WO2017063379A1 - 显示面板及其制备方法 - Google Patents

显示面板及其制备方法 Download PDF

Info

Publication number
WO2017063379A1
WO2017063379A1 PCT/CN2016/087455 CN2016087455W WO2017063379A1 WO 2017063379 A1 WO2017063379 A1 WO 2017063379A1 CN 2016087455 W CN2016087455 W CN 2016087455W WO 2017063379 A1 WO2017063379 A1 WO 2017063379A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display panel
layer
electrode
panel according
Prior art date
Application number
PCT/CN2016/087455
Other languages
English (en)
French (fr)
Inventor
秦广奎
杨登科
周晓宸
Original Assignee
京东方科技集团股份有限公司
肯特州立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 肯特州立大学 filed Critical 京东方科技集团股份有限公司
Priority to EP16834013.1A priority Critical patent/EP3364237B1/en
Priority to US15/503,639 priority patent/US10705368B2/en
Publication of WO2017063379A1 publication Critical patent/WO2017063379A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • C09K19/0208Twisted Nematic (T.N.); Super Twisted Nematic (S.T.N.); Optical Mode Interference (O.M.I.)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/546Macromolecular compounds creating a polymeric network
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133538Polarisers with spatial distribution of the polarisation direction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Definitions

  • the present disclosure relates to the field of transflective liquid crystal display technology, and in particular, to a display panel and a method of fabricating the same.
  • the liquid crystal display device mainly has two types of transmissive and reflective.
  • the former relies on the light of the backlight for display, so the light source is stable but consumes a lot of energy.
  • the latter relies on ambient light for display, so its energy consumption is low, but the display effect depends on the external environment.
  • a transflective liquid crystal display device has been proposed in which each pixel includes both a transmissive area and a reflective area.
  • the existing solutions mainly include double box thickness and single box thickness.
  • the double box thickness refers to the difference in the thickness of the liquid crystal layer in the two regions, which is convenient for achieving the same display effect, but there are problems such as disordered liquid crystal alignment at the transition position of the two regions and difficulty in controlling the thickness of the box.
  • the single-cassette liquid crystal display device having the same thickness of the liquid crystal layer in the transmissive region and the reflective region has a better development prospect.
  • the initial alignment direction and the electrode of the nematic liquid crystal in the reflective region can be made in a liquid crystal display device of an IPS (In Plane Switching) and an Advanced Super Dimension Switch (ADS). It forms an angle of about 10 degrees, but this causes dark light leakage, reduced contrast, and blurs the boundaries of the two regions.
  • an additional quarter-wave plate in-box retarder
  • the present disclosure provides a display panel with small dark light leakage and simple preparation process, and a preparation method thereof.
  • an embodiment of the present disclosure provides a display panel including a plurality of pixels, each of which includes a transmissive area and a reflective area, and the display panel includes a first polarizing plate, a first substrate, and a first An alignment layer, a liquid crystal layer, a second alignment layer, a second substrate, and a second polarizing plate;
  • a reflective layer is disposed between the second alignment layer of the reflective region and the second polarizer
  • the liquid crystal layer of the reflective region comprises a nematic liquid crystal and a polymer network;
  • the liquid crystal layer of the transmissive region comprises a liquid crystal mixture comprising nematic liquid crystal and a polymerizable monomer;
  • the polymer network of the reflective region is formed by polymerizing a polymerizable monomer in the liquid crystal mixture.
  • the nematic liquid crystal alignment direction in the reflective region is different from the orientation of the first alignment layer, and the nematic liquid crystal alignment direction in the transmissive region is the same as the orientation of the first alignment layer.
  • the polymerizable monomers in the liquid crystal mixture of the transmissive regions can also be polymerized to form a polymer network.
  • a liquid crystal mixture containing a nematic liquid crystal and a polymerizable monomer is contained in the liquid crystal layer.
  • the polymerizable monomers in the liquid crystal mixture polymerize to form a polymer network. Accordingly, the alignment of the nematic liquid crystal in the reflective region through the polymer network achieves a different alignment direction than the nematic liquid crystal in the transmissive region.
  • the polymerizable monomer in the liquid crystal mixture may exist in a monomer form or may be polymerized to form a polymer network.
  • the vibration transmitting directions of the first polarizing plate and the second polarizing plate are perpendicular to each other.
  • the orientations of the first alignment layer and the second alignment layer are parallel or opposite to each other.
  • the orientation of the first alignment layer is perpendicular to the direction of vibration transmission of the first polarizer.
  • the liquid crystal layer of the reflective region can deflect the polarization direction of the linearly polarized light incident from the first substrate direction and reflected by the reflective layer by 90 degrees.
  • the k is 0; the d is 1 ⁇ m to 10 ⁇ m.
  • the equivalent optical axis of the liquid crystal layer of the reflective region is in the absence of an electric field
  • the vibration transmitting direction of the first polarizing plate is at an angle of 45 degrees.
  • the display panel further includes: a first half-wave plate disposed between the first alignment layer and the first polarizer, and an optical axis of the first half-wave plate in the absence of an electric field Parallel to an equivalent optical axis of the liquid crystal layer of the reflective region; a second half-wave plate disposed between the second alignment layer and the second polarizing plate, the second half-wave plate being further away from the reflective layer a liquid crystal layer, and an optical axis of the second half-wave plate is perpendicular to an optical axis of the first half-wave plate.
  • the display panel further includes a first electrode and a second electrode disposed on a substrate, one of the first electrode and the second electrode being a pixel electrode and the other being a common electrode.
  • the first electrode is a plate electrode
  • the second electrode is a plurality of strip electrodes
  • an insulating layer is disposed between the first electrode and the second electrode, and the first electrode is opposite to the second electrode Farther away from the liquid crystal layer.
  • the strip electrode has a width of, for example, 1 ⁇ m to 10 ⁇ m, and a distance between adjacent two of the plurality of strip electrodes is 1 ⁇ m to 10 ⁇ m.
  • the first electrode and the second electrode are a plurality of strip electrodes that are alternately arranged.
  • each stripe of the strip electrode has a width of 1 ⁇ m to 10 ⁇ m; and a distance between adjacent strips of the plurality of strip electrodes is 1 ⁇ m to 10 ⁇ m.
  • the polymerizable monomer has a linear aliphatic chain having an ester group end group at its molecular end; or the polymerizable monomer has a phenylene group or a biphenylylene group in the middle of its molecule. And at least one methylene group, wherein the phenylene group or biphenylene group may be substituted by one or more hydrocarbon groups or halogen; or the polymerizable monomer has at least one phenylene group or a biphenylylene group And a (meth) acrylate end group to which a divalent alkylene group is attached, wherein the phenylene group or biphenylene group may be substituted by one or more hydrocarbon groups or halogens.
  • the polymerizable monomer has a functionality greater than one.
  • the polymerizable monomer is present in the liquid crystal mixture in an amount of from 0.01% by weight to 15% by weight.
  • the polymerizable monomer is a photopolymerizable monomer formed by photopolymerization of a polymerizable monomer in a liquid crystal mixture.
  • the liquid crystal mixture further contains a photoinitiator in a weight percentage of 0.001% by weight to 2% by weight in the liquid crystal mixture.
  • Another embodiment of the present disclosure provides a method for fabricating the above display panel, including:
  • a liquid crystal mixture is added between the first alignment layer and the second alignment layer, and an electric field is applied to the liquid crystal mixture, and then only the polymerizable monomer in the liquid crystal mixture of the reflection region is polymerized into a polymer network.
  • the electric field has an electric field strength of from 0.5 V/ ⁇ m to 5 V/ ⁇ m.
  • the method of preparation further comprises polymerizing only polymerizable monomers in the liquid crystal mixture of the transmissive region into a polymer network in the absence of an electric field.
  • the polymerizing only the polymerizable monomer in the liquid crystal mixture of the reflective region into a polymer network includes: providing a shielding transmissive region on one side of the display panel The mask is illuminated from the side of the mask away from the display panel to illuminate the display panel to polymerize the polymerizable monomers in the liquid crystal mixture in the reflective region into a polymer network.
  • the technical solution of the present disclosure has the following beneficial technical effects: according to the display panel of the embodiment of the present disclosure, the nematic liquid crystal in the reflective region realizes an arrangement direction different from the nematic liquid crystal of the transmissive region by the auxiliary orientation action of the polymer network, thereby enabling In the case of not adding the in-box delay device, it is ensured that both regions have a good dark state display effect, the contrast is improved, and the preparation method is simplified. Moreover, the boundary between the transmissive area and the reflective area is sharp and there is substantially no transition zone. At the same time, the viewing angles of the transmissive area and the reflective area are both wide, and the TV curve (the display curve of the transmissive area) and the RV curve (the display curve of the reflective area) match.
  • FIG. 1 is a schematic view showing a partial cross-sectional structure of a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic view showing a top view structure of a polymer network and a nematic liquid crystal in a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic view showing the orientation of each structure in a display panel according to an embodiment of the present disclosure
  • FIG. 4 is a photograph of a boundary of a transmissive area and a reflective area of a pixel in a display panel according to an embodiment of the present disclosure
  • FIG. 5 is a photograph of a boundary of a transmissive area and a reflective area of another pixel in a display panel according to an embodiment of the present disclosure
  • FIG. 6 is a test result diagram of a TV curve and an RV curve of a display panel according to an embodiment of the present disclosure
  • FIG. 7 is a view showing a method of manufacturing a display panel according to another embodiment of the present disclosure before applying an electric field Schematic diagram of a partial cross-sectional structure
  • FIG. 8 is a schematic view showing a partial cross-sectional structure before illumination is performed after an electric field is applied in a method of manufacturing a display panel according to another embodiment of the present invention.
  • FIG. 9 is a schematic view showing a partial cross-sectional structure when a first illumination is performed in a method of manufacturing a display panel according to another embodiment of the present invention.
  • FIG. 10 is a schematic view showing a partial cross-sectional structure before light is removed after an electric field is removed in a method of manufacturing a display panel according to another embodiment of the present invention.
  • a display panel including a plurality of pixels each including a transmissive area and a reflective area, and the display panel includes a first polarizing plate, a first substrate, and a first alignment layer disposed in sequence a liquid crystal layer, a second alignment layer, a second substrate, and a second polarizing plate;
  • a reflective layer is disposed between the second alignment layer of the reflective region and the second polarizer
  • the liquid crystal layer of the reflective region comprises a nematic liquid crystal and a polymer network;
  • the liquid crystal layer of the transmissive region comprises a liquid crystal mixture, and the liquid crystal mixture comprises a nematic liquid crystal and a polymerizable monomer;
  • the polymer network of the reflective region is formed by polymerization of a polymerizable monomer in a liquid crystal mixture.
  • the alignment direction of the nematic liquid crystal in the reflection region is different from the orientation of the first alignment layer, and the alignment direction of the nematic liquid crystal in the transmission region is the same as the orientation of the first alignment layer.
  • a method of fabricating the above display panel including:
  • the nematic liquid crystal in the reflective region realizes a different alignment direction from the nematic liquid crystal of the transmissive region by the auxiliary orientation action of the polymer network, thereby being able to ensure two without increasing the in-box delay device.
  • the area has a good dark state display effect, which improves the contrast and simplifies the preparation method.
  • the boundary between the transmissive area and the reflective area is sharp and there is substantially no transition zone.
  • the viewing angles of the transmissive region and the reflective region are both wide, and the TV curve (the display curve of the transmissive region) and the RV curve (the display curve of the transmissive region) match.
  • This embodiment provides a display panel (liquid crystal display panel), and the display panel of the embodiment is specifically described with reference to FIG. 1 to FIG.
  • the display panel of the present embodiment includes a plurality of pixels. As shown in FIG. 1, each of the pixels includes a transmissive area 91 and a reflective area 92, and the display panel includes first polarizing plates 11 which are sequentially disposed (from top to bottom in FIG. 1).
  • a reflective layer 921 is disposed between the second alignment layer 23 of the reflective region 92 and the second polarizing film 21.
  • the reflective layer 921 is disposed between the second substrate 29 and the second alignment layer 23, but is not limited thereto.
  • the liquid crystal layer 5 of the reflective region 92 includes a nematic liquid crystal 51 and a polymer network 52.
  • the liquid crystal layer 5 of the transmissive region 91 includes a liquid crystal mixture including a nematic liquid crystal 51 and a polymerizable monomer 521 (shown in FIG. 9).
  • the alignment direction of the nematic liquid crystal 51 in the reflection region 92 is different from the orientation of the first alignment layer 13, and the alignment direction of the nematic liquid crystal 51 in the transmission region 91 is the same as the orientation of the first alignment layer 13.
  • the display panel of the present embodiment includes a first substrate 1, a second substrate 2, and a liquid crystal layer 5 sandwiched between the two substrates, the first substrate 1 including a first substrate 19 disposed on the first substrate a first polarizing plate 11 on 19, a first alignment layer 13 and the like, the second substrate 2 including a second substrate 29, a second polarizing plate 21 provided on the second substrate 29, a second alignment layer 23, and The reflective layer 921 and the like.
  • a polymer network 52 is formed in the liquid crystal layer 5 of the reflective region 92.
  • the polymer network 52 is formed by adding a liquid crystal mixture to the liquid crystal layer 5 to cause a polymerizable monomer in the liquid crystal mixture in the liquid crystal layer 5 corresponding to the reflective region 92.
  • 521 is formed by polymerization.
  • the polymer network 52 can function to assist in orienting the nematic liquid crystal 51 of the reflective region 92 such that the alignment direction of the nematic liquid crystal 51 of the reflective region 92 is different from the orientation of the first alignment layer (e.g., rubbing direction).
  • the alignment direction of the nematic liquid crystal 51 of the transmissive region 91 is the same as the orientation of the first alignment layer. That is, in the case where the orientations of the first alignment layers of the reflection region 92 and the transmission region 91 are the same, the arrangement direction of the nematic liquid crystals 51 in the two regions is different.
  • the nematic liquid crystal 51 depends on the alignment layer (since both the first alignment layer and the second alignment layer affect the alignment direction of the nematic liquid crystal, the first alignment layer and the second alignment layer are collectively referred to as "orientation" below.
  • the layer is oriented so that the polymerizable monomer 521 therein can be maintained in a monomer form without polymerization. That is, the liquid crystal layer 5 of the transmissive region 91 may directly contain a liquid crystal mixture. However, as shown in FIGS. 1 and 2, in order to avoid an undesired reaction of the polymerizable monomer 521, the polymerizable monomer 521 in the transmissive region 91 can also be polymerized into the polymer network 52.
  • the liquid crystal layer 5 of the transmissive region 91 may contain the polymer network 52 and the nematic liquid crystal 51.
  • the direction of the polymer network 52 in the transmissive region 91 is the same as the orientation of the alignment layer, so that the alignment direction of the nematic liquid crystals 51 in the transmissive region 91 is not changed.
  • the polymerizable monomer 521 can have the following structure:
  • the polymerizable monomer 521 has a linear aliphatic chain having an ester group end group at its molecular end;
  • the polymerizable monomer 521 has a phenylene group or a biphenylene group in the middle of its molecule, and at least one methylene group, wherein the phenylene group or biphenylene group may be one or more hydrocarbon groups or halogens.
  • the polymerizable monomer 521 includes at least one phenylene group or a biphenylylene group, and a (meth) acrylate end group to which a divalent alkylene group is attached, wherein the phenylene group or biphenylene group The group has one or more hydrocarbyl or halogen substituents.
  • the functionality of the polymerizable monomer 521 is, for example, greater than one.
  • the specific structure of the polymerizable monomer 521 can be, for example, as shown in the following formula (I):
  • a and each b are each independently an integer from 0 to 5
  • each m is independently an integer from 0 to 15
  • X 1 , X 2 and X 3 are each independently a hydrogen atom, a halogen or a methyl group
  • R 1 , R 2 , R 3 and R 4 are each independently an oxygen atom, an ester group or a methylene group, and, in the formula (I), a and b are not 0 at the same time; and when R 3 or R 4 is an oxygen atom or In the case of an ester group, the subscript m of -CH 2 - attached thereto is not zero.
  • the polymerizable monomer 521 can be a known product which can be used in combination with a nematic liquid crystal.
  • a commercially available RM257 type monomer having a rod-like structure similar to a nematic liquid crystal can be used, so that it can be well dissolved in the nematic liquid crystal and function as an auxiliary orientation for the nematic liquid crystal after polymerization. Since the polymerizable monomer 521 can be selected from known substances, the detailed structure thereof will not be described in detail herein.
  • a commercially available CB5 type is used for the nematic liquid crystal 51
  • a commercially available RM257 type is used for the polymerizable monomer 521.
  • the weight percentage of the polymerizable monomer 521 in the liquid crystal mixture is from 0.01% by weight to 15% by weight.
  • the content of the above polymerizable monomer 521 can form a polymer network 52 capable of functioning sufficiently, without significantly affecting the performance of the nematic liquid crystal 51 itself.
  • the polymerizable monomer 521 is a photopolymerizable monomer and the polymer network 52 is formed by photopolymerization of a polymerizable monomer 521 in a liquid crystal mixture.
  • the liquid crystal mixture may further contain a photoinitiator in a weight percentage of 0.001% by weight to 2% by weight in the liquid crystal mixture.
  • the polymerizable monomer 521 can be a photopolymerizable monomer which can be polymerized under irradiation of light such as ultraviolet light. Since the light can be simply blocked, it is easy to achieve separate polymerization of the polymerizable monomer 521 in each zone.
  • a photoinitiator may also be added to the liquid crystal mixture to initiate polymerization.
  • the orientation of each polarizing plate, the alignment layer, and the like satisfies the following conditions: the vibration transmitting directions of the first polarizing plate 11 and the second polarizing film 21 are perpendicular to each other;
  • the orientation (e.g., rubbing direction) of the layer 13 and the second alignment layer 23 are parallel or opposite to each other;
  • the orientation of the first alignment layer 13 is perpendicular to the direction of vibration transmission of the first polarizing plate 11.
  • the liquid crystal layer 5 of the reflective region 92 can deflect the polarization direction of the linearly polarized light incident from the first substrate 19 and reflected by the reflective layer 921 by 90 degrees.
  • the liquid crystal layer 5 of the reflective region 92 can rotate the polarization direction of the linearly polarized light which is reflected and reflected back by 90 degrees, so that it is completely blocked by the first polarizing plate 11. Block to achieve a good dark state effect.
  • the liquid crystal layer 5 can produce a phase difference of (2k ⁇ + 3 ⁇ /2) for the visible light that passes through, or the liquid crystal layer 5 can To the role of 3/4 wave plate.
  • k is 0, and the thickness d of the liquid crystal layer 5 is 1 ⁇ m to 10 ⁇ m.
  • the liquid crystal layer 5 is only an accurate 3/4 wave plate for light having a wavelength of ⁇ , and the phase difference generated by light of other wavelengths is not (2k ⁇ + 3 ⁇ /2), and the thickness of the liquid crystal layer 5 is higher. The difference between the two is also greater. Therefore, by making k 0, the phase difference of light of other wavelengths is minimized.
  • the visible light wavelength is generally 400 nm to 760 nm (e.g., ⁇ is 530 nm to 580 nm), and the conventional nematic liquid crystal has a birefringence of about 0.1, whereby the liquid crystal layer 5 thickness d can be set to 1 ⁇ m to 10 ⁇ m.
  • the equivalent optical axis of the liquid crystal layer 5 of the reflection region 92 is at an angle of 45 degrees with the vibration transmission direction of the first polarizing plate 11.
  • the alignment direction of the nematic liquid crystals 51 in the reflective region 92 is determined by the polymer network 52 and the alignment layer, the alignment liquid crystals 51 at different positions in the thickness direction in the reflection region 92 are arranged in different directions, and the closer to the alignment layer.
  • the nematic liquid crystal 51 is more affected by the alignment layer, and thus closer to the orientation of the alignment layer; conversely, the more the nematic liquid crystal 51 farther from the alignment layer deviates from the orientation of the alignment layer. Therefore, it is impossible to accurately say what the arrangement direction of the nematic liquid crystals 51 in the reflection region 92 is, and the optical axis direction of the liquid crystal layer 5 in the reflection region 92 cannot be said.
  • the optical axis direction of the liquid crystal layer 5, that is, the optical axis direction of the nematic liquid crystal 51 is the long axis direction of the nematic liquid crystal, that is, the nematic liquid crystal alignment direction.
  • the overall function of the liquid crystal layer 5 in the reflective region 92 should be "corresponding to" a liquid crystal layer having an optical axis at an angle of 45 degrees to the vibration transmitting direction of the first polarizing plate 11, so that the "equivalent optical axis" is The direction of vibration transmission of a polarizing plate 11 is at an angle of 45 degrees.
  • the linear polarization which is incident and reflected as described above can be just as described above.
  • the polarization direction of the light is rotated by 90 degrees to achieve a good dark state display effect.
  • the optical axis direction of the liquid crystal layer 5 i.e., the alignment direction of the nematic liquid crystal 51
  • the second polarizing film 21 is parallel to the orientation of the alignment layer
  • the light incident from the backlight passes through the second polarizing film 21 and becomes linearly polarized light having a polarization direction parallel to the optical axis of the liquid crystal layer 5. Therefore, the polarization direction is unchanged after passing through the liquid crystal layer 5 (that is, the 3/4 wave plate).
  • a polarizing plate 11 is completely blocked to achieve a good dark state.
  • the reflected light passes through the first polarizing plate 11 and becomes linearly polarized light whose polarization direction is at an angle of 45 degrees with the "equivalent optical axis" of the liquid crystal layer 5, and passes through the liquid crystal layer 5 (ie, 3/4 wave plate). Then, it becomes a circularly polarized light of a certain rotation direction, and the circularly polarized light is reflected by the reflective layer 921, and the rotation direction is reversed and passes through the liquid crystal layer 5 (3/4 wave plate) again, and becomes a linear polarization in which the polarization direction is perpendicular to the polarization direction of the incident light. The light is thus completely blocked by the first polarizing plate 11, and a good dark state is also achieved.
  • the alignment direction of the nematic liquid crystals 51 in the two-region liquid crystal layer 5 is deflected, and the deflection effect on the light is also changed, so that part of the light can be allowed to pass through to display the desired brightness.
  • the display panel of the embodiment can ensure that both regions have a good dark state display effect and improve contrast without increasing the in-box delay device.
  • the boundary between the transmissive area 91 and the reflective area 92 is sharp, and there is substantially no transition (as shown in FIGS. 4 and 5).
  • the viewing angles of the transmissive area 91 and the reflective area 92 are both wide (because it can be IPS or ADS mode), and as shown in FIG. 6, the tested TV curve (display of the transmissive area 91) The curve) and the RV curve (the display curve of the reflection zone 92) are well matched.
  • the display panel of this embodiment further includes:
  • the first half-wave plate 12 disposed between the first alignment layer 13 and the first polarizing plate 11 has an equivalent optical light of the optical axis of the first half-wave plate 12 and the liquid crystal layer 5 of the reflective region 92 in the absence of an electric field. Parallel to the axis;
  • the second half-wave plate 22 is disposed between the second alignment layer 23 and the second polarizing film 21, the second half-wave plate 22 is farther away from the liquid crystal layer 5 than the reflective layer 912, and the optical axis of the second half-wave plate 22 is The optical axis of the half wave plate 12 is perpendicular.
  • the first half-wave plate 12 is disposed between the first substrate 19 and the first polarizing film 11
  • the second half-wave plate 22 is disposed between the second substrate 29 and the second polarizing film 21, but is not limited thereto. this.
  • the thickness of the liquid crystal layer 5 can only be set for one specific wavelength, so that light of other wavelengths may leak light in the dark state. Especially for 3/4 wave plates, the leakage at other wavelengths is more serious than the 1/4 wave plate. Therefore, as shown in FIG. 1, a half wave plate can be added between the two substrates and the polarizing plate to reduce light leakage at other wavelengths.
  • the liquid crystal layer 5 in the reflective region 92 The equivalent optical axis is parallel to the optical axis of the first half-wave plate 12, so that the maximum reflectance can be obtained.
  • the two phase plates produce a total phase difference of 2k ⁇ , so it does not affect the normal display. Since the manner in which the bandwidth of the 3/4 wave plate (i.e., its adapted wavelength range) is increased by half-wave plates is known, it will not be described in detail herein.
  • the display panel of the present embodiment further includes a first electrode 81 and a second electrode 82 provided on one substrate.
  • One of the first electrode 81 and the second electrode 82 is a pixel electrode, and the other is a common electrode.
  • the pixel electrode and the common electrode may be disposed in one of the substrates.
  • the electrodes are provided on the first substrate 1 (that is, the first substrate 1 is an array substrate) will be described.
  • the electrodes in the second substrate 2 which will not be described in detail herein.
  • the first electrode 81 is a plate electrode
  • the second electrode 82 is a plurality of strip electrodes
  • the first electrode 81 and the second electrode 82 are insulated.
  • the first electrode 81 is farther from the liquid crystal layer 5 than the second electrode 82.
  • the display panel of the present embodiment may be a display panel of an advanced super-dimensional field conversion (ADS) mode, and thus includes a plate electrode and a strip electrode.
  • the plate electrode may be a common electrode, and the strip electrode may be a pixel electrode; or the strip electrode may be a common electrode, and the plate electrode may be a pixel electrode.
  • the first electrode 81 and the second electrode 82 are a plurality of strip electrodes alternately arranged.
  • the display panel of the present embodiment may also be a display panel of a coplanar switch (IPS) mode, in which strip electrodes alternately arranged are disposed therein.
  • IPS coplanar switch
  • the strips of the strip electrodes (including the strip electrodes in the above two modes) have a width of 1 ⁇ m to 10 ⁇ m; and the distance between adjacent strips of the plurality of strip electrodes is 1 ⁇ m to 10 ⁇ m.
  • the nematic liquid crystal 51 may be a liquid crystal of negative dielectric anisotropy. This is because such a liquid crystal has a horizontal axis perpendicular to the direction of the electric field, so that the rotation thereof is mainly performed in a direction parallel to the plane of the substrate, and is smoother.
  • liquid crystals with positive dielectric anisotropy it is also feasible to use liquid crystals with positive dielectric anisotropy.
  • FIG. 4 and 5 show the boundary between the reflective area 92 and the transmissive area 91 of the display panel of the present embodiment.
  • Photo As can be seen from FIG. 4 and FIG. 5, the directions of the polymer network 52 in the reflective region 92 and the transmissive region 91 are significantly different, and the boundaries of the two regions are very clear. This indicates that the two regions of the display panel of the present embodiment have very distinct and strong boundaries.
  • the display panel of the present embodiment may further include a color filter film (not shown) for realizing color display.
  • a color filter film it may be disposed on a different substrate from the electrode (ie, a separate color filter substrate), or may be provided on the same substrate as the electrode (ie, in the COA mode).
  • the pixel electrode and the common electrode are disposed in the first substrate 1, in order to prevent the reflective layer 921 from affecting the electric field in the liquid crystal layer 5, the reflective layer 921 may be covered with a protective layer (not shown). .
  • the embodiment provides a method for preparing the above display panel, which includes:
  • a liquid crystal mixture is added between the first alignment layer 13 and the second alignment layer 23, and an electric field is applied to the liquid crystal mixture, after which only the polymerizable monomer 521 in the liquid crystal mixture of the reflection region 92 is polymerized into the polymer network 52.
  • the liquid crystal mixture is first added between the two substrates, and then an electric field is applied to deflect the nematic liquid crystal 51, and the polymerizable monomer 521 in the reflective region 92 is separately polymerized to form a polymer network. 52, at the same time, the polymerizable monomer 521 in the transmissive region 91 does not react, thereby orienting the nematic liquid crystal 51 in the reflective region 92 to a direction different from the orientation of the alignment layer.
  • the method in this embodiment may include:
  • a liquid crystal mixture is charged between the substrates, the liquid crystal mixture including the nematic liquid crystal 51 and the polymerizable monomer 521, and further may include a photoinitiator as needed.
  • a voltage difference is applied between the common electrode and the pixel electrode of each pixel, thereby generating an electric field (such as an electric field parallel to the substrate) in the liquid crystal mixture, driving the nematic liquid crystal 51 in the liquid crystal mixture (
  • the nematic liquid crystal 51) including the transmissive region 91 and the reflective region 92 is rotated to a direction different from the orientation of the alignment layer.
  • the specific electric field strength is related to many factors, such as the dielectric constant of the nematic liquid crystal 51, The viscosity, the anchoring ability of the alignment layer, etc., but generally should be such that the electric field strength is from 0.5 V/ ⁇ m to 5 V/ ⁇ m.
  • a mask for shielding the transmissive region 91 is disposed on a side of the display panel, and the display panel is irradiated with light from a side of the mask away from the display panel to make the liquid crystal of the reflective region 92.
  • the polymerizable monomer 521 in the mixture polymerizes into a polymer network 52.
  • the transmissive area 91 is covered with a mask to expose only the reflective area 92.
  • the display panel is illuminated by light through a mask such that only the reflective region 92 is illuminated, and the polymerizable monomer 521 in the reflective region 92 is separated from the liquid crystal mixture and polymerized along the interstices of the nematic liquid crystal 51 to form a polymer network. 52. Therefore, the polymer network 52 replicates the liquid crystal morphology at this time, thereby orienting the nematic liquid crystal 51 in the reflective region 92 to a specific direction different from the orientation of the alignment layer, for example, making the equivalent light of the liquid crystal layer 5 of the reflective region 92.
  • the shaft is at an angle of 45 degrees to the vibration transmitting direction of the first polarizing plate 11.
  • the light irradiation conditions may be adjusted as needed, generally used ultraviolet light intensity 0.1mw / cm 2 to 20mw / cm 2, the irradiation time is 5 to 60 minutes.
  • thermopolymerization it is also possible to initiate the reaction of the polymerizable monomer 521 by other means such as thermal polymerization.
  • a plurality of heating blocks that are in contact only with the reflective region 92 may be provided for heating or the like.
  • the electric field and the mask are removed, the nematic liquid crystal 51 in the reflective region 92 is still oriented by the polymer network, and the nematic liquid crystal 51 of the transmissive region 91 is automatically restored to the orientation layer orientation. The same state.
  • the reflection region 92 does not matter even if it is illuminated, so that it is not necessary to use a mask at this time, and the method is simple.
  • this step is not necessary since the polymeric network 52 of the transmissive region 91 does not function as an actual orientation. However, in order to avoid an undesired reaction in the remaining polymerizable monomer 521, this step is preferably carried out.
  • the reflective region 92 may be shielded by a mask in the absence of an electric field, and the polymerizable monomer 521 in the transmissive region 91 may be first polymerized, after which the mask is removed and an electric field is applied, and then the light is applied to the reflective region 92.
  • the polymerizable monomer 521 is polymerized.

Abstract

一种显示面板及其制备方法,属半反半透液晶显示技术领域,可解决现有的半反半透液晶显示装置暗态漏光、制备工艺复杂的问题。该显示面板的每个像素包括透射区(91)和反射区(92),且显示面板包括第一偏振片(11)、第一基底(19)、第一取向层(13)、液晶层(5)、第二取向层(23)、第二基底(29)、第二偏振片(21);反射区(92)的第二取向层(23)与第二偏振片(21)间设有反射层(921);反射区(92)的液晶层(5)包括向列液晶(51)和聚合物网络(52);透射区(91)的液晶层(5)包括液晶混合物,液晶混合物包括向列液晶(51)和可聚合单体(521);反射区(92)的聚合物网络(52)由液晶混合物中的可聚合单体(5211)聚合形成;无电场时,反射区(92)中的向列液晶(51)排列方向与第一取向层(13)的取向不同,透射区(91)中的向列液晶(51)排列方向与第一取向层(13)的取向相同。

Description

显示面板及其制备方法
相关申请的交叉参考
本申请主张2015年10月13日在中国提交的中国专利申请号No.201510671657.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及半反半透液晶显示技术领域,具体涉及一种显示面板及其制备方法。
背景技术
液晶显示装置主要有透射式和反射式两种。前者依靠背光源的光进行显示,因此其光源稳定但能耗大。后者依靠环境光进行显示,因此其能耗低,但显示效果依赖于外界环境。为结合两种显示模式的优点,人们提出了半反半透液晶显示装置,即每个像素同时包括透射区和反射区。
对于半反半透液晶显示装置而言,显然,透射区的光只经过一次液晶层,反射区的光则两次经过液晶层,这种情况下要使两区达到相同的显示效果必须采用特殊的解决方法。现有的解决方式主要有双盒厚和单盒厚两种。双盒厚是指两区中液晶层厚度不同,其便于达到相同的显示效果,但存在两区过渡位置的液晶排列混乱、盒厚难控制等问题。
因此,透射区和反射区液晶层厚度相同的单盒厚液晶显示装置有更好的发展前景。为了在单盒厚时实现相同的显示效果,必然要对反射区结构进行调整。例如,可以在部分共面开关模式(IPS,In Plane Switching)和高级超维场转换模式(ADS,Advanced super Dimension Switch)的液晶显示装置中,使反射区中向列液晶的初始排列方向与电极成约10度的夹角,但这会导致暗态漏光、对比度降低,并使两区的边界模糊。为解决以上问题,还可在反射区增加额外的1/4波片(盒内延迟器),但这会导致制备工艺复杂。
发明内容
针对现有的半反半透液晶显示装置暗态漏光、制备工艺复杂的问题,本公开提供一种暗态漏光小、制备工艺简单的显示面板及其制备方法。
为了实现上述目的,本公开的一个实施例提供一种显示面板,包括多个像素,每个像素包括透射区和反射区,且显示面板包括依次设置的第一偏振片、第一基底、第一取向层、液晶层、第二取向层、第二基底、第二偏振片;且
所述反射区的第二取向层与第二偏振片间设有反射层;
所述反射区的液晶层包括向列液晶和聚合物网络;所述透射区的液晶层包括液晶混合物,所述液晶混合物含有向列液晶和可聚合单体;
所述反射区的聚合物网络由所述液晶混合物中的可聚合单体聚合形成,
在无电场的情况下,所述反射区中的向列液晶排列方向与第一取向层的取向不同,所述透射区中的向列液晶排列方向与第一取向层的取向相同。
在一个示例中,所述透射区的液晶混合物中的可聚合单体也可以聚合形成聚合物网络。
即,本公开的一个实施例的显示面板中,在液晶层中含有液晶混合物,所述液晶混合物含有向列液晶和可聚合单体。其中,与反射区对应的液晶层中,液晶混合物中的可聚合单体聚合形成聚合物网络。据此,反射区中的向列液晶通过聚合物网络的辅助定向作用实现与透射区中的向列液晶不同的排列方向。此外,与透射区对应的液晶层中,液晶混合物中的可聚合单体可以以单体形式存在,也可以聚合形成聚合物网络。
在一个示例中,所述第一偏振片和第二偏振片的透振方向相互垂直。所述第一取向层和第二取向层的取向相互平行或反向。所述第一取向层的取向与第一偏振片的透振方向垂直。
在一个示例中,在无电场的情况下,所述反射区的液晶层能使从第一基底方向射入并被反射层反射出去的线偏振光的偏振方向偏转90度。
在一个示例中,所述液晶层的厚度d满足公式:2nd=λ(2k+3/2);其中,n为所述向列液晶的双折射率,k为大于等于0的整数,λ为可见光波长。
在一个示例中,所述k为0;所述d为1μm至10μm。
在一个示例中,在无电场的情况下,所述反射区的液晶层的等效光轴与 所述第一偏振片的透振方向成45度角。
在一个示例中,所述显示面板还包括:设于所述第一取向层与第一偏振片间的第一半波片,在无电场的情况下,所述第一半波片的光轴与所述反射区的液晶层的等效光轴平行;设于所述第二取向层与第二偏振片间的第二半波片,所述第二半波片比所述反射层更远离液晶层,且所述第二半波片的光轴与第一半波片的光轴垂直。
在一个示例中,所述显示面板还包括设于一个基底上的第一电极和第二电极,所述第一电极和第二电极中的一方为像素电极,另一方为公共电极。
在一个示例中,所述第一电极为板状电极,所述第二电极为多个条状电极,且第一电极与第二电极间设有绝缘层,所述第一电极比第二电极更远离所述液晶层。其中,所述条状电极的宽度例如为1μm至10μm,多个条状电极的相邻两条间的距离为1μm至10μm。
在另一个示例中,所述第一电极和第二电极为交替排列的多个条状电极。其中,所述条状电极的各条的宽度为1μm至10μm;多个条状电极的相邻两条间的距离为1μm至10μm。
在一个示例中,所述可聚合单体具有位于其分子末端的具有酯基端基的线性脂肪族链;或者,所述可聚合单体具有位于其分子中部的亚苯基或亚联苯基,以及至少一个亚甲基,其中,所述亚苯基或亚联苯基可以被一个或多个烃基或卤素取代;或者,所述可聚合单体具有至少一个亚苯基或亚联苯基,以及通过二价亚烷基与之相连的(甲基)丙烯酸酯端基,其中,所述亚苯基或亚联苯基可以被一个或多个烃基或卤素取代。
在一个示例中,所述可聚合单体的官能度大于1。
在一个示例中,所述可聚合单体在所述液晶混合物中的重量百分含量为0.01wt%至15wt%。
在一个示例中,所述可聚合单体为可光聚合单体,所述聚合物网络由液晶混合物中的可聚合单体经光聚合形成。
进而,所述液晶混合物还含有光引发剂,所述光引发剂在所述液晶混合物中的重量百分含量为0.001wt%至2wt%。
本公开的另一个实施例提供一种上述显示面板的制备方法,其包括:
在第一取向层和第二取向层间加入液晶混合物,并对所述液晶混合物加电场,之后仅使所述反射区的液晶混合物中的可聚合单体聚合成聚合物网络。
在一个示例中,所述电场的电场强度为0.5V/μm至5V/μm。
在一个示例中,所述制备方法还包括:在无电场的情况下,仅使所述透射区的液晶混合物中的可聚合单体聚合成聚合物网络。
在一个示例中,对上述使用可光聚合单体的显示面板,所述仅使所述反射区的液晶混合物中的可聚合单体聚合成聚合物网络包括:在显示面板一侧设置遮蔽透射区的掩膜板,并从掩膜板的远离显示面板的一侧用光照射显示面板,使反射区的液晶混合物中的可聚合单体聚合成聚合物网络。
本公开的技术方案具有如下有益的技术效果:根据本公开实施例的显示面板,反射区中的向列液晶通过聚合物网络的辅助定向作用实现与透射区向列液晶不同的排列方向,从而能够在不增加盒内延期器的情况下保证两区都有很好的暗态显示效果,提高了对比度,简化了制备方法。并且,透射区和反射区边界尖锐,基本没有过渡区。同时,透射区和反射区的视角均较宽,且TV曲线(透射区的显示曲线)和RV曲线(反射区的显示曲线)匹配。
附图说明
图1为表示本公开的一个实施例的显示面板的局部剖面结构的示意图;
图2为表示本公开的一个实施例的显示面板中聚合物网络与向列液晶的俯视结构的示意图;
图3为表示本公开的一个实施例的显示面板中各结构的取向的示意图;
图4为本公开的一个实施例的显示面板中一个像素的透射区和反射区的边界的照片;
图5为本公开的一个实施例的显示面板中另一像素的透射区和反射区的边界的照片;
图6为本公开的一个实施例的显示面板的TV曲线和RV曲线的测试结果图;
图7为表示本公开的另一个实施例的显示面板的制备方法中在加电场前 的局部剖面结构的示意图;
图8为表示本发明的另一个实施例的显示面板的制备方法中在加电场后进行光照前的局部剖面结构的示意图;
图9为表示本发明的另一个实施例的显示面板的制备方法中进行第一次光照时的局部剖面结构的示意图;
图10为表示本发明的另一个实施例的显示面板的制备方法中除去电场后进行光照前的局部剖面结构的示意图;
其中,1、第一基板;11、第一偏振片;12、第一半波片;13、第一取向层;19、第一基底;2、第二基板;21、第二偏振片;22、第二半波片;23、第二取向层;29、第二基底;5、液晶层;51、向列液晶;52、聚合物网络;521、可聚合单体;81、第一电极;82、第二电极;83、绝缘层;91、透射区;92、反射区;921、反射层。
具体实施方式
为使本领域技术人员更好的理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
根据本公开的一个实施例,提供一种显示面板,其包括多个像素,每个像素包括透射区和反射区,且显示面板包括依次设置的第一偏振片、第一基底、第一取向层、液晶层、第二取向层、第二基底、第二偏振片;
反射区的第二取向层与第二偏振片间设有反射层;
反射区的液晶层包括向列液晶和聚合物网络;透射区的液晶层包括液晶混合物,液晶混合物包括向列液晶和可聚合单体;
所述反射区的聚合物网络由液晶混合物中的可聚合单体聚合形成,
在无电场的情况下,反射区中的向列液晶排列方向与第一取向层的取向不同,透射区中的向列液晶排列方向与第一取向层的取向相同。
根据本公开的另一个实施例,提供一种上述显示面板的制备方法,其包括:
在第一取向层和第二取向层间加入液晶混合物,并对所述液晶混合物加电场,之后仅使所述反射区的液晶混合物中的可聚合单体聚合成聚合物网 络。
根据本公开实施例的显示面板,反射区中的向列液晶通过聚合物网络的辅助定向作用实现与透射区向列液晶不同的排列方向,从而能够在不增加盒内延期器的情况下保证两区都有很好的暗态显示效果,提高了对比度,简化了制备方法。并且,透射区和反射区边界尖锐,基本没有过渡区。同时,透射区和反射区的视角均较宽,且TV曲线(透射区的显示曲线)和RV曲线(透射区的显示曲线)匹配。
实施例1
本实施例提供一种显示面板(液晶显示面板),结合图1至图6,对本实施例的显示面板进行具体说明。本实施例的显示面板包括多个像素,如图1所示,每个像素包括透射区91和反射区92,且显示面板包括依次设置(图1中由上至下)的第一偏振片11、第一基底19、第一取向层13、液晶层5、第二取向层23、第二基底29、第二偏振片21。
反射区92的第二取向层23与第二偏振片21间设有反射层921。本实施例中,该反射层921设在第二基底29与第二取向层23之间,但不限于此。
反射区92的液晶层5包括向列液晶51和聚合物网络52。透射区91的液晶层5包括液晶混合物,液晶混合物包括向列液晶51和可聚合单体521(如图9所示)。
在无电场的情况下,反射区92中的向列液晶51排列方向与第一取向层13的取向不同,透射区91中的向列液晶51排列方向与第一取向层13的取向相同。
也就是说,本实施例的显示面板包括第一基板1、第二基板2和夹在这两个基板间的液晶层5,所述第一基板1包括第一基底19、设在第一基底19上的第一偏振片11、以及第一取向层13等,所述第二基板2包括第二基底29、设在第二基底29上的第二偏振片21、第二取向层23、以及反射层921等。
与常规显示面板不同的是,如图1、图2所示,在反射区92的液晶层5中形成有聚合物网络52。该聚合物网络52如下形成,在液晶层5中加入液晶混合物后,在反射区92所对应的液晶层5中使液晶混合物中的可聚合单体 521聚合形成。该聚合物网络52可起到对反射区92的向列液晶51进行辅助定向的作用,从而使反射区92的向列液晶51排列方向与第一取向层的取向(如摩擦方向)不同。同时,透射区91的向列液晶51排列方向与第一取向层的取向相同。也就是说,在反射区92和透射区91的第一取向层取向相同的情况下,两区中向列液晶51的排列方向不同。
在透射区91中,向列液晶51依靠取向层(由于第一取向层和第二取向层均影响向列液晶的取向方向,因而,下面将第一取向层和第二取向层统称为“取向层”)进行取向,故其中的可聚合单体521可不进行聚合而仍保持单体形态。即,透射区91的液晶层5可以直接含有液晶混合物。但是,如图1、2所示,为了避免可聚合单体521发生不期望的反应,还可以使透射区91中的可聚合单体521也聚合成聚合物网络52。即,透射区91的液晶层5可以含有聚合物网络52和向列液晶51。这里,透射区91中的聚合物网络52的方向与取向层的取向相同,故并不改变透射区91中向列液晶51的排列方向。
可聚合单体521可具有如下结构:
可聚合单体521具有位于其分子末端的具有酯基端基的线性脂肪族链;
或者,可聚合单体521具有位于其分子中部的亚苯基或亚联苯基,以及至少一个亚甲基,其中,所述亚苯基或亚联苯基可以被一个或多个烃基或卤素取代;
或者,可聚合单体521包括至少一个亚苯基或亚联苯基,以及通过二价亚烷基与之相连的(甲基)丙烯酸酯端基,其中,所述亚苯基或亚联苯基具有一个或多个烃基或卤素取代基。
此外,为了更好的形成聚合物网络52,可聚合单体521的官能度例如大于1。
可聚合单体521的具体结构例如可以如下述通式(I)所示:
Figure PCTCN2016087455-appb-000001
其中,a和各个b分别独立地为0至5的整数,各个m各自独立地为0至15的整数,X1、X2和X3分别独立地为氢原子、卤素或者甲基,R1、R2、 R3和R4分别独立地为氧原子、酯基或者亚甲基,并且,式(I)中,a和b不同时为0;且当R3或R4为氧原子或酯基时,与之相连的-CH2-的下标m不为0。
本实施例中,可聚合单体521可采用已知的能与向列液晶并用的产品。例如,可以使用市售的RM257型单体,其具有类似向列液晶的杆状结构,故可在向列液晶中良好的溶解,并在聚合后起到对向列液晶进行辅助定向的作用。由于可聚合单体521可选用已知物质,故在此不再对其具体结构进行详细描述。
典型地,本实施例中,向列液晶51使用市售的CB5型,可聚合单体521使用市售的RM257型。
可聚合单体521在液晶混合物中的重量百分含量为0.01wt%至15wt%。以上可聚合单体521的含量既可形成能起到足够定向作用的聚合物网络52,又不会对向列液晶51本身的性能产生明显影响。
在一个示例中,可聚合单体521为可光聚合单体,聚合物网络52由液晶混合物中的可聚合单体521经光聚合形成。此时,液晶混合物中还可以含有光引发剂,光引发剂在液晶混合物中的重量百分含量为0.001wt%至2wt%。
也就是说,可聚合单体521可以采用可在光照(如紫外光照)下发生聚合的可光聚合单体。由于光可被简单的挡住,因而很容易实现对各区中可聚合单体521的分别聚合。在采用可光聚合单体时,还可在液晶混合物中加入光引发剂以引发聚合反应。
此外,如图3所示,本实施例的显示面板中,各偏振片、取向层等的取向满足以下条件:第一偏振片11和第二偏振片21的透振方向相互垂直;第一取向层13和第二取向层23的取向(如摩擦方向)相互平行或反向;第一取向层13的取向与第一偏振片11的透振方向相互垂直。
本实施例的显示面板中,在无电场的情况下,反射区92的液晶层5能使从第一基底19方向射入并被反射层921反射出去的线偏振光的偏振方向偏转90度。
也就是说,在无电场(暗态)时,反射区92的液晶层5能将射入后再反射出去的线偏振光的偏振方向旋转90度,从而使其被第一偏振片11完全阻 挡,以达到良好的暗态效果。
本实施例的显示面板中,液晶层5的厚度d满足公式:2nd=λ(2k+3/2);其中,n为向列液晶51的双折射率,k为大于等于0的整数,λ为可见光波长。
也就是说,通过设定液晶层5的厚度(也就是“盒厚”),使液晶层5可对穿过的可见光产生(2kπ+3π/2)的相位差,或者说液晶层5能起到3/4波片的作用。
典型地,k为0,液晶层5厚度d为1μm至10μm。
根据上述公式,液晶层5只是针对波长为λ的光才是准确的3/4波片,对于其他波长的光,其产生的相位差不是(2kπ+3π/2),且液晶层5厚度越大二者的差别也越大。因此,此处通过使k为0,从而使其他波长的光的相位差最小。进而,可见光波长一般在400nm至760nm(如可取λ为530nm至580nm),而常规向列液晶的双折射率约为0.1左右,由此可将液晶层5厚度d设为1μm至10μm。
本实施例的显示面板中,如图3所示,在无电场的情况下,反射区92的液晶层5的等效光轴与第一偏振片11的透振方向成45度角。
由于反射区92中的向列液晶51的排列方向是由聚合物网络52和取向层共同决定的,故反射区92中沿厚度方向的不同位置的向列液晶51排列方向不同,越靠近取向层的向列液晶51受取向层的影响越大,因而越接近取向层的取向;反之,越远离取向层的向列液晶51越偏离取向层的取向。因此,无法准确说出反射区92中向列液晶51的排列方向是什么,也就无法说出反射区92中液晶层5的光轴方向。这里,所述液晶层5的光轴方向即向列液晶51的光轴方向就是向列液晶的长轴方向,也就是向列液晶排列方向。但是,反射区92中的液晶层5的总体作用应“相当于”光轴与第一偏振片11的透振方向成45度角的液晶层,所以说其“等效光轴”是与第一偏振片11的透振方向成45度角。
按照以上液晶层5的厚度(相当于3/4波片),反射区92中的液晶层5的等效光轴满足以上条件时,正好可如前所述将射入并反射出去的线偏振光的偏振方向旋转90度,从而达到良好暗态显示效果。
如图3所示,根据以上结构,在无电场(暗态)时,在透射区91中,液晶层5的光轴方向(即向列液晶51的排列方向)与取向层的取向平行,由背光源射入的光经第二偏振片21后成为偏振方向与液晶层5的光轴平行的线偏振光,故经过液晶层5(即3/4波片)后偏振方向不变,被第一偏振片11完全阻挡,实现良好的暗态。在反射区92中,反射光经第一偏振片11后成为偏振方向与液晶层5的“等效光轴”成45度角的线偏振光,经过液晶层5(即3/4波片)后成为一定旋转方向的圆偏振光,而圆偏振光经反射层921反射后旋转方向反转并再次经过液晶层5(3/4波片),成为偏振方向与入射光偏振方向垂直的线偏振光,从而被第一偏振片11完全阻挡,也实现良好的暗态。
当加电场时,两区液晶层5中的向列液晶51的排列方向均产生偏转,其对光的偏转作用也发生变化,从而可允许部分光透过以显示所需亮度。
由此,本实施例的显示面板能够在不增加盒内延期器的情况下保证两区都有很好的暗态显示效果,提高对比度。并且,本实施例的显示面板中,透射区91和反射区92的边界尖锐,基本没有过渡(如图4、图5所示)。同时,本实施例的显示面板中,透射区91和反射区92的视角均较宽(因为可为IPS或ADS模式),且如图6所示,测试得到的TV曲线(透射区91的显示曲线)和RV曲线(反射区92的显示曲线)很好的匹配。
进而,本实施例的显示面板还包括:
设于第一取向层13与第一偏振片11间的第一半波片12,在无电场的情况下,第一半波片12的光轴与反射区92的液晶层5的等效光轴平行;
设于第二取向层23与第二偏振片21间的第二半波片22,第二半波片22比反射层912更远离液晶层5,且第二半波片22的光轴与第一半波片12的光轴垂直。
本实施例中,将第一半波片12设于第一基底19与第一偏振片11间,将第二半波片22设于第二基底29与第二偏振片21间,但不限于此。
由于可见光波长有一定的范围,但液晶层5的厚度只能针对一个具体波长设定,因此在暗态下其他波长的光会存在漏光。尤其是对3/4波片而言,其在其他波长的漏光比1/4波片更严重。因此,如图1所示,可在两基板与偏振片间增加半波片以减少其他波长的漏光。其中,反射区92中的液晶层5 的等效光轴平行于第一半波片12的光轴,这样可获得最大反射比。从理论上讲,两个半波片产生的总相位差为2kπ,故其不会对正常显示造成影响。由于通过半波片来增大3/4波片的带宽(即其适应的波长范围)的方式是已知的,故在此不再详细描述。
进而,本实施例的显示面板还包括设于一个基底上的第一电极81和第二电极82,第一电极81和第二电极82中的一方为像素电极,另一方为公共电极。
也就是说,本实施例的显示面板中,像素电极和公共电极可以都设在其中一个基板中。此处,以电极均设在第一基板1(即第一基板1为阵列基板)中为例进行说明。但应当理解,将电极均设在第二基板2中也是可行的,在此不再详细描述。
其中,作为本实施例的一个示例,如图1所示,第一电极81为板状电极,第二电极82为多个条状电极,且第一电极81与第二电极82间设有绝缘层83,第一电极81比第二电极82更远离液晶层5。
也就是说,本实施例的显示面板可为高级超维场转换(ADS)模式的显示面板,故其中包括板状电极和条状电极。具体的,可以是板状电极为公共电极,条状电极为像素电极;或者,也可以是条状电极为公共电极,板状电极为像素电极。
作为本实施例的另一个示例,第一电极81和第二电极82为交替排列的多个条状电极。
也就是说,本实施例的显示面板也可为共面开关(IPS)模式的显示面板,从而其中设有交替排列的条状电极。
上述条状电极(包括上述两种模式中的条状电极)的各条的宽度为1μm至10μm;多个条状电极的相邻两条间的距离为1μm至10μm。
以上两种类型的电极均可在液晶层5中产生主要平行于基板的电场。在此情况下,向列液晶51可为负介电各向异性的液晶。这是因为这样的液晶,其横轴垂直于电场方向,故其旋转主要沿与基板平面平行的方向进行,更加平滑。当然,如果采用正介电各向异性的液晶,也是可行的。
图4、图5示出了本实施例的显示面板的反射区92、透射区91的交界处 的照片。由图4、图5可以看出,反射区92、透射区91中聚合物网络52的方向明显不同,且两区的边界十分清晰。这表明本实施例的显示面板的两区具有非常明显、强烈的边界。
当然,本实施例的显示面板中还可包括其他已知的结构。例如,本实施例的显示面板还可包括用于实现彩色显示的彩色滤光膜(图中未示出)。作为彩色滤光膜,其可与电极设在不同的基板上(即为单独的彩膜基板),或者,也可与电极设在同一基板上(即为COA模式)。再如,当像素电极和公共电极设在第一基板1中时,为避免反射层921对液晶层5中的电场产生影响,反射层921上还可覆盖有保护层(图中未示出)。
实施例2
如图7至图10所示,本实施例提供一种上述显示面板的制备方法,其包括:
在第一取向层13和第二取向层23间加入液晶混合物,并对液晶混合物加电场,之后仅使反射区92的液晶混合物中的可聚合单体521聚合成聚合物网络52。
也就是说,在制备上述显示面板时,先在两基板间加入上述液晶混合物,之后加电场,使向列液晶51偏转,并单独使反射区92中的可聚合单体521聚合形成聚合物网络52,同时,透射区91中的可聚合单体521不反应,从而将反射区92中的向列液晶51定向为不同于取向层取向的方向。
具体的,本实施例的方法可包括:
S101、在第一基板1和第二基板2间加入液晶混合物。
也就是说,如图7所示,在两基板间充入液晶混合物,所述液晶混合物包括向列液晶51和可聚合单体521,进而根据需要还可包括光引发剂。
S102、对液晶混合物加电场,使向列液晶51偏转。
也就是说,如图8所示,在各像素的公共电极和像素电极间加电压差,从而在液晶混合物中产生电场(如平行于基板的电场),驱动液晶混合物中的向列液晶51(包括透射区91和反射区92中的向列液晶51)旋转到不同于取向层取向的方向。
此处,具体的电场强度与很多因素相关,如向列液晶51的介电常数、 粘度,取向层的锚定能力等,但通常应使电场强度为0.5V/μm至5V/μm。
S103、当使用可光聚合单体时,在显示面板一侧设置遮蔽透射区91的掩膜板,并从掩膜板的远离显示面板的一侧用光照射显示面板,使反射区92的液晶混合物中的可聚合单体521聚合成聚合物网络52。
也就是说,如图9所示,用掩膜板将透射区91遮住而仅暴露反射区92。用光经过掩膜板照射显示面板,从而仅有反射区92受到光照,反射区92中的可聚合单体521从液晶混合物中分离出来并沿向列液晶51分子间的缝隙聚合形成聚合物网络52。因此,该聚合物网络52复制了此时的液晶形态,从而将反射区92中的向列液晶51定向为不同于取向层取向的特定方向,例如,使反射区92液晶层5的等效光轴与第一偏振片11的透振方向成45度夹角。
其中,光照射的条件可根据需要调节,一般可使用强度0.1mw/cm2至20mw/cm2的紫外光,照射时间为5~60分钟。
此外,采用热聚合等其他方式引发可聚合单体521的反应,也是可行的。例如,可以设置仅与反射区92接触的多个加热块来进行加热等。但是,虽然在理论上可行,但相对于光照,热聚合方式很难保证仅将热量传导指反射区92而不扩散到透射区91,故上述光聚合的方法更优选。
S103、除去电场和掩膜板,使透射区91中的可聚合单体521聚合成聚合物网络52。
也就是说,如图10所示,除去电场和掩膜板,反射区92中的向列液晶51仍被聚合物网络定向,而透射区91的向列液晶51则自动恢复到与取向层取向相同的状态。
S104、再进行光照使透射区91的可聚合单体521聚合,从而将其中的向列液晶51定向为与取向层取向相同的方向,得到如图1所示的结构。
由于此时反射区92中的可聚合单体521已经完成聚合,故反射区92即使受到光照也没有关系,故此时不需要使用掩膜板,方法简单。
当然,由于透射区91聚合物网络52并不起到实际的定向作用,因此本步骤不是必须的。但为避免其中剩余的可聚合单体521发生不期望的反应,优选进行本步骤。
以上制备方法仅仅是本发明的一个具体例子,而不是对本发明的限定,本领域技术人员还可对其进行许多变化。例如,也可在无电场的情况下用掩膜板遮蔽反射区92,并使透射区91中的可聚合单体521先聚合,之后去掉掩膜板并加电场,再光照使反射区92中的可聚合单体521聚合。总之,只要在制备方法中包括在加电场的情况下单独使反射区92中的可聚合单体521聚合的步骤,就属于本发明的保护范围。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (21)

  1. 一种显示面板,包括多个像素,每个像素包括透射区和反射区,且显示面板包括依次设置的第一偏振片、第一基底、第一取向层、液晶层、第二取向层、第二基底、第二偏振片;
    所述反射区的第二取向层与第二偏振片间设有反射层;
    所述反射区的液晶层包括向列液晶和聚合物网络;所述透射区的液晶层包括液晶混合物,所述液晶混合物包括向列液晶和可聚合单体;
    所述反射区的聚合物网络由所述液晶混合物中的可聚合单体聚合形成;
    在无电场的情况下,所述反射区中的向列液晶排列方向与第一取向层的取向不同,所述透射区中的向列液晶排列方向与第一取向层的取向相同。
  2. 根据权利要求1所述的显示面板,其中,所述透射区的液晶混合物中的可聚合单体聚合形成聚合物网络。
  3. 根据权利要求1或2所述的显示面板,其中,所述第一偏振片和第二偏振片的透振方向相互垂直;
    所述第一取向层和第二取向层的取向相互平行或反向;
    所述第一取向层的取向与第一偏振片的透振方向垂直。
  4. 根据权利要求3所述的显示面板,其中,在无电场的情况下,所述反射区的液晶层能使从第一基底方向射入并被反射层反射出去的线偏振光的偏振方向偏转90度。
  5. 根据权利要求1至3中任意一项所述的显示面板,其中,所述液晶层的厚度d满足公式:2nd=λ(2k+3/2);其中,n为所述向列液晶的双折射率,k为大于等于0的整数,λ为可见光波长。
  6. 根据权利要求5所述的显示面板,其中,所述k为0;所述d为1μm至10μm。
  7. 根据权利要求1至6中任意一项所述的显示面板,其中,在无电场的情况下,所述反射区的液晶层的等效光轴与所述第一偏振片的透振方向间成45度角。
  8. 根据权利要求1至7中任意一项所述的显示面板,其还包括:
    设于所述第一取向层与第一偏振片间的第一半波片,在无电场的情况下,所述第一半波片的光轴与所述反射区的液晶层的等效光轴平行;
    设于所述第二取向层与第二偏振片间的第二半波片,所述第二半波片比所述反射层更远离液晶层,且所述第二半波片的光轴与第一半波片的光轴垂直。
  9. 根据权利要求1至8中任意一项所述的显示面板,其还包括:
    设于一个基底上的第一电极和第二电极,所述第一电极和第二电极中的一方为像素电极,另一方为公共电极。
  10. 根据权利要求9所述的显示面板,其中,所述第一电极为板状电极,所述第二电极为多个条状电极,且第一电极与第二电极间设有绝缘层,所述第一电极比第二电极更远离所述液晶层。
  11. 根据权利要求9所述的显示面板,其中,所述第一电极和第二电极为交替排列的多个条状电极。
  12. 根据权利要求10或11所述的显示面板,其中,
    所述条状电极的各条的宽度为1μm至10μm;
    多个条状电极的相邻两条间的距离为1μm至10μm。
  13. 根据权利要求1至12中任意一项所述的显示面板,其中,所述可聚合单体具有位于其分子末端的具有酯基端基的线性脂肪族链;或者,
    所述可聚合单体具有位于其分子中部的亚苯基或亚联苯基,以及至少一个亚甲基;或者,
    所述可聚合单体具有至少一个亚苯基或亚联苯基,以及通过二价亚烷基与之相连的(甲基)丙烯酸酯端基,
    其中,所述亚苯基或亚联苯基被一个或多个烃基或卤素取代或非取代。
  14. 根据权利要求13所述的显示面板,其中,所述可聚合单体的官能度大于1。
  15. 根据权利要求1至14中任意一项所述的显示面板,其中,所述可聚合单体在所述液晶混合物中的重量百分含量为0.01wt%至15wt%。
  16. 根据权利要求1所述的显示面板,其中,所述可聚合单体为可光聚合单体,所述聚合物网络由液晶混合物中的可聚合单体经光聚合形成。
  17. 根据权利要求16所述的显示面板,其中,所述液晶混合物还包括光引发剂,所述光引发剂在所述液晶混合物中的重量百分含量为0.001wt%至2wt%。
  18. 一种显示面板的制备方法,所述显示面板为权利要求1至17中任意一项所述的显示面板,所述制备方法包括:
    在第一取向层和第二取向层间加入液晶混合物,并对所述液晶混合物加电场,之后仅使所述反射区的液晶混合物中的可聚合单体聚合成聚合物网络。
  19. 根据权利要求18所述的显示面板的制备方法,其中,所述电场的电场强度在0.5V/μm至5V/μm。
  20. 根据权利要求18或19所述的显示面板的制备方法,其中,所述制备方法还包括:
    在无电场的情况下,仅使所述透射区的液晶混合物中的可聚合单体聚合成聚合物网络。
  21. 根据权利要求18至20中任意一项所述的显示面板的制备方法,其中,所述显示面板为权利要求16或17所述的显示面板;所述仅使所述反射区的液晶混合物中的可聚合单体聚合成聚合物网络包括:
    在显示面板一侧设置遮蔽透射区的掩膜板,并从掩膜板远离显示面板的一侧用光照射显示面板,使反射区的液晶混合物中的可聚合单体聚合成聚合物网络。
PCT/CN2016/087455 2015-10-13 2016-06-28 显示面板及其制备方法 WO2017063379A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16834013.1A EP3364237B1 (en) 2015-10-13 2016-06-28 Liquid crystal display panel and manufacturing method thereof
US15/503,639 US10705368B2 (en) 2015-10-13 2016-06-28 Display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510671657.5A CN105223725A (zh) 2015-10-13 2015-10-13 显示面板及其制备方法
CN201510671657.5 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017063379A1 true WO2017063379A1 (zh) 2017-04-20

Family

ID=54992771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087455 WO2017063379A1 (zh) 2015-10-13 2016-06-28 显示面板及其制备方法

Country Status (4)

Country Link
US (1) US10705368B2 (zh)
EP (1) EP3364237B1 (zh)
CN (1) CN105223725A (zh)
WO (1) WO2017063379A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法
CN107229157A (zh) 2016-03-25 2017-10-03 京东方科技集团股份有限公司 透明显示装置及其制备方法
CN107632727B (zh) 2016-07-18 2024-04-12 京东方科技集团股份有限公司 触摸显示屏及其制备方法、显示装置和驱动方法
CN107340625A (zh) * 2017-09-01 2017-11-10 东莞通华液晶有限公司 一种聚合物网络液晶显示结构及其制备方法
CN108089363B (zh) * 2017-12-13 2020-11-20 合肥京东方光电科技有限公司 半透半反式阵列基板、其驱动和制备方法及显示面板
CN109143623B (zh) * 2018-08-27 2021-08-10 华南师范大学 一种红外反射器件及其制备方法
WO2021077356A1 (zh) * 2019-10-24 2021-04-29 京东方科技集团股份有限公司 显示面板、显示装置及显示面板制造方法
CN112198702A (zh) 2020-10-15 2021-01-08 深圳市华星光电半导体显示技术有限公司 显示面板及显示模组
CN112346267B (zh) * 2020-11-10 2022-10-25 嘉盛应用材料(河南)有限公司 一种显示视角可转换的显示器件及其制备方法
WO2022125627A1 (en) * 2020-12-08 2022-06-16 Kent State University Patterned waveguide liquid crystal display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060023146A1 (en) * 2004-07-29 2006-02-02 Kent State University Polymer stabilized electrically controlled birefringence transflective LCD
CN1851547A (zh) * 2005-04-22 2006-10-25 三星电子株式会社 透射反射型液晶显示器及其制造方法
CN1928647A (zh) * 2006-08-01 2007-03-14 友达光电股份有限公司 半穿透半反射式液晶显示面板及其制作方法
TWI333091B (en) * 2004-05-27 2010-11-11 Fujitsu Ltd Liquid crystal display and method of manufacturing the same
CN102629034A (zh) * 2011-07-21 2012-08-08 京东方科技集团股份有限公司 半透射半反射液晶显示器及其制作方法
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100543522C (zh) * 2003-12-12 2009-09-23 鸿富锦精密工业(深圳)有限公司 边缘电场开关型液晶显示装置
CN100376932C (zh) 2003-12-12 2008-03-26 鸿富锦精密工业(深圳)有限公司 液晶显示装置
TW200537174A (en) 2004-05-14 2005-11-16 Innolux Display Corp A transflecitive liquid crystal display apparatus
JP5278720B2 (ja) * 2006-03-27 2013-09-04 Nltテクノロジー株式会社 液晶パネル、液晶表示装置及び端末装置
JP2008102471A (ja) * 2006-09-21 2008-05-01 Nitto Denko Corp 液晶パネル、及び液晶表示装置
JP5670315B2 (ja) * 2008-03-25 2015-02-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶ディスプレイ
CN102944958B (zh) 2012-11-15 2015-03-11 京东方科技集团股份有限公司 一种半透半反液晶显示装置
CN103176307B (zh) 2013-03-26 2015-07-22 京东方科技集团股份有限公司 半透半反液晶显示面板以及液晶显示装置
CN103207474B (zh) 2013-03-28 2015-05-27 京东方科技集团股份有限公司 半透半反式液晶显示面板及应用其的显示器
CN103293759A (zh) 2013-06-27 2013-09-11 京东方科技集团股份有限公司 半透半反显示面板及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI333091B (en) * 2004-05-27 2010-11-11 Fujitsu Ltd Liquid crystal display and method of manufacturing the same
US20060023146A1 (en) * 2004-07-29 2006-02-02 Kent State University Polymer stabilized electrically controlled birefringence transflective LCD
CN1851547A (zh) * 2005-04-22 2006-10-25 三星电子株式会社 透射反射型液晶显示器及其制造方法
CN1928647A (zh) * 2006-08-01 2007-03-14 友达光电股份有限公司 半穿透半反射式液晶显示面板及其制作方法
CN102629034A (zh) * 2011-07-21 2012-08-08 京东方科技集团股份有限公司 半透射半反射液晶显示器及其制作方法
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
US20170269401A1 (en) 2017-09-21
EP3364237B1 (en) 2020-04-29
US10705368B2 (en) 2020-07-07
EP3364237A1 (en) 2018-08-22
EP3364237A4 (en) 2019-05-22
CN105223725A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2017063379A1 (zh) 显示面板及其制备方法
JP4526591B2 (ja) 半透過型液晶表示装置用の光学λ/4層を形成する方法
TWI313770B (en) Liquid crystal display apparatus
JP2016194700A (ja) 液晶ディスプレイおよびその製造方法
US11262612B2 (en) Transparent display panel and transparent display device
KR101474668B1 (ko) 투명 디스플레이
WO2015158123A1 (zh) 柔性显示面板和柔性显示器
TW200909951A (en) Liquid crystal display and method of manufacturing the same
JP2007249027A (ja) 偏光変換フィルム及びその製造方法、偏光素子、並びに液晶表示装置
KR20130064692A (ko) 전기-광 위상 변조기
KR20010064974A (ko) 액정 셀 제조방법
KR20010066252A (ko) 위상차 필름을 포함하는 반사형 액정표시장치와반사투과형 액정표시장치
JP2000162581A (ja) 反射型液晶表示装置とその製造方法
US20190346607A1 (en) Retardation substrate, liquid crystal element and liquid crystal module
JP4510797B2 (ja) 反射型液晶表示装置
JP2007206095A (ja) 偏光変換フィルム及びその製造方法、偏光素子、並びに液晶表示装置
JP2007206104A (ja) 偏光変換フィルム及びその製造方法、偏光素子、並びに液晶表示装置
US11886094B2 (en) Optical element, varifocal element and head mounted display
US11921377B2 (en) Optical element, varifocal element, and head mounted display
KR102277671B1 (ko) 위상차 필름용 조성물, 위상차 필름, 위상차 필름을 갖는 유기발광소자 및 이의 제조방법.
JP2019159102A (ja) 液晶表示装置
CN114460774B (zh) 反射式几何相位液晶空间光调制方法、系统及存储介质
JP2011186086A (ja) 表示パネルまたは表示パネルを用いた表示装置
JP2023121716A (ja) 光学素子、可変焦点素子及びヘッドマウントディスプレイ
JP5290225B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016834013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016834013

Country of ref document: EP

Ref document number: 15503639

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE