WO2017063265A1 - 一种单多晶制绒方法 - Google Patents

一种单多晶制绒方法 Download PDF

Info

Publication number
WO2017063265A1
WO2017063265A1 PCT/CN2015/097415 CN2015097415W WO2017063265A1 WO 2017063265 A1 WO2017063265 A1 WO 2017063265A1 CN 2015097415 W CN2015097415 W CN 2015097415W WO 2017063265 A1 WO2017063265 A1 WO 2017063265A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
acid
alkali
solution
texturing
Prior art date
Application number
PCT/CN2015/097415
Other languages
English (en)
French (fr)
Inventor
左国军
Original Assignee
常州捷佳创精密机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州捷佳创精密机械有限公司 filed Critical 常州捷佳创精密机械有限公司
Publication of WO2017063265A1 publication Critical patent/WO2017063265A1/zh
Priority to US15/866,756 priority Critical patent/US10147837B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of silicon wafer texturing, in particular to a single polycrystalline texturing method.
  • the present invention provides a single polycrystalline texturing method, which combines the single crystal texturing process and the polycrystalline texturing process in the conventional technology to form a single crystal of the silicon wafer.
  • Cashmere and polycrystalline cashmere can be realized on one piece of equipment, with the advantages of reducing the amount of chemicals, increasing productivity and facilitating automation.
  • the technical solution adopted by the present invention is to design a single polycrystalline texturing method, including: step 1 Putting the silicon wafer into the acid solution, and the acid solution reacts with the surface of the silicon wafer to perform acid corrosion;
  • Step 2 the acid-etched silicon wafer is washed with water and dried
  • Step 3 uniformly dropping the alkali solution onto the silicon wafer, and the alkali solution reacts with the surface of the silicon wafer to perform alkali corrosion;
  • Step 4 washing the silicon wafer after alkali corrosion
  • Step 5 the silicon wafer is placed in an alkali solution for alkaline washing
  • Step 6 Wash the silicon wafer
  • Step 7 pickling the silicon wafer with an acid solution
  • Step 8 The acid-washed silicon wafer is washed with water and dried.
  • Steps 1 ⁇ 8 are performed during single crystal velvet, and steps 1 ⁇ 2 and steps 5 ⁇ 8 are performed during polycrystalline velvet.
  • the silicon wafer may be acid-washed in an acid solution, or the acid solution may be evenly dropped on the silicon wafer for pickling.
  • the acid solution in step 1 is water, a mixed solution of HCL and H 2 O 2 in a ratio of 346:100:100.
  • the acid solution in step 1 is a mixed solution of water, HNO3 and HF, the ratio of which is 181:300:65, and the temperature of the acid solution in step 1 is 8 ⁇ 10 °C.
  • the lye is a mixed solution of water, KOH and single crystal velvet additive, the ratio of which is 380:40:4, and the temperature of the lye is 80 °C.
  • the solution in the step 5 is a mixed solution of water and KOH and H 2 O 2 in a ratio of 370:10:30.
  • the alkali solution in step 5 is a mixed solution of water and KOH in a ratio of 430:5.
  • the acid solution is a mixed solution of water, HCL and HF in a ratio of 300:80:40.
  • the temperature of the lye in step 3 is 80 °C; when polycrystalline velvet, the temperature of the acid in step 1 is 8 ⁇ 10 °C.
  • the remaining temperature-free solutions can be used at room temperature.
  • the invention combines the single crystal velvet process step and the polycrystalline velvet process step according to the process characteristics of the single crystal velvet and the polycrystalline velvet, and facilitates the single polycrystalline velvet process. It can be carried out on the same equipment, and the equipment only needs to open or close the corresponding processing station according to the difference of single crystal or polycrystalline velvet.
  • FIG. 1 is a schematic view showing the overall structure of a device for use according to the present invention.
  • Figure 2 is a schematic structural view of a side of the apparatus used in the present invention.
  • Figure 3 is a schematic view showing the structure of another side of the apparatus used in the present invention.
  • Figure 4 is a schematic view showing the structure of the soaking acid flocking station in the apparatus used in the present invention.
  • Figure 5 is a schematic view showing the structure of a spray washing station in the apparatus of the present invention.
  • Figure 6 is a schematic view showing the structure of a spray alkali making station in the apparatus of the present invention.
  • the single polycrystalline texturing method proposed by the present invention can realize single crystal velvet and polycrystalline velvet on the same device, and the device is composed of a device body. 1. From the front to the back, each station, the transmission device 6 and the control system are arranged on the main body of the device. The two ends of the device are provided with a loading platform 2 and a feeding platform 3, and the top of the main body of the device 1 is provided with a ventilation system. .
  • Each station is respectively set up soaking acid softening station 11 , first spray washing station 12 , first drying station 13 , spray alkali softening station 14 , second spray washing station 15
  • the soaking alkali treatment station 16 the third spray water washing station 17 , the acid treatment station 18 , the fourth spray water washing station 19 , and the second drying station 20 .
  • the photoelectric sensor is used to automatically detect the number of incoming chips, and a splicing alarm prompt function is provided.
  • the silicon wafer is sequentially transmitted to each station through the transmission device 6, and then Feeding table 3 was taken after the film.
  • the working state of each station is controlled by the control system, and in the processing process of the silicon wafer, for example, the immersion processing station generally uses a power pump to pulsate the liquid to the silicon wafer.
  • the control system actually controls the power pump or other power components of each station.
  • the station is turned off, and the silicon wafer 7 is driven.
  • the control system can flexibly select the station to be opened according to different processes such as single crystal or polycrystalline velvet, and achieve on one device. It can be used for polycrystalline acid texturing, single crystal alkali velvet, single crystal acid velvet, and single crystal alkali velvet.
  • the spray alkali-slurry station 14 is also connected with a heating device. 5, the heating device 5 is also controlled by the control system, in actual use, the heating device can be installed in the circulation line, can be installed inside the auxiliary tank.
  • Step 1 ⁇ Transmission device 6 The silicon wafer 7 is sequentially transported to each station, and the silicon wafer is immersed in the acid-finishing station 11, the silicon wafer 7 Immersed in an acid solution, the acid solution reacts with the surface of the silicon wafer for acid corrosion;
  • Step 2 The silicon wafer 7 passes through the first spray water washing station 12 and the first drying station 13 in sequence, and the acid-etched silicon wafer 7 Washing and drying;
  • Step 3 silicon wafer 7 When spraying the alkali softening station 14 , spray the alkali softening station 14 to the silicon wafer 7 The alkali solution is evenly dripped, and the alkali solution reacts with the surface of the silicon wafer 7 to perform alkali corrosion;
  • Step 4 After the silicon wafer 7 passes through the second spray water washing station 15, the silicon wafer 7 after alkali corrosion is washed with water;
  • Step 5 silicon wafer 7 After soaking the alkali treatment station 16, the silicon wafer 7 is immersed in an alkali solution for alkali washing;
  • Step 6 Silicon wafer 7 After passing through the third spray water washing station 17, the silicon wafer 7 is washed with water;
  • Step 8 Silicon wafer 7 After the fourth spray water washing station 19 and the second drying station 20, the pickled silicon wafer 7 Washed and dried.
  • Steps 3 ⁇ 4 and 7 ⁇ 8 are performed during single-crystal velvet.
  • the transmission is transporting silicon wafers, soak the acid-softening station.
  • the first spray washing station 12, the first drying station 13, the soaking alkali treatment station 16, and the third spray washing station 17 do not work.
  • Step 1 The silicon wafer is immersed in the acid solution for pre-cleaning, and the acid solution is used as a mixed solution of water, HCL and H2O2, and the ratio thereof is 346:100:100, the acid temperature is normal temperature;
  • Step 2 the acid-etched silicon wafer is washed with water and dried
  • Step 3 uniformly drip the alkali solution onto the silicon wafer, and use the alkali solution as a mixed solution of water, KOH and single crystal softening additive, the ratio of which is 380:40:4, the temperature of the lye is 80 °C, and the alkali solution reacts with the surface of the silicon wafer to perform alkali corrosion;
  • Step 4 washing the silicon wafer after alkali corrosion
  • Step 5 The silicon wafer is placed in an alkali solution for alkali washing to remove organic matter on the silicon wafer, and the alkali solution is water and KOH, H2O2. a mixed solution having a ratio of 370:10:30 and an alkali solution temperature at room temperature;
  • Step 6 Wash the silicon wafer
  • Step 7 Acid-wash the silicon wafer with an acid solution.
  • the acid solution is a mixed solution of water, HCL and HF, and the ratio is 300:80:40 ;
  • Step 8 The acid-washed silicon wafer is washed with water and dried.
  • steps 1 ⁇ 2 and steps 5 ⁇ 8 when the transmission device 6 transports the silicon wafer 7, the spray alkali softening station 14 And the second spray washing station 15 does not work.
  • Step 1 The silicon wafer is immersed in an acid solution for polycrystalline velvet, and the acid solution is used as a mixed solution of water, HNO3 and HF, and the ratio thereof is 181:300:65 , the acid temperature is 8 ⁇ 10 °C ;
  • Step 2 the acid-etched silicon wafer is washed with water and dried
  • Step 3 Shield the circulating system of the spray alkali-softening station, and only open the transmission device for silicon wafer transmission;
  • Step 4 Shield the circulation system of the second spray water washing station, and only open the transmission device for silicon wafer transmission;
  • Step 5 The silicon wafer is alkali-washed in an alkali solution, and the alkali solution is a mixed solution of water and KOH, and the ratio is 430:5.
  • the temperature of the alkali solution is normal temperature;
  • Step 6 Wash the silicon wafer
  • Step 7 Acid-wash the silicon wafer with an acid solution.
  • the acid solution is a mixed solution of water, HCL and HF, and the ratio is 300:80:40 ;
  • Step 8 The acid-washed silicon wafer is washed with water and dried.
  • the invention combines the subsequent cleaning and drying processes of the single crystal and the poly crystal, and the part of the station can be shared when the single crystal or the polycrystalline fleece is used, and the process flow is more compact.
  • the silicon wafer 7 can be used in step 7.
  • the acid solution is acid-washed or the acid solution is evenly dropped on the silicon wafer 7 for pickling.
  • step 1 the acid solution is a mixed solution of water, HNO3 and HF, the ratio of which is 181:300:65, step 1
  • the medium acid temperature is 8 ⁇ 10 °C.
  • step 3 the lye is a mixed solution of water, KOH and single crystal velvet additive, the ratio is 380:40:4, and the temperature of the lye in step 3 is 80 °C.
  • step 5 The medium alkali solution is a mixed solution of water and KOH in a ratio of 430:5.
  • step 7 the acid solution is a mixed solution of water, HCL and HF in a ratio of 301:100:40. .
  • the transmission 6 includes a conveying roller 61 that is evenly arranged in the longitudinal direction, and drives the conveying roller 61.
  • the rotating electric component, the tank of each station is disposed under the conveying roller 61, and the silicon wafer 7 continuously moves forward through each station while the conveying roller 61 rotates.
  • the soaking acid flocking station 11 comprises: an acid fluffing groove 101, and the acid fluffing groove 101 is divided into a plurality of working fluid chambers. a plurality of pairs of partitions 103 of 102, an acid flocking pump for pumping the acid fluffing liquid into the working fluid chamber 102, and an acid fleece auxiliary tank 104 for collecting the acid fluffing liquid in the acid fluffing tank 101, each Pair of partitions 103 A gap is formed between the two plates to form a buffer chamber 105 for the overflow circulation, and the bottom of the buffer chamber 105 is provided with an output port 106 connected to the acid fleece sub-tank 104.
  • Immersion roller at the acid flocking station 61 The top surface is flat with the top of the acid fleece 101 or slightly above the acid fleece 101.
  • the function of soaking the acid flocking station is to perform the acid suede treatment on the silicon wafer 7, and the silicon wafer 7 is transported horizontally through the acid fleece groove.
  • the acid flocking pump pumps the acid fluffing liquid into the working fluid chamber 102.
  • the acid treatment liquid is immersed above the conveying roller 61 to immerse the silicon wafer 7 with the silicon wafer 7
  • the acid solution overflowing from the working fluid chamber 102 is collected into the auxiliary tank 104, and the acid fleece tank 101 is taken out by the acid flocking pump for recycling.
  • the four spray washing stations include: spray washing tank 201, and is installed in the spray washing tank 201
  • the function of the spray washing station is to remove the liquid remaining on the surface of the silicon wafer 7, the silicon wafer 7
  • the wafer 7 is conveyed in a horizontal manner, and the spray pipe is flushed above and below at an angle.
  • the first spray washing station 12 The spray water washing auxiliary tank is not provided, the water of the spray water washing station is directly drained by the waste water, and the other second, third and fourth spray water washing stations arranged in sequence are provided for collecting the spray water washing tank 201 Spray washing sub-tank of water washing liquid 203 is again supplied to the spray pipe by the water pump 202 to save water.
  • the two drying stations include: a hot air blower for supplying a wind source, a filter for filtering the wind source, and a hot air blower for drying the silicon wafer. .
  • the spray alkali softening station 14 comprises: an alkali fluffing tank 301, and a spray lye tank set above the alkali fluffing tank 301. 302.
  • An alkali fluffing pump 303 for pumping the alkali fluffing liquid into the spray lye tank 302, and an alkali fleece subtank 304 for collecting the alkali fluffing liquid in the alkali fluffing tank 301.
  • Alkali cashmere pump to silicon wafer 7 The upper spray lye box 302 is then poured onto the upper surface of the silicon wafer 7 for chemical treatment, and the alkali velvet spray is used for alkali-texturing the silicon wafer 7.
  • Soaking alkali treatment station 16 The invention comprises: an alkali treatment tank, a plurality of pairs of separators dividing the alkali treatment tank into a plurality of working fluid chambers, an alkali treatment pump for pumping the alkali treatment liquid into the working fluid chamber, and collecting alkali treatment in the alkali treatment tank
  • the alkali treatment auxiliary tank of the liquid is provided with a gap between the two plates of each pair of partition plates to form a buffer chamber for the overflow circulation, and the bottom of the buffer chamber is provided with an output port connected to the alkali treatment auxiliary tank.
  • the function of the soaking alkali treatment station is to remove the organic matter, porous silicon and acid-base neutralization in the front stage process.
  • the structure of the soaking alkali processing station is the same as that of the soaking acid flocking station, and the working process of the station is similar, and will not be described here.
  • Acid treatment station 18 The role is to remove the phosphorous silica glass and metal ions on the front side of the wafer to prepare for the next process.
  • the first one is immersion treatment.
  • the acid treatment station includes: an acid treatment tank, a plurality of pairs of separators separating the acid treatment tank into a plurality of working fluid chambers, and a pump for treating the acid treatment liquid.
  • the bottom of the buffer chamber is provided with an output port connected to the acid treatment sub-tank.
  • the structure of the soaking treatment is the same as that of the soaking acid flocking station, and the working process of the station is similar, and will not be described herein.
  • the second type is a spray treatment
  • the acid treatment station includes: an acid treatment tank, a spray acid tank disposed above the acid treatment tank, an acid treatment pump for pumping the acid into the spray acid tank, and The acid treatment auxiliary tank of the alkali treatment liquid in the acid treatment tank is collected.
  • the structure of the spray treatment is the same as that of the spray alkali kneading station, and the working process of the station is similar, and will not be described herein.
  • the acid treatment station 18 employs the first structure when the wafer 7 is acid-washed in the acid solution in step 7. In step 7 The acid treatment station 18 employs the second structure when the acid solution is uniformly dripped on the silicon wafer 7 for pickling.
  • the heating device 5 in the spray alkali softening station 14 comprises: the heating device comprises: being installed in the alkali velvet sub-tank 304
  • the heater and temperature detector in the inner or circulation line, the heater and the temperature detector are all connected to the control system.

Abstract

本发明公开了一种单多晶制绒方法,包括:步骤1 、将硅片放入酸液中,酸液与硅片表面发生反应进行酸腐蚀;步骤2 、将酸腐蚀后的硅片进行水洗、干燥处理;步骤3 、向硅片上均匀滴撒碱液,碱液与硅片表面发生反应进行碱腐蚀;步骤4 、将碱腐蚀后的硅片进行水洗;步骤5 、将硅片放入碱溶液中进行碱洗;步骤6 、对硅片进行水洗;步骤7 、用酸溶液对硅片进行酸洗;步骤8 、将酸洗后的硅片进行水洗、干燥处理。单晶制绒时进行步骤1~8 ,多晶制绒时进行步骤1~2 和步骤5~8 。本发明根据单晶制绒和多晶制绒的工艺特性,对单晶制绒工艺步骤和多晶制绒工艺步骤进行合理组合排布,方便单多晶制绒工艺可在同一设备上进行。

Description

一种单多晶制绒方法 技术领域
本发明涉及硅片制绒技术领域,尤其涉及一种单多晶制绒方法。
背景技术
近年来,太阳能硅电池技术的不断发展,新工艺层出不穷,硅电池的转换效率不停被刷新。面对竞争越来越激烈的国内外市场,传统工艺被淘汰成为必然趋势。现有技术中硅片的单晶制绒和多晶制绒工艺无法在同一台设备上实现,需针对不同的制绒工艺定制设备,导致生产成本增加。
因此,如何设计一种能在一台设备上分别完成单晶制绒和多晶制绒的单多晶制绒方法是业界亟待解决的技术问题。
发明内容
为解决现有技术中存在的缺陷,本发明提出一种单多晶制绒方法,该方法将传统技术中的单晶制绒工艺和多晶制绒工艺合为一体,使硅片的单晶制绒和多晶制绒能在一台设备上实现,拥有减少化学品的用量,增加产能且便于实现自动化等优点。
本发明采用的技术方案是,设计一种单多晶制绒方法,包括:步骤 1 、将硅片放入酸液中,酸液与硅片表面发生反应进行酸腐蚀;
步骤 2 、将酸腐蚀后的硅片进行水洗、干燥处理;
步骤 3 、向硅片上均匀滴撒碱液,碱液与硅片表面发生反应进行碱腐蚀;
步骤 4 、将碱腐蚀后的硅片进行水洗;
步骤 5 、将硅片放入碱溶液中进行碱洗;
步骤 6 、对硅片进行水洗;
步骤 7 、用酸溶液对硅片进行酸洗;
步骤 8 、将酸洗后的硅片进行水洗、干燥处理。
单晶制绒时进行步骤 1~8 ,多晶制绒时进行步骤 1~2 和步骤 5~8 。
其中,步骤 7 中可将硅片放入酸溶液进行酸洗,或将酸溶液均匀滴撒在硅片上进行酸洗。
单晶制绒时,步骤 1 中酸液为水, HCL 和 H2O2 的混合溶液,其比例为 346:100:100 。多晶制绒时,步骤 1 中酸液为水、 HNO3 和 HF 的混合溶液,其比例为 181:300:65 ,步骤 1 中酸液温度为 8~10 ℃。
步骤 3 中碱液为水、 KOH 和单晶制绒添加剂的混合溶液,其比例为 380:40:4 ,碱液温度为 80 ℃。
单晶制绒时,步骤 5 中溶液为水和 KOH 、 H2O2 的混合溶液,其比例为 370:10:30 。多晶制绒时,步骤 5 中碱溶液为水和 KOH 的混合溶液,其比例为 430:5 。
步骤 7 中酸溶液为水、 HCL 和 HF 的混合溶液,其比例为 300:80:40 。
单晶制绒时,步骤 3 中碱液温度为 80 ℃;多晶制绒时,步骤 1 中酸液温度为 8~10 ℃。其余未注明温度的溶液皆可采用常温。
与现有技术相比,本发明根据单晶制绒和多晶制绒的工艺特性,对单晶制绒工艺步骤和多晶制绒工艺步骤进行合理组合排布,方便单多晶制绒工艺可在同一设备上进行,设备只需按照单晶或多晶制绒的不同,开启或关闭相应的处理工位即可。
附图说明
下面结合实施例和附图对本发明进行详细说明,其中:
图 1 是本发明使用设备的整体结构示意图;
图 2 是本发明使用设备一侧面的结构示意图;
图 3 是本发明使用设备另一侧面的结构示意图;
图 4 是本发明使用设备中 浸泡酸制绒工位的结构示意图;
图 5 是 本发明使用设备中 喷淋水洗工位的结构示意图;
图 6 是本发明使用设备中喷淋碱制绒工位的结构示意图 。
具体实施方式
如图 1 、 2 所示,本发明提出的单多晶制绒方法可在同一设备上实现单晶制绒和多晶制绒,该设备由设备主体 1 、由前至后依次设于设备主体上的各个工位、传动装置 6 和控制系统构成,设备两端设有上料台 2 和下料台 3 ,设备主体 1 顶部设有抽风系统 4 。各个工位分别为依次设置的浸泡酸制绒工位 11 、第一喷淋水洗工位 12 、第一烘干工位 13 、喷淋碱制绒工位 14 、第二喷淋水洗工位 15 、浸泡碱处理工位 16 、第三喷淋水洗工位 17 、酸处理工位 18 、第四喷淋水洗工位 19 、第二烘干工位 20 。使用时将硅片 7 以水平方式放入上料台 2 上,上料台 2 有自动规正装置和滴水保护装置,采用光电传感器自动检测进片数量,并设有连片报警提示功能,硅片经过传动装置 6 依次传送至各个工位,再到下料台 3 后被收片。
其中,各个工位的工作状态由控制系统控制,在硅片的处理工艺中,例如浸泡处理工位一般利用动力泵抽动液体对硅片 7 进行处理,当动力泵不工作时液体无法与硅片 7 接触,硅片在该工位没有进行处理。因此,控制系统实际上是对各工位的动力泵或其他动力元件进行控制,当动力元件不工作时,该工位即为关闭状态,硅片 7 被传动装置 6 从该工位经过但并不发生反应,当动力元件工作时,该工位即为开启状态,硅片 7 被传动装置 6 从该工位经过并发生反应。控制系统可根据单晶或多晶制绒等工艺的不同,灵活选择需要开启的工位,达到在一台设备上 可做多晶酸制绒、单晶碱制绒、单晶酸制绒、单晶碱制绒的目的 。
如图 3 所示,由于单晶或多晶制绒在碱制绒时所需处理液的温度不同,喷淋碱制绒工位 14 还连接有加热装置 5 ,加热装置 5 也由控制系统控制工作状态,实际使用时,加热装置可以安装在循环管路中,可可以安装在副槽内部。
下面详细介绍本发明的单多晶制绒方法,其包括以下步骤:
步骤 1 、传动装置 6 将硅片 7 依次运送到各个工位,硅片经过浸泡酸制绒工位 11 时,硅片 7 浸入酸液中,酸液与硅片表面发生反应进行酸腐蚀;
步骤 2 、硅片 7 依次经过第一喷淋水洗工位 12 和第一烘干工位 13 时,酸腐蚀后的硅片 7 进行水洗、干燥处理;
步骤 3 、硅片 7 经过喷淋碱制绒工位 14 时,喷淋碱制绒工位 14 向硅片 7 上均匀滴撒碱液,碱液与硅片 7 表面发生反应进行碱腐蚀;
步骤 4 、硅片 7 经过第二喷淋水洗工位 15 时,碱腐蚀后的硅片 7 进行水洗;
步骤 5 、硅片 7 经过浸泡碱处理工位 16 时,硅片 7 浸入碱溶液中进行碱洗;
步骤 6 、硅片 7 经过第三喷淋水洗工位 17 时,硅片 7 进行水洗;
步骤 7 、硅片 7 经过酸处理工位 18 时,硅片 7 进行酸洗;
步骤 8 、硅片 7 经过第四喷淋水洗工位 19 和第二烘干工位 20 时,酸洗后的硅片 7 进行水洗、干燥处理。
单晶制绒时进行步骤 3~4 和步骤 7~8 ,传动装置运送硅片时,浸泡酸制绒工位 11 、第一喷淋水洗工位 12 、第一烘干工位 13 、浸泡碱处理工位 16 、第三喷淋水洗工位 17 不工作。
单晶制绒的具体反应过程如下:
步骤 1 、硅片浸入酸液中进行预清洗,使用酸液为水、 HCL 和 H2O2 的混合溶液,其比例为 346:100:100 ,酸液温度为常温;
步骤 2 、将酸腐蚀后的硅片进行水洗、干燥处理;
步骤 3 、向硅片上均匀滴撒碱液,使用碱液为水、 KOH 和单晶制绒添加剂的混合溶液,其比例为 380:40:4 ,碱液温度为 80 ℃ ,碱液与硅片表面发生反应进行碱腐蚀;
步骤 4 、将碱腐蚀后的硅片进行水洗;
步骤 5 、将硅片放入碱溶液中进行碱洗,用于除去硅片上的有机物,碱溶液为水和 KOH 、 H2O2 的混合溶液,其比例为 370:10:30 ,碱溶液温度为常温;
步骤 6 、对硅片进行水洗;
步骤 7 、用酸溶液对硅片进行酸洗,酸溶液为水、 HCL 和 HF 的混合溶液,其比例为 300:80:40 ;
步骤 8 、将酸洗后的硅片进行水洗、干燥处理。
多晶制绒时进行步骤 1~2 和步骤 5~8 ,传动装置 6 运送硅片 7 时,喷淋碱制绒工位 14 和第二喷淋水洗工位 15 不工作。
步骤 1 、硅片浸入酸液中进行多晶制绒,使用酸液为水、 HNO3 和 HF 的混合溶液,其比例为 181:300:65 ,酸液温度为 8~10 ℃ ;
步骤 2 、将酸腐蚀后的硅片进行水洗、干燥处理;
步骤 3 、屏蔽喷淋碱制绒工位的循环系统,只开传动装置进行硅片传输;
步骤 4 、屏蔽第二喷淋水洗工位的循环系统,只开传动装置进行硅片传输;
步骤 5 、将硅片放入碱溶液中进行碱洗,碱溶液为水和 KOH 的混合溶液,其比例为 430:5 ,碱溶液温度为常温;
步骤 6 、对硅片进行水洗;
步骤 7 、用酸溶液对硅片进行酸洗,酸溶液为水、 HCL 和 HF 的混合溶液,其比例为 300:80:40 ;
步骤 8 、将酸洗后的硅片进行水洗、干燥处理。
本发明将单晶和多晶后续清洗、干燥工艺合并在一起,单晶或多晶制绒时可共用该部分工位,工艺流程更紧凑。其中,步骤 7 中可将硅片 7 放入酸溶液进行酸洗,或将酸溶液均匀滴撒在硅片 7 上进行酸洗。
步骤 1 中酸液为水、 HNO3 和 HF 的混合溶液,其比例为 181:300:65 ,步骤 1 中酸液温度为 8~10 ℃。步骤 3 中碱液为水、 KOH 和单晶制绒添加剂的混合溶液,其比例为 380:40:4 ,步骤 3 中碱液温度为 80 ℃。步骤 5 中碱溶液为水和 KOH 的混合溶液,其比例为 430:5 。步骤 7 中酸溶液为水、 HCL 和 HF 的混合溶液,其比例为 301:100:40 。
具体来说,传动装置 6 包括纵向均匀排列的输送辊 61 、驱动输送辊 61 转动的电动元件,各工位的槽体设置在输送辊 61 下方,输送辊 61 转动时硅片 7 不断向前运动经过每个工位。
如图 4 所示,浸泡酸制绒工位 11 包括:酸制绒槽 101 、将酸制绒槽 101 分隔成多个工作液腔室 102 的多对隔板 103 、用于将酸制绒液泵入工作液腔室 102 的酸制绒泵、用于收集酸制绒槽 101 内酸制绒液的酸制绒副槽 104 ,每对隔板 103 的两板之间设有间距形成用于溢流循环的缓冲腔室 105 ,该缓冲腔室 105 底部设有与酸制绒副槽 104 连接的输出口 106 。浸泡酸制绒工位处的输送辊 61 顶面与酸制绒槽 101 顶面持平,或略高于酸制绒槽 101 。浸泡酸制绒工位的作用是对硅片 7 进行酸液绒面处理,硅片 7 以水平方式输送经过酸制绒槽 101 时,酸制绒泵将酸制绒液泵到工作液腔室 102 内,在泵的动力作用下,酸处理液高过输送辊 61 将硅片 7 浸没,硅片 7 与酸液发生化学反应,从工作液腔室 102 内溢流出的酸液收集到副槽 104 ,再由酸制绒泵抽出酸制绒槽 101 循环使用。
如图 5 所示,四个喷淋水洗工位均包括:喷淋水洗槽 201 、设于喷淋水洗槽 201 上方的喷淋水管、用于将水洗液泵入喷淋水管的水泵 202 。喷淋水洗工位的作用是去除硅片 7 表面残留的药液,硅片 7 以水平方式输送,喷淋水管以上下相对并呈一定角度的方式对硅片 7 进行冲洗。其中,第一喷淋水洗工位 12 未设置喷淋水洗副槽,该喷淋水洗工位的水为废水直接排走,其余依次设置的第二、第三、第四喷淋水洗工位均设有用于收集喷淋水洗槽 201 内水洗液的喷淋水洗副槽 203 ,由水泵 202 再次供给到喷淋管,以节约用水。
两个烘干工位均包括:用于提供风源的热风机、用于过滤风源的过滤器,热风机 以上下切风的方式烘干硅片 。
如图 6 所示,喷淋碱制绒工位 14 包括:碱制绒槽 301 、设于碱制绒槽 301 上方的喷淋碱液盒 302 、用于将碱制绒液泵入喷淋碱液盒 302 的碱制绒泵 303 、用于收集碱制绒槽 301 内碱制绒液的碱制绒副槽 304 。碱制绒液泵至硅片 7 上方的喷淋碱液盒 302 再淋到硅片 7 上表面进行化学处理,喷淋碱制绒的作用是对硅片 7 进行碱制绒。当单晶硅片制取绒面时,需要高温处理,采用加热装置 5 加热药液,由泵供给喷淋碱液盒 302 ,喷淋在硅片 7 上表面有效提高硅片表面处理质量,溢流出的碱制绒液收集到碱制绒副槽 304 ,再由碱制绒泵 303 供给碱制绒槽 301 循环使用。
浸泡碱处理工位 16 包括:碱处理槽、将碱处理槽分隔成多个工作液腔室的多对隔板、用于将碱处理液泵入工作液腔室的碱处理泵、用于收集碱处理槽内碱处理液的碱处理副槽,每对隔板的两板之间设有间距形成用于溢流循环的缓冲腔室,该缓冲腔室底部设有与碱处理副槽连接的输出口。浸泡碱处理工位的作用是去前段工艺有机物、多孔硅及酸碱中和,其结构和浸泡酸制绒工位的结构相同,工位的工作过程也相似,在此不做赘述。
酸处理工位 18 的作用是去除硅片正面的磷硅玻璃及金属离子,为下道工序做准备。其可行的结构有两种,第一种是浸泡处理,酸处理工位包括:酸处理槽、将酸处理槽分隔成多个工作液腔室的多对隔板、用于将酸处理液泵入工作液腔室的酸处理泵、用于收集酸处理槽内碱处理液的酸处理副槽,每对隔板的两板之间设有间距形成用于溢流循环的缓冲腔室,该缓冲腔室底部设有与酸处理副槽连接的输出口。这种浸泡处理的结构与浸泡酸制绒工位相同,工位的工作过程也相似,在此不做赘述。
第二种是喷淋处理,酸处理工位包括:酸处理槽、设于酸处理槽上方的喷淋酸液盒、用于将酸液泵入喷淋酸液盒的酸处理泵、用于收集酸处理槽内碱处理液的酸处理副槽。这种喷淋处理的结构与喷淋碱制绒工位相同,工位的工作过程也相似,在此不做赘述。
以上为各个工位的基本组成结构。
在步骤 7 中采用硅片 7 放入酸溶液中进行酸洗时,酸处理工位 18 采用第一种结构。在步骤 7 中采用将酸溶液均匀滴撒在硅片 7 上进行酸洗时,酸处理工位 18 采用第二种结构。
在本实施例中,喷淋碱制绒工位 14 中的加热装置 5 包括:加热装置包括:安装在碱制绒副槽 304 内或循环管路中的加热器和温度检测仪,加热器和温度检测仪均与控制系统连接。
较优的,浸泡酸制绒工位 11 、喷淋碱制绒工位 14 、浸泡碱处理工位 16 、酸处理工位 18 均连接有自动补液系统 8 。自动补液系统 8 中根据上料台 2 计数的硅片数量,每隔一定数量的硅片便向各工位中补充水、碱或酸,以使各工位保持溶液量及比例。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种单多晶制绒方法,其特征在于包括:步骤 1 、将硅片放入酸液中,酸液与硅片表面发生反应进行酸腐蚀;
    步骤 2 、将酸腐蚀后的硅片进行水洗、干燥处理;
    步骤 3 、向硅片上均匀滴撒碱液,碱液与硅片表面发生反应进行碱腐蚀;
    步骤 4 、将碱腐蚀后的硅片进行水洗;
    步骤 5 、将硅片放入碱溶液中进行碱洗;
    步骤 6 、对硅片进行水洗;
    步骤 7 、用酸溶液对硅片进行酸洗;
    步骤 8 、将酸洗后的硅片进行水洗、干燥处理;
    单晶制绒时进行步骤 1~8 ,多晶制绒时进行步骤 1~2 和步骤 5~8 。
  2. 如权利要求 1 所述的单多晶制绒方法,其特征在于,所述步骤 7 中可将硅片放入酸溶液进行酸洗,或将酸溶液均匀滴撒在硅片上进行酸洗。
  3. 如权利要求 2 所述的单多晶制绒方法,其特征在于,单晶制绒时,步骤 1 中酸液为水, HCL 和 H2O2 的混合溶液,其比例为 346:100:100 ;多晶制绒时,步骤 1 中酸液为水、 HNO3 和 HF 的混合溶液,其比例为 181:300:65 。
  4. 如权利要求 3 所述的单多晶制绒方法,其特征在于,步骤 3 中碱液为水、 KOH 和单晶制绒添加剂的混合溶液,其比例为 380:40:4 。
  5. 如权利要求 4 所述的单多晶制绒方法,其特征在于,单晶制绒时,步骤 5 中溶液为水和 KOH 、 H2O2 的混合溶液,其比例为 370:10:30 ;多晶制绒时,步骤 5 中碱溶液为水和 KOH 的混合溶液,其比例为 430:5 。
  6. 如权利要求 5 所述的单多晶制绒方法,其特征在于,步骤 7 中酸溶液为水、 HCL 和 HF 的混合溶液,其比例为 300:80:40 。
  7. 如权利要求 1 至 6 任一项所述的单多晶制绒方法,其特征在于,单晶制绒时,步骤 3 中碱液温度为 80 ℃;多晶制绒时,步骤 1 中酸液温度为 8~10 ℃。
PCT/CN2015/097415 2015-10-12 2015-12-15 一种单多晶制绒方法 WO2017063265A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/866,756 US10147837B2 (en) 2015-10-12 2018-01-10 Monocrystal and polycrystal texturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510656294.8 2015-10-12
CN201510656294.8A CN105220235B (zh) 2015-10-12 2015-10-12 一种单多晶制绒方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/866,756 Continuation US10147837B2 (en) 2015-10-12 2018-01-10 Monocrystal and polycrystal texturing method

Publications (1)

Publication Number Publication Date
WO2017063265A1 true WO2017063265A1 (zh) 2017-04-20

Family

ID=54989489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097415 WO2017063265A1 (zh) 2015-10-12 2015-12-15 一种单多晶制绒方法

Country Status (3)

Country Link
US (1) US10147837B2 (zh)
CN (1) CN105220235B (zh)
WO (1) WO2017063265A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221581B (zh) * 2017-07-14 2018-12-18 无锡琨圣科技有限公司 一种黑硅制绒清洗机及其工艺
CN107863312A (zh) * 2017-11-21 2018-03-30 乐山新天源太阳能科技有限公司 硅片自动冲洗水下取片插片机
CN109487342A (zh) * 2018-12-25 2019-03-19 浙江晶科能源有限公司 一种金刚线切割单晶硅的制绒方法
CN109980031A (zh) * 2019-04-23 2019-07-05 通威太阳能(成都)有限公司 一种用于晶体硅太阳能电池的制绒槽及单晶硅制绒工艺
CN110438571A (zh) * 2019-08-14 2019-11-12 中节能太阳能科技有限公司 一种高效单晶制绒工艺及其设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151423A (zh) * 2013-02-28 2013-06-12 常州捷佳创精密机械有限公司 一种多晶硅片制绒清洗工艺方法
CN103413759A (zh) * 2013-08-07 2013-11-27 上饶光电高科技有限公司 一种多晶硅片的制绒方法
CN103426736A (zh) * 2013-06-30 2013-12-04 北京工业大学 单晶硅倒金字塔绒面的激光化学次序可控制备方法
CN103924305A (zh) * 2013-01-14 2014-07-16 东莞市长安东阳光铝业研发有限公司 一种准单晶硅片绒面的制备方法
CN103981575A (zh) * 2014-05-13 2014-08-13 陕西师范大学 一种单晶硅片的退火制绒方法
CN104630900A (zh) * 2013-11-14 2015-05-20 江苏天宇光伏科技有限公司 一种单晶硅太阳能电池表面制绒处理方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719632B2 (ja) * 1998-12-17 2005-11-24 三菱電機株式会社 シリコン太陽電池の製造方法
EP1753032A1 (en) * 2004-05-28 2007-02-14 Sharp Kabushiki Kaisha Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
KR101088280B1 (ko) * 2007-10-24 2011-11-30 미쓰비시덴키 가부시키가이샤 태양전지의 제조 방법
CN101423942B (zh) * 2008-11-13 2012-09-05 蒋冬 一种制备单晶硅绒面的碱腐蚀溶液及方法
CN103493214B (zh) * 2011-01-26 2016-01-20 胜高股份有限公司 太阳能电池用晶片及其制备方法
DE112012002092T5 (de) * 2011-05-17 2014-07-10 Sumco Corporation Verfahren zur Herstellung von Wafern für Solarzellen, Verfahren zur Herstellung von Solarzellen und Verfahren zur Herstellung von Solarzellenmodulen
US9268319B2 (en) * 2011-05-20 2016-02-23 Ecolab Usa Inc. Controller enclosure, mounting and orientation of same
JP5957835B2 (ja) * 2011-09-28 2016-07-27 株式会社Sumco 太陽電池用ウェーハの製造方法、太陽電池セルの製造方法、および太陽電池モジュールの製造方法
JP5575822B2 (ja) * 2012-02-08 2014-08-20 第一工業製薬株式会社 テクスチャー形成用エッチング液
US20130295712A1 (en) * 2012-05-03 2013-11-07 Advanced Technology Materials, Inc. Methods of texturing surfaces for controlled reflection
CN103806108A (zh) * 2012-11-08 2014-05-21 上海神舟新能源发展有限公司 一种改进型晶硅电池片的清洗工艺
CN103441070B (zh) * 2013-08-22 2015-12-09 常州捷佳创精密机械有限公司 一种晶体硅片的制绒设备及制绒工艺方法
CN104538503B (zh) * 2015-01-19 2017-06-13 常州捷佳创精密机械有限公司 太阳能硅片的淋浴式湿法制绒设备及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924305A (zh) * 2013-01-14 2014-07-16 东莞市长安东阳光铝业研发有限公司 一种准单晶硅片绒面的制备方法
CN103151423A (zh) * 2013-02-28 2013-06-12 常州捷佳创精密机械有限公司 一种多晶硅片制绒清洗工艺方法
CN103426736A (zh) * 2013-06-30 2013-12-04 北京工业大学 单晶硅倒金字塔绒面的激光化学次序可控制备方法
CN103413759A (zh) * 2013-08-07 2013-11-27 上饶光电高科技有限公司 一种多晶硅片的制绒方法
CN104630900A (zh) * 2013-11-14 2015-05-20 江苏天宇光伏科技有限公司 一种单晶硅太阳能电池表面制绒处理方法
CN103981575A (zh) * 2014-05-13 2014-08-13 陕西师范大学 一种单晶硅片的退火制绒方法

Also Published As

Publication number Publication date
CN105220235A (zh) 2016-01-06
US10147837B2 (en) 2018-12-04
US20180130922A1 (en) 2018-05-10
CN105220235B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017063265A1 (zh) 一种单多晶制绒方法
WO2020006795A1 (zh) 利用臭氧实现碱性体系对硅片刻蚀抛光的方法及设备
WO2017035905A1 (zh) 一种单多晶制绒设备
EP0252439A3 (en) Method and apparatus for surface treating of substrates
CN102217031A (zh) 基底处理方法、基底和用于实施该方法的处理装置
CN113793801B (zh) 一种磷化铟衬底晶片的清洗方法
CN109616551B (zh) 一种多晶表面有机物不良电池片返工工艺
US6461444B1 (en) Method and apparatus for manufacturing semiconductor device
CN110137302A (zh) 硅异质结太阳电池晶硅衬底的清洗及制绒方法和硅异质结太阳电池
TW201606914A (zh) 製程分離型基板處理裝置及處理方法
KR20190097025A (ko) Soi웨이퍼의 제조방법
CN112871811B (zh) 单片晶圆清洗系统及方法
KR100498495B1 (ko) 반도체 소자의 세정 시스템 및 이를 이용한 세정방법
KR102021958B1 (ko) 화학 연마 장치
CN102768952B (zh) 扩散后单晶硅片次品返工方法
CN104966675A (zh) 使用蓝膜保护硅片表面部分二氧化硅膜的方法
CN108231956B (zh) 一种黑硅电池片的清洗槽工艺
CN104505345A (zh) 一种采用csd工艺制备肖特基二极管p+型扩散保护环的方法
JP2000349059A (ja) 半導体装置の製造方法及び製造装置
JP2005270830A (ja) 冶具の洗浄装置及び洗浄方法
JPH1126413A (ja) 半導体装置の製造方法
CN101673680B (zh) 一种在氮化硅沉积工艺中去除氯化铵结晶的方法
US10916454B2 (en) Method of stripping a photoresist, and method of manufacturing a semiconductor device
KR20080053113A (ko) 저온 및 고온 순수 공급라인이 설치된 화학약품조를포함하는 일괄처리형 세정장비
JP2009216325A (ja) 乾燥装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906147

Country of ref document: EP

Kind code of ref document: A1