WO2021077356A1 - 显示面板、显示装置及显示面板制造方法 - Google Patents

显示面板、显示装置及显示面板制造方法 Download PDF

Info

Publication number
WO2021077356A1
WO2021077356A1 PCT/CN2019/113034 CN2019113034W WO2021077356A1 WO 2021077356 A1 WO2021077356 A1 WO 2021077356A1 CN 2019113034 W CN2019113034 W CN 2019113034W WO 2021077356 A1 WO2021077356 A1 WO 2021077356A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
area
lower substrate
display panel
substrate
Prior art date
Application number
PCT/CN2019/113034
Other languages
English (en)
French (fr)
Inventor
王龙
杨登科
秦广奎
申润浩
贾南方
孙拓
王志良
Original Assignee
京东方科技集团股份有限公司
肯特州立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 肯特州立大学 filed Critical 京东方科技集团股份有限公司
Priority to CN201980002085.8A priority Critical patent/CN113272726B/zh
Priority to PCT/CN2019/113034 priority patent/WO2021077356A1/zh
Publication of WO2021077356A1 publication Critical patent/WO2021077356A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, a display device, and a manufacturing method of the display panel.
  • transparent display devices such as transparent refrigerators, transparent windows, transparent traffic signs, transparent watches, transparent vehicle-mounted display devices, etc. have gradually entered people's lives, and their application prospects are very broad.
  • a display panel including an upper substrate, a lower substrate, and a liquid crystal layer located between the upper substrate and the lower substrate, the liquid crystal layer including liquid crystal and high molecular polymer, wherein: the liquid crystal layer has A plurality of pixel areas, and at least one of the plurality of pixel areas includes a main scattering area and an auxiliary scattering area; the first polymer located in the main scattering area has the first molecular polymerization degree, and is located at the second of the auxiliary scattering area
  • the high molecular polymer has a second molecular polymerization degree, and the second molecular polymerization degree is less than the first molecular polymerization degree.
  • the ratio of the area of the orthographic projection of the main scattering region on the lower substrate to the area of the orthographic projection of each of the at least one pixel area on the lower substrate is greater than or equal to 50%.
  • the orthographic projection of the auxiliary scattering area on the lower substrate is a grid, and the mesh of the grid is rectangular; the size of any side of the mesh ranges from 5um to 100um, and any two adjacent meshes The size range of the interval is 5um ⁇ 100um.
  • the auxiliary scattering region includes a plurality of sub-auxiliary scattering regions, and the orthographic projections of the plurality of sub-auxiliary scattering regions on the lower substrate are parallel to each other; wherein, in the arrangement direction of the plurality of sub-auxiliary scattering regions, any sub-auxiliary scattering region
  • the size range of is 5um-100um, and the size range of the interval between any two adjacent sub-auxiliary scattering regions is 5um-100um.
  • the display panel further includes an upper absorption layer on the upper substrate, and the orthographic projection of the upper absorption layer on the lower substrate coincides with the orthographic projection of the auxiliary scattering area on the lower substrate; and/or, the upper absorption layer on the lower substrate The orthographic projection of the lower absorption layer on the lower substrate coincides with the orthographic projection of the auxiliary scattering area on the lower substrate.
  • the display panel further includes an upper barrier layer on the surface of the upper substrate facing away from the liquid crystal layer, the upper barrier layer completely covers the surface of the upper substrate facing away from the liquid crystal layer; and/or, on the surface of the lower substrate The lower barrier layer on the surface facing away from the liquid crystal layer, the lower barrier layer completely covers the surface of the lower substrate facing away from the liquid crystal layer.
  • a display device including the display panel in any of the above embodiments.
  • the display device further includes a plurality of monochromatic light sources, and the plurality of monochromatic light sources are configured to provide backlights of different wavelengths to the display panel in a time-sharing manner.
  • a method for manufacturing a display panel including: forming a liquid crystal cell, wherein the liquid crystal cell includes an upper substrate, a lower substrate, and a liquid crystal layer located between the upper substrate and the lower substrate, and the liquid crystal layer includes Liquid crystal and polymerizable materials, and the liquid crystal layer has a plurality of pixel regions; and based on the blocking structure, polymerizing the polymerizable material in at least one pixel region of the plurality of pixel regions, so that the barrier structure in at least one pixel region The area covered by the pattern forms an auxiliary scattering area, and the area not covered by the pattern of the blocking structure forms the main scattering area; wherein the first polymer formed by the polymerization of the polymerizable material in the main scattering area has the first molecular polymerization degree, and the auxiliary The second high molecular polymer formed by the polymerization of the polymerizable material in the scattering zone has a second molecular polymerization
  • the ratio of the area of the orthographic projection of the main scattering region on the lower substrate to the area of the orthographic projection of each of the at least one pixel area on the lower substrate is greater than or equal to 50%.
  • the blocking structure is a mask covering the upper substrate and/or the lower substrate, and the orthographic projection of the mask pattern on the lower substrate coincides with the orthographic projection of the auxiliary scattering area on the lower substrate.
  • the blocking structure is an upper absorption layer on the upper substrate
  • the orthographic projection of the upper absorption layer on the lower substrate coincides with the orthographic projection of the auxiliary scattering area on the lower substrate, and/or the lower absorption layer on the lower substrate
  • the orthographic projection of the lower absorption layer on the lower substrate coincides with the orthographic projection of the auxiliary scattering area on the lower substrate.
  • the pattern of the barrier structure is a grid, and the mesh of the grid is rectangular; wherein the size of any side of the mesh ranges from 5um to 100um, and the interval between any two adjacent meshes The size range is 5um ⁇ 100um.
  • the pattern of the barrier structure includes a plurality of strips parallel to each other; wherein, in the arrangement direction of the plurality of strips, the size of any one of the strips ranges from 5um to 100um, and there are two adjacent strips.
  • the size range of the interval is 5um ⁇ 100um.
  • polymerizing the polymerizable material in at least one of the pixel regions based on the blocking structure includes: irradiating the polymerizable material in the at least one pixel region with ultraviolet light through the blocking structure .
  • the liquid crystal includes: one or more liquid crystal molecules; and the polymerizable material includes: one or more photopolymerizable monomer molecules and a photoinitiator.
  • the mass percentage of one or more photopolymerizable monomer molecules in the mixture of liquid crystal and polymerizable material is less than or equal to 10%.
  • the mass percentage of one or more photopolymerizable monomer molecules in the mixture of liquid crystal and polymerizable material ranges from 3% to 9%.
  • the method further includes: forming an upper substrate on the surface of the upper substrate facing away from the liquid crystal layer.
  • a barrier layer wherein the upper barrier layer completely covers the surface of the upper substrate facing away from the liquid crystal layer; and/or a lower barrier layer is formed on the surface of the lower substrate facing away from the liquid crystal layer, wherein the lower barrier layer completely covers the back surface of the lower substrate The surface of the liquid crystal layer.
  • FIG. 1 is a schematic diagram of a structure of a display panel provided by an embodiment of the present disclosure.
  • FIG. 2(a) is a schematic diagram of the projection of a pixel area of the display panel on the lower substrate according to an embodiment of the present disclosure.
  • FIG. 2(b) is another schematic diagram of the projection of a pixel area of the display panel on the lower substrate according to an embodiment of the present disclosure.
  • FIG. 2(c) is another schematic diagram of the projection of a pixel area of the display panel on the lower substrate according to an embodiment of the present disclosure.
  • FIG. 2(d) is a schematic diagram of the projection of multiple pixel regions of the display panel on the lower substrate according to an embodiment of the present disclosure.
  • FIG. 3(a) is a schematic diagram of another structure of a display panel provided by an embodiment of the present disclosure.
  • FIG. 3(b) is a schematic diagram of another structure of a display panel provided by an embodiment of the present disclosure.
  • FIG. 4 is a step flow chart of a method for manufacturing a display panel provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a method for manufacturing a display panel provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another flow chart of a method for manufacturing a display panel provided by an embodiment of the present disclosure.
  • FIG. 7(a) is a schematic diagram of a pattern of a barrier structure used in a method for manufacturing a display panel provided by an embodiment of the present disclosure.
  • FIG. 7(b) is another schematic diagram of the pattern of the barrier structure used in the display panel manufacturing method provided by the embodiment of the present disclosure.
  • FIG. 7(c) is another schematic diagram of the pattern of the barrier structure used in the display panel manufacturing method provided by the embodiment of the present disclosure.
  • FIG. 8 is a graph showing the relationship between the display contrast of each display panel manufactured using barrier structures with different patterns and the driving voltage of the liquid crystal layer in an embodiment of the present disclosure.
  • liquid crystal display devices organic semiconductor light emitting diode display devices, etc. have various problems when performing transparent display.
  • the light transmittance of liquid crystal display devices is low, the highest is about 20%; although the light transmittance of OLED (Organic Light-Emitting Diode) display devices can reach more than 60%, the brightness attenuation and the short service life
  • OLED Organic Light-Emitting Diode
  • electrochromic display devices and electrowetting display devices have relatively high light transmittance, their response speed is relatively slow, requiring tens or hundreds of milliseconds.
  • most transparent display panels present a transparent state only when a voltage is applied, and become an opaque state when no voltage is applied. Therefore, there is an increasing demand for new transparent display technology that is transparent and highly transparent when no voltage is applied.
  • transparent display technology can be applied to automotive applications, smart wearable applications, and so on.
  • waveguide transparent display devices based on PSLC (Polymer Stabilized Liquid Crystal) or PDLC (Polymer Dispersed Liquid Crystal) have advantages in terms of transparency, response speed, and color display. obvious.
  • the characteristics of the PSLC display panel are: the liquid crystal cell itself can be used as a light guide plate, and it can also display. The light source can be incident from the side of the liquid crystal cell. When the display is not required, there is no need to provide a driving voltage for the liquid crystal.
  • the display cell is in a transparent state (transparency 80-90%); when a display is required, a driving voltage is applied to the set area to make the The liquid crystal molecules in the area are deflected accordingly; under the influence of the polymer, the orientation of the liquid crystal molecules is disordered, causing light to be scattered and emitted from the light-emitting surface of the liquid crystal cell, thereby realizing display.
  • the PSLC-based waveguide transparent display device has a very fast display response speed, which can reach about 1ms to 2ms.
  • the PSLC-based waveguide transparent display device has the problem of low contrast, which affects the display effect.
  • some embodiments of the present disclosure provide a display panel, a display device, and a display panel manufacturing method.
  • FIG. 1 shows a schematic structural diagram of the display panel provided by the embodiment of the present disclosure.
  • the display panel may include an upper substrate 1, a lower substrate 2, and a liquid crystal layer 3 located between the upper substrate 1 and the lower substrate 2.
  • the liquid crystal layer 3 includes liquid crystal and polymer (ie, the liquid crystal layer 3 includes two materials: liquid crystal). Materials and polymer materials), wherein: the liquid crystal layer 3 has a plurality of pixel regions (for ease of description, FIG.
  • the pixel area includes a main scattering area 31 and an auxiliary scattering area 32; the first polymer located in the main scattering area 31 has a first molecular polymerization degree, and the second polymer located in the auxiliary scattering area 32 has a second molecular polymerization
  • the degree of polymerization of the second molecule is less than the degree of polymerization of the first molecule.
  • the polymerization degree of the high molecular polymer located in the main scattering area 31 is higher, and the formed liquid crystal polymer network is more dense; the polymerization degree of the high molecular polymer located in the auxiliary scattering area 32 is relatively low, and the formed liquid crystal polymer The network of things is relatively loose.
  • the liquid crystal polymer network in the main scattering area 31 where the high molecular polymer has the first degree of molecular polymerization is denser, so the scattering ability of the main scattering area 31 is stronger; relatively, the high molecular polymer has the second
  • the liquid crystal polymer network in the auxiliary scattering region 32 with a degree of polymerization of two molecules is relatively loose, so the scattering ability of the auxiliary scattering region 32 is relatively weak.
  • the light source may be located at the side attachment of the display panel shown in FIG. 1, specifically, the light source may be located on the side (for example, the left side) of the liquid crystal layer 3 of the display panel shown in FIG.
  • the main scattering area 31 of a pixel area can emit light normally; while the auxiliary scattering area 32 has weaker light intensity due to the reduced scattering ability, and is relatively weak compared to the bright state display (pixel gray value is close to or equal to 255), the reduction of the scattering ability of the auxiliary scattering area 32 has a greater impact on the dark state display (the pixel gray value is close to or equal to 0), so that the residual refraction of the auxiliary scattering area 32 in a pixel area is lower, and the brightness is also greater. low.
  • the main scattering area 31 of each pixel area normally emits light, and the weakening of the light intensity of the auxiliary scattering area 32 is not obvious for the brighter areas of the display screen. Therefore, the intensity of the light emitted by the auxiliary scattering area 32 is not obvious.
  • the display picture is still bright; for the darker area of the display picture, the main scattering area 31 of each pixel area emits light normally, but the light intensity of the auxiliary scattering area 32 becomes weaker, making the display picture in this area darker, thereby improving The contrast of the display is displayed.
  • the shape, size, and angle of the auxiliary scattering area 32 of each pixel area, and/or the degree of polymerization (scattering ability) of the second polymer of the second polymer in the auxiliary scattering area 32 can be adjusted. Realize the optimization of the ratio of strong scattering and weak scattering, that is, minimize the impact on the bright state display, but make the dark state display darker, so as to achieve the optimal contrast.
  • FIGS. 2(a) and 2(b) are two schematic diagrams of the projection of a pixel area on the lower substrate 2.
  • the orthographic projection of the auxiliary scattering area 32 on the lower substrate 2 may be a grid, and the mesh of the grid may be a rectangle.
  • the grid lines correspond to regions with low molecular polymerization (auxiliary scattering regions 32), and other hollow regions may correspond to regions with high molecular polymerization (main scattering regions 31).
  • the second molecular polymerization degree may be the average value of the molecular polymerization degree of the high molecular polymer in the region of the low molecular polymerization degree corresponding to the grid line.
  • each side of the mesh can be parallel to each side of the projection of the pixel area on the lower substrate 2; as shown in Figure 2(b), each side of the mesh can also be below the pixel area.
  • Each side of the projection on the substrate 2 has a set angle, for example, 45 degrees.
  • the size d1 of any side length of the mesh can range from 5um to 100um
  • the size d2 of the interval between any two adjacent meshes can range from 5um to 100um.
  • the mesh of the grid may also be diamond, trapezoid, or irregular polygon, etc., which is not limited in this embodiment.
  • FIG. 2( c ) it is another schematic diagram of the projection of a pixel area on the lower substrate 2.
  • the auxiliary scattering region 32 may also include a plurality of sub-auxiliary scattering regions, and the projections of the plurality of sub-auxiliary scattering regions on the lower substrate 2 are parallel to each other; wherein, in the arrangement direction of the plurality of sub-auxiliary scattering regions, the size of any sub-auxiliary scattering region is d3 The range is 5um-100um, and the size d4 of the interval between any two adjacent sub-auxiliary scattering regions is in the range of 5um-100um.
  • FIG. 2(d) it is a schematic diagram of the projection of multiple pixel regions on the lower substrate 2.
  • 31 is a main scattering area of a pixel area
  • 32 is an auxiliary scattering area of a pixel area
  • 33 is a metal wire area.
  • the embodiment of the present disclosure does not specifically limit the shape, size, and angle of the auxiliary scattering area 32 of each pixel area; the shape, size, or angle of the auxiliary scattering area 32 of any two pixel areas may be the same or different.
  • the shape, size, and angle of the auxiliary scattering region 32 that achieve the optimal contrast can be determined through experiments.
  • the ratio of the orthographic projection area of the main scattering area 31 of a pixel area on the lower substrate 2 to the area of the orthographic projection of the pixel area on the lower substrate 2 can be greater than or equal to 50%. That is, the ratio of the orthographic projection area of the auxiliary scattering area 32 of the pixel region on the lower substrate 2 to the orthographic projection area of the pixel region on the lower substrate 2 is less than or equal to 50%.
  • the liquid crystal layer 3 may include liquid crystal and a polymerizable material; wherein, the liquid crystal may include one or more liquid crystal molecules, and the polymerizable material may Including one or more photopolymerizable monomer molecules and photoinitiators.
  • the photopolymerizable monomer molecules are compatible with the liquid crystal molecules, so that when the polymerizable material is polymerized to form a high molecular polymer through the barrier structure with a set pattern, the liquid crystal layer 3 Liquid crystal and high molecular polymer form a liquid crystal polymer network, and finally form a PSLC; and in a pixel area, the polymerization degree of the high molecular polymer formed in the blocked area and the high molecular polymer formed in the unblocked area can be different. That is, the density of the liquid crystal polymer network in the blocked area is different from the density of the liquid crystal polymer network in the unblocked area, thereby forming the auxiliary scattering area 32 and the main scattering area 31 with different scattering capabilities.
  • the polymerizable material including one or more photopolymerizable monomer molecules and a photoinitiator undergoes polymerization treatment to form a high molecular polymer, there may or may not be a monomer in the high molecular polymer.
  • Body molecule and may or may not have a photoinitiator.
  • the liquid crystal molecules can be made of materials with a large difference between the dielectric constant ⁇ ⁇ in the long axis direction and the dielectric constant ⁇ ⁇ in the short axis direction, for example, the absolute value of the difference between ⁇ ⁇ and ⁇ ⁇ of the liquid crystal molecule It can be no less than the set threshold.
  • the mass proportion of the photopolymerizable monomer molecules in the mixture of the liquid crystal and the polymerizable material is generally below 10%, for example, the range of the mass percentage may be 3%-9%.
  • the blocking structure with a set pattern may be a mask covering any one of the upper substrate 1 and the lower substrate 2, and the orthographic projection of the mask pattern on the lower substrate 2 and the auxiliary scattering area 32 The orthographic projections on the lower substrate 2 coincide.
  • FIG. 3(a) shows another structural schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • the barrier structure with a set pattern may also be an upper absorption layer 12 on the upper substrate 1 and/or a lower absorption layer 22 on the lower substrate 2; wherein the upper absorption layer 12 is on the lower substrate 2 And/or the orthographic projection of the lower absorbing layer 22 on the lower substrate 2 coincides with the orthographic projection of the auxiliary scattering area 32 on the lower substrate 2 coincides with the orthographic projection of the auxiliary scattering area 32 on the lower substrate 2.
  • the absorption layers 12 and 22 having a set pattern can be formed in the substrate, and one of the upper absorption layer 12 and the lower absorption layer 22 can be used as a barrier structure for polymerizable in the pixel area.
  • the material is polymerized, self-aligning selective processing is realized, so that the main scattering area 31 and the auxiliary scattering area 32 are formed in the pixel area.
  • the material of each of the absorption layers 12 and 22 may include salicylate-based materials, benzophenone-based materials, benzotriazole-based materials, substituted acrylonitrile-based materials, triazine-based materials, and hindered materials.
  • salicylate-based materials benzophenone-based materials, benzotriazole-based materials, substituted acrylonitrile-based materials, triazine-based materials, and hindered materials.
  • benzotriazole-based materials substituted acrylonitrile-based materials
  • triazine-based materials triazine-based materials
  • hindered materials One or more of amine materials.
  • the absorption layer 12 or 22 may be located outside the corresponding substrate, or may be located in the corresponding substrate.
  • the upper absorption layer 12 may be located between the upper transparent electrode layer 14 and the upper liquid crystal alignment layer 15 of the upper substrate 1
  • the lower absorption layer 22 may be located between the control circuit layer 26 and the lower substrate 2 of the lower substrate 2. Between the transparent electrode layers 24.
  • the polymerizable material in the liquid crystal layer 3 is polymerized to form a high molecular polymer, which may be a transmission barrier structure, and the liquid crystal layer 3 is irradiated with ultraviolet light, infrared light, or heated. Furthermore, by adjusting the composition, thickness, etc. of the blocking structure, the transmittance of UV radiation, infrared radiation or heat can be adjusted to adjust the degree of polymerization of the high molecular polymer formed in the shielded area, that is, the degree of polymerization in the auxiliary scattering zone 32 can be adjusted.
  • the degree of compactness of the liquid crystal polymer network so as to achieve the optimization of the ratio of strong scattering and weak scattering, and achieve the best contrast.
  • FIG. 3(b) shows another structural schematic diagram of the display panel provided by an embodiment of the present disclosure.
  • the display panel may further include an upper barrier layer 11 and/or an upper barrier layer 11 on the surface of the upper substrate 1 facing away from the liquid crystal layer 3
  • the upper barrier layer 11 is located on the outer side of the upper substrate 1 (the side facing away from the liquid crystal layer 3), and the lower barrier layer 21 is located on the outer side of the lower substrate 2 (the side facing away from the liquid crystal layer 3). ), and the upper barrier layer 11 covers the entire upper substrate 1, and the lower barrier layer 21 covers the entire lower substrate 2.
  • the material of each of the barrier layers 11 and 21 may include salicylate-based materials, benzophenone-based materials, benzotriazole-based materials, substituted acrylonitrile-based materials, triazine-based materials, and hindered materials.
  • the production process of the barrier layers 11 and 21 may be photolithography after spin coating, or mask-based spraying, or mask-based evaporation.
  • the upper substrate 1 from top to bottom may further include: an upper substrate 13, an upper transparent electrode layer 14, and an upper liquid crystal alignment layer 15;
  • the lower substrate 2 may also include: a lower substrate 23, a control circuit layer 26, a lower transparent electrode layer 24, and a lower liquid crystal alignment layer 25; wherein, the control circuit layer 26 may include a metal wire, a passivation protection layer, Active layer, metal wire layer, passivation protection layer, metal electrode layer, etc.
  • the structures of the substrates 1 and 2 may be similar to the related art, which is not repeated in this embodiment.
  • the embodiment of the present disclosure also provides a display device, which may include the display panel provided by the embodiment of the present disclosure.
  • the display device also has the advantage of higher display contrast.
  • the display device may further include a plurality of monochromatic light sources, and the plurality of monochromatic light sources are configured to provide backlights of different wavelengths to the display panel in a time-sharing manner.
  • the multiple monochromatic light sources may be arranged on the side of the display device (for example, the left side shown in FIG. 1), or may be arranged on the back of the display device (for example, the lower part shown in FIG. 1).
  • the display device can realize color display without including a color film.
  • the display device can be a PSLC-based waveguide transparent display panel, a PSLC-based waveguide transparent display module, mobile phones, tablet computers, televisions, monitors, laptops, digital photo frames, navigators, etc., which have displays. Functional products or components.
  • the embodiment of the present disclosure also provides a method for manufacturing the display panel provided by the embodiment of the present disclosure, as shown in FIG. 4.
  • FIG. 4 is a flow chart of the method for manufacturing the display panel. The method may include steps S41 and S42.
  • a liquid crystal cell is formed, where the liquid crystal cell may include an upper substrate 1, a lower substrate 2, and a liquid crystal layer 3 located between the upper substrate 1 and the lower substrate 2.
  • the liquid crystal layer 3 may include liquid crystal and polymerizable materials, In addition, the liquid crystal layer 3 has a plurality of pixel regions.
  • step S41 forming a liquid crystal cell may specifically include: depositing an upper transparent electrode layer 14 on the surface of the upper substrate 13 close to the lower substrate 2, wherein the material of the upper transparent electrode layer 14 may be a highly transparent conductive material, For example, ITO (Indium Tin Oxide, indium tin oxide), the thickness of the upper transparent electrode layer 14 can generally be 50 nm to 200 nm; a gap control column is fabricated on the surface of the upper transparent electrode layer 14 close to the lower substrate 2 ( Figure 3(a)) (And not shown in Figure 6), the height of the gap control column can generally be 2um-6um, and the gap control column can be set at the boundary between any two adjacent pixel regions to hold the upper substrate 1 and the lower substrate 2.
  • ITO Indium Tin Oxide, indium tin oxide
  • the liquid crystal alignment layer 15 is coated on the surface of the upper transparent electrode layer 14 close to the lower substrate 2, and the alignment is completed by rubbing or photo-alignment technology, thereby forming the upper substrate 1.
  • a control circuit layer 26 is formed on the surface of the lower substrate 23 close to the upper substrate 1.
  • the control circuit layer 26 may include a metal wire, a passivation protection layer, an active layer, a metal wire layer, a passivation protection layer, a metal electrode layer, etc.;
  • a lower transparent electrode layer 24 and a lower liquid crystal alignment layer 25 are sequentially formed on the surface of the control circuit layer 26 close to the upper substrate 1, thereby forming the lower substrate 2.
  • the ODF (One Drop Filling) process or the VIF (Vacuum Infusion, vacuum infusion) process can be used in the box structure of the substrates 1 and 2 (that is, in the substrate 1 and 2).
  • the mixture of liquid crystal and polymerizable material is dripped to form the liquid crystal layer 3, thereby completing the production of the liquid crystal cell.
  • the thickness of the liquid crystal cell may range from 2 ⁇ m to 10 ⁇ m, for example, from 3 ⁇ m to 6 ⁇ m.
  • the thickness of the liquid crystal cell can also be increased or decreased according to usage requirements, and this embodiment does not make any limitation here.
  • the liquid crystal in the liquid crystal layer 3 may include one or more liquid crystal molecules; the polymerizable material may include one or more photopolymerizable monomer molecules and a photoinitiator.
  • the photopolymerizable monomer molecules are compatible with the liquid crystal molecules, so when the polymerizable material is polymerized to form a high molecular polymer in step S42, the liquid crystal in the liquid crystal layer 3 can be made to The molecular polymer forms the liquid crystal polymer network, and finally forms the PSLC; and in a pixel area, the high molecular polymer formed in the blocked area and the high molecular polymer formed in the unblocked area have a different degree of polymerization, that is, blocked The density of the liquid crystal polymer network in the area is different from that of the liquid crystal polymer network in the unobstructed area, thereby forming an auxiliary scattering area 32 and a main scattering area 31 with different scattering capabilities.
  • the liquid crystal molecules may use materials with a large difference between ⁇ ⁇ and ⁇ ⁇ , for example, the absolute value of the difference between ⁇ ⁇ and ⁇ ⁇ of the liquid crystal molecules may not be less than the set threshold.
  • the mass proportion of the photopolymerizable monomer molecules in the mixture of the liquid crystal and the polymerizable material is generally below 10%, for example, the range of the mass percentage may be 3%-9%.
  • step S42 based on the blocking structure, the polymerizable material in at least one pixel area of the plurality of pixel areas is polymerized, so that the area in the at least one pixel area that is blocked by the pattern of the blocking structure forms an auxiliary scattering area 32.
  • the area blocked by the pattern of the blocking structure forms the main scattering area 31; wherein, the first high molecular polymer formed by polymerizing a polymerizable material in the main scattering area 31 has a first molecular polymerization degree, and the auxiliary scattering area 32 is made of polymerizable material.
  • the second polymer formed by polymerization has a second molecular polymerization degree, and the second molecular polymerization degree is less than the first molecular polymerization degree.
  • the density of the liquid crystal polymer network formed by the liquid crystal and the high molecular polymer can determine the scattering ability of the PSLC. Therefore, in a pixel area, the high molecular polymer has the first molecular polymerization degree in the main scattering region 31 The liquid crystal polymer network is more dense, so the scattering ability of the main scattering area 31 is stronger; relatively, the liquid crystal polymer network in the auxiliary scattering area 32 where the polymer has the second molecular polymerization degree is relatively loose, so the auxiliary scattering The scattering ability of area 32 is weak.
  • the main scattering area 31 of a pixel area can emit light normally; and the auxiliary scattering area 32 has a weaker light intensity due to the reduced scattering ability, and is relatively weak compared to the bright display (pixel The gray value is close to or equal to 255), the reduction of the scattering ability of the auxiliary scattering area 32 has a greater impact on the dark state display (the pixel gray value is close to or equal to 0), so that the residual refraction of the auxiliary scattering area 32 in a pixel area is lower , The brightness is lower.
  • the main scattering area 31 of each pixel area normally emits light, and the degree of weakening of the auxiliary scattering area 32 is not obvious. Therefore, the light intensity of the auxiliary scattering area 32 is not obvious.
  • the display picture is still bright; for the darker area of the display picture, the main scattering area 31 of each pixel area emits light normally, but the light intensity of the auxiliary scattering area 32 becomes weaker, making the display picture in this area darker, thereby improving The contrast of the display is displayed.
  • the ratio of the orthographic projection area of the main scattering area 31 of a pixel area on the lower substrate 2 to the area of the orthographic projection of the pixel area on the lower substrate 2 can be greater than It is equal to 50%, that is, the ratio of the orthographic projection area of the auxiliary scattering area 32 of the pixel region on the lower substrate 2 to the orthographic projection area of the pixel region on the lower substrate 2 is less than or equal to 50%.
  • the barrier structure in step S42 may be a mask covering any one of the upper substrate 1 and the lower substrate 2, and the pattern of the mask is orthographically projected on the lower substrate 2. It coincides with the orthographic projection of the auxiliary scattering area 32 on the lower substrate 2.
  • the barrier structure in step S42 may also be an absorption layer 12 and/or 22 on at least one of the upper substrate 1 and the lower substrate 2, and the absorption layer 12 or 22 is on the lower substrate.
  • the orthographic projection on the substrate 2 coincides with the orthographic projection of the auxiliary scattering area 32 on the lower substrate 2.
  • the method may further include: forming an upper absorption layer 12 on the upper substrate 1 and/or forming a lower absorption layer 22 on the lower substrate 2.
  • the manufacturing process of the absorption layers 12 and 22 may be photolithography after spin coating, or mask-based spraying, or mask-based evaporation.
  • the absorption layers 12 and 22 with a set pattern can be formed in the substrate, and one of the upper absorption layer 12 and the lower absorption layer 22 can be used as a barrier structure for When the polymerizable material in the pixel area undergoes polymerization processing, self-alignment selective processing is realized, so that the main scattering area 31 and the auxiliary scattering area 32 are formed in the pixel area.
  • the material of each of the absorption layers 12 and 22 may include salicylate-based materials, benzophenone-based materials, benzotriazole-based materials, substituted acrylonitrile-based materials, triazine-based materials, and hindered materials.
  • salicylate-based materials benzophenone-based materials, benzotriazole-based materials, substituted acrylonitrile-based materials, triazine-based materials, and hindered materials.
  • benzotriazole-based materials substituted acrylonitrile-based materials
  • triazine-based materials triazine-based materials
  • hindered materials One or more of amine materials.
  • the absorption layer 12 or 22 may be located outside the corresponding substrate, or may be located in the corresponding substrate.
  • the upper absorption layer 12 may be located between the upper transparent electrode layer 14 and the upper liquid crystal alignment layer 15 of the upper substrate 1
  • the lower absorption layer 22 may be located between the control circuit layer 26 and the lower substrate 2 of the lower substrate 1. Between the transparent electrode layers 24.
  • the upper absorption layer 12 and the lower absorption layer 22 can also avoid the auxiliary scattering area of each pixel area of the liquid crystal layer 3 during daily use of the display panel.
  • the material in 32 is affected by the ultraviolet rays in the natural light, and further molecular polymerization occurs, which causes the second molecular polymerization of the second polymer in the auxiliary scattering area 32 to increase, which in turn leads to the liquid crystal formed in the auxiliary scattering area 32
  • the density of the polymer network becomes larger, which affects the display contrast and enhances the reliability of the display panel in use.
  • the pattern of the barrier structure may be a grid, and the mesh of the grid may be a rectangle.
  • each side of the mesh can be parallel to each side of the orthographic projection of the pixel area on the plane where the barrier structure is located (not shown in Figure 7(a));
  • Figure 7(b) As shown in ), each side of the mesh may also be at a set angle with each side of the orthographic projection of the pixel area on the plane where the barrier structure is located (not shown in FIG. 7(b)), for example, 45 degrees.
  • the size d5 of any side length of the mesh can range from 5um to 100um, and the size d6 of the interval between any two adjacent meshes can range from 5um to 100um.
  • the mesh of the grid may also be diamond, trapezoid, or irregular polygon, etc., which is not limited in this embodiment.
  • the pattern of the barrier structure may further include a plurality of strips parallel to each other; wherein, in the arrangement direction of the plurality of strips, the size d7 of any strip is in the range 5um-100um, and the size d8 of the interval between any two adjacent bars ranges from 5um-100um.
  • the orthographic projection of the auxiliary scattering area 32 of the pixel area on the lower substrate 2 coincides with the orthographic projection of the pattern of the barrier structure on the lower substrate 2. Therefore, it can be adjusted by adjusting the shape, size and angle of the pattern of the barrier structure.
  • the shape, size, and angle of the auxiliary scattering area 32 can optimize the ratio of strong scattering and weak scattering, that is, to minimize the influence on the bright state display, but make the dark state display darker, so as to achieve the optimal contrast.
  • FIG. 8 it is a graph showing the relationship between the display contrast of each display panel manufactured using barrier structures with different patterns and the driving voltage of the liquid crystal layer 3.
  • the barrier structure (corresponding to the curve indicated by "None” in FIG. 8) is not used, that is, the molecular polymerization degree of each pixel area of the liquid crystal layer 3 of the first display panel is uniform , Excluding the main scattering area 31 and the auxiliary scattering area 32.
  • the pattern of the barrier structure (which can be called "Mask1" used is as shown in Figure 7(c) (corresponding to the curve represented by "Mask 1" in Figure 8),
  • the pattern of the Mask 1 includes a plurality of strips parallel to each other, and in the arrangement direction of the plurality of strips, the size of each strip is 5um, and the size of the interval between each adjacent strip is also 5um.
  • the pattern of the barrier structure (which can be called “Mask 2") used is shown in Figure 7(a) (corresponding to the curve represented by "Mask 2" in Figure 8) ,
  • the pattern of this Mask 2 is a grid, and the mesh of the grid is square, the length of each side of the mesh is 5um, and the interval between each adjacent mesh is also 5um; each side of the mesh is respectively Parallel to the sides of the pixel area.
  • the pattern of the barrier structure which can be called “Mask 3" used is as shown in Figure 7(b), and the pattern of Mask 3 has the same shape and size as the pattern of Mask 2. Only each side of the mesh of the Mask 3 pattern forms an angle of 45 degrees with each side of the projection of the pixel area on the plane where the barrier structure is located.
  • step S42 is based on the blocking structure to perform polymerization processing on the polymerizable material in the at least one pixel area, which may specifically include: performing UV irradiation on the polymerizable material in the at least one pixel area through the blocking structure.
  • the polymerizable materials in different areas of a pixel area can be photopolymerized to different degrees.
  • the transmittance of UV radiation can be adjusted by adjusting the composition, thickness, etc. of the blocking structure, so as to adjust the degree of polymerization of the high molecular polymer formed in the shielded area, that is, the degree of polymerization in the auxiliary scattering zone 32 can be adjusted.
  • the degree of compactness of the liquid crystal polymer network so as to achieve the optimization of the ratio of strong scattering and weak scattering, and achieve the best contrast.
  • step S42 is based on the blocking structure to perform polymerization processing on the polymerizable material in the at least one pixel area, and may also include: irradiating the polymerizable material in the at least one pixel area with infrared rays through the blocking structure; or, Through the blocking structure, the polymerizable material in at least one pixel area is heated.
  • the liquid crystal layer 3 includes liquid crystal molecules, polymerizable monomer molecules, and a suitable initiator, infrared radiation or heating can also be used to selectively polymerize the polymerizable material in the pixel area. It is only necessary to realize different degrees of polymerization of the polymerizable materials in different regions in a pixel area based on the barrier structure and a suitable polymerization method, and the specific polymerization method is not limited in this embodiment.
  • the method may further include: forming an upper barrier layer on the surface of the upper substrate 1 facing away from the liquid crystal layer 3 11, and/or forming a lower barrier layer 11 on the surface of the lower substrate 2 facing away from the liquid crystal layer 3; wherein the upper barrier layer 11 completely covers the surface of the upper substrate 1 facing away from the liquid crystal layer 3, and/or the lower barrier layer 21 completely Cover the surface of the lower substrate 2 facing away from the liquid crystal layer 3.
  • the upper barrier layer 11 is located on the outer side of the upper substrate 1 (the side facing away from the liquid crystal layer 3), and the lower barrier layer 21 is located on the outer side of the lower substrate 2 (the side facing away from the liquid crystal layer 3). ), and the upper barrier layer 11 covers the entire upper substrate 1, and the lower barrier layer 21 covers the entire lower substrate 2.
  • the material of each of the barrier layers 11 and 21 may include salicylate-based materials, benzophenone-based materials, benzotriazole-based materials, substituted acrylonitrile-based materials, triazine-based materials, and hindered materials.
  • salicylate-based materials benzophenone-based materials, benzotriazole-based materials, substituted acrylonitrile-based materials, triazine-based materials, and hindered materials.
  • benzotriazole-based materials substituted acrylonitrile-based materials
  • triazine-based materials triazine-based materials
  • hindered materials One or more of amine materials.
  • the terms “first”, “second”, etc. are only used to distinguish one feature from another feature, and cannot be understood as indicating or implying relative importance.
  • the term “plurality” refers to two or more, unless specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板、显示装置及显示面板制造方法,显示面板包括上基板(1)、下基板(2),以及位于上基板(1)和下基板(2)之间的液晶层(3),液晶层(3)包括液晶和高分子聚合物,其中:液晶层(3)具有多个像素区域,且多个像素区域中的至少一个像素区域包括主散射区(31)和辅散射区(32);位于主散射区(31)的第一高分子聚合物具有第一分子聚合度,位于辅散射区(32)的第二高分子聚合物具有第二分子聚合度,第二分子聚合度小于第一分子聚合度,因此可以提高显示的对比度。

Description

显示面板、显示装置及显示面板制造方法 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板、显示装置及显示面板制造方法。
背景技术
随着显示技术的发展,诸如透明冰箱、透明橱窗、透明交通指示牌、透明手表、透明车载显示装置等的透明显示设备逐渐步入人们的生活,应用前景十分广阔。
发明内容
根据本公开实施例的一个方面,提供一种显示面板,包括上基板、下基板,以及位于上基板和下基板之间的液晶层,液晶层包括液晶和高分子聚合物,其中:液晶层具有多个像素区域,且多个像素区域中的至少一个像素区域包括主散射区和辅散射区;位于主散射区的第一高分子聚合物具有第一分子聚合度,位于辅散射区的第二高分子聚合物具有第二分子聚合度,第二分子聚合度小于第一分子聚合度。
可能的实施方式中,主散射区在下基板上的正投影的面积与至少一个像素区域中的每一个在下基板上的正投影的面积之比大于等于50%。
可能的实施方式中,辅散射区在下基板上的正投影为网格,且网格的网孔为矩形;网孔的任一边长的尺寸范围为5um~100um,任意相邻两个网孔之间的间隔的尺寸范围为5um~100um。
可能的实施方式中,辅散射区包括多个子辅散射区,且多个子辅散射区在下基板上的正投影相互平行;其中,在多个子辅散射区的排列方向上, 任一子辅散射区的尺寸范围为5um~100um,且任意相邻两个子辅散射区之间的间隔的尺寸范围为5um~100um。
可能的实施方式中,该显示面板还包括位于上基板上的上吸收层,上吸收层在下基板上的正投影与辅散射区在下基板上的正投影重合;和/或,位于下基板上的下吸收层,下吸收层在下基板上的正投影与辅散射区在下基板上的正投影重合。
可能的实施方式中,该显示面板还包括位于上基板的背向液晶层的表面上的上阻挡层,上阻挡层完全覆盖上基板的背向液晶层的表面;和/或,位于下基板的背向液晶层的表面上的下阻挡层,下阻挡层完全覆盖下基板的背向液晶层的表面。
根据本公开实施例另一方面,提供一种显示装置,包括上述任一实施方式中的显示面板。
可能的实施方式中,该显示装置还包括多个单色光源,多个单色光源被配置为分时向显示面板提供不同波长的背光。
根据本公开实施例再一方面,提供一种显示面板制造方法,包括:形成液晶盒,其中,液晶盒包括上基板、下基板,以及位于上基板和下基板之间的液晶层,液晶层包括液晶和可聚合材料,且液晶层具有多个像素区域;以及基于阻挡结构,对多个像素区域中的至少一个像素区域中的可聚合材料进行聚合处理,使至少一个像素区域中被阻挡结构的图案遮挡的区域形成辅散射区,未被阻挡结构的图案遮挡的区域形成主散射区;其中,主散射区中由可聚合材料聚合形成的第一高分子聚合物具有第一分子聚合度,辅散射区中由可聚合材料聚合形成的第二高分子聚合物具有第二分子聚合度,第二分子聚合度小于第一分子聚合度。
可能的实施方式中,主散射区在下基板上的正投影的面积与至少一个像素区域中的每一个在下基板上的正投影的面积之比大于等于50%。
可能的实施方式中,阻挡结构为覆盖在上基板和/或下基板上的掩膜, 且掩膜的图案在下基板上的正投影与辅散射区在下基板上的正投影重合。
可能的实施方式中,阻挡结构为位于上基板上的上吸收层,上吸收层在下基板上的正投影与辅散射区在下基板上的正投影重合,和/或,位于下基板上的下吸收层,下吸收层在下基板上的正投影与辅散射区在下基板上的正投影重合。
可能的实施方式中,阻挡结构的图案为网格,且网格的网孔为矩形;其中,网孔的任一边长的尺寸范围为5um~100um,任意相邻两个网孔之间的间隔的尺寸范围为5um~100um。
可能的实施方式中,阻挡结构的图案包括相互平行的多个条形;其中,在多个条形的排列方向上,任一条形的尺寸范围为5um~100um,且任意相邻两个条形之间的间隔的尺寸范围为5um~100um。
可能的实施方式中,基于阻挡结构,对多个像素区域中的至少一个像素区域中的可聚合材料进行聚合处理,包括:通过阻挡结构,对至少一个像素区域中的可聚合材料进行紫外光照射。
可能的实施方式中,液晶包括:一种或多种液晶分子;以及可聚合材料包括:一种或多种可光聚合的单体分子以及光引发剂。
可能的实施方式中,一种或多种可光聚合的单体分子在液晶和可聚合材料的混合物中所占的质量百分比的范围为小于等于10%。
可能的实施方式中,一种或多种可光聚合的单体分子在液晶和可聚合材料的混合物中所占的质量百分比的范围为3%~9%。
可能的实施方式中,在基于阻挡结构,对多个像素区域中的至少一个像素区域中的可聚合材料进行聚合处理之后,该方法还包括:在上基板的背向液晶层的表面上形成上阻挡层,其中,上阻挡层完全覆盖上基板的背向液晶层的表面;和/或在下基板的背向液晶层的表面上形成下阻挡层,其中,下阻挡层完全覆盖下基板的背向液晶层的表面。
附图说明
图1是本公开实施例提供的显示面板的一种结构示意图。
图2(a)是本公开实施例提供的显示面板的一个像素区域在下基板上的投影的一种示意图。
图2(b)是本公开实施例提供的显示面板的一个像素区域在下基板上的投影的另一种示意图。
图2(c)是本公开实施例提供的显示面板的一个像素区域在下基板上的投影的又一种示意图。
图2(d)是本公开实施例提供的显示面板的多个像素区域在下基板上的投影的一种示意图。
图3(a)是本公开实施例提供的显示面板的另一种结构示意图。
图3(b)是本公开实施例提供的显示面板的又一种结构示意图。
图4是本公开实施例提供的显示面板制造方法的一种步骤流程图。
图5是本公开实施例提供的显示面板制造方法的一种流程示意图。
图6是本公开实施例提供的显示面板制造方法的另一种流程示意图。
图7(a)是本公开实施例提供的显示面板制造方法使用的阻挡结构的图案的一种示意图。
图7(b)是本公开实施例提供的显示面板制造方法使用的阻挡结构的图案的另一种示意图。
图7(c)是本公开实施例提供的显示面板制造方法使用的阻挡结构的图案的又一种示意图。
图8是本公开实施例中的使用具有不同图案的阻挡结构制造的各显示面板的显示对比度与液晶层的驱动电压之间的关系曲线图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,否则不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本发明构思的发明人发现,液晶显示装置、有机半导体发光二极管显示装置等在进行透明显示时存在各种各样的问题。例如,液晶显示装置的光透率较低,最高在20%左右;OLED(Organic Light-Emitting Diode,有机发光二极管)显示装置虽然光透率可以达到60%以上,但亮度衰减和使用寿命短的问题较明显;电致变色显示装置和电润湿显示装置虽然光透率相对较高,但响应速度都比较慢,需要几十或上百毫秒。此外,大多数透明显示面板只有在施加电压时才呈现透明态,不施加电压时为不透明态。因而,人们对不施加电压时透明、且透明度高的新型透明显示技术的需求日益显著。例如,透明显示技术可应用于车载应用、智能穿戴应用等方面。
此外,发明人还发现,基于PSLC(Polymer Stabilized Liquid Crystal,聚合物稳定液晶)或PDLC(Polymer Dispersed Liquid Crystal,聚合物分散液晶)的波导透明显示装置,在透明度、响应速度、彩色显示等方面优势明显。PSLC显示面板的特点为:液晶盒本身既可以做导光板,同时也可以进行显示。光源可以从液晶盒的侧面入射,在不需要显示时,无需为液晶提供驱动电压,显示盒呈现透明状态(透明度80~90%);当需要显示时,对设定区域施加驱动电压,使该区域中的液晶分子进行相应偏转;受到聚合物的影响,液晶分子取向混乱,使光产生散射而从液晶盒的出光面射出,从而实现显示。此外,基于PSLC的波导透明显示装置的显示响应速度很快,可以达到1ms~2ms左右。然而,基于PSLC的波导透明显示装置存在对比度较低从而影响显示效果的问题。
至少为了解决上述问题,本公开的一些实施例提供了一种显示面板、一种显示装置及一种显示面板制造方法。
本公开实施例提供了一种显示面板,图1示出了本公开实施例提供的显示面板的结构示意图。显示面板可包括上基板1、下基板2,以及位于上基板1和下基板2之间的液晶层3,液晶层3包括液晶和高分子聚合物(即,液晶层3包括两种材料:液晶材料和高分子聚合物材料),其中:液晶层3具有多个像素区域(为了便于描述,图1仅显示对应1个像素区域的该显示面板的截面),且多个像素区域中的至少一个像素区域区域包括主散射区31和辅散射区32;位于主散射区31的第一高分子聚合物具有第一分子聚合度,位于辅散射区32的第二高分子聚合物具有第二分子聚合度,且第二分子聚合度小于第一分子聚合度。也就是说,位于主散射区31的高分子聚合物的聚合度较高,形成的液晶聚合物网络更加致密;位于辅散射区32的高分子聚合物的聚合度相对偏低,形成的液晶聚合物网络也相对松散。
在一个像素区域中,高分子聚合物具有第一分子聚合度的主散射区31中的液晶聚合物网络更加致密,因此主散射区31的散射能力较强;相对地,高分子聚合物具有第二分子聚合度的辅散射区32中的液晶聚合物网络相对较为松散,因此辅散射区32的散射能力较弱。从而,在显示面板的侧光源(例如,光源可以位于图1所示的显示面板的侧面附件,具体地,光源可以位于图1所示的显示面板的液晶层3的侧面(例如,左侧)附件)点亮的情况下,一个像素区域的主散射区31可正常出光;而辅散射区32由于散射能力降低,因此出光强度较弱,且相对于亮态显示(像素灰度值接近或等于255),辅散射区32的散射能力的降低对暗态显示(像素灰度值接近或等于0)的影响更大,使得一个像素区域的辅散射区32的残余折射更低,亮度也就更低。因此,当给显示面板施加驱动电压以实现显示时,对于显示画面较亮的区域,各像素区域的主散射区31正常出光, 辅散射区32出光强度变弱的程度不明显,因此这些区域的显示画面依然较亮;对于显示画面较暗的区域,各像素区域的主散射区31正常出光,但辅散射区32出光强度变弱的程度较大,使得该区域的显示画面更暗,从而提高了显示的对比度。
根据本公开实施例,可通过调整各像素区域的辅散射区32的形状、大小和角度,和/或辅散射区32的第二高分子聚合物的第二分子聚合度(散射能力),来实现强散射和弱散射的配比优化,即尽量减少对亮态显示的影响,但使暗态显示更暗,从而实现最优的对比度。
根据本公开实施例,如图2(a)和2(b)所示,其为一个像素区域在下基板2上的投影的两种示意图。辅散射区32在下基板2上的正投影可为网格,且网格的网孔可为矩形。例如,网格线对应于分子聚合度较低的区域(辅散射区32),则其它镂空区域可对应于分子聚合度高的区域(主散射区31)。在此情况下,第二分子聚合度可以是网格线对应的分子聚合度低的区域中的高分子聚合物的分子聚合度的平均值。如图2(a)所示,网孔的各边可与像素区域在下基板2上的投影的各边分别平行;如图2(b)所示,网孔的各边也可与像素区域在下基板2上的投影的各边分别呈设定的角度,例如,45度。在实施中,网孔的任一边长的尺寸d1范围可为5um~100um,任意相邻两个网孔之间的间隔的尺寸d2范围可为5um~100um。此外,网格的网孔也可为菱形、梯形或者不规则多边形等,本实施例在此不作任何限定。
根据本公开实施例,如图2(c)所示,其为一个像素区域在下基板2上的投影的另一种示意图。辅散射区32还可包括多个子辅散射区,且多个子辅散射区在下基板2上的投影相互平行;其中,在多个子辅散射区的排列方向上,任一子辅散射区的尺寸d3范围为5um~100um,且任意相邻两个子辅散射区之间的间隔的尺寸d4范围为5um~100um。
根据本公开实施例,如图2(d)所示,其为多个像素区域在下基板 2上的投影的一种示意图。其中,31为一个像素区域的主散射区,32为一个像素区域的辅散射区,33为金属导线区。本公开实施例对各像素区域的辅散射区32的形状、大小和角度不作具体限定;任意两个像素区域的辅散射区32的形状、大小或角度可相同也可不同。在具体实施中,可通过试验确定实现最优对比度的辅散射区32的形状、大小和角度。另外,为了在提升对比度的同时确保散射强度,可使一个像素区域的主散射区31在下基板2上的正投影面积与该像素区域在下基板2上的正投影的面积之比大于等于50%,即该像素区域的辅散射区32在下基板2上的正投影面积与该像素区域在下基板2上的正投影面积之比小于等于50%。
根据本公开实施例,在像素区域的主散射区31和辅散射区32形成之前,液晶层3可包括液晶和可聚合材料;其中,液晶可包括一种或多种液晶分子,可聚合材料可包括一种或多种可光聚合的单体分子以及光引发剂。可光聚合的单体分子与液晶分子之间是相容性的,从而透过具有设定图案的阻挡结构对可聚合材料进行聚合处理以形成高分子聚合物时,可使液晶层3中的液晶与高分子聚合物形成液晶聚合物网络,最终形成PSLC;且可使得在一个像素区域中,被遮挡区域形成的高分子聚合物与未被遮挡区域形成的高分子聚合物的聚合程度不同,即被遮挡区域内的液晶聚合物网络的致密程度与未被遮挡区域内的液晶聚合物网络的致密程度不同,从而形成散射能力不同的辅散射区32和主散射区31。此外,应当理解的是,包括一种或多种可光聚合的单体分子以及光引发剂的可聚合材料在经历聚合处理而形成高分子聚合物之后,高分子聚合物中可以有或没有单体分子,并且可以有或没有光引发剂。
根据本公开实施例,液晶分子可采用长轴方向的介电常数ε 与短轴方向的介电常数ε 差别较大的材料,例如,液晶分子的ε 与ε 的差的绝对值可不小于设定阈值。此外,可光聚合的单体分子在液晶和可聚合材料的混合物中所占的质量比重一般在10%以下,例如,该质量百分比 的范围可为3%~9%。
根据本公开实施例,具有设定图案的阻挡结构可以为覆盖在上基板1和下基板2中任一基板上的掩膜,且掩膜的图案在下基板2上的正投影与辅散射区32在下基板2上的正投影重合。
图3(a)示出了本公开实施例提供的显示面板的另外一种结构示意图。根据本公开实施例,具有设定图案的阻挡结构也可以为位于上基板1上的上吸收层12和/或位于下基板2上的下吸收层22;其中,上吸收层12在下基板2上的正投影与辅散射区32在下基板2上的正投影重合,和/或下吸收层22在下基板2上的正投影与辅散射区32在下基板2上的正投影重合。
也就是说,可在基板中形成具有设定的图案的吸收层12和22,且上吸收层12和下吸收层22其中之一可以作为阻挡结构,以用于在对像素区域中的可聚合材料进行聚合处理时,实现自对准选择性处理,从而在像素区域中形成主散射区31和辅散射区32。
根据本公开实施例,吸收层12和22中的每一个的材料可包括水杨酸酯类材料、苯酮类材料、苯并三唑类材料、取代丙烯腈类材料、三嗪类材料以及受阻胺类材料中的一种或多种。
根据本公开实施例,吸收层12或22可位于对应基板的外侧,也可位于对应基板之中。例如,在图3(a)中,上吸收层12可位于上基板1的上透明电极层14与上液晶取向层15之间,下吸收层22可位于下基板2的控制电路层26与下透明电极层24之间。
根据本公开实施例,对液晶层3中的可聚合材料进行聚合处理以形成高分子聚合物,可以是透过阻挡结构,对液晶层3进行紫外光UV照射、红外线照射或者加热等。进而,可通过调节阻挡结构的成分、厚度等,调节UV照射、红外线照射或者热量的透过率,从而调整被遮挡区域中形成的高分子聚合物的聚合程度,即调节辅散射区32内的液晶聚合 物网络的致密程度,从而实现强散射和弱散射的配比优化,实现最优的对比度。
图3(b)示出了本公开实施例提供的显示面板的另外一种结构示意图。根据本公开实施例,为了增强本公开实施例提供的显示面板在使用中的稳定性,该显示面板还可包括位于上基板1的背向液晶层3的表面上的上阻挡层11和/或位于下基板2的背向液晶层3的表面上的下阻挡层21;其中,上阻挡层11完全覆盖上基板1的背向液晶层3的表面(即,上基板1的上表面),和/或下阻挡层21完全覆盖下基板2的背向液晶层3的表面(即,下基板2的下表面)。例如,在图3(b)中,上阻挡层11位于上基板1的外侧(背向液晶层3的一侧),下阻挡层21位于下基板2的外侧(背向液晶层3的一侧),且上阻挡层11覆盖整个上基板1,下阻挡层21覆盖整个下基板2。
也就是说,为了避免显示面板在日常使用时,液晶层3中的材料受自然光中的紫外线的影响,进一步发生分子聚合,导致辅散射区32和主散射区31中的高分子聚合物的分子聚合度之间的差异改变,即辅散射区32和主散射区31中的液晶聚合物网络的致密程度之间的差异改变,从而影响显示对比度,可在形成主散射区31和辅散射区32之后,在上基板1和下基板2上分别设置阻挡层11和21以阻挡紫外线照射各像素区域,从而进一步增强显示面板在使用中的信赖性。
根据本公开实施例,阻挡层11和21中的每一个的材料可包括水杨酸酯类材料、苯酮类材料、苯并三唑类材料、取代丙烯腈类材料、三嗪类材料以及受阻胺类材料中的一种或多种。在具体实施中,阻挡层11和21的制作工艺可采用旋涂后光刻、或基于掩膜板喷涂、或基于掩膜板蒸镀等。
根据本公开实施例,如图3(a)所示,除阻挡层11和21之外,上基板1由上至下还可包括:上基底13,上透明电极层14,以及上液晶取 向层15;下基板2由下至上还可包括:下基底23,控制电路层26,下透明电极层24,以及下液晶取向层25;其中,控制电路层26可包括金属导线、钝化保护层、有源层、金属导线层、钝化保护层、金属电极层等。除阻挡层11和21以外,基板1和2的结构可以与相关技术类似,本实施例在此不再赘述。
本公开实施例还提供一种显示装置,该显示装置可包括本公开实施例提供的显示面板。该显示装置同样具有显示对比度较高的优点。
根据本公开实施例,该显示装置还可包括多个单色光源,该多个单色光源被配置为分时向显示面板提供不同波长的背光。在实施中,该多个单色光源可设置在该显示装置的侧面(例如,图1所示的左侧),也可设置在该显示装置的背部(例如,图1所示的下部)。在显示装置包括多个单色光源的情况下,显示装置可以在不包括彩膜的情况下实现彩色显示。
根据本公开实施例,该显示装置可为基于PSLC的波导透明显示面板、基于PSLC的波导透明显示模组、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开实施例还提供了一种制造本公开实施例提供的显示面板的方法,如图4所示。图4为该显示面板制造方法的一种流程图,该方法可包括步骤S41和步骤S42。
在步骤S41中,形成液晶盒,其中,液晶盒可包括上基板1、下基板2,以及位于上基板1和下基板2之间的液晶层3,液晶层3可包括液晶和可聚合材料,且液晶层3具有多个像素区域。
根据本公开实施例,步骤S41形成液晶盒可具体包括:在上基底13的靠近下基板2的表面上沉积上透明电极层14,其中,上透明电极层14的材料可以为高透明导电材料,如ITO(Indium Tin Oxide,氧化铟锡),上透明电极层14的厚度一般可为50nm~200nm;在上透明电极层14的 靠近下基板2的表面上制作间隙控制柱(图3(a)和图6中未示出),间隙控制柱的高度一般可为2um~6um,间隙控制柱可以设置在任意相邻两个像素区域之间的边界处,用于保持上基板1和下基板2之间的距离;然后,在上透明电极层14的靠近下基板2的表面上涂覆上液晶取向层15,并通过摩擦或光配向技术完成配向,从而形成上基板1。在下基底23的靠近上基板1的表面上形成控制电路层26,控制电路层26可包括金属导线、钝化保护层、有源层、金属导线层、钝化保护层、金属电极层等;然后在控制电路层26的靠近上基板1的表面上依次形成下透明电极层24和下液晶取向层25,从而形成下基板2。在基板1和2制作完成后,可通过ODF(One Drop Filling,滴下式注入)工艺或VIF(Vacuum Infusion,真空灌注)工艺在基板1和2的对盒结构中(即,在基板1和2之间)滴灌液晶和可聚合材料的混合物以形成液晶层3,从而完成液晶盒的制作。液晶盒的厚度范围可为2μm~10μm,例如为3μm~6μm。液晶盒的厚度也可根据使用需求增加或者减小,本实施例在此不作任何限定。
根据本公开实施例,液晶层3中的液晶可包括一种或多种液晶分子;可聚合材料可包括一种或多种可光聚合的单体分子以及光引发剂。其中,可光聚合的单体分子与液晶分子之间是相容性的,从而在步骤S42中对可聚合材料进行聚合处理以形成高分子聚合物时,可使液晶层3中的液晶与高分子聚合物形成液晶聚合物网络,最终形成PSLC;且可使得在一个像素区域中,被遮挡区域形成的高分子聚合物与未被遮挡区域形成的高分子聚合物的聚合程度不同,即被遮挡区域内的液晶聚合物网络的致密程度与未被遮挡区域内的液晶聚合物网络的致密程度不同,从而形成散射能力不同的辅散射区32和主散射区31。
根据本公开实施例,液晶分子可采用ε 与ε 差别较大的材料,例如,液晶分子的ε 与ε 的差的绝对值可不小于设定阈值。此外,可光 聚合的单体分子在液晶和可聚合材料的混合物中所占的质量比重一般在10%以下,例如,该质量百分比的范围可为3%~9%。
在步骤S42中,基于阻挡结构,对多个像素区域中的至少一个像素区域中的可聚合材料进行聚合处理,使至少一个像素区域中被阻挡结构的图案遮挡的区域形成辅散射区32,未被阻挡结构的图案遮挡的区域形成主散射区31;其中,主散射区31中由可聚合材料聚合形成的第一高分子聚合物具有第一分子聚合度,辅散射区32中由可聚合材料聚合形成的第二高分子聚合物具有第二分子聚合度,第二分子聚合度小于第一分子聚合度。
如上所述,液晶与高分子聚合物形成的液晶聚合物网络的致密程度可决定PSLC的散射能力,因此,在一个像素区域中,高分子聚合物具有第一分子聚合度的主散射区31中的液晶聚合物网络更加致密,因此主散射区31的散射能力较强;相对地,高分子聚合物具有第二分子聚合度的辅散射区32中的液晶聚合物网络相对较为松散,因此辅散射区32的散射能力较弱。从而,在显示面板的侧光源点亮的情况下,一个像素区域的主散射区31可正常出光;而辅散射区32由于散射能力降低,因此出光强度较弱,且相对于亮态显示(像素灰度值接近或等于255),辅散射区32的散射能力降低对暗态显示(像素灰度值接近或等于0)的影响更大,使得一个像素区域的辅散射区32的残余折射更低,亮度也就更低。因此,当给显示面板施加驱动电压以实现显示时,对于显示画面较亮的区域,各像素区域的主散射区31正常出光,辅散射区32出光强度变弱的程度不明显,因此这些区域的显示画面依然较亮;对于显示画面较暗的区域,各像素区域的主散射区31正常出光,但辅散射区32出光强度变弱的程度较大,使得该区域的显示画面更暗,从而提高了显示的对比度。
根据本公开实施例,为了在提升对比度的同时确保散射强度,可使 一个像素区域的主散射区31在下基板2上的正投影面积与该像素区域在下基板2上的正投影的面积之比大于等于50%,即该像素区域的辅散射区32在下基板2上的正投影面积与该像素区域在下基板2上的正投影面积之比小于等于50%。
根据本公开实施例,如图5所示,步骤S42中的阻挡结构可为覆盖在上基板1和下基板2中任一基板上的掩膜,且掩膜的图案在下基板2上的正投影与辅散射区32在下基板2上的正投影重合。
根据本公开实施例,如图6所示,步骤S42中的阻挡结构还可为位于上基板1和下基板2中至少一个基板上的吸收层12和/或22,且吸收层12或22在下基板2上的正投影与辅散射区32在下基板2上的正投影重合。
根据本公开实施例,若阻挡结构为位于上基板1和下基板2中至少一个基板上的吸收层12和/或22,则在步骤S42基于阻挡结构,对至少一个像素区域中的可聚合材料进行聚合处理之前,该方法还可包括:在上基板1上形成上吸收层12,和/或在下基板2上形成下吸收层22。在具体实施中,吸收层12和22的制作工艺可采用旋涂后光刻、或基于掩膜板喷涂、或基于掩膜板蒸镀等。
也就是说,在形成液晶盒时,可在基板中形成具有设定的图案的吸收层12和22,且上吸收层12和下吸收层22其中之一可以作为阻挡结构,以用于在对像素区域中的可聚合材料进行聚合处理时,实现自对准选择性处理,从而在像素区域中形成主散射区31和辅散射区32。
根据本公开实施例,吸收层12和22中的每一个的材料可包括水杨酸酯类材料、苯酮类材料、苯并三唑类材料、取代丙烯腈类材料、三嗪类材料以及受阻胺类材料中的一种或多种。
根据本公开实施例,吸收层12或22可位于对应基板的外侧,也可位于对应基板之中。例如,在图3(a)中,上吸收层12可位于上基板1 的上透明电极层14与上液晶取向层15之间,下吸收层22可位于下基板2的控制电路层26与下透明电极层24之间。
此外,由于上吸收层12和下吸收层22设置于对应的基板上,因此上吸收层12和下吸收层22还可以避免显示面板在日常使用时,液晶层3的各像素区域的辅散射区32中的材料受自然光中的紫外线的影响,进一步发生分子聚合,导致辅散射区32中的第二高分子聚合物的第二分子聚合度变大,进而导致辅散射区32中已形成的液晶聚合物网络的致密程度变大,从而影响显示对比度,增强了显示面板在使用中的信赖性。
根据本公开实施例,如图7(a)和图7(b)所示,阻挡结构的图案可为网格,且网格的网孔可为矩形。如图7(a)所示,网孔的各边可与像素区域在阻挡结构所在的平面上的正投影的各边(图7(a)中未示出)分别平行;如图7(b)所示,网孔的各边也可与像素区域在阻挡结构所在的平面上的正投影的各边(图7(b)中未示出)分别呈设定的角度,例如,45度。在实施中,网孔的任一边长的尺寸d5范围可为5um~100um,任意相邻两个网孔之间的间隔的尺寸d6范围可为5um~100um。此外,网格的网孔也可为菱形、梯形或者不规则多边形等,本实施例在此不作任何限定。
根据本公开实施例,如图7(c)所示,阻挡结构的图案还可包括相互平行的多个条形;其中,在多个条形的排列方向上,任一条形的尺寸d7范围为5um~100um,且任意相邻两个条形之间的间隔的尺寸d8范围为5um~100um。
由上述内容可知,像素区域的辅散射区32在下基板2上的正投影与阻挡结构的图案在下基板2上的正投影重合,因此,可通过调整阻挡结构的图案的形状、大小和角度,调整辅散射区32的形状、大小和角度,从而实现强散射和弱散射的配比优化,即尽量减少对亮态显示的影响,但使暗态显示更暗,从而实现最优的对比度。如图8所示,其为使用具有不 同图案的阻挡结构制造的各显示面板的显示对比度与液晶层3的驱动电压之间的关系曲线图。在对第一显示面板进行设定处理时,未使用阻挡结构(对应于图8中“None”所表示的曲线),即第一显示面板的液晶层3的每个像素区域的分子聚合度均一,不包括主散射区31和辅散射区32。在对第二显示面板进行设定处理时,使用的阻挡结构(可称为“Mask1”)的图案如图7(c)所示(对应于图8中“Mask 1”所表示的曲线),该Mask 1的图案包括相互平行的多个条形,在该多个条形的排列方向上,每个条形的尺寸为5um,且每相邻条形之间的间隔的尺寸也为5um。在对第三显示面板进行设定处理时,使用的阻挡结构(可称为“Mask 2”)的图案如图7(a)所示(对应于图8中“Mask 2”所表示的曲线),该Mask 2的图案为网格,且网格的网孔为正方形,网孔的每个边长的尺寸为5um,每相邻网孔之间的间隔也为5um;网孔的各边分别与像素区域的各边平行。在对第四显示面板进行设定处理时,使用的阻挡结构(可称为“Mask 3”)的图案如图7(b)所示,Mask 3的图案与Mask 2的图案形状和大小相同,仅是Mask 3的图案的网孔的各边分别与像素区域在阻挡结构所在的平面上的投影的各边呈45度夹角。
由图7可以看出,“Mask 1”、“Mask 2”和“Mask 3”所表示的各条曲线与“None”所表示的曲线相比,显示对比度有明显提升;在较高的驱动电压下,“Mask 2”和“Mask 3”所表示的曲线的显示对比度可提升至“None”所表示的曲线的显示对比度的1.3~1.4倍。由此可见,可通过优化阻挡结构的图案设计,即优化图案的形状、大小和角度等,进一步优化显示对比度。
根据本公开实施例,步骤S42基于阻挡结构,对至少一个像素区域中的可聚合材料进行聚合处理,可具体包括:通过阻挡结构,对至少一个像素区域中的可聚合材料进行UV照射。也就是说,可基于阻挡结构 和UV照射,实现一个像素区域中的不同区域中的可聚合材料发生不同程度的光聚合。
根据本公开实施例,还可通过调节阻挡结构的成分、厚度等,调节UV照射的透过率,从而调整被遮挡区域中形成的高分子聚合物的聚合程度,即调节辅散射区32内的液晶聚合物网络的致密程度,从而实现强散射和弱散射的配比优化,实现最优的对比度。
根据本公开实施例,步骤S42基于阻挡结构,对至少一个像素区域中的可聚合材料进行聚合处理,也可包括:通过阻挡结构,对至少一个像素区域中的可聚合材料进行红外线照射;或者,通过阻挡结构,对至少一个像素区域中的可聚合材料进行加热。也就是说,若液晶层3包括液晶分子、可聚合的单体分子以及合适的引发剂,也可采用红外照射或者加热的方式对像素区域中的可聚合材料进行选择性聚合处理。只需基于阻挡结构和合适的聚合方式,实现一个像素区域中的不同区域中的可聚合材料发生不同程度的聚合即可,本实施例对聚合的具体方式不作任何限定。
根据本公开实施例,在步骤S42基于阻挡结构,对至少一个像素区域中的可聚合材料进行聚合处理之后,该方法还可包括:在上基板1背向液晶层3的表面上形成上阻挡层11,和/或在下基板2背向液晶层3的表面上形成下阻挡层11;其中,上阻挡层11完全覆盖上基板1的背向液晶层3的表面,和/或下阻挡层21完全覆盖下基板2的背向液晶层3的表面。例如,在图3(b)中,上阻挡层11位于上基板1的外侧(背向液晶层3的一侧),下阻挡层21位于下基板2的外侧(背向液晶层3的一侧),且上阻挡层11覆盖整个上基板1,下阻挡层21覆盖整个下基板2。
也就是说,为了避免显示面板在日常使用时,液晶层3中的材料受自然光中的紫外线的影响,进一步发生分子聚合,导致辅散射区32和主 散射区31中的高分子聚合物的分子聚合度之间的差异改变,即辅散射区32和主散射区31中的液晶聚合物网络的致密程度之间的差异改变,从而影响显示对比度,可在形成主散射区31和辅散射区32之后,在上基板1和下基板2上分别设置阻挡层11和21以阻挡紫外线照射各像素区域,从而进一步增强显示面板在使用中的信赖性。
根据本公开实施例,阻挡层11和21中的每一个的材料可包括水杨酸酯类材料、苯酮类材料、苯并三唑类材料、取代丙烯腈类材料、三嗪类材料以及受阻胺类材料中的一种或多种。
应当理解的是,本公开中的“投影”可以都是正投影。在没有明显冲突的情况下,本公开的上述实施例可以互相结合。
在本公开中,术语“第一”、“第二”等仅用于将一个特征与另一个特征区分开,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本领域技术人员在考虑说明书及实践这里公开的实施例后,将容易想到本公开的其它实施例。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未描述的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限定。

Claims (19)

  1. 一种显示面板,包括上基板、下基板,以及位于所述上基板和所述下基板之间的液晶层,所述液晶层包括液晶和高分子聚合物,其中:
    所述显示面板具有多个像素区域,且所述多个像素区域中的至少一个像素区域包括主散射区和辅散射区;位于所述主散射区的第一高分子聚合物具有第一分子聚合度,位于所述辅散射区的第二高分子聚合物具有第二分子聚合度,所述第二分子聚合度小于所述第一分子聚合度。
  2. 根据权利要求1所述的显示面板,其中,所述主散射区在所述下基板上的正投影的面积与所述至少一个像素区域中的每一个在所述下基板上的正投影的面积之比大于等于50%。
  3. 根据权利要求1或2所述的显示面板,其中,所述辅散射区在所述下基板上的正投影为网格,且所述网格的网孔为矩形;所述网孔的任一边长的尺寸范围为5um~100um,任意相邻两个网孔之间的间隔的尺寸范围为5um~100um。
  4. 根据权利要求1~3任一所述的显示面板,其中,所述辅散射区包括多个子辅散射区,且所述多个子辅散射区在所述下基板上的正投影相互平行;其中,在所述多个子辅散射区的排列方向上,任一子辅散射区的尺寸范围为5um~100um,且任意相邻两个子辅散射区之间的间隔的尺寸范围为5um~100um。
  5. 根据权利要求1~4任一所述的显示面板,还包括位于所述上基板上的上吸收层,所述上吸收层在所述下基板上的正投影与所述辅散射区在所述下基板上的正投影重合;
    和/或,位于所述下基板上的下吸收层,所述下吸收层在所述下基板上的正投影与所述辅散射区在所述下基板上的正投影重合。
  6. 根据权利要求1~5任一所述的显示面板,还包括位于所述上基板 的背向所述液晶层的表面上的上阻挡层,所述上阻挡层完全覆盖所述上基板的背向所述液晶层的表面;
    和/或,位于所述下基板的背向所述液晶层的表面上的下阻挡层,所述下阻挡层完全覆盖所述下基板的背向所述液晶层的表面。
  7. 一种显示装置,包括根据权利要求1~6任一所述的显示面板。
  8. 根据权利要求7所述的显示装置,还包括多个单色光源,所述多个单色光源被配置为分时向所述显示面板提供不同波长的背光。
  9. 一种显示面板制造方法,包括:
    形成液晶盒,其中,所述液晶盒包括上基板、下基板,以及位于所述上基板和所述下基板之间的液晶层,所述液晶层包括液晶和可聚合材料,且所述液晶层具有多个像素区域;以及
    基于阻挡结构,对所述多个像素区域中的至少一个像素区域中的所述可聚合材料进行聚合处理,使所述至少一个像素区域中被所述阻挡结构的图案遮挡的区域形成辅散射区,未被所述阻挡结构的图案遮挡的区域形成主散射区;
    其中,所述主散射区中由所述可聚合材料聚合形成的第一高分子聚合物具有第一分子聚合度,所述辅散射区中由所述可聚合材料聚合形成的第二高分子聚合物具有第二分子聚合度,所述第二分子聚合度小于所述第一分子聚合度。
  10. 根据权利要求9所述的显示面板制造方法,其中,所述主散射区在所述下基板上的正投影的面积与所述至少一个像素区域中的每一个在所述下基板上的正投影的面积之比大于等于50%。
  11. 根据权利要求9或10所述的显示面板制造方法,其中,所述阻挡结构为覆盖在所述上基板和/或所述下基板上的掩膜,且所述掩膜的图案在所述下基板上的正投影与所述辅散射区在所述下基板上的正投影重合。
  12. 根据权利要求9或10所述的显示面板制造方法,其中,所述阻挡结构为位于所述上基板上的上吸收层,所述上吸收层在所述下基板上的正投影与所述辅散射区在所述下基板上的正投影重合,和/或,位于所述下基板上的下吸收层,所述下吸收层在所述下基板上的正投影与所述辅散射区在所述下基板上的正投影重合。
  13. 根据权利要求9~12任一所述的显示面板制造方法,其中,所述阻挡结构的图案为网格,且所述网格的网孔为矩形;所述网孔的任一边长的尺寸范围为5um~100um,任意相邻两个网孔之间的间隔的尺寸范围为5um~100um。
  14. 根据权利要求9~13任一所述的显示面板制造方法,其中,所述阻挡结构的图案包括相互平行的多个条形;在所述多个条形的排列方向上,任一条形的尺寸范围为5um~100um,且任意相邻两个条形之间的间隔的尺寸范围为5um~100um。
  15. 根据权利要求9~14任一所述的显示面板制造方法,其中,所述基于阻挡结构,对所述多个像素区域中的至少一个像素区域中的所述可聚合材料进行聚合处理,包括:
    通过所述阻挡结构,对所述至少一个像素区域中的所述可聚合材料进行紫外光照射。
  16. 根据权利要求9~15任一所述的显示面板制造方法,其中,所述液晶包括:一种或多种液晶分子;以及
    所述可聚合材料包括:一种或多种可光聚合的单体分子以及光引发剂。
  17. 根据权利要求16所述的显示面板制造方法,其中,所述一种或多种可光聚合的单体分子在所述液晶和所述可聚合材料的混合物中所占的质量百分比的范围为小于等于10%。
  18. 根据权利要求17所述的显示面板制造方法,其中,所述一种或 多种可光聚合的单体分子在所述液晶和所述可聚合材料的混合物中所占的质量百分比的范围为3%~9%。
  19. 根据权利要求9~18任一所述的显示面板制造方法,在所述基于阻挡结构,对所述多个像素区域中的至少一个像素区域中的所述可聚合材料进行聚合处理之后,所述方法还包括:
    在所述上基板的背向所述液晶层的表面上形成上阻挡层,其中,所述上阻挡层完全覆盖所述上基板的背向所述液晶层的表面;和/或
    在所述下基板的背向所述液晶层的表面上形成下阻挡层,其中,所述下阻挡层完全覆盖所述下基板的背向所述液晶层的表面。
PCT/CN2019/113034 2019-10-24 2019-10-24 显示面板、显示装置及显示面板制造方法 WO2021077356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002085.8A CN113272726B (zh) 2019-10-24 2019-10-24 显示面板、显示装置及显示面板制造方法
PCT/CN2019/113034 WO2021077356A1 (zh) 2019-10-24 2019-10-24 显示面板、显示装置及显示面板制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113034 WO2021077356A1 (zh) 2019-10-24 2019-10-24 显示面板、显示装置及显示面板制造方法

Publications (1)

Publication Number Publication Date
WO2021077356A1 true WO2021077356A1 (zh) 2021-04-29

Family

ID=75619307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113034 WO2021077356A1 (zh) 2019-10-24 2019-10-24 显示面板、显示装置及显示面板制造方法

Country Status (2)

Country Link
CN (1) CN113272726B (zh)
WO (1) WO2021077356A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097676B (zh) * 2022-06-20 2023-12-22 北京大学 一种全覆盖电极上光透过率可分区域多级控制的光学薄膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469278A (en) * 1992-09-25 1995-11-21 Matsushita Electric Industrial Co., Ltd. Liquid crystal panel and viewfinder for video camera and projection display using liquid crystal panel
JPH10198293A (ja) * 1997-01-10 1998-07-31 Toshiba Corp 液晶表示装置
JP2001033767A (ja) * 1999-07-26 2001-02-09 Matsushita Electric Ind Co Ltd 液晶表示素子およびその製造方法
CN1851547A (zh) * 2005-04-22 2006-10-25 三星电子株式会社 透射反射型液晶显示器及其制造方法
CN1892338A (zh) * 2005-05-23 2007-01-10 株式会社尼康 衍射显示装置和取景显示装置
CN101351740A (zh) * 2006-06-02 2009-01-21 西铁城控股株式会社 显示装置
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法
JP2017037227A (ja) * 2015-08-11 2017-02-16 Dic株式会社 液晶表示素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535379A (ja) * 2000-06-06 2003-11-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 液晶表示装置及びその製造方法
CN106019675A (zh) * 2016-07-29 2016-10-12 京东方科技集团股份有限公司 一种光波导显示模组、电子设备及制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469278A (en) * 1992-09-25 1995-11-21 Matsushita Electric Industrial Co., Ltd. Liquid crystal panel and viewfinder for video camera and projection display using liquid crystal panel
JPH10198293A (ja) * 1997-01-10 1998-07-31 Toshiba Corp 液晶表示装置
JP2001033767A (ja) * 1999-07-26 2001-02-09 Matsushita Electric Ind Co Ltd 液晶表示素子およびその製造方法
CN1851547A (zh) * 2005-04-22 2006-10-25 三星电子株式会社 透射反射型液晶显示器及其制造方法
CN1892338A (zh) * 2005-05-23 2007-01-10 株式会社尼康 衍射显示装置和取景显示装置
CN101351740A (zh) * 2006-06-02 2009-01-21 西铁城控股株式会社 显示装置
JP2017037227A (ja) * 2015-08-11 2017-02-16 Dic株式会社 液晶表示素子
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
CN113272726A (zh) 2021-08-17
CN113272726B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
JP5679308B2 (ja) 照明装置および表示装置
CN106773379A (zh) 显示面板、显示装置及其控制方法
TWI545377B (zh) Lighting device and display device
WO2017024613A1 (zh) 显示面板及其制作方法
KR20080033872A (ko) 광학 소자를 제조하기 위한 방법
US20170153364A1 (en) Light diffusion member, method for producing same, and display device
JP2006309166A (ja) 表示パネル及びそれを有する表示装置
JP2010156811A (ja) 照明装置、表示装置および光変調素子の製造方法
US9279919B2 (en) Light diffusing member comprising hollow portions and a plurality of light-shielding layers dotted on one surface of a base material, method for manufacturing the same and display device
WO2010137200A1 (ja) 液晶表示装置およびその製造方法
US20160370512A1 (en) Light diffusing member and display device
US20160139453A1 (en) Display apparatus
TWI507775B (zh) 透明顯示裝置
US20070247562A1 (en) Prism sheets for liquid crystal displays
JP2000105370A (ja) 反射板、並びに反射型表示素子及びその製造方法
WO2021077356A1 (zh) 显示面板、显示装置及显示面板制造方法
CN110998425A (zh) 液晶显示面板和液晶显示面板的制造方法
WO2010098063A1 (ja) 液晶表示装置
JP2019090954A (ja) カラーフィルタ基板及びその製造方法、並びに表示パネル
WO2023097789A1 (zh) 显示面板及其制备方法、显示装置
US20180259816A1 (en) Liquid crystal display panel, manufacturing method thereof, and applied display apparatus thereof
US11868012B2 (en) Transparent display panel and method for manufacturing the same, and electronic device
TWI417618B (zh) 液晶顯示面板的製作方法
KR101182299B1 (ko) 백라이트 유닛 및 그의 제조방법과 상기 백라이트 유닛을구비한 액정표시장치
EP4040222B1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950050

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19950050

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/02/2023

122 Ep: pct application non-entry in european phase

Ref document number: 19950050

Country of ref document: EP

Kind code of ref document: A1