WO2017065087A1 - 歩行状態検出装置及び歩行状態検出プログラム - Google Patents
歩行状態検出装置及び歩行状態検出プログラム Download PDFInfo
- Publication number
- WO2017065087A1 WO2017065087A1 PCT/JP2016/079816 JP2016079816W WO2017065087A1 WO 2017065087 A1 WO2017065087 A1 WO 2017065087A1 JP 2016079816 W JP2016079816 W JP 2016079816W WO 2017065087 A1 WO2017065087 A1 WO 2017065087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- acceleration
- walking state
- landing
- user
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Definitions
- the present invention relates to a walking state detection device and a walking state detection program for detecting a user's walking state.
- an acceleration sensor worn on the midline of the measurement subject's waist and a predetermined continuous walking period of 10 minutes or less An evaluation unit that repeatedly obtains an evaluation amount that quantitatively represents the walking posture of the person to be measured based on the output of the acceleration sensor for each predetermined unit period, and the repeatedly obtained evaluation amount are displayed in time series on the display screen
- a walking posture meter including a display processing unit has been proposed.
- the walking posture meter proposed in Patent Document 1 has a problem that the detection accuracy of the walking state is not good because the walking posture of the measurement subject is detected by the vertical acceleration of the measurement subject.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a walking state detection device and a walking state detection program capable of accurately detecting a walking state.
- a walking state detection device is a walking state detection device that detects a user's walking state based on acceleration, and when the user's leg is kicked up and when the user's leg is landing
- a detection unit that detects the landing time, and a period calculation unit that calculates a standing period or a free leg period of the user based on the kicking time and the landing time detected by the detection unit,
- the detection unit detects an initial upper chord peak at which the acceleration switches from an upward tendency to a downward tendency, and sets the time point at which the acceleration becomes the upper chord peak as the time of kicking.
- the walking posture since the first crest peak at which the acceleration switches from the upward trend to the downward trend is detected and the time point when the acceleration is at the top is at the time of kicking up, the walking posture can be accurately detected.
- the detection unit detects an initial lower chord peak at which the acceleration switches from a downward trend to an upward trend, and the time point when the acceleration becomes the lower chord peak is set as the landing time.
- the first lower chord peak at which the acceleration switches from the downward trend to the upward trend is detected, and the point of time when the lower chord peak is reached is the landing time, so the walking posture can be accurately detected.
- a walking state detection device is a walking state detection device that detects a user's walking state based on acceleration, and when the user's leg is kicked up and when the user's leg is landing
- a detection unit that detects the landing time, and a period calculation unit that calculates a standing period or a free leg period of the user based on the kicking time and the landing time detected by the detection unit,
- the detection unit detects an initial upper chord peak at which the acceleration switches from an upward trend to a downward trend, and sets the time when the upper chord peak is reached as the landing time.
- the first crest peak at which the acceleration switches from an upward trend to a downward trend is detected, and the time when the top crest peak is reached is the landing time. Since it is confirmed by actual measurement that the time is the landing time, the walking posture can be accurately detected.
- the detection unit sets the time when the acceleration is in a downward trend and becomes 1G (G is gravitational acceleration) as the time of kicking.
- the time when the acceleration tends to decrease and becomes 1 G is the time of kicking. Since it is confirmed by actual measurement that the time point is at the time of kicking up, the walking posture can be detected with high accuracy.
- the acceleration input to the detection unit is a sum of squares of accelerations in three axis directions including an X axis, a Y axis, and a Z axis orthogonal to each other.
- the acceleration input to the detection unit is the sum of squares of the accelerations in the three axes including the X axis, the Y axis, and the Z axis that are orthogonal to each other.
- the walking posture can be detected more accurately than when only acceleration is used.
- the period calculation unit calculates the standing period from the landing time to the kicking time as the standing leg period and the free leg period from the lifting time to the landing time.
- the walking posture can be detected with higher accuracy because the stance period is calculated from the time of landing to the time of kicking up and the free leg period is calculated from the time of landing to the time of landing.
- the present invention includes a state determination unit that determines whether the user is in a walking state or a running state, and the detection unit includes a plurality of detection patterns at the time of the kick-up and landing. And the detection pattern is changed according to a determination result in the state determination unit.
- the state determination unit there are a plurality of detection patterns at the time of kicking up and landing, and it is determined whether the user is in a walking state or a running state by the state determination unit, and the kicking is performed according to the result
- the detection pattern at the time of landing and landing can be changed. For this reason, it is possible to determine whether the user is in a walking state or a running state, and to detect a walking state according to the state, and to detect a walking posture with higher accuracy.
- the present invention includes an acceleration sensor that measures the acceleration.
- the acceleration sensor for measuring the acceleration since the acceleration sensor for measuring the acceleration is provided, no separate acceleration sensor is required. In addition, since it consumes less power than a gyro sensor or the like, it is suitable for wearable devices and portable devices driven by an internal power source such as a storage battery.
- the walking state detection program is a walking state detection program for detecting a user's walking state based on acceleration, wherein the user's leg is kicked up and the user's leg is landing.
- In the step of detecting an upward time an initial upper chord peak at which the acceleration switches from an upward trend to a downward trend is detected, and the time point when the acceleration becomes the upper chord peak is defined as the time of kicking.
- the first crest peak at which the acceleration switches from an upward trend to a downward trend is detected, and the point at which the acceleration becomes the peak is the time of kicking up. Can be detected well.
- the walking state detection program is a walking state detection program for detecting a user's walking state based on acceleration, wherein the user's leg is kicked up and the user's leg is landing. And a step of calculating a landing period or a free leg period of the user based on the kicking time and the landing time detected by the detection unit, and causing the computer to execute the landing process.
- the time detecting step an initial crest peak at which the acceleration is switched from an increasing tendency to a decreasing tendency is detected, and a time point when the acceleration becomes the upper chord peak is set as the landing time.
- the first crest peak at which the acceleration is switched from the upward trend to the downward trend is detected, and the time point when the acceleration is at the top is the landing time, so the walking posture is accurately detected. can do.
- the walking posture can be detected with high accuracy.
- the walking state detection device of the present invention is a wearable device that is used by being worn on the body, such as a headphone type, a glasses type, a watch type, and a bracelet type.
- a headphone type wearable device such as a pedometer, a mobile phone, or a smart phone.
- FIG. 1 is a schematic diagram of a walking state detection device 1 according to the embodiment.
- the walking state detection device 1 is a headphone-type wearable device, and the walking state detection device 1 of the present embodiment is incorporated in the headphones.
- the user U uses the walking state detection device 1 shown in FIG.
- the walking state detection device 1 is mounted on the user U's head, and the user U's stance period (period in which the leg is landing on the ground) or swing leg period (period in which the leg is away from the ground). ) Is detected.
- FIG. 2 is a functional configuration diagram realized by a memory element, a CPU, and the like included in the walking state detection device 1 according to the embodiment.
- the walking state detection device 1 includes a sum of squares calculation unit 101, a state determination unit 102, a detection unit 103, and a period calculation unit 104.
- the functions of the walking state detection device 1 according to the embodiment shown in FIG. 2 may be realized by hardware or by executing a walking state detection program by a processor such as a CPU (Central Processing Unit). Also good.
- the walking state detection program is an embodiment corresponding to the walking state detection program of the present invention.
- the walking state detection device 1 is connected to the acceleration sensor 2 by wireless or wired, and receives acceleration data from the acceleration sensor 2.
- the acceleration sensor 2 measures acceleration data in a triaxial direction including the X axis, the Y axis, and the Z axis orthogonal to each other in real time, and sequentially outputs the measured data.
- the X axis measures the lateral acceleration with respect to the user U
- the Y axis measures the longitudinal acceleration with respect to the user U
- the Z axis measures the vertical acceleration with respect to the user U. It shall be measured.
- the sum of squares calculation unit 101 samples the analog voltage signals output from the acceleration sensor 2 for each of the X axis, the Y axis, and the Z axis at a predetermined cycle and converts them into digital data. Note that the sampling of the analog voltage signal is performed substantially simultaneously with respect to the X axis, the Y axis, and the Z time in order to prevent a malfunction due to a sampling timing shift.
- the square sum calculation unit 101 sequentially outputs the calculated square sum of squares of the acceleration of each of the X axis, the Y axis, and the Z axis.
- the root sum square is directly calculated from the sampled X-axis, Y-axis, and Z-axis accelerations.
- the moving average of the sampled X-axis, Y-axis, and Z-axis accelerations is calculated.
- the square sum of squares may be calculated from the value.
- the state determination unit 102 samples the value output from the sum of squares calculation unit 101 for a predetermined time, and detects a maximum value (the largest value) from the values sampled within the predetermined time.
- the predetermined time referred to in this embodiment is a time (for example, 1 sec) for walking or running in one walking cycle (two steps).
- the state determination unit 102 determines whether or not the detected maximum value exceeds a predetermined value A.
- the state determination unit 102 determines that the vehicle is traveling (traveling state).
- the state determination part 102 determines that it is during a walk (walking state), when the detected maximum value is below the predetermined value A.
- the predetermined values A and B are determined in advance based on the maximum values detected during walking and running.
- the threshold value is determined by determining whether the maximum value detected by the state determination unit 102 exceeds the predetermined value A, but the minimum value is the predetermined value B (a value different from the predetermined value A). You may comprise so that a threshold may be determined by determining whether it exceeds. Further, the threshold value may be determined by determining whether the maximum value and the minimum value exceed predetermined values A and B, respectively.
- the detection unit 103 Based on the determination result in the state determination unit 102, the acceleration data from the sum of squares calculation unit 101, and the X-axis and Z-axis acceleration data input from the acceleration sensor 2, the detection unit 103 is in a running state and a walking state. Detects the kick-up point and landing point.
- FIG. 3 is a diagram of the acceleration in the Z direction of the heel landing running state input to the walking state detection device 1.
- FIG. 4 is a diagram of acceleration in the Z direction in the toe landing traveling state input to the walking state detection device 1.
- the vertical axis in FIGS. 3 and 4 represents the Z-axis acceleration (vertical acceleration raw value) input from the acceleration sensor 2.
- the horizontal axis of FIG.3 and FIG.4 is time.
- the heel landing running is a running method that lands on the heel (so-called heel strike running method).
- the toe landing traveling is a traveling method (so-called forefoot traveling method) for landing on a toe.
- the detection unit 103 detects that the Z-axis acceleration (vertical acceleration raw value) input from the acceleration sensor 2 is equal to or greater than a predetermined value B (for example, 0), and the first lower chord peak that switches from a downward trend to an upward trend. (1st under peak: [1] in FIG. 3 and FIG. 4) is detected, and the point of time when the lower peak appears is the landing time (landing point). Note that it has been confirmed by actual measurements that, in the running state, the point of time when the lower chord peak is reached is the landing time.
- a predetermined value B for example, 0
- the detection unit 103 has an initial cosine peak in which the Z-axis acceleration (vertical acceleration) input from the acceleration sensor 2 is equal to or greater than a predetermined value C (for example, 0) and switches from an upward trend to a downward trend. (1st top peak: [2] in FIG. 3 and FIG. 4) is detected, and the point of time when the top chord peak is reached is the time of kicking. Note that it has been confirmed by actual measurement that in the running state, the point at which the peak of the upper chord becomes a kick-up time.
- FIG. 5 is a diagram of acceleration in the walking state input to the walking state detection device in the walking state.
- the vertical axis in FIG. 5 indicates the square root sum data of accelerations of the X-axis, Y-axis, and Z-axis input from the square sum calculation unit 101 and the Z-axis acceleration (vertical acceleration raw value input from the acceleration sensor 2). ).
- the horizontal axis in FIG. 5 is time.
- the solid line indicates data of the square sum of squares of accelerations of the X axis, the Y axis, and the Z axis
- the alternate long and short dash line indicates 1 G
- the alternate long and two short dashes line indicates acceleration in the X direction.
- the detection unit 103 detects the first crest peak (1st top peak: [1] in FIG. 5) at which the acceleration (three-axis composite value) input from the sum of squares calculation unit 101 switches from an upward trend to a downward trend.
- the point at which the first peak is detected and the point is the landing point (landing point). Note that it has been confirmed by actual measurements that, in the walking state, the time when the acceleration (three-axis composite value) becomes the first crest peak at which the acceleration is switched from the upward trend to the downward trend is the landing time.
- the detection unit 103 detects an upper string peak ([3] in FIG. 5) in which the X-axis acceleration (left-right acceleration) input from the acceleration sensor 2 switches from an upward trend to a downward trend.
- the point in time is the time of kicking up. Note that it has been confirmed by actual measurement that, in the walking state, the time point when the X-axis acceleration is at the top chord peak at which the acceleration is switched from the upward trend to the downward trend is the landing time. Further, when the detection unit 103 cannot detect an upper-crest peak ([3] in FIG. 5) in which the X-axis acceleration (left-right acceleration) input from the acceleration sensor 2 switches from an upward trend to a downward trend, the square sum calculation unit 101 The time ([2] in FIG.
- FIG. 6 is a diagram showing the relationship between the acceleration of the walking state input to the walking state detection device 1 and the motion of the leg.
- the vertical axis in FIG. 6 indicates the square sum of square data of the acceleration of each of the X axis, the Y axis, and the Z axis input from the square sum calculation unit 101, and the Z axis acceleration (vertical acceleration raw value input from the acceleration sensor 2). ).
- the horizontal axis of FIG. 6 is time.
- the period calculation unit 104 is based on the rise time and the landing time detected by the detection unit 103, and the user U's stance period (a period when the leg is landing on the ground) or a free leg period (the leg is separated from the ground). Period). Specifically, the period calculation unit 104 calculates the landing period from the landing time detected by the detection unit 103 to the kicking time as the stance period, and the period from the lifting time to the landing time as the free leg period.
- FIG. 7 is a flowchart for explaining the operation of the walking state detection device 1 according to the embodiment.
- the operation of the walking state detection device 1 according to the embodiment will be described with reference to FIGS.
- the sum of squares calculation unit 101 samples analog voltage signals output from the acceleration sensor 2 for each of the X-axis, Y-axis, and Z-axis at a predetermined cycle and converts them into digital data, which is then converted into digital data.
- the square sum square root w of the acceleration of each of the X axis, Y axis and Z axis is calculated (S101).
- the state determination unit 102 samples the value output from the sum of squares calculation unit 101 for a predetermined time, detects a local maximum value (the largest value) from the value sampled within the predetermined time, and compares it with the threshold A. Then, it is determined whether the vehicle is in a running state or a walking state (S102).
- the detection unit 103 switches the acceleration (three-axis composite value) input from the sum of squares calculation unit 101 from an upward tendency to a downward tendency.
- the first upper chord peak is detected (S103), and the point of time when the upper chord peak is reached is set as a landing point (landing point).
- the detection unit 103 detects the second cosine peak at which the acceleration (three-axis composite value) input from the square sum calculation unit 101 switches from an upward trend to a downward trend (S104).
- the point of time when the second top chord peak is reached is the landing point (landing point) of the opposite leg. In other words, if the left leg landing point is detected in S103, the right leg landing point is detected in S104.
- the detection unit 103 detects an upper chord peak at which the X-axis acceleration (left / right acceleration) input from the acceleration sensor 2 switches from an upward trend to a downward trend (S105). To do.
- the detection unit 103 receives an input from the sum-of-squares calculation unit 101 when the X-axis acceleration (left-right acceleration) input from the acceleration sensor 2 cannot detect an upper string peak in which the X-axis acceleration switches from an upward trend to a downward trend (No in S105). Is detected when the acceleration (three-axis composite value) tends to decrease and becomes 1G (G is gravitational acceleration).
- the detection unit 103 determines that the Z-axis acceleration (vertical acceleration) input from the acceleration sensor 2 is a predetermined value B.
- the first crest peak (1st top peak) that is equal to (for example, 0) or more and switches from an upward trend to a downward trend is detected (S107), and the time point when the peak is the upper chord peak is defined as the time of kicking.
- the detection unit 103 detects that the Z-axis acceleration (vertical acceleration raw value) input from the acceleration sensor 2 is equal to or greater than a predetermined value C (for example, 0), and the first lower chord peak that switches from a downward trend to an upward trend ( 1st under peak) is detected (S108), and the point of time when the lower peak appears is the landing time (landing point).
- a predetermined value C for example, 0
- the period calculation unit 104 determines whether the user U is standing up (a period in which the leg is landing on the ground) or a free leg period (in which the leg is on the ground) based on the time of kicking up and landing detected by the detection unit 103. (Time period away from) is calculated (S109). Specifically, the period calculation unit 104 calculates the landing period from the landing time detected by the detection unit 103 to the kicking time as the stance period, and the period from the lifting time to the landing time as the free leg period.
- the walking state detection device 1 includes the state determination unit 102 that determines whether the user U is in the walking state or the running state, and the user's leg is kicked up. And a detection unit 103 that detects when the user's leg lands, and a period calculation unit 104 that calculates the user's stance period or free leg period based on the kicking and landing times detected by the detection unit. And have.
- the detection unit 103 of the walking state detection device 1 has a plurality of detection patterns (detections) at the time of kicking up and landing, and the state of the user U determined by the state determination unit 102, that is, the user U
- the detection pattern (detection method) at the time of kicking up and landing is changed based on whether the vehicle is walking or running. For this reason, it is possible to accurately detect the time of kicking up and the time of landing based on the characteristics of the walking state and the running state.
- the detection unit 103 of the walking state detection device 1 determines that the vehicle is in the running state
- the detection unit 103 detects the first crest peak where the acceleration of the Z-axis switches from an upward trend to a downward trend, and kicks the time point when the peak becomes the upper chord peak. It is time to go up. Since it is confirmed by actual measurement that the time point is at the time of kicking up, the walking posture can be detected with high accuracy.
- the detection unit 103 of the walking state detection device 1 determines that the vehicle is in the running state, the detection unit 103 detects the first lower chord peak at which the Z-axis acceleration switches from a downward trend to an upward trend, and lands at the time when the lower chord peak is reached. Therefore, the walking posture can be detected with high accuracy.
- the detection unit 103 of the walking state detection device 1 determines that the walking state is in progress, the first crest peak at which the acceleration of the three-axis composite value of the X axis, the Y axis, and the Z axis switches from an increasing tendency to a decreasing tendency. Is detected and the time when the peak of the upper string is reached is the landing time. Since it is desired to confirm by the actual measurement that the time is the landing time, the walking posture can be accurately detected.
- the detection unit 103 of the walking state detection device 1 determines that the walking state is the walking state
- the acceleration of the three-axis composite value of the X axis, the Y axis, and the Z axis tends to decrease and 1G (G is gravitational acceleration). Since the time point becomes the time of kicking up, the walking posture can be detected with high accuracy.
- the acceleration input to the detection unit 103 of the walking state detection device 1 is a sum of squares of accelerations in three axes composed of the X axis, the Y axis, and the Z axis that are orthogonal to each other, and thus is uniaxial or biaxial. Compared to the case where only the acceleration of is used, the walking posture can be detected with higher accuracy.
- the period calculation unit 104 of the walking state detection device 1 calculates the stance period from landing to kicking up as the stance period, and the free leg period from kicking to landing to detect the walking posture with higher accuracy. Can do.
- the walking state detection device 1 has an acceleration sensor that measures acceleration, an additional acceleration sensor is not required. Further, since it consumes less power than a gyro sensor or the like, it is suitable for a wearable device or a portable device driven by an internal power source such as a storage battery.
- the walking state detection program according to the embodiment can realize the walking state detection device 1 as described above, and can obtain the same effect as the walking state detection device 1 described above.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Dentistry (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
加速度に基づいて使用者の歩行状態を検出する歩行状態検出装置であって、 前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する検出部と、前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間又は遊脚期間を算出する期間算出部とを有し、前記検出部は、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、前記上弦ピークとなる時点を前記蹴上時とする歩行状態検出装置。
Description
本発明は、使用者の歩行状態を検出する歩行状態検出装置及び歩行状態検出プログラムに関するものである。
人の歩行は日常生活のうちでも最も基本的な活動であり、その機能が喪失されると社会生活に多大な影響が及ぶ。このため、歩行機能の回復訓練と分析はリハビリテ-ションにおける重要な課題のひとつとなっている。そして、歩行障害を正確に分析・評価するために患者の歩行状態を定量的・客観的に把握することが重要となっている。
従来のものには、被測定者の歩行姿勢を評価するために、被測定者の腰の正中線上に装着される加速度センサと、10分以下の予め定められた連続した歩行期間内において、予め定められた単位期間ごとに加速度センサの出力に基づいて被測定者の歩行姿勢を定量的に表した評価量を繰り返し求める評価部と、繰り返し求められた評価量を時系列で並べて表示画面に表示する表示処理部とを備える歩行姿勢計が提案されている。
しかしながら、特許文献1で提案される歩行姿勢計は、被測定者の上下方向の加速度で被測定者の歩行姿勢を検出しているため歩行状態の検出精度が良くないという課題がある。
本発明はかかる事情に鑑みてなされたものであり、その目的は、歩行状態を精度よく検出できる歩行状態検出装置及び歩行状態検出プログラムを提供することにある。
本発明に係る歩行状態検出装置は、加速度に基づいて使用者の歩行状態を検出する歩行状態検出装置であって、前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する検出部と、前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間又は遊脚期間を算出する期間算出部とを有し、前記検出部は、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、前記上弦ピークとなる時点を前記蹴上時とする。
上記の構成によれば、加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークとなる時点を蹴上時としているので歩行姿勢を精度よく検出することができる。
好適には、本発明は、前記検出部は、前記加速度が下降傾向から上昇傾向に切り替わる初めの下弦ピークを検出し、前記下弦ピークとなる時点を前記着地時とする。
上記の構成によれば、加速度が下降傾向から上昇傾向に切り替わる初めの下弦ピークを検出し、下弦ピークとなる時点を着地時としているので歩行姿勢を精度よく検出することができる。
本発明に係る歩行状態検出装置は、加速度に基づいて使用者の歩行状態を検出する歩行状態検出装置であって、前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する検出部と、前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間又は遊脚期間を算出する期間算出部とを有し、前記検出部は、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークをなる時点を前記着地時とする。
上記の構成によれば、加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークをなる時点を着地時とする。当該時点が着地時となることは実測により確認されているので、歩行姿勢を精度よく検出することができる。
好適には、本発明は、前記検出部は、前記加速度が下降傾向かつ1G(Gは重力加速度)となる時点を前記蹴上時とする。
上記の構成によれば、加速度が下降傾向かつ1G(Gは重力加速度)となる時点を蹴上時とする。当該時点が蹴上時となることは実測により確認されているので、歩行姿勢を精度よく検出することができる。
好適には、本発明は、前記検出部に入力される前記加速度は、互いに直交するX軸、Y軸及びZ軸からなる3軸方向の加速度の二乗和である。
上記の構成によれば、検出部に入力される加速度は、互いに直交するX軸、Y軸及びZ軸からなる3軸方向の加速度の二乗和加速度であるため、1軸方向又は2軸方向の加速度だけを用いる場合に比べて、より精度よく歩行姿勢を検出することができる。
好適には、本発明は、前記期間算出部は、前記着地時から前記蹴上時までを前記立脚期間、前記蹴上時から前記着地時までを前記遊脚期間として算出する。
上記の構成によれば、着地時から蹴上時までを立脚期間、蹴上時から着地時までを遊脚期間として算出するので、より精度よく歩行姿勢を検出することができる。
好適には、本発明は、前記使用者が歩行状態であるか走行状態であるかを判定する状態判定部を有し、前記検出部は、前記蹴上時及び前記着地時の検出パターンを複数有し、前記状態判定部での判定結果に応じて前記検出パターンを変更する。
上記の構成によれば、蹴上時及び着地時の検出パターンを複数有し、状態判定部により使用者が歩行状態であるか走行状態であるかを判定して、その結果に応じて蹴上時及び着地時の検出パターンを変更することができる。このため、使用者が歩行状態であるか走行状態であるかを判定し、その状態に応じた歩行状態の検出が可能になり、より精度よく歩行姿勢を検出することができる。
好適には、本発明は、前記加速度を計測する加速度センサを有する。
上記構成によれば、加速度を計測する加速度センサを有するので、別途、加速度センサを必要としない。また、ジャイロセンサ等に比較して低消費電力であるため、蓄電池等の内部電源で駆動されるウェアラブルデバイスや携帯機器に好適である。
本発明に係る歩行状態検出プログラムは、加速度に基づいて使用者の歩行状態を検出する歩行状態検出プログラムであって、前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する工程と、前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間及び遊脚期間を算出する工程とをコンピュータに実行させ、前記蹴上時を検出する工程では、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、前記上弦ピークとなる時点を前記蹴上時とする。
上記の構成によれば、蹴上時を検出する工程では、加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークとなる時点を蹴上時とするので、歩行姿勢を精度よく検出することができる。
本発明に係る歩行状態検出プログラムは、加速度に基づいて使用者の歩行状態を検出する歩行状態検出プログラムであって、前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する工程と、前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間又は遊脚期間を算出する工程とをコンピュータに実行させ、前記着地時を検出する工程では、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークをなる時点を前記着地時とする。
上記の構成によれば、着地時を検出する工程では、加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークとなる時点を着地時とするので、歩行姿勢を精度よく検出することができる。
本発明の歩行状態検出装置及び歩行状態検出プログラムによれば、歩行姿勢を精度よく検出することができる。
本発明の歩行状態検出装置は、例えば、ヘッドホン型、メガネ型、時計型、ブレスレット型等の身体に装着して使用するウェアラブルデバイスである。以下の説明では、ヘッドホン型のウェアラブルデバイスを例に本発明の実施形態を説明する。なお、本発明の歩行状態検出装置を歩数計、携帯電話、スマートホン等の携帯型デバイス(携帯機器)に搭載してもよい。
(実施形態)
図1は、実施形態に係る歩行状態検出装置1の概要図である。上述したように歩行状態検出装置1は、ヘッドホン型のウェアラブルデバイスであり、ヘッドホンに本実施形態の歩行状態検出装置1が内蔵されている。使用者Uは、図1に示す歩行状態検出装置1を頭部に装着して使用する。歩行状態検出装置1は、使用者Uの頭部に装着された状態で、使用者Uの立脚期間(脚が地面に着地している期間)又は遊脚期間(脚が地面から離れている期間)を検出する。
図1は、実施形態に係る歩行状態検出装置1の概要図である。上述したように歩行状態検出装置1は、ヘッドホン型のウェアラブルデバイスであり、ヘッドホンに本実施形態の歩行状態検出装置1が内蔵されている。使用者Uは、図1に示す歩行状態検出装置1を頭部に装着して使用する。歩行状態検出装置1は、使用者Uの頭部に装着された状態で、使用者Uの立脚期間(脚が地面に着地している期間)又は遊脚期間(脚が地面から離れている期間)を検出する。
(歩行状態検出装置1の構成)
図2は、実施形態に係る歩行状態検出装置1が備えるメモリ素子やCPU等により実現される機能構成図である。歩行状態検出装置1は、二乗和算出部101、状態判定部102、検出部103、期間算出部104を有する。図2に示す実施形態に係る歩行状態検出装置1が有する機能は、ハードウェアにより実現されてもよいし、歩行状態検出プログラムをCPU(Central Processing Unit)等のプロセッサで実行することにより実現されてもよい。当該歩行状態検出プログラムが、本発明の歩行状態検出プログラムに対応した実施形態である。
図2は、実施形態に係る歩行状態検出装置1が備えるメモリ素子やCPU等により実現される機能構成図である。歩行状態検出装置1は、二乗和算出部101、状態判定部102、検出部103、期間算出部104を有する。図2に示す実施形態に係る歩行状態検出装置1が有する機能は、ハードウェアにより実現されてもよいし、歩行状態検出プログラムをCPU(Central Processing Unit)等のプロセッサで実行することにより実現されてもよい。当該歩行状態検出プログラムが、本発明の歩行状態検出プログラムに対応した実施形態である。
図2に示すように、実施形態に係る歩行状態検出装置1は、加速度センサ2と無線若しくは有線により接続され、加速度センサ2から加速度のデータを受信する。ここで、加速度センサ2は、互いに直交するX軸、Y軸及びZ軸からなる3軸方向の加速度のデータをリアルタイムに計測し、計測したデータを逐次出力する。この実施形態では、X軸がユーザUに対して左右方向の加速度を計測し、Y軸がユーザUに対して前後方向の加速度を計測し、Z軸がユーザUに対して鉛直方向の加速度を計測するものとする。なお、この加速度センサ2を実施形態に係る歩行状態検出装置1が有するように構成してもよい。
二乗和算出部101は、加速度センサ2から出力されるX軸、Y軸及びZ軸夫々のアナログ電圧信号を所定の周期でサンプリングしてデジタルデータに変換する。なお、アナログ電圧信号のサンプリングは、サンプリングタイミングのずれによる誤動作を防止するためX軸、Y軸及びZ時に対して略同時に行われる。
二乗和算出部101は、デジタルデータに変換されたX軸、Y軸及びZ軸夫々の加速度の二乗和平方根wを算出する。具体的には、以下の式(1)を用いて二乗和平方根wを算出する。
w=(x2+y2+z2)1/2・・・(1)
x:X軸の加速度
y:Y軸の加速度
z:Z軸の加速度
w:二乗和平方根
w=(x2+y2+z2)1/2・・・(1)
x:X軸の加速度
y:Y軸の加速度
z:Z軸の加速度
w:二乗和平方根
二乗和算出部101は、算出したX軸、Y軸及びZ軸夫々の加速度の二乗和平方根を逐次出力する。なお、この実施形態では、サンプリングされたX軸、Y軸及びZ軸夫々の加速度から直接二乗和平方根を算出しているが、サンプリングされたX軸、Y軸及びZ軸夫々の加速度の移動平均値から二乗和平方根を算出するようにしてもよい。
状態判定部102は、二乗和算出部101から出力される値を所定時間サンプリングし、この所定時間内にサンプリングした値から極大値(最も大きな値)を検出する。なお、この実施形態で言う所定時間は、1歩行周期(2歩分)を歩く又は走る時間(例えば、1sec)である。
次に、状態判定部102は、検出された極大値が所定値Aを超えているかどうかを判定する。状態判定部102は、検出された極大値が所定値Aを超えている場合、走行中(走行状態)であると判断する。また、状態判定部102は、検出された極大値が所定値A以下である場合、歩行中(歩行状態)であると判断する。
所定値A,Bは、実施に歩行および走行中に検出された極大値を基に事前に決定する。
所定値A,Bは、実施に歩行および走行中に検出された極大値を基に事前に決定する。
なお、上記説明では、状態判定部102が検出した極大値が所定値Aを超えるかを判定して閾値を決定しているが、極小値が所定値B(所定値Aとは異なる値)を超えるかを判定して閾値を決定するように構成してもよい。また、極大値及び極小値が各々所定値A,Bを超えるかを判定して閾値を決定するように構成してもよい。
検出部103は、状態判定部102での判定結果、二乗和算出部101からの加速度データ及び加速度センサ2から入力されるX軸、Z軸の加速度データに基づいて、走行状態及び歩行状態での蹴上ポイント及び着地ポイントを検出する。
図3は、歩行状態検出装置1に入力されるかかと着地走行状態のZ方向の加速度の図である。図4は、歩行状態検出装置1に入力されるつま先着地走行状態のZ方向の加速度の図である。図3及び図4の縦軸は、加速度センサ2から入力されるZ軸の加速度(鉛直加速度生値)である。また、図3及び図4の横軸は、時間である。
ここで、かかと着地走行とは、かかとで着地する走法(いわゆるヒールストライク走法)のことである。また、つま先着地走行とは、つま先で着地する走法(いわゆるフォアフット走法)のことである。
以下、図3及び図4を参照して、走行状態での検出部103の蹴上ポイント及び着地ポイントの検出について説明する。
走行状態では、検出部103は、加速度センサ2から入力されるZ軸の加速度(鉛直加速度生値)が所定値B(例えば、0)以上であり、下降傾向から上昇傾向に切り替わる初めの下弦ピーク(1stアンダーピーク:図3及び図4の[1])を検出し、下弦ピークとなる時点を着地時(着地ポイント)とする。なお、実測により、走行状態では、下弦ピークとなる時点を着地時となることが確認されている。
また、走行状態では、検出部103は、加速度センサ2から入力されるZ軸の加速度(鉛直加速度)が所定値C(例えば、0)以上であり、上昇傾向から下降傾向に切り替わる初めの上弦ピーク(1stトップピーク:図3及び図4の[2])を検出し、上弦ピークとなる時点を蹴上時とする。なお、実測により、走行状態では、上弦ピークとなる時点を蹴上時となることが確認されている。
図5は、歩行状態の際に歩行状態検出装置に入力される歩行状態の加速度の図である。図5の縦軸は、二乗和算出部101から入力されるX軸、Y軸及びZ軸夫々の加速度の二乗和平方根のデータ及び加速度センサ2から入力されるZ軸の加速度(鉛直加速度生値)である。また、図5の横軸は、時間である。
図5において、実線はX軸、Y軸及びZ軸夫々の加速度の二乗和平方根のデータを示し、一点鎖線は1Gを示し、二点鎖線はX方向の加速度を示す。
図5において、実線はX軸、Y軸及びZ軸夫々の加速度の二乗和平方根のデータを示し、一点鎖線は1Gを示し、二点鎖線はX方向の加速度を示す。
以下、図5を参照して、歩行状態での検出部103の蹴上ポイント及び着地ポイントの検出について説明する。歩行状態では、検出部103は、二乗和算出部101から入力される加速度(3軸合成値)が上昇傾向から下降傾向に切り替わる初めの上弦ピーク(1stトップピーク:図5の[1])を検出し、上弦ピークとなる時点を着地時ポイント(着地ポイント)とする。なお、実測により、歩行状態では、加速度(3軸合成値)が上昇傾向から下降傾向に切り替わる初めの上弦ピークとなる時点が着地時となることが確認されている。
また、歩行状態では、検出部103は、加速度センサ2から入力されるX軸の加速度(左右加速度)が上昇傾向から下降傾向に切り替わる上弦ピーク(図5の[3])を検出し、上弦ピークとなる時点を蹴上時とする。なお、実測により、歩行状態では、X軸の加速度が上昇傾向から下降傾向に切り替わる上弦ピークとなる時点が着地時となることが確認されている。
さらに、検出部103は、加速度センサ2から入力されるX軸の加速度(左右加速度)が上昇傾向から下降傾向に切り替わる上弦ピーク(図5の[3])を検出できない場合、二乗和算出部101から入力される加速度(3軸合成値)が下降傾向かつ1G(Gは重力加速度)となる時点(図5の[2])を検出し、蹴上時とする。なお、実測により、この時点(図5の[2])が蹴上時となることが確認されている。
さらに、検出部103は、加速度センサ2から入力されるX軸の加速度(左右加速度)が上昇傾向から下降傾向に切り替わる上弦ピーク(図5の[3])を検出できない場合、二乗和算出部101から入力される加速度(3軸合成値)が下降傾向かつ1G(Gは重力加速度)となる時点(図5の[2])を検出し、蹴上時とする。なお、実測により、この時点(図5の[2])が蹴上時となることが確認されている。
図6は、歩行状態検出装置1に入力される歩行状態の加速度と脚の動作との関係を示す図である。図6の縦軸は、二乗和算出部101から入力されるX軸、Y軸及びZ軸夫々の加速度の二乗和平方根のデータ及び加速度センサ2から入力されるZ軸の加速度(鉛直加速度生値)である。また、図6の横軸は、時間である。
走行時には、左右の脚の立脚期間と遊脚期間が交互に発生するが、図6に示すように、
歩行時には、左右の脚の立脚期間と遊脚期間が交互に発生せずにズレが生じる(両脚が地面についている期間が存在する)。このため図6に示すように、本実施形態では、歩行時においては、二乗和算出部101から入力される加速度(3軸合成値)が上昇傾向から下降傾向に切り替わる2番目の上弦ピーク(2ndトップピーク :図6の[1])を検出し、2番目の上弦ピークとなる時点(図6の[1])を反対側の脚(図6では、右脚)の着地時ポイント(着地ポイント)としている。
歩行時には、左右の脚の立脚期間と遊脚期間が交互に発生せずにズレが生じる(両脚が地面についている期間が存在する)。このため図6に示すように、本実施形態では、歩行時においては、二乗和算出部101から入力される加速度(3軸合成値)が上昇傾向から下降傾向に切り替わる2番目の上弦ピーク(2ndトップピーク :図6の[1])を検出し、2番目の上弦ピークとなる時点(図6の[1])を反対側の脚(図6では、右脚)の着地時ポイント(着地ポイント)としている。
期間算出部104は、検出部103で検出される蹴上時及び着地時に基づいて、使用者Uの立脚期間(脚が地面に着地している期間)又は遊脚期間(脚が地面から離れている期間)を算出する。具体的には、期間算出部104は、検出部103で検出される着地時から蹴上時までを立脚期間、蹴上時から着地時までを遊脚期間として算出する。
(歩行状態検出装置1の動作)
図7は、実施形態に係る歩行状態検出装置1の動作を説明するフローチャートである。以下、図1~図7を参照して、実施形態に係る歩行状態検出装置1の動作について説明する。
図7は、実施形態に係る歩行状態検出装置1の動作を説明するフローチャートである。以下、図1~図7を参照して、実施形態に係る歩行状態検出装置1の動作について説明する。
初めに、二乗和算出部101は、加速度センサ2から出力されるX軸、Y軸及びZ軸夫々のアナログ電圧信号を所定の周期でサンプリングしてデジタルデータに変換した後、デジタルデータに変換されたX軸、Y軸及びZ軸夫々の加速度の二乗和平方根wを算出する(S101)。
次に、状態判定部102は、二乗和算出部101から出力される値を所定時間サンプリングし、この所定時間内にサンプリングした値から極大値(最も大きな値)を検出して閾値Aと比較し、走行状態であるか歩行状態であるかを判定する(S102)。
状態判定部102で、歩行状態であると判定された場合(S102のYes)、検出部103は、二乗和算出部101から入力される加速度(3軸合成値)が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し(S103)、上弦ピークとなる時点を着地時ポイント(着地ポイント)とする。
次に、検出部103は、図6で説明したように、二乗和算出部101から入力される加速度(3軸合成値)が上昇傾向から下降傾向に切り替わる2番目の上弦ピークを検出し(S104)、2番目の上弦ピークとなる時点を反対側の脚の着地時ポイント(着地ポイント)とする。つまり、S103で左脚の着地ポイントが検出されている場合は、S104では、右脚の着地ポイントが検出される。
次に、検出部103は、加速度センサ2から入力されるX軸の加速度(左右加速度)が上昇傾向から下降傾向に切り替わる上弦ピークが検出し(S105)、上弦ピークとなる時点を蹴上時とする。また、検出部103は、加速度センサ2から入力されるX軸の加速度(左右加速度)が上昇傾向から下降傾向に切り替わる上弦ピークを検出できない場合(S105のNo)、二乗和算出部101から入力される加速度(3軸合成値)が下降傾向かつ1G(Gは重力加速度)となる時点を検出し、蹴上時とする。
なお、乗和算出部101から入力される加速度(3軸合成値)が下降傾向かつ1G(Gは重力加速度)となる時点が検出されない場合は(S106のNo)、スタート時の動作に戻る(再検索を行う)。
また、状態判定部102で、歩行状態でない、つまり走行状態と判定された場合(S102のNo)、検出部103は、加速度センサ2から入力されるZ軸の加速度(鉛直加速度)が所定値B(例えば、0)以上であり、上昇傾向から下降傾向に切り替わる初めの上弦ピーク(1stトップピーク)を検出し(S107)、上弦ピークとなる時点を蹴上時とする。
次に、検出部103は、加速度センサ2から入力されるZ軸の加速度(鉛直加速度生値)が所定値C(例えば、0)以上であり、下降傾向から上昇傾向に切り替わる初めの下弦ピーク(1stアンダーピーク)を検出し(S108)、下弦ピークとなる時点を着地時(着地ポイント)とする。
次に、期間算出部104は、検出部103で検出される蹴上時及び着地時に基づいて、使用者Uの立脚期間(脚が地面に着地している期間)又は遊脚期間(脚が地面から離れている期間)を算出する(S109)。具体的には、期間算出部104は、検出部103で検出される着地時から蹴上時までを立脚期間、蹴上時から着地時までを遊脚期間として算出する。
以上のように、本実施形態に係る歩行状態検出装置1は、使用者Uが歩行状態であるか走行状態であるかを判定する状態判定部102と、使用者の脚が蹴り上げられる蹴上時及び使用者の脚が着地する着地時を検出する検出部103と、検出部で検出される蹴上時及び着地時に基づいて、使用者の立脚期間又は遊脚期間を算出する期間算出部104とを有している。
そして、歩行状態検出装置1の検出部103は、蹴上時及び着地時の検出パターン(検出)を複数有し、状態判定部102で判定された使用者Uの状態、すなわち、使用者Uが歩行状態であるか走行状態であるかに基づいて、蹴上時と着地時の検出パターン(検出方法)を変更している。このため、歩行状態および走行状態のそれぞれの特徴に基づいて、精度よく蹴上時と着地時とを検出することができる。
また、歩行状態検出装置1の検出部103は、走行状態であると判定された場合、Z軸の加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークとなる時点を蹴上時とする。当該時点が蹴上時となることは実測により確認されているので、歩行姿勢を精度よく検出することができる。
また、歩行状態検出装置1の検出部103は、走行状態であると判定された場合、Z軸の加速度が下降傾向から上昇傾向に切り替わる初めの下弦ピークを検出し、下弦ピークとなる時点を着地時とするため、歩行姿勢を精度よく検出することができる。
また、歩行状態検出装置1の検出部103は、歩行状態であると判定された場合、X軸、Y軸及びZ軸の3軸合成値の加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークとなる時点を着地時とする。当該時点が着地時となることは実測により確認されているいので、歩行姿勢を精度よく検出することができる。
また、歩行状態検出装置1の検出部103は、歩行状態であると判定された場合、X軸、Y軸及びZ軸の3軸合成値の加速度が下降傾向かつ1G(Gは重力加速度)となる時点を蹴上時とするため、歩行姿勢を精度よく検出することができる。
また、歩行状態検出装置1の検出部103に入力される加速度は、互いに直交するX軸、Y軸及びZ軸からなる3軸方向の加速度の二乗和であるため、1軸方向又は2軸方向の加速度だけを用いる場合に比べて、より精度よく歩行姿勢を検出することができる。
また、歩行状態検出装置1の期間算出部104は、着地時から蹴上時までを立脚期間、蹴上時から着地時までを遊脚期間として算出するので、より精度よく歩行姿勢を検出することができる。
また、歩行状態検出装置1が加速度を計測する加速度センサを有する場合、別途、加速度センサを必要としない。また、ジャイロセンサ等に比較して低消費電力であるため、蓄電池等の内部電源で駆動されるウェアラブルデバイスや携帯機器に好適である。
また、上記実施形態に係る歩行状態検出プログラムは、上述したように歩行状態検出装置1を実現でき、上述した歩行状態検出装置1と同じ効果を得ることができる。
(その他の実施形態)
なお、本発明は上述した実施形態には限定されない。すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
なお、本発明は上述した実施形態には限定されない。すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
1 歩行状態検出装置
2 加速度センサ
101 二乗和算出部
102 状態判定部
103 検出部
104 期間算出部
2 加速度センサ
101 二乗和算出部
102 状態判定部
103 検出部
104 期間算出部
Claims (10)
- 加速度に基づいて使用者の歩行状態を検出する歩行状態検出装置であって、
前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する検出部と、
前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間又は遊脚期間を算出する期間算出部とを有し、
前記検出部は、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、前記上弦ピークとなる時点を前記蹴上時とする歩行状態検出装置。 - 前記検出部は、前記加速度が下降傾向から上昇傾向に切り替わる初めの下弦ピークを検出し、前記下弦ピークとなる時点を前記着地時とする請求項1に記載の歩行状態検出装置。
- 加速度に基づいて使用者の歩行状態を検出する歩行状態検出装置であって、
前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する検出部と、
前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間又は遊脚期間を算出する期間算出部とを有し、
前記検出部は、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークをなる時点を前記着地時とする歩行状態検出装置。 - 前記検出部は、前記加速度が下降傾向かつ1G(Gは重力加速度)となる時点を前記蹴上時とする請求項3に記載の歩行状態検出装置。
- 前記検出部に入力される前記加速度は、互いに直交するX軸、Y軸及びZ軸からなる3軸方向の加速度の二乗和である請求項1乃至請求項4のいずれかに記載の歩行状態検出装置。
- 前記期間算出部は、前記着地時から前記蹴上時までを前記立脚期間、前記蹴上時から前記着地時までを前記遊脚期間として算出する請求項1乃至請求項5のいずれかに記載の歩行状態検出装置。
- 前記使用者が歩行状態であるか走行状態であるかを判定する状態判定部を有し、
前記検出部は、前記蹴上時及び前記着地時の検出パターンを複数有し、前記状態判定部での判定結果に応じて前記検出パターンを変更する請求項1乃至請求項6のいずれかに記載の歩行状態検出装置。 - 前記加速度を計測する加速度センサを有する請求項1乃至請求項7のいずれかに記載の歩行状態検出装置。
- 加速度に基づいて使用者の歩行状態を検出する歩行状態検出プログラムであって、
前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する工程と、
前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間及び遊脚期間を算出する工程とをコンピュータに実行させ、
前記蹴上時を検出する工程では、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、前記上弦ピークとなる時点を前記蹴上時とする歩行状態検出プログラム。 - 加速度に基づいて使用者の歩行状態を検出する歩行状態検出プログラムであって、
前記使用者の脚が蹴り上げられる蹴上時及び前記使用者の脚が着地する着地時を検出する工程と、
前記検出部で検出される前記蹴上時及び前記着地時に基づいて、前記使用者の立脚期間又は遊脚期間を算出する工程とをコンピュータに実行させ、
前記着地時を検出する工程では、前記加速度が上昇傾向から下降傾向に切り替わる初めの上弦ピークを検出し、上弦ピークをなる時点を前記着地時とする歩行状態検出プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017545179A JP6586173B2 (ja) | 2015-10-15 | 2016-10-06 | 歩行状態検出装置及び歩行状態検出プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-203390 | 2015-10-15 | ||
JP2015203390 | 2015-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017065087A1 true WO2017065087A1 (ja) | 2017-04-20 |
Family
ID=58518039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/079816 WO2017065087A1 (ja) | 2015-10-15 | 2016-10-06 | 歩行状態検出装置及び歩行状態検出プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6586173B2 (ja) |
WO (1) | WO2017065087A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018211713A1 (ja) * | 2017-05-19 | 2018-11-22 | 富士通株式会社 | 情報処理装置、情報処理システム、および情報処理方法 |
CN110388915A (zh) * | 2018-04-23 | 2019-10-29 | 夏普株式会社 | 行进方向计算装置、行进方向确定方法及记录介质 |
JP2020058688A (ja) * | 2018-10-12 | 2020-04-16 | カシオ計算機株式会社 | センサ制御装置、センサ装置、センサ制御方法及びセンサ制御プログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012179114A (ja) * | 2011-02-28 | 2012-09-20 | Hiroshima Univ | 測定装置、測定方法、及び、測定プログラム |
JP2013188422A (ja) * | 2012-03-15 | 2013-09-26 | Seiko Epson Corp | 測定装置 |
JP2015071000A (ja) * | 2013-10-04 | 2015-04-16 | マイクロストーン株式会社 | 運動解析プログラム |
JP2015139669A (ja) * | 2014-01-30 | 2015-08-03 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 移動運動解析装置、方法及びシステム並びにプログラム |
-
2016
- 2016-10-06 JP JP2017545179A patent/JP6586173B2/ja active Active
- 2016-10-06 WO PCT/JP2016/079816 patent/WO2017065087A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012179114A (ja) * | 2011-02-28 | 2012-09-20 | Hiroshima Univ | 測定装置、測定方法、及び、測定プログラム |
JP2013188422A (ja) * | 2012-03-15 | 2013-09-26 | Seiko Epson Corp | 測定装置 |
JP2015071000A (ja) * | 2013-10-04 | 2015-04-16 | マイクロストーン株式会社 | 運動解析プログラム |
JP2015139669A (ja) * | 2014-01-30 | 2015-08-03 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 移動運動解析装置、方法及びシステム並びにプログラム |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018211713A1 (ja) * | 2017-05-19 | 2018-11-22 | 富士通株式会社 | 情報処理装置、情報処理システム、および情報処理方法 |
CN110388915A (zh) * | 2018-04-23 | 2019-10-29 | 夏普株式会社 | 行进方向计算装置、行进方向确定方法及记录介质 |
JP2019190937A (ja) * | 2018-04-23 | 2019-10-31 | シャープ株式会社 | 進行方向計算装置、進行方向決定方法、および制御プログラム |
JP2020058688A (ja) * | 2018-10-12 | 2020-04-16 | カシオ計算機株式会社 | センサ制御装置、センサ装置、センサ制御方法及びセンサ制御プログラム |
JP7172412B2 (ja) | 2018-10-12 | 2022-11-16 | カシオ計算機株式会社 | センサ制御装置、センサ装置、センサ制御方法及びセンサ制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017065087A1 (ja) | 2018-08-09 |
JP6586173B2 (ja) | 2019-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11511154B1 (en) | Athletic performance and technique monitoring | |
JP6183906B2 (ja) | 歩容推定装置とそのプログラム、転倒危険度算出装置とそのプログラム | |
Sabatini et al. | Assessment of walking features from foot inertial sensing | |
KR102010898B1 (ko) | 관성센서를 이용한 보행 분석 시스템 및 방법 | |
US9524424B2 (en) | Calculation of minimum ground clearance using body worn sensors | |
CN109480857B (zh) | 一种用于帕金森病患者冻结步态检测的装置及方法 | |
JP2010005033A (ja) | 歩行動作分析装置 | |
JP2013143996A (ja) | 運動計測装置 | |
Feeken et al. | ClimbingAssist: direct vibro-tactile feedback on climbing technique | |
CN108836344B (zh) | 步长步频估算方法和装置及步态检测仪 | |
JP6586173B2 (ja) | 歩行状態検出装置及び歩行状態検出プログラム | |
CN104266659B (zh) | 运动计数器 | |
JP2020120807A (ja) | 転倒リスク評価装置、転倒リスク評価方法及び転倒リスク評価プログラム | |
CN108338790A (zh) | 步态分析及跌倒评估系统 | |
US20170151463A1 (en) | Method and apparatus for optimizing running performance of an individual | |
US20150150491A1 (en) | Movement estimation device, and activity tracker | |
EP2889853A1 (en) | A method for optimizing running performance for an individual | |
JP7370795B2 (ja) | 歩行特徴量検出装置 | |
CN112839569B (zh) | 评估人类移动的方法和系统 | |
Wang et al. | A New Hidden Markov Model Algorithm to Detect Human Gait Phase Based on Information Fusion Combining Inertial with Plantar Pressure. | |
CN210228151U (zh) | 一种单加速度计人体步态检测装置和可穿戴设备 | |
Muhamad et al. | Design and Implementation of Wearable IMU Sensor System for Heel-Strike and Toe-Off Gait Parameter Measurement | |
Ahmad et al. | A low-cost of foot plantar shoes for gait monitoring system | |
WO2023127013A1 (ja) | 静的バランス推定装置、静的バランス推定システム、静的バランス推定方法、および記録媒体 | |
US20210059566A1 (en) | Step Analysis Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16855341 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017545179 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16855341 Country of ref document: EP Kind code of ref document: A1 |