WO2017065091A1 - トルク伝達可能なリニアブッシュ - Google Patents

トルク伝達可能なリニアブッシュ Download PDF

Info

Publication number
WO2017065091A1
WO2017065091A1 PCT/JP2016/079847 JP2016079847W WO2017065091A1 WO 2017065091 A1 WO2017065091 A1 WO 2017065091A1 JP 2016079847 W JP2016079847 W JP 2016079847W WO 2017065091 A1 WO2017065091 A1 WO 2017065091A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft member
nut
ball
rolling
load
Prior art date
Application number
PCT/JP2016/079847
Other languages
English (en)
French (fr)
Inventor
諭 柏倉
惇博 田中
秀生 斉藤
井口 卓也
寛正 安武
隆之介 大関
悠里 浅井
星出 薫
敏和 伴
光真 和田
聡明 篠原
勉 富樫
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Publication of WO2017065091A1 publication Critical patent/WO2017065091A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C31/00Bearings for parts which both rotate and move linearly
    • F16C31/04Ball or roller bearings
    • F16C31/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end

Definitions

  • the present invention relates to a linear bushing that can transmit torque and can be used for, for example, an electric cylinder.
  • An electric cylinder moves a cylindrical rod in accordance with the input of an electric signal, and is replaced by a hydraulic cylinder and is widely used in various industrial machines such as a transfer robot and an assembly robot.
  • the electric cylinder has a built-in electric motor and a ball screw for converting the rotational movement of the electric motor into a translational movement in the axial direction inside the apparatus housing, and the translational movement converted by the ball screw is the rod.
  • the rod moves forward and backward from the apparatus housing according to the rotation direction and the rotation amount of the electric motor.
  • the rod as an output shaft is supported by the device housing via a guide device, but a radial load is applied to the rod from the outside, but the rod is prevented from being rotated by the ball screw.
  • the guide device is required to have both radial load and rotational torque. For this reason, ball splines are frequently used as the guide device.
  • the ball spline has a spline shaft in which a ball rolling groove is formed along the axial direction, and a cylindrical shape that is loosely fitted around the spline shaft and faces the rolling groove of the spline shaft.
  • a nut member having a running groove on the inner peripheral surface, and a plurality of balls that roll while applying a load between the rolling groove of the spline shaft and the rolling groove of the nut member. Since the ball rolls between the rolling groove of the spline shaft and the rolling groove of the nut member, the ball does not move in the circumferential direction of the spline shaft and the nut member. Is capable of freely translating the spline shaft while applying rotational torque.
  • the spline shaft has a plurality of rolling grooves formed on the outer peripheral surface thereof, the cross section perpendicular to the axial direction is not completely circular, and the spline shaft was used as it is as a rod of an electric cylinder. In such a case, there is a concern that the sealing performance between the apparatus housing and the spline shaft is lowered.
  • the spline shaft is not used as the rod as it is, but a cylindrical shaft portion not provided with the rolling groove is provided at the tip of the spline shaft, and the cylindrical shaft portion is used as the rod as a device housing. I was moving back and forth from my body.
  • a linear bush is known as a device for guiding the translational movement of a shaft member having a circular cross section.
  • the linear bush has substantially the same configuration as the ball spline, but each ball is in point contact with the outer peripheral surface of the shaft member, so that when the rotational torque acts on the nut member, the ball is The outer peripheral surface of the shaft member slipped, and it was not possible to load the rotational torque that acts between the shaft member and the nut member.
  • Patent Document 1 As a linear bush capable of applying a rotational torque, for example, one disclosed in Patent Document 1 is known.
  • the linear bush shown in Patent Document 1 can load only the rotational torque in one direction around the shaft member like the one-way clutch, and cannot load the rotational torque in the other direction. .
  • the structure is complicated, the number of parts is large, and the production cost increases.
  • the present invention has been made in view of such a problem, and an object of the present invention is to guide the rotational torque around the shaft member regardless of the rotational direction while guiding the circular cross-section shaft member freely in the axial direction. It is an object of the present invention to provide a linear bushing that can be loaded, has a simple structure, and can reduce production costs.
  • the present invention provides a shaft member having a circular cross section, a nut member facing the outer peripheral surface of the shaft member and having a plurality of load rolling grooves formed along the longitudinal direction of the shaft member, and the shaft And a plurality of balls provided between the outer peripheral surface of the member and the load rolling groove of the nut member so as to be capable of rolling motion, and the load rolling groove of the nut member includes the nut.
  • a pair of rolling surfaces inclined at a predetermined angle with respect to the radial direction of the member are formed to intersect with each other, and the pair of rolling surfaces are provided in a plane-symmetric relationship with respect to a plane including the axial center of the nut member. ing.
  • the rotational torque when a rotational torque along the circumferential direction of the shaft member acts on the nut member, the rotational torque is in a predetermined direction with respect to the radial direction of the nut member regardless of the direction.
  • the ball is sandwiched in a wedge-shaped space formed by the rolling surface inclined at an angle and the outer peripheral surface of the shaft member, and the rotation of the nut member in the circumferential direction of the shaft member is locked. Thereby, it is possible to load the rotational torque acting between the shaft member and the nut member regardless of the rotational direction.
  • the structure of the nut member is extremely simple, and the production cost is reduced. It can be manufactured at a low cost.
  • FIG. 2 is a cross-sectional view perpendicular to the axial direction of the linear bush shown in FIG.
  • FIG. 2 is a perspective view showing a circulation path member of the linear bush shown in FIG. It is an expanded sectional view showing details of a load rolling groove.
  • FIG. 2 is a perspective view which shows the compound guide apparatus using the linear bush of this invention.
  • An example of the ball screw nut which can be combined with a shaft member is shown.
  • the linear bush according to the present invention includes a shaft member having a circular cross section perpendicular to the axial direction, a nut member loosely fitted to the shaft member and movable along the shaft member, and the shaft member and the nut member. And a large number of balls rolling between the two.
  • FIG. 1 is an exploded perspective view showing one embodiment of the nut member 1.
  • the nut member 1 includes a metal nut main body 10, a plurality of circulation path members 2 fixed to the inner peripheral surface of the nut main body 10, and a pair of axially fixed end faces of the nut main body 10. And a lid member 3.
  • FIG. 1 shows a state in which only one circulation path member 2 is removed from the nut body 10 among the plurality of circulation path members 2.
  • Reference numeral 31 denotes a mounting hole through which a bolt for fixing the lid member 3 to the nut body 10 is inserted, and reference numeral 32 denotes a female screw hole into which the bolt is screwed.
  • the nut body 10 has a through-hole 11 through which the shaft member is inserted, and is formed in a substantially cylindrical shape.
  • the inner peripheral surface of the through-hole 11 accommodates a ball that rolls on the outer peripheral surface of the shaft member.
  • a guide groove 12 is formed along the axial direction. In the example shown in FIG. 1, three guide grooves 12 are formed at equal intervals with respect to the inner peripheral surface of the nut body 10, but depending on the radial load that the nut member 1 should load. The number of the guide grooves 12 may be changed as appropriate.
  • a plurality of passage grooves 14 for fixing the circulation path member 2 are formed along the axial direction on the inner peripheral surface of the nut body 10. Each passage groove 14 is adjacent to each guide groove 12 and is paired with the guide groove 12. Accordingly, in the example shown in FIG. 1, three pairs of the guide groove 12 and the passage groove 14 are provided for the nut body 10.
  • FIG. 2 shows a state in which the nut member 1 is assembled to the shaft member 4, and shows a cross section of the nut member 1 cut perpendicular to the axial direction of the shaft member 4.
  • the shaft member 4 is formed in a cylindrical shape, and a cross section perpendicular to the axial direction is circular. For this reason, the ball 5 rolling the shaft member 4 is in point contact with the outer peripheral surface of the shaft member 4.
  • the above-mentioned three guide grooves 12 are arranged at equal intervals on the inner peripheral surface of the nut body 10.
  • a load rolling groove 13 is formed in which the ball 5 rolls while applying a load to the shaft member 4.
  • the guide grooves 12 extend in the axial direction of the nut body 10 (in the direction perpendicular to the plane of FIG. 2).
  • a large number of balls 5 are arranged in a row in each guide groove 12, and each ball 5 is loaded with the load.
  • the running groove 13 is in contact with the outer peripheral surface of the shaft member 4.
  • a passage groove 14 is formed in the nut body 10 adjacent to the guide groove 12, and a synthetic resin circuit member 2 is fitted in the passage groove 14.
  • Each circulation path member 2 is formed with a return passage 20 for the ball 5 in parallel with the guide groove 12 and the load rolling groove 13 of the nut body 10, and the inner diameter of the return passage 20 is slightly smaller than the diameter of the ball 5. It is greatly formed.
  • the circulation path member 2 is provided with a guide surface 21 adjacent to the ball 5 arranged in the guide groove 12 of the nut body 10. The guide surface 21 is formed in a curved surface shape following the spherical surface of the ball 5.
  • the end portion 22 of the guide surface 21 adjacent to the shaft member 4 regulates the opening width of the guide groove 12 toward the shaft member 4 to be equal to or smaller than the diameter of the ball 5. For this reason, even if the shaft member 4 is pulled out from the nut member 1, the balls 5 arranged in the guide groove 12 do not fall out of the guide groove 12.
  • FIG. 3 is a perspective view showing the circulation path member 2.
  • the circulation path member 2 includes a central fixing portion 2a that fits in the passage groove 14 of the nut body 10, and a pair of plate portions 2b provided at both ends of the central fixing portion 2a.
  • the above-described return passage 20 penetrates through the center fixing portion 2 a and the guide surface 21 is formed in parallel with the return passage 20.
  • each plate portion 2 b is a portion that protrudes from the end surface in the axial direction of the nut body 10 when the circulation path member 2 is fitted in the passage groove 14 of the nut body 10. is there.
  • Each plate portion 2b is formed larger than a cross section perpendicular to the longitudinal direction of the central fixing portion 2a, and a part of the plate portion 2b protrudes from the central fixing portion 2a. For this reason, when the center fixing portion 2a is fitted into the passage groove 14 of the nut body 10, a part of the plate portion 2b covers the end surface of the nut body 10, and the circulation in the axial direction of the nut body 10 is performed. Positioning of the road member 2 is performed.
  • the plate portion 2b is formed with an inner peripheral guide surface 23 that smoothly connects the guide surface 21 and the return passage 20.
  • the lid member 3 is formed with a recess 30 into which the plate portion 2b is fitted.
  • An outer periphery guide facing the inner periphery guide surface 23 of the plate portion 2b is formed in the recess.
  • a surface (not shown) is formed.
  • the inner peripheral guide surface 23 and the outer peripheral guide surface face each other to form a direction changing path of the ball 5, and the inner diameter of the direction changing path is set slightly larger than the diameter of the ball 5.
  • the circulation path member 2 is fitted from the inside of the nut body 10 to a passage groove 14 provided adjacent to the guide groove 12 of the nut body 10, and the circulation path member 2 is formed in the circulation path member 2. Similar to the guide groove 12, the return passage 20 exists at a position close to the outer peripheral surface of the shaft member 4. For this reason, the nut member 1 can keep the outer diameter small.
  • FIG. 4 is an enlarged view showing details of the load rolling groove 13 formed in the nut body 10.
  • the load rolling groove 13 is formed by a pair of rolling surfaces 13 a and 13 b intersecting, and a ball rolling in the guide groove 12 is an outer periphery of the pair of rolling surfaces 13 a and 13 b and the shaft member 4. Simultaneous contact with the surface.
  • Each rolling surface 13a, 13b is inclined at a predetermined angle ⁇ of 90 ° or less with respect to the radial direction of the nut member 1, that is, an acute angle, and the pair of rolling surfaces 13a, 13b are shafts of the nut member 1.
  • the plane is symmetrical with respect to a plane including the direction center (indicated by a one-dot chain line in FIGS. 2 and 4).
  • each of the pair of rolling surfaces 13a, 13b forming the load rolling groove 13 is inclined at a predetermined angle ⁇ of 90 ° or less with respect to the radial direction of the nut member 1, and each rolling surface 13a, 13 b forms a pseudo wedge-shaped space with the outer peripheral surface of the shaft member 4.
  • the ball 5 does not roll or slip in the circumferential direction of the shaft member 4, and the shaft member 4 and the nut member 1 are integrated in the arrow R direction.
  • a rotational torque is transmitted to and from the member 1.
  • the ball 5 can rotate around the rotation axis indicated by a two-dot chain line, and the nut member 1 can move in the axial direction.
  • the nut member 1 when a rotational torque acts between the nut member 1 and the shaft member 4, the nut member 1 is fixed in the circumferential direction of the shaft member 4 regardless of the direction of the rotational torque. Rotational torque can be transmitted between the nut member 1 and the shaft member 4. In the linear bush to which the present invention is applied, the nut member 1 can be freely moved in the axial direction along the shaft member 4 while the rotational torque is transmitted between the nut member 1 and the shaft member 4. Can be moved.
  • a so-called preload is applied to the balls 5 that are loaded between the load rolling grooves 13 and the outer peripheral surface of the shaft member 4, that is, the balls 5 arranged in the guide grooves 12. It is possible. If a preload is applied to the ball 5 rolling in the guide groove 12, when a radial load acts between the nut member 1 and the shaft member 4, the ball 5 and the load rolling groove 13, or between the ball 5 and the outer peripheral surface of the shaft member 4, the occurrence of a gap can be prevented, and the occurrence of rattling between the shaft member 4 and the nut member 1 can be suppressed.
  • the nut member 1 can be guided with high accuracy along the shaft member 4.
  • the linear bush to which the present invention is applied can transmit rotational torque between the nut member 1 and the shaft member 4 while the nut member 1 freely translates with respect to the shaft member 4.
  • This is possible and exhibits the same function as a so-called ball spline.
  • the rolling groove of the ball 5 is not formed on the outer peripheral surface of the shaft member 4, and the structure of the nut member 1 that moves along the shaft member 4 is also simple, and the production cost is reduced. It is possible.
  • the cross section perpendicular to the axial direction of the shaft member 4 has a circular shape with no irregularities, for example, by attaching a seal ring to the end of the nut member 1 in the axial direction, It is possible to easily and stably seal the gap with the shaft member 4.
  • the linear bushing of the present invention can be applied as it is to applications where ball splines have been used in the past, and solves the problem of sealing performance against dust and foreign matters, which was a concern when using ball splines.
  • it is suitable as a rod guide device in an electric cylinder.
  • FIG. 5 shows a composite guide device constructed using the linear bushing of the present invention.
  • This composite guide device is obtained by fitting a ball screw nut 6 to the shaft member 4 of the linear bush described above.
  • the ball screw nut 6 moves spirally with respect to the shaft member 4.
  • the shaft member 4 is intended to perform a translational motion or a rotational motion in accordance with the selection of stop / rotation of the nut member 1 and the ball screw nut 6.
  • a support bearing 16 is assembled to the outer peripheral surface of the nut member 1 via a myriad of balls 15, and the nut member 1 can be freely rotated with respect to a fixed portion such as a mechanical device.
  • a support bearing 61 is assembled to the outer peripheral surface of the ball screw nut 6 via a plurality of balls 60, and the ball screw nut 6 can be freely rotated with respect to the fixed portion.
  • FIG. 6 shows an example of the ball screw nut 6.
  • a spiral load ball groove 62 is formed on the inner peripheral surface of the ball screw nut 6, and a large number of balls 63 are arranged in the load ball groove 62.
  • the ball 63 contacts the outer peripheral surface of the shaft member 4 and rolls in the load ball groove 62 while applying a load between the shaft member 4 and the ball screw nut 6.
  • the ball screw nut 6 is provided with a return pipe 64 for constructing an infinite circulation path of the ball, and the ball 63 that rolls spirally along the load ball groove 62 is attached to the return pipe 64. It passes through the interior and is returned to the starting position of the load ball groove 62.
  • the structure of the ball screw nut 6 combined with the shaft member 4, in particular, the circulation structure of the ball 63 can be arbitrarily designed.
  • FIG. 7 is a schematic view showing a contact state of the ball 63 between the ball screw nut 6 and the shaft member 4, and shows a cross section parallel to the axial direction of the shaft member 4.
  • the load ball groove 62 has a so-called Gothic arch shape in which a pair of rolling surfaces 62 a and 62 b intersect, and the ball 63 is simultaneously formed on the pair of rolling surfaces 62 a and 62 b and the outer peripheral surface of the shaft member 4.
  • Each rolling surface 62a, 62b is inclined at a predetermined angle ⁇ of 90 ° or less, that is, an acute angle, with respect to a cross section perpendicular to the axial direction of the ball screw nut 6 (indicated by a dashed line in FIG. 7).
  • the pair of rolling surfaces 62 a and 62 b are in a plane-symmetrical relationship with respect to a cross section perpendicular to the axial direction of the ball screw nut 6.
  • the ball screw nut 6 is in one axial direction of the shaft member 4 (see FIG. 7, the ball 63 is pushed into a wedge-shaped space formed by one rolling surface 62 a and the outer peripheral surface of the shaft member 4, and the outer peripheral surface of the ball 63 and the shaft member 4.
  • the pressure contact force with the rolling surface 62a is increased.
  • the rolling and sliding of the ball 63 with respect to the shaft member 4 is limited, and the A direction is within the range of the frictional force acting between the ball 63 and the shaft member 4. The movement of the ball screw nut 6 is limited.
  • the ball 63 can roll around the shaft member 4 spirally along the extending direction of the load ball groove 62. Therefore, when a rotational torque is applied to either the ball screw nut 6 or the shaft member 4, the ball screw nut 6 spirals around the shaft member 4 in the direction of arrow C in FIG. Exercise.
  • the combination of the shaft member 4 and the ball screw nut 6 exhibits the same function as a so-called ball screw device.
  • a helical thread groove on which the ball 63 rolls is not formed on the outer peripheral surface of the shaft member 4. For this reason, it is possible to easily and stably seal the gap between the ball screw nut 6 and the shaft member 4 by attaching a seal ring to the end of the ball screw nut 6 in the axial direction.
  • each of the nut member 1 of the said linear bush and the said ball screw nut 6 is rotated separately with respect to a fixing
  • a translational motion, a rotational motion, or a spiral motion combining the translational motion and the rotational motion to the shaft member 4.
  • the shaft member 4 can be given a translational motion according to the rotation direction of the ball screw nut 6.
  • the shaft member 4 is given a spiral motion that matches the rotation direction of the nut member 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

円形断面軸部材を軸方向に自在に案内しつつも、前記軸部材の周囲における回転トルクを回転方向に関わらず負荷可能なリニアブッシュであり、円形断面を有する軸部材(4)と、前記軸部材(4)の外周面に対向すると共に当該軸部材の長手方向に沿って形成された複数の負荷転走溝(13)を有するナット部材(1)と、前記軸部材(4)の外周面と前記ナット部材(1)の負荷転走溝(13)の間に転がり運動可能に設けられた複数のボール(5)とを備えている。前記ナット部材(1)の負荷転走溝(13)は、当該ナット部材の半径方向に対して所定角度で傾斜した一対の転走面(13a,13b)が交わって形成されると共に、前記一対の転走面(13a,13b)は前記ナット部材(1)の中心線を含む平面に関して面対称の関係に設けられている。

Description

トルク伝達可能なリニアブッシュ
 本発明は、トルク伝達が可能であり、例えば電動シリンダに利用可能なリニアブッシュに関する。
 電動シリンダは電気信号の入力に応じて円柱状のロッドを進退させるものであり、油圧シリンダに置き換えられて搬送ロボットや組み立てロボット等の各種産業機械に多用されている。前記電動シリンダは装置筐体の内部に電動モータ、及び前記電動モータの回転運動を軸方向への並進運動に変換するボールねじを内蔵しており、前記ボールねじによって変換された並進運動が前記ロッドに伝達され、当該ロッドが前記電動モータの回転方向及び回転量に応じて前記装置筐体から進退することになる。
 出力軸としての前記ロッドは案内装置を介して前記装置筐体に支持されているが、当該ロッドには外部からラジアル荷重が作用する一方、前記ボールねじに連れ回されることがないよう回り止めも必要となり、前記案内装置にはラジアル荷重及び回転トルクの双方の負荷が要求される。このため、前記案内装置としてはボールスプラインが多用されていた。
 前記ボールスプラインは、軸方向に沿ってボールの転走溝が形成されたスプライン軸と、このスプライン軸の周囲に遊嵌する円筒状に形成されると共に前記スプライン軸の転走溝と対向する転走溝を内周面に有するナット部材と、前記スプライン軸の転走溝とナット部材の転走溝との間で荷重を負荷しながら転動する複数のボールとから構成されている。ボールが前記スプライン軸の転動溝と前記ナット部材の転動溝との間を転動することから、前記ボールが前記スプライン軸及び前記ナット部材の周方向へ移動することはなく、当該ボールスプラインは回転トルクを負荷しながら、前記スプライン軸を自在に並進運動させることが可能となっている。
 一方、電動シリンダでは前記装置筐体内に対する塵芥や異物の侵入を防止するために、前記装置筐体と前記ロッドとの隙間を密封する必要がある。この点に関し、前記スプライン軸は外周面に複数の転走溝が形成されていることから、その軸方向に垂直な断面が完全な円形ではなく、前記スプライン軸をそのまま電動シリンダのロッドとして使用した場合には、前記装置筐体と前記スプライン軸との間の密封性が低下する懸念があった。
 このため、従来の電動シリンダでは前記スプライン軸をそのまま前記ロッドとするのではなく、当該スプライン軸の先端に前記転走溝を具備しない円柱軸部を設け、当該円柱軸部を前記ロッドとして装置筐体から進退させていた。
 しかし、前記円柱軸部及び前記スプライン軸の軸方向長さは電動シリンダの出力軸としてのロッドのストローク量で決定されるため、前記ストローク量を大きく設定すると、その分だけ前記円柱軸部及び前記スプライン軸の双方の軸方向長さが長尺化し、電動シリンダの装置筐体が大型化せざるを得ないといった課題がある。
 断面円形状の軸部材の並進運動を案内する装置としては、リニアブッシュが知られている。リニアブッシュは前記ボールスプラインと略同じ構成を備えているが、個々のボールは前記軸部材の外周面に対して点接触していることから、前記ナット部材に回転トルクが作用すると、前記ボールが前記軸部材の外周面を滑ってしまい、前記軸部材と前記ナット部材との間に作用する回転トルクを負荷することはできなかった。
 回転トルクを負荷することが可能なリニアブッシュとしては、例えば特許文献1に開示されるものが知られている。しかし、当該特許文献1に示されるリニアブッシュは、ワンウェイクラッチの如く、前記軸部材の周囲の一方向への回転トルクのみ負荷可能であり、他方向については回転トルクを負荷することができなかった。このため、両回転方向について回転トルクを負荷することが必要な場合には、反対向きに配置した二個のリニアブッシュを使用する必要があった。また、構造も複雑で部品点数も多く、生産コストが嵩むものであった。
特公平2-58491号公報
  本発明はこのような課題に鑑みなされたものであり、その目的とするところは、円形断面軸部材を軸方向に自在に案内しつつも、前記軸部材の周囲における回転トルクを回転方向に関わらず負荷可能であり、しかも構造が簡易で生産コストを抑えることが可能なリニアブッシュを提供することにある。
 すなわち、本発明は、円形断面を有する軸部材と、前記軸部材の外周面に対向すると共に当該軸部材の長手方向に沿って形成された複数の負荷転走溝を有するナット部材と、前記軸部材の外周面と前記ナット部材の負荷転走溝の間に転がり運動可能に設けられた複数のボールと、を備えたリニアブッシュに関するものであり、前記ナット部材の負荷転走溝は、当該ナット部材の半径方向に対して所定角度で傾斜した一対の転走面が交わって形成されると共に、前記一対の転走面は前記ナット部材の軸方向中心を含む平面に関して面対称の関係に設けられている。
 本発明のリニアブッシュでは、前記ナット部材に対して前記軸部材の周方向に沿った回転トルクが作用すると、前記回転トルクがいずれの方向であっても、当該ナット部材の半径方向に対して所定角度で傾斜した転走面と前記軸部材の外周面とで形成された楔状空間にボールが挟まれることになり、前記軸部材の周方向における前記ナット部材の回転が係止される。これにより、前記軸部材と前記ナット部材との間に作用する回転トルクを回転方向に関わらず負荷可能である。
 また、前記ナット部材に対して一対の転走面が交わった負荷転走溝を形成するのみで、回転トルクの負荷が可能となるので、前記ナット部材の構造は極めて簡易であり、生産コストを抑えて安価に製造することが可能である。
本発明が適用されたリニアブッシュのナット部材の一例を示す分解斜視図である。 図1に示したリニアブッシュの軸方向に垂直な断面図である。 図1に示したリニアブッシュの循環路部材を示す斜視図である。 負荷転走溝の詳細を示す拡大断面図である。 本発明のリニアブッシュを利用した複合案内装置を示す斜視図である。 軸部材と組み合わせ可能なボールねじナットの一例を示すものである。 ボールねじナットと軸部材との間におけるボールの接触状態を示す模式図である。
 以下、添付図面を用いながら本発明のトルク伝達可能なリニアブッシュを詳細に説明する。
 本発明のリニアブッシュは、軸方向に垂直な断面が円形に形成された軸部材と、この軸部材に遊嵌すると共に当該軸部材に沿って移動自在なナット部材と、前記軸部材とナット部材との間を転動する多数のボールとから構成されている。
 図1は前記ナット部材1の実施形態の一つを示す分解斜視図である。前記ナット部材1は、金属製のナット本体10と、前記ナット本体10の内周面に固定される複数の循環路部材2と、前記ナット本体10の軸方向の両端面に固定される一対の蓋部材3とを備えている。尚、図1は前記複数の循環路部材2のうち、一つの循環路部材2のみを前記ナット本体10から取り外した状態を示している。また、符号31は前記蓋部材3を前記ナット本体10に固定するボルトを挿通させる取付け孔、符号32は前記ボルトが螺合する雌ねじ穴である。
 前記ナット本体10は前記軸部材が挿通する貫通孔11を有して略円筒状に形成されており、前記貫通孔11の内周面には前記軸部材の外周面を転動するボールを収容する案内溝12が軸方向に沿って形成されている。図1に示した例では前記ナット本体10の内周面に対して3条の案内溝12が等間隔で形成されているが、前記ナット部材1が負荷すべきラジアル荷重の大きさに応じて、前記案内溝12の条数は適宜変更して差し支えない。また、前記ナット本体10の内周面には前記循環路部材2を固定するための複数の通路溝14が軸方向に沿って形成されている。各通路溝14は各案内溝12に隣接して当該案内溝12と対になっている。従って、図1に示す例では前記ナット本体10に対して前記案内溝12と前記通路溝14の対が3組設けられている。
 図2は前記軸部材4に対して前記ナット部材1を組み付けた状態を示すものであり、前記軸部材4の軸方向と垂直に前記ナット部材1を切断した断面を示している。前記軸部材4は円柱状に形成されており、軸方向に垂直な断面は円形をなしている。このため、前記軸部材4を転動するボール5は当該軸部材4の外周面に対して点接触している。
 前記ナット本体10の内周面には前述した3条の案内溝12が等間隔で配置されている。各案内溝12の最深部には前記ボール5が前記軸部材4との間で荷重を負荷しながら転動する負荷転走溝13が形成されている。前記案内溝12は前記ナット本体10の軸方向(図2の紙面垂直方向)に延びており、各案内溝12の内部には多数のボール5が一列に配列され、各ボール5が前記負荷転走溝13と前記軸部材4の外周面とに接触している。
 一方、前記ナット本体10には前記案内溝12に隣接して通路溝14が形成されており、前記通路溝14には合成樹脂製の循環路部材2が嵌合している。各循環路部材2には前記ナット本体10の案内溝12及び負荷転走溝13と平行にボール5の戻し通路20が形成されており、当該戻し通路20の内径はボール5の直径よりも僅かに大きく形成されている。また、前記循環路部材2には前記ナット本体10の案内溝12に配列されたボール5に隣接する誘導面21が設けられている。前記誘導面21は前記ボール5の球面に倣った曲面状に形成されている。前記軸部材4に近接した前記誘導面21の端部22は、当該軸部材4に向けた前記案内溝12の開口幅をボール5の直径以下に規制している。このため、前記軸部材4を前記ナット部材1から引き抜いたとしても、前記案内溝12に配列されたボール5が当該案内溝12から抜け落ちることがない。
 図3は前記循環路部材2を示す斜視図である。前記循環路部材2は、前記ナット本体10の通路溝14に嵌合する中央固定部2aと、この中央固定部2aの両端に設けられた一対のプレート部2bとを備えている。前記中央固定部2aには前述した戻し通路20が貫通すると共に、当該戻し通路20と平行に前記誘導面21が形成されている。また、図1に示すように、各プレート部2bは、前記循環路部材2を前記ナット本体10の通路溝14に嵌合させた際に、当該ナット本体10の軸方向端面から突出する部位である。
 各プレート部2bは前記中央固定部2aの長手方向に垂直な断面よりも大きく形成されており、その一部が前記中央固定部2aから張り出して形成されている。このため、前記中央固定部2aを前記ナット本体10の通路溝14に嵌合させると、前記プレート部2bの一部が前記ナット本体10の端面に被さり、前記ナット本体10の軸方向に関する前記循環路部材2の位置決めが行われる。
 前記プレート部2bには前記誘導面21と前記戻し通路20との間を滑らかに繋ぐ内周案内面23が形成されている。図1に示すように、前記蓋部材3には前記プレート部2bが嵌合する凹所30が形成されており、この凹所内には前記プレート部2bの内周案内面23と対向する外周案内面(図示せず)が形成されている。前記内周案内面23と前記外周案内面は互いに対向してボール5の方向転換路を構成しており、かかる方向転換路の内径はボール5の直径よりも僅かに大きく設定されている。
 すなわち、前記循環路部材2を前記ナット本体10の通路溝14に嵌合させ、さらに前記一対の蓋部材3をナット本体10の軸方向両端面に固定すると、前記ナット本体10の軸方向の両端に一対の方向転換路が形成され、前記ナット部材1にボール5の無限循環路が完成する。これにより、前記案内溝12の内部で荷重を負荷しながら転動したボール5は、当該案内溝12の端部に到達すると、荷重から解放されて一方の方向転換路に進入し、かかる方向転換路を経て前記循環路部材2の戻し通路20に送られる。また、無負荷状態で前記戻し通路20を進行したボール5は他方の方向転換路を経て前記案内溝12に戻され、再び荷重を負荷しながら当該案内溝12内を転動する。
 前記循環路部材2は前記ナット本体10の案内溝12に隣接して設けられた通路溝14に対して当該ナット本体10の内側から嵌合しており、当該循環路部材2に形成された前記戻し通路20は前記案内溝12と同様に、前記軸部材4の外周面に近接した位置に存在する。このため、前記ナット部材1は外径を小さく抑えることが可能となっている。
 図4は前記ナット本体10に形成された前記負荷転走溝13の詳細を示す拡大図である。前記負荷転走溝13は一対の転走面13a,13bが交わって形成されており、前記案内溝12内を転動するボールは前記一対の転走面13a,13b及び前記軸部材4の外周面に対して同時に接触している。各転走面13a,13bは前記ナット部材1の半径方向に対して90°以下の所定角度θ、すなわち鋭角で傾斜しており、前記一対の転走面13a,13bは前記ナット部材1の軸方向中心を含む平面(図2及び図4中に一点鎖線で示す)に関して面対称の関係にある。
 前記ナット部材1と前記軸部材4との間に回転トルクが作用せず、前記ナット部材1と前記軸部材4が相対的に軸方向へ移動する場合、前記案内溝12内に存在するボール5は前記ナット部材1の半径方向に対して垂直な自転軸(図4内の二点鎖線)を中心として転動し、前述した無限循環路内を循環する。これにより、前記ナット部材1は前記軸部材4に沿って自在に並進運動を行うことができる。
 一方、前記負荷転走溝13をなす一対の転走面13a,13bは夫々が前記ナット部材1の半径方向に対して90°以下の所定角度θで傾斜しており、各転走面13a,13bは前記軸部材4の外周面と疑似的な楔状空間を形成している。このため、前記ナット部材1に対して図4中の矢線R方向への回転トルクが作用し、当該ナット部材1が前記軸部材4に対して矢線R方向へ変位しようとすると、ボール5は一方の転走面13aと前記軸部材4の外周面とが形成する楔状空間に押し込まれ、ボール5と軸部材4の外周面及び前記転走面13aとの圧接力が強まる。その結果、ボール5には軸部材4の周方向への転動や滑りが発生せず、矢線R方向に関しては前記軸部材4と前記ナット部材1とが一体化し、これら軸部材4とナット部材1との間で回転トルクが伝達される。この場合であっても、前記ボール5は二点鎖線で示した自転軸を中心として回転することは可能であり、前記ナット部材1は軸方向へ移動自在である。
 前記ナット部材1に対して図4中の矢線R方向と反対の矢線L方向の回転トルクが作用した場合、ボール5は他方の転走面13bと前記軸部材4の外周面とが形成する楔状空間に押し込まれ、その結果として、ボール5には軸部材4の周方向への転動や滑りが発生せず、矢線L方向に関しても前記軸部材4と前記ナット部材1とが一体化し、これら軸部材4とナット部材1との間で回転トルクが伝達される。また、この場合であっても、前記ナット部材1は軸方向へ移動自在である。
 すなわち、前記ナット部材1と前記軸部材4との間に回転トルクが作用した場合、回転トルクの方向に関わらず、前記ナット部材1は前記軸部材4の周方向へは固定された状態となり、前記ナット部材1と前記軸部材4との間で回転トルクを伝達することができる。また、本発明を適用したリニアブッシュでは、前記ナット部材1と前記軸部材4との間で回転トルクを伝達した状態のまま、前記ナット部材1を前記軸部材4に沿って軸方向へ自在に移動させることができる。
 また、前記負荷転走溝13と前記軸部材4の外周面との間で荷重を負荷しているボール5、すなわち前記案内溝12内に配列されているボール5に対しては所謂予圧を与えることが可能である。前記案内溝12内を転動するボール5に対して予圧を与えておけば、前記ナット部材1と前記軸部材4との間にラジアル荷重が作用した際に、ボール5と前記負荷転走溝13との間、又はボール5と軸部材4の外周面との間に、隙間が発生するのを防止することができ、前記軸部材4と前記ナット部材1との間におけるガタつきの発生を抑え、前記ナット部材1を前記軸部材4に沿って高精度に案内することが可能となる。
 このように、本発明を適用したリニアブッシュはナット部材1が軸部材4に対して自在に並進運動を行いながら、前記ナット部材1と前記軸部材4との間で回転トルクを伝達することが可能であり、この点は所謂ボールスプラインと同じ機能を発揮するものである。一方、ボールスプラインと異なり、軸部材4の外周面にボール5の転走溝が形成されておらず、かかる軸部材4に沿って移動するナット部材1の構造も簡易であり、生産コストを抑えることが可能である。加えて、前記軸部材4の軸方向と垂直な断面は凹凸のない円形状をなしているので、例えば前記ナット部材1の軸方向端部にシールリングを装着することで、当該ナット部材1と前記軸部材4との隙間を容易に且つ安定的に密封することが可能である。
 従って、本発明のリニアブッシュは、従来はボールスプラインが使用されていた用途にそのまま適用可能であり、しかもボールスプラインを使用する際の懸念であった塵芥や異物に対する密封性の問題を解決したものであり、例えば電動シリンダにおけるロッドの案内装置として好適である。
 図5は本発明のリニアブッシュを用いて構成した複合案内装置を示すものである。
 この複合案内装置は、前述したリニアブッシュの軸部材4に対してボールねじナット6を嵌合したものである。前記ボールねじナット6は前記軸部材4に対して螺旋状に運動する。前記ナット部材1及びボールねじナット6の停止・回転の選択に応じて、前記軸部材4が並進運動又は回転運動を行うように意図されている。
 前記ナット部材1の外周面には無数のボール15を介してサポートベアリング16が組み付けられており、当該ナット部材1は機械装置等の固定部に対して自在に回転させることができる。また、前記ボールねじナット6の外周面には複数のボール60を介してサポートベアリング61が組み付けられており、当該ボールねじナット6は前記固定部に対して自在に回転させることができる。
 図6は前記ボールねじナット6の一例を示すものである。このボールねじナット6には内周面に螺旋状の負荷ボール溝62が形成されており、この負荷ボール溝62には多数のボール63が配列されている。前記ボール63は前記軸部材4の外周面に接触し、前記軸部材4と前記ボールねじナット6との間で荷重を負荷しながら前記負荷ボール溝62を転動する。また、前記ボールねじナット6には前記ボールの無限循環路を構築するためのリターンパイプ64が装着されており、前記負荷ボール溝62に沿って螺旋状に転動したボール63は前記リターンパイプ64内を通過して負荷ボール溝62の始まりの位置に戻される。
 尚、前記軸部材4と組み合わせるボールねじナット6の構造、特にボール63の循環構造は任意に設計することが可能である。
 図7は前記ボールねじナット6と前記軸部材4との間におけるボール63の接触状態を示す模式図であり、前記軸部材4の軸方向と平行な断面を示している。前記負荷ボール溝62は一対の転走面62a,62bが交わった所謂ゴシックアーチ状をなしており、ボール63は前記一対の転走面62a,62bと前記軸部材4の外周面に対して同時に接触している。各転走面62a,62bは前記ボールねじナット6の軸方向と垂直な断面(図7中に一点鎖線で示す)に対して90°以下の所定角度θ、すなわち鋭角で傾斜しており、前記一対の転走面62a,62bは前記ボールねじナット6の軸方向と垂直な断面に関して面対称の関係にある。
 前記ボール63を前記一対の転走面62a,62bと前記軸部材4の外周面に対して確実に接触させるため、前記ボール63としては所謂オーバーサイズボールを使用し、前記負荷ボール溝62と前記軸部材4との間に存在するボール63に対して予圧を与えるのが好ましい。
 前記ボール63が前記一対の転走面62a,62bと前記軸部材4の外周面に対して同時に接触している状態の下、前記ボールねじナット6が前記軸部材4の一方の軸方向(図7中の矢線A方向)へ変位しようとすると、ボール63は一方の転走面62aと前記軸部材4の外周面とが形成する楔状空間に押し込まれ、ボール63と軸部材4の外周面及び前記転走面62aとの圧接力が強まる。その結果、矢線A方向に関しては前記軸部材4に対する前記ボール63の転動や滑りが制限され、前記ボール63と前記軸部材4との間に作用する摩擦力の範囲内において、当該A方向に関する前記ボールねじナット6の移動は制限される。
 また同様に、前記ボールねじナット6が前記軸部材4の他方の軸方向(図7中の矢線B方向)へ変位しようとすると、ボール63は一方の転走面62bと前記軸部材4の外周面とが形成する楔状空間に押し込まれ、ボール63と軸部材4の外周面及び前記転走面62bとの圧接力が強まる。その結果、矢線B方向に関しても、前記軸部材に対する前記ボール63の転動や滑りが制限され、前記ボール63と前記軸部材4との間に作用する摩擦力の範囲内において、当該B方向に関する前記ボールねじナット6の移動は制限される。
 一方、前記ボール63は前記負荷ボール溝62の延伸方向に沿って前記軸部材4の周囲を螺旋状に転動することは可能である。このため、前記ボールねじナット6又は前記軸部材4のいずれかに回転トルクを作用させると、前記ボールねじナット6は前記軸部材4に対してその周囲を図7中の矢線C方向へ螺旋状に運動する。
 このように、前記軸部材4と前記ボールねじナット6との組み合わせは所謂ボールねじ装置と同じ機能を発揮するものである。その反面、軸部材4の外周面にはボール63が転走する螺旋状のねじ溝が形成されていない。このため、前記ボールねじナット6の軸方向端部にシールリングを装着することで、当該ボールねじナット6と前記軸部材4との隙間を容易に且つ安定的に密封することが可能である。
 そして、以上のように構成された複合案内装置では、図示外の2つのモータを用いて前記リニアブッシュのナット部材1及び前記ボールねじナット6の夫々を固定部に対して別個独立に回転させることにより、前記軸部材4に対して並進運動、回転運動、あるいは並進運動と回転運動を組み合わせたスパイラル運動を与えることが可能である。例えば、前記ナット部材1を非回転に保持した状態でボールねじナット6を回転させると、前記軸部材4にはボールねじナット6の回転方向に応じた並進運動を与えることができる。また、ボールねじナット6を非回転に保持した状態で前記ナット部材1を回転させると、前記軸部材4には前記ナット部材1の回転方向に合致したスパイラル運動が与えられる。
 すなわち、図5に示す複合案内装置では、前記軸部材4の外周面に対してスプライン溝やねじ溝が設けられていないにもかかわらず、前記ナット部材1及び前記ボールねじナット6を回転させるのみで、当該軸部材4に対して任意の並進運動、回転運動、スパイラル運動を与えることができる。従って、この複合案内装置では前記軸部材4と前記ナット部材1との間、前記軸部材4と前記ボールねじナット6との間の密封性を良好に保つことが可能であり、例えば、粉塵が舞うような環境下で動作する産業用ロボットのアーム部等の利用に好適である。

Claims (4)

  1. 円形断面を有する軸部材(4)と、
    前記軸部材(4)の外周面に対向すると共に当該軸部材の長手方向に沿って形成された複数の負荷転走溝(13)を有するナット部材(1)と、
    前記軸部材(4)の外周面と前記ナット部材(1)の負荷転走溝(13)の間に転がり運動可能に設けられた複数のボール(5)と、を備え、
    前記ナット部材(1)の負荷転走溝(13)は、当該ナット部材の半径方向に対して所定角度で傾斜した一対の転走面(13a,13b)が交わって形成されると共に、前記一対の転走面は前記ナット部材(1)の軸方向中心を含む平面に関して面対称の関係にあることを特徴とするトルク伝達可能なリニアブッシュ。
  2. 前記軸部材(4)の外周面と前記負荷転走溝(13)の間を転動する前記ボール(5)には予圧が与えられ、当該ボール(5)は前記軸部材(4)の外周面と前記負荷転走溝をなす一対の転走面(13a,13b)に対して三点で接触していることを特徴とする請求項1記載のトルク伝達可能なリニアブッシュ。
  3. 前記ナット部材(1)は前記負荷転走溝の一端から他端へ前記ボール(5)を循環させる無限循環路を有することを特徴とする請求項1又は請求項2に記載のトルク伝達可能なリニアブッシュ。 
  4. 請求項1記載のリニアブッシュの軸部材(4)に対して、当該軸部材に対して螺旋状に運動するボールねじナット(6)を装着したことを特徴とする複合案内装置。
     
PCT/JP2016/079847 2015-10-13 2016-10-06 トルク伝達可能なリニアブッシュ WO2017065091A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015201711 2015-10-13
JP2015-201711 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017065091A1 true WO2017065091A1 (ja) 2017-04-20

Family

ID=58517587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079847 WO2017065091A1 (ja) 2015-10-13 2016-10-06 トルク伝達可能なリニアブッシュ

Country Status (3)

Country Link
JP (1) JP2017075699A (ja)
TW (1) TW201727091A (ja)
WO (1) WO2017065091A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883822B2 (ja) * 2017-04-06 2021-06-09 株式会社高尾 弾球遊技機
JP7016506B2 (ja) * 2017-04-06 2022-02-07 株式会社高尾 弾球遊技機
JP2024000202A (ja) * 2022-06-20 2024-01-05 日本トムソン株式会社 直動案内ユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254231A (ja) * 1987-04-13 1988-10-20 Tsubakimoto Emason:Kk ボ−ルクラツチ
JPH01229160A (ja) * 1988-03-05 1989-09-12 Hiroshi Teramachi 複合運動案内装置
JPH1130242A (ja) * 1997-07-09 1999-02-02 Hitachi Cable Ltd トルク可変装置
JP2010169254A (ja) * 2008-12-22 2010-08-05 Hiihaisuto Seiko Kk 回転軸受付き直動案内装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254231A (ja) * 1987-04-13 1988-10-20 Tsubakimoto Emason:Kk ボ−ルクラツチ
JPH01229160A (ja) * 1988-03-05 1989-09-12 Hiroshi Teramachi 複合運動案内装置
JPH1130242A (ja) * 1997-07-09 1999-02-02 Hitachi Cable Ltd トルク可変装置
JP2010169254A (ja) * 2008-12-22 2010-08-05 Hiihaisuto Seiko Kk 回転軸受付き直動案内装置

Also Published As

Publication number Publication date
TW201727091A (zh) 2017-08-01
JP2017075699A (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
US10584777B2 (en) Roller screw mechanism with cage
US8584546B2 (en) Ball screw mechanism
WO2017065091A1 (ja) トルク伝達可能なリニアブッシュ
WO2012144371A1 (ja) 直動案内機構
KR20030009375A (ko) 나사 작동기
JP6111043B2 (ja) 電動リニアアクチュエータ
KR20090057675A (ko) 볼부시
US20150027258A1 (en) Ball screw device
JP2015052387A (ja) ボールねじ装置
US3393576A (en) Ball screw actuator
JP2007333046A (ja) 電動アクチュエータ
US11585417B2 (en) Ball screw nut with end stop for reset spring
JP2007155037A (ja) スプライン装置及びねじ装置
JP4930771B2 (ja) 電動パワーステアリング装置
JP2008069793A (ja) 電動リニアアクチュエータ
JP6373637B2 (ja) 電動リニアアクチュエータ
JP4426389B2 (ja) ボールねじナット
KR20170125156A (ko) 볼 스크류 지지구조
WO2019059355A1 (ja) 電動アクチュエータ
JP6121760B2 (ja) 電動リニアアクチュエータ
JP5866852B2 (ja) アクチュエータ
JPS58160665A (ja) サポ−トベアリング付ボ−ルねじ
JP2018198480A (ja) 電動アクチュエータ
KR20170125158A (ko) 볼 스크류 지지구조
WO2016078687A1 (en) Screw nut assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855345

Country of ref document: EP

Kind code of ref document: A1