194A (zh) * 2020-08-12 2021-07-02 中国科学院微小卫星创新研究院 基于互联网星座的皮纳卫星通信、导航、定姿方法
CN113253308A (zh) * 2021-05-12 2021-08-13 中国人民解放军陆军工程大学 一种无人机卫星导航终端定位性能确定方法及系统
CN114355422A (zh) * 2021-12-14 2022-04-15 中船航海科技有限责任公司 一种基于姿态辅助的多天线定位系统及定位方法
CN114488249A (zh) * 2020-03-04 2022-05-13 北京建筑大学 一种利用gnss建筑塔机塔顶位置的预警装置
CN115267837A (zh) * 2022-06-22 2022-11-01 中国科学院国家空间科学中心 一种星间通信测距时间同步的地面验证方法
CN115480274A (zh) * 2021-05-31 2022-12-16 千寻位置网络有限公司 一种参考星选择方法、装置及接收机
CN116030646A (zh) * 2023-03-30 2023-04-28 南昌航天广信科技有限责任公司 一种路况信息播报方法、系统、计算机及存储介质
CN116232439A (zh) * 2023-03-21 2023-06-06 中国民航大学 基于北斗的5g atg地面基站对空覆盖姿态测量与调控方法
CN116256782A (zh) * 2023-05-15 2023-06-13 南京信息工程大学 一种基于双天线gnss单差算法的多路径误差消除方法
CN116879927A (zh) * 2023-09-06 2023-10-13 智慧司南(天津)科技发展有限公司 基于三天线共线共钟架构的船用卫星罗经艏向测定方法
CN117405108A (zh) * 2023-11-08 2024-01-16 中国人民解放军63620部队 目标姿态测量方法、系统、电子设备和介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154815B (zh) * 2017-11-30 2022-06-21 深圳市大疆创新科技有限公司 最高温度点跟踪方法、装置和无人机
CN112703425A (zh) * 2018-08-20 2021-04-23 半球全球卫星导航系统公司 用于检测伪全球导航卫星系统卫星信号的系统和方法
CN111295567A (zh) * 2018-12-03 2020-06-16 深圳市大疆创新科技有限公司 航向的确定方法、设备、存储介质和可移动平台
CN110412638B (zh) * 2019-08-16 2023-03-28 中国科学院重庆绿色智能技术研究院 一种低成本三天线gnss rtk定位及测姿方法
CN110673172A (zh) * 2019-09-17 2020-01-10 闽江学院 一种接收机静态相对定位精度的测试方法及终端
WO2021212517A1 (fr) * 2020-04-24 2021-10-28 深圳市大疆创新科技有限公司 Procédé et système de positionnement et support d'enregistrement
CN112068167A (zh) * 2020-09-14 2020-12-11 天津云遥宇航科技有限公司 一种星载双天线融合定位方法
CN112325842B (zh) * 2020-10-30 2022-07-01 中国电子科技集团公司第五十四研究所 一种多天线平面投影加权测姿方法
CN112924999B (zh) * 2021-01-14 2023-08-22 华南理工大学 一种无人机的定位方法、系统、装置及介质
CN115061166B (zh) * 2022-06-16 2024-04-05 湘潭大学 一种载波相位重构方法、装置、电子设备及介质
CN116321418B (zh) * 2023-03-02 2024-01-02 中国人民解放军国防科技大学 一种基于节点构型优选的集群无人机融合估计定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561432A (en) * 1995-05-12 1996-10-01 Trimble Navigation Out of plane antenna vector system and method
US20090189804A1 (en) * 2008-01-30 2009-07-30 Javad Gnss, Inc. Satellite differential positioning receiver using multiple base-rover antennas
CN101825717A (zh) * 2010-04-16 2010-09-08 北京航空航天大学 一种基于载波平滑码伪距技术的动态定姿方法
CN101833080A (zh) * 2009-03-12 2010-09-15 周迅 一种利用gps系统附加约束条件的载体姿态测量方法
CN102230971A (zh) * 2011-03-29 2011-11-02 哈尔滨工程大学 Gps多天线测姿方法
CN102998690A (zh) * 2012-11-26 2013-03-27 哈尔滨工程大学 一种基于gps载波双差方程的姿态角直接求解方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411545B2 (en) * 2006-09-29 2008-08-12 Honeywell International Inc. Carrier phase interger ambiguity resolution with multiple reference receivers
CN102736094B (zh) * 2012-06-19 2013-07-31 哈尔滨工程大学 一种基于自适应遗传算法的单频gnss整周模糊度获取方法
CN104407354B (zh) * 2014-11-03 2017-08-25 中国人民解放军63961部队 一种北斗卫星导航系统双频定位定向仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561432A (en) * 1995-05-12 1996-10-01 Trimble Navigation Out of plane antenna vector system and method
US20090189804A1 (en) * 2008-01-30 2009-07-30 Javad Gnss, Inc. Satellite differential positioning receiver using multiple base-rover antennas
CN101833080A (zh) * 2009-03-12 2010-09-15 周迅 一种利用gps系统附加约束条件的载体姿态测量方法
CN101825717A (zh) * 2010-04-16 2010-09-08 北京航空航天大学 一种基于载波平滑码伪距技术的动态定姿方法
CN102230971A (zh) * 2011-03-29 2011-11-02 哈尔滨工程大学 Gps多天线测姿方法
CN102998690A (zh) * 2012-11-26 2013-03-27 哈尔滨工程大学 一种基于gps载波双差方程的姿态角直接求解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI, LIN: "GPS Integer Ambiguity and Its Applied Research in Attitude Measurement", BASIC SCIENCES, CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 September 2008 (2008-09-15), pages 18 , 48 - 50 , 52 , 55-59 and 62 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248891B (zh) * 2017-06-13 2023-08-04 施浒立 一种用于移动通信天线指向监测的测向测姿装置
CN107248891A (zh) * 2017-06-13 2017-10-13 施浒立 一种用于移动通信天线指向监测的测向测姿装置
CN107632316A (zh) * 2017-09-11 2018-01-26 北京数码汇博科技有限公司 一种利用卫星定位测量车身姿态的方法及结构
CN108230722A (zh) * 2017-12-02 2018-06-29 山东大学 北斗精准时空公交站台实时信息服务融合处理工作方法及系统装置
CN108363084A (zh) * 2018-01-18 2018-08-03 和芯星通科技(北京)有限公司 利用卫星定位的方法和装置、卫星导航接收机、存储介质
WO2019203677A1 (fr) * 2018-04-18 2019-10-24 Limited Liability Company "Topcon Positioning Systems" Détermination d'attitude avec des antennes multiples au moyen d'une relaxation de programmation semi-définie
US10935669B2 (en) 2018-04-18 2021-03-02 Topcon Positioning Systems, Inc. Using SDP relaxation for optimization of the satellites set chosen for positioning
CN109444924A (zh) * 2018-12-24 2019-03-08 哈尔滨工程大学 一种基于短基线多参考接收机的卫星星历故障监测方法
CN109444924B (zh) * 2018-12-24 2023-02-14 哈尔滨工程大学 一种基于短基线多参考接收机的卫星星历故障监测方法
CN110554373A (zh) * 2019-08-25 2019-12-10 中国科学院国家授时中心 干涉时间测量与测距方法
CN111221013A (zh) * 2019-11-29 2020-06-02 中国兵器装备集团自动化研究所 一种可变基线双天线定向系统及其使用方法
CN111221013B (zh) * 2019-11-29 2023-06-09 中国兵器装备集团自动化研究所 一种可变基线双天线定向系统及其使用方法
CN110986937A (zh) * 2019-12-19 2020-04-10 北京三快在线科技有限公司 用于无人设备的导航装置、方法及无人设备
CN110986937B (zh) * 2019-12-19 2022-05-17 北京三快在线科技有限公司 用于无人设备的导航装置、方法及无人设备
CN114488249A (zh) * 2020-03-04 2022-05-13 北京建筑大学 一种利用gnss建筑塔机塔顶位置的预警装置
CN114488249B (zh) * 2020-03-04 2024-04-12 北京建筑大学 一种利用gnss建筑塔机塔顶位置的预警装置
CN111381256A (zh) * 2020-03-10 2020-07-07 上海卫星工程研究所 主动遥感卫星天线相位中心偏移误差计算的方法和系统
CN111624584A (zh) * 2020-03-20 2020-09-04 中国人民解放军火箭军工程大学 一种非协作目标激光诱偏距离测量系统及方法
CN111624584B (zh) * 2020-03-20 2023-06-20 中国人民解放军火箭军工程大学 一种非协作目标激光诱偏距离测量系统及方法
CN111323804B (zh) * 2020-04-22 2023-08-29 北京国泰星云科技有限公司 一种基于北斗系统的船舶姿态测量设备及测量方法
CN111323804A (zh) * 2020-04-22 2020-06-23 北京国泰星云科技有限公司 一种基于北斗系统的船舶姿态测量设备及测量方法
CN113064194A (zh) * 2020-08-12 2021-07-02 中国科学院微小卫星创新研究院 基于互联网星座的皮纳卫星通信、导航、定姿方法
CN112327342A (zh) * 2020-10-16 2021-02-05 山东省科学院海洋仪器仪表研究所 一种基于平滑器滤波模型的mimu辅助gnss测姿方法
CN112382844A (zh) * 2020-11-13 2021-02-19 成都戎星科技有限公司 一种低轨卫星通信系统的天线伺服电机控制方法和系统
CN113064195A (zh) * 2021-03-16 2021-07-02 西南交通大学 一种利用多天线几何特征的高精度低计算载体测姿方法
CN113064195B (zh) * 2021-03-16 2023-09-01 西南交通大学 一种利用多天线几何特征的高精度低计算载体测姿方法
CN113253308B (zh) * 2021-05-12 2022-03-11 中国人民解放军陆军工程大学 一种无人机卫星导航终端定位性能确定方法及系统
CN113253308A (zh) * 2021-05-12 2021-08-13 中国人民解放军陆军工程大学 一种无人机卫星导航终端定位性能确定方法及系统
CN115480274A (zh) * 2021-05-31 2022-12-16 千寻位置网络有限公司 一种参考星选择方法、装置及接收机
CN114355422A (zh) * 2021-12-14 2022-04-15 中船航海科技有限责任公司 一种基于姿态辅助的多天线定位系统及定位方法
CN115267837B (zh) * 2022-06-22 2024-05-28 中国科学院国家空间科学中心 一种星间通信测距时间同步的地面验证方法
CN115267837A (zh) * 2022-06-22 2022-11-01 中国科学院国家空间科学中心 一种星间通信测距时间同步的地面验证方法
CN116232439A (zh) * 2023-03-21 2023-06-06 中国民航大学 基于北斗的5g atg地面基站对空覆盖姿态测量与调控方法
CN116232439B (zh) * 2023-03-21 2024-04-26 中国民航大学 基于北斗的5g atg地面基站对空覆盖姿态测量与调控方法
CN116030646A (zh) * 2023-03-30 2023-04-28 南昌航天广信科技有限责任公司 一种路况信息播报方法、系统、计算机及存储介质
CN116256782B (zh) * 2023-05-15 2023-09-01 南京信息工程大学 一种基于双天线gnss单差算法的多路径误差消除方法
CN116256782A (zh) * 2023-05-15 2023-06-13 南京信息工程大学 一种基于双天线gnss单差算法的多路径误差消除方法
CN116879927B (zh) * 2023-09-06 2023-11-21 智慧司南(天津)科技发展有限公司 基于三天线共线共钟架构的船用卫星罗经艏向测定方法
CN116879927A (zh) * 2023-09-06 2023-10-13 智慧司南(天津)科技发展有限公司 基于三天线共线共钟架构的船用卫星罗经艏向测定方法
CN117405108A (zh) * 2023-11-08 2024-01-16 中国人民解放军63620部队 目标姿态测量方法、系统、电子设备和介质
CN117405108B (zh) * 2023-11-08 2024-05-07 中国人民解放军63620部队 目标姿态测量方法、系统、电子设备和介质

Also Published As

Publication number Publication date
CN107003386B (zh) 2019-06-28
CN107003386A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2017066915A1 (fr) Procédé et dispositif de mesure de positionnement en navigation satellitaire et véhicule aérien sans pilote
US11585951B1 (en) Heading or pitch determination systems and methods with high confidence error bounds
US9035826B2 (en) Satellite differential positioning receiver using multiple base-rover antennas
CN109613585A (zh) 一种对基站天线超短基线gnss双天线实时测向的方法
US8423289B2 (en) Inter-moving body interferometric positioning system, device and method thereof
EP3109672B1 (fr) Récepteur gnss avec une capacité pour résoudre des ambiguïtés au moyen d'une formulation non combinée
US11609346B2 (en) GNSS-based attitude determination algorithm and triple-antenna GNSS receiver for its implementation
US11662478B2 (en) System and method for fusing dead reckoning and GNSS data streams
BRPI1103922B1 (pt) Dispositivo e processo para posicionamento tridimensional
CN105425261A (zh) 基于GPS/Beidou2/INS的组合导航与定位方法
US20210072408A1 (en) System and method for satellite positioning
US8922426B1 (en) System for geo-location
Willi et al. GNSS attitude determination with non-synchronized receivers and short baselines onboard a spacecraft
CN109061701A (zh) 一种适用于星载多天线融合载波相位差分测量方法
Medina et al. On the Kalman filtering formulation for RTK joint positioning and attitude quaternion determination
Konrad et al. State estimation for a multirotor using tight-coupling of gnss and inertial navigation
US11821999B2 (en) Attitude determination based on global navigation satellite system information
CN115561796A (zh) 一种电网无人机巡检实时定位方法和系统
CN113064195B (zh) 一种利用多天线几何特征的高精度低计算载体测姿方法
CN108205151B (zh) 一种低成本gps单天线姿态测量方法
US20170108590A1 (en) Triple difference formulation for formation flight
CN115184977A (zh) 一体化组合导航装置及导航系统
Dai et al. Heading-determination using the sensor-fusion based maritime PNT Unit
Renga et al. Navigation facility for high accuracy offline trajectory and attitude estimation in airborne applications
Fu et al. Performance Analysis of Kinematic-to-Kinematic Relative Positioning Based on GPS/BDS-3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906434

Country of ref document: EP

Kind code of ref document: A1