WO2017057400A1 - ガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法 - Google Patents

ガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法 Download PDF

Info

Publication number
WO2017057400A1
WO2017057400A1 PCT/JP2016/078525 JP2016078525W WO2017057400A1 WO 2017057400 A1 WO2017057400 A1 WO 2017057400A1 JP 2016078525 W JP2016078525 W JP 2016078525W WO 2017057400 A1 WO2017057400 A1 WO 2017057400A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
shield gas
shield
gas
valve
Prior art date
Application number
PCT/JP2016/078525
Other languages
English (en)
French (fr)
Inventor
勝則 和田
和文 戸田
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to JP2017543453A priority Critical patent/JP6766058B2/ja
Priority to SG11201801342TA priority patent/SG11201801342TA/en
Priority to US15/754,354 priority patent/US20180290229A1/en
Publication of WO2017057400A1 publication Critical patent/WO2017057400A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/325Devices for supplying or evacuating shielding gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/035Flow reducers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/02Mixing fluids
    • F17C2265/025Mixing fluids different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use

Definitions

  • the present invention relates to a gas supply device for supplying gas to a user, a gas supply device with a mixing function including a plurality of gas supply devices, a welding device including a gas supply device, and a gas supply method.
  • gas supply device when supplying gas to a user from a gas supply source filled with gas at a high pressure, the gas pressure derived from the gas supply source (for example, a cylinder) is sufficiently reduced and supplied to the user. Yes.
  • gas supply device gas supply device
  • Arc welding is the most widely used welding process due to its high cost and versatility.
  • Gas Tungsten® Arc welding using non-consumable electrodes hereinafter referred to as “GTA welding”
  • GTA welding Gas Tungsten® Arc welding using non-consumable electrodes
  • GMA welding Gas Metal Arc using consumable electrodes. It is roughly divided into welding (hereinafter referred to as “GMA welding”).
  • GTA welding uses a refractory metal (for example, tungsten) as a cathode material, generates plasma through arc discharge generated between the cathode and the base material that becomes the anode, and uses the base material as a heat source. Melt and join.
  • the welding wire is an anode and the base material is a cathode.
  • a welding wire is melted by arc plasma to form a droplet at the wire end, and this droplet receives an external force to release the wire end and transfer to a base material for welding. It is.
  • FIG. 17 is a diagram showing a schematic configuration of a GMA welding apparatus provided with a conventional gas supply device.
  • a conventional GMA welding apparatus 100 includes a gas supply device 101, a welding machine 103, a wire supply device 105, and a welding torch 106.
  • the gas supply device 101 includes a gas supply source 111, a two-stage decompressor 112, a gas supply line 113, and an electromagnetic valve 115.
  • the gas supply source 111 for example, a cylinder filled with a shielding gas at a high pressure can be used.
  • the two-stage decompressor 112 is provided in the gas outlet part of the gas supply source 111 and is connected to one end of the gas supply line 113.
  • the two-stage pressure reducer 112 is a shield gas rush that is likely to be generated at an initial stage (an initial stage at the time of welding) of deriving the gas from the gas supply source 111 filled with the gas at a high pressure (temporarily higher than a desired flow rate). It has a function of saving shielding gas by suppressing a phenomenon in which a large amount of gas is released.
  • a gas regulator disclosed in Patent Document 1 can be used as the two-stage pressure reducer 112 for example.
  • FIG. 18 is a diagram illustrating an example of a conventional two-stage pressure reducer.
  • the conventional two-stage decompressor 116 includes a joint 116A, a first-stage decompression unit 116B, an adjustment pressure gauge 116C, a second-stage decompression part 116F, a nozzle 116E, and a flow meter 116D.
  • the high-pressure gas is introduced from the joint 116A to the first-stage decompression unit 116B and decompressed to a predetermined pressure. This gas is further introduced into the second-stage decompression section 116F, decompressed to the pressure to be used, and taken out from the nozzle 116E.
  • the amount of gas used is instructed to the flow meter 116D.
  • the pressure introduced into the joint 116A is instructed to the adjustment pressure gauge 116C.
  • the other end of the gas supply line 113 is connected to the welding torch 106.
  • the gas supply line 113 supplies shield gas to the welding torch 106.
  • the electromagnetic valve 115 is provided in a gas supply line 113 located in the wire supply device 105. When the electromagnetic valve 115 is opened, the shielding gas is supplied to the welding torch 106.
  • the welding machine 103 is provided in a gas supply line 113 located at the rear stage of the two-stage decompressor 112.
  • the wire supply device 105 supplies a wire to the welding torch 106.
  • the welding torch 106 welds an object to be welded (not shown).
  • FIG. 19 is a diagram showing a schematic configuration of a GTA welding apparatus including a conventional gas supply device.
  • a conventional GTA welding apparatus 120 will be described with reference to FIG.
  • a conventional GTA welding apparatus 120 excludes the wire supply apparatus 105 constituting the GMA welding apparatus 100 shown in FIG. 17 from the components, and includes a welding machine 121 and a welding torch 122 instead of the welding machine 103 and the welding torch 106. And it is comprised similarly to the GMA welding apparatus 100 except the arrangement positions of the solenoid valve 115 differing.
  • the welder 121 is provided in a gas supply line 113 located between the two-stage decompressor 112 and the welding torch 122.
  • the electromagnetic valve 115 is provided in the gas supply line 113 located in the welding machine 121.
  • the two-stage pressure reducer 112 since the two-stage pressure reducer 112 has a complicated structure, there is a problem that it is difficult to maintain. In addition, the two-stage decompressor 112 has a problem of high cost.
  • the present invention provides a gas supply device, a gas supply device with a mixing function, which can prevent a gas rush that occurs in the initial stage of gas extraction from a gas supply source, can reduce costs, and can improve maintainability. It is an object to provide a welding apparatus and a gas supply method.
  • a gas supply source filled with gas at a high pressure, and a one-stage pressure reduction provided at a gas outlet of the gas supply source to reduce the pressure of the gas derived from the gas supply source to a predetermined pressure.
  • a gas supply line having one end connected to the one-stage pressure reducer and the other end connected to the use destination of the gas, a solenoid valve provided in the gas supply line, the solenoid valve and the use
  • a gas supply apparatus comprising: a flow rate adjusting valve provided in the gas supply line located between the gas supply line and the gas supply line.
  • the constant flow valve provided in the gas supply line located downstream of the solenoid valve and the gas supply line located upstream of the solenoid valve are branched, and the constant flow valve is provided.
  • a pilot gas supply source that supplies pilot gas instead of the shield gas supply source, and a pilot gas supply line through which the pilot gas flows instead of the shield gas supply line are included ( The gas supply device according to any one of 1) to (4).
  • a plurality of the gas supply devices according to any one of (1) to (4) are provided, one end is connected to each shield gas supply line constituting the plurality of gas supply devices, and the other end is used.
  • a gas supply device with a mixing function comprising a line connected and having a function of mixing a plurality of shield gases.
  • An electromagnetic valve control unit that is electrically connected to and controls the electromagnetic valves constituting the plurality of gas supply devices, and the electromagnetic valve control unit is a current sensor using a magnetic core.
  • a welding device including the gas supply device according to any one of (1) to (4), wherein the use destination is a welding torch, and the gas supply device is a device that supplies the shield gas.
  • a welding apparatus characterized by being.
  • a decompression step for reducing the pressure of the shield gas derived from a shield gas supply source filled with a shield gas at a high pressure to a predetermined pressure, and one end of the decompression step
  • a flow rate adjusting valve disposed at the subsequent stage of the solenoid valve
  • a back pressure applying step of applying a back pressure in the shield gas supply line located on the upstream side of the flow regulating valve.
  • Example 1 the data shows the relationship between the instantaneous flow rate and the elapsed time when the flow rate of the shield gas is 5 L / min and the pressure setting on the outlet side (outlet side) of the gas supply source is 0.22 MPa.
  • Example 1 it is the data which show the relationship between the instantaneous flow rate and elapsed time when the flow rate of the shielding gas is 5 L / min and the pressure setting on the outlet side (outlet side) of the gas supply source is 0.22 MPa. .
  • Example 2 it is the data which shows the relationship between the instantaneous flow rate and elapsed time when the flow rate of shielding gas is 5 L / min and the pressure setting on the outlet side (outlet side) of the gas supply source is 0.7 MPa. .
  • the length of the gas supply line located between the solenoid valve and the flow rate adjusting valve constituting the welding apparatus shown in FIG. 1 is set to 5,300 m
  • the flow rate of the shield gas is set to 20 L / min
  • the gas is supplied.
  • Example 4 the length of the gas supply line located between the solenoid valve and the flow rate adjusting valve constituting the welding apparatus shown in FIG. 1 is 5300 m, the flow rate of the shield gas is 5 L / min, and the gas supply source It is data which show the relationship between the instantaneous flow rate and elapsed time when the pressure setting on the outlet side (outlet side) is 0.2 MPa. In Comparative Example 2, the data shows the relationship between the instantaneous flow rate and the elapsed time when the flow rate of the shielding gas is 20 L / min and the pressure setting on the outlet side (outlet side) of the gas supply source is 0.2 MPa. . It is a figure which shows schematic structure of the GMA welding apparatus which comprises the conventional gas supply apparatus. It is a figure which shows an example of the conventional 2 stage
  • FIG. 1 is a diagram schematically showing a schematic configuration of a welding apparatus according to the first embodiment of the present invention.
  • a GMA welding apparatus is illustrated as an example of a welding apparatus including the gas supply device 11.
  • the welding apparatus 10 includes a gas supply device 11, a GMA welding machine 13, a wire supply device 15, a welding torch 18, and a control device (not shown).
  • the gas supply device 11 includes a gas supply source 21, a single-stage decompressor 22, a gas supply line 23, an electromagnetic valve 24, a flow rate adjustment valve 25, and a flow meter 26.
  • the gas supply source 21 is filled with gas at high pressure.
  • a cylinder filled with a shielding gas at a high pressure for example, about 15 MPa
  • a high pressure for example, about 15 MPa
  • a case where a cylinder filled with shield gas is used will be described as an example.
  • the shielding gas can be appropriately selected depending on the material constituting the work piece (not shown).
  • the material of the workpiece is carbon steel or stainless steel, for example, carbon dioxide gas, mixed gas of argon and carbon dioxide, mixed gas of argon and oxygen, mixed gas of argon, helium and carbon dioxide, A mixed gas of argon, helium, and oxygen can be used.
  • the shielding gas can be selected depending on the thickness of the workpiece, and argon gas, a mixed gas of argon and helium (helium-rich mixed gas or Argon-rich mixed gas) or the like can be used.
  • a mixed gas of argon and hydrogen a mixed gas of argon, helium and hydrogen, a mixed gas of argon and nitrogen, a mixed gas of argon, helium and nitrogen, etc.can be used.
  • the first-stage decompressor 22 is provided in the gas outlet part of the gas supply source 21 and is connected to one end of the gas supply line 23.
  • the single-stage pressure reducer 22 has a simpler structure than the two-stage pressure reducer 112 used in the conventional apparatus shown in FIGS. 17 and 19 described above. Therefore, the first-stage decompressor 22 is a decompressor that is less expensive and has a higher maintainability than the two-stage decompressor 112.
  • the single-stage decompressor 22 reduces the pressure of the shield gas derived from the gas supply source 21 to about 0.2 MPa, for example.
  • the gas supply line 23 has one end connected to the one-stage decompressor 22 and the other end connected to a welding torch 18 where the shield gas is used.
  • the gas supply line 23 is a line for supplying the shield gas derived from the gas supply source 21 to the welding torch 18.
  • the electromagnetic valve 24 is provided in the gas supply line 23 in the wire feeder 15.
  • the flow rate adjustment valve 25 is provided in the gas supply line 23 located at the rear stage of the wire supply device 15 that houses the electromagnetic valve 24.
  • the flow rate adjustment valve 25 is provided in the gas supply line 23 located between the electromagnetic valve 24 and the welding torch 18.
  • the flow rate adjusting valve 25 may be any valve that can throttle the flow rate of the shield gas.
  • a needle valve can be used as the flow rate adjustment valve 25, for example, a needle valve can be used.
  • the flow meter 26 is provided in the gas supply line 23 located between the flow rate adjustment valve 25 and the welding torch 18.
  • the flow meter 26 measures the flow rate of the shield gas that has passed through the flow rate adjustment valve 25.
  • the electromagnetic valve 24 and the flow rate adjusting valve 25 described above are electrically connected to a control device (not shown) and are controlled by the control device (not shown).
  • the GMA welder 13 is provided in a gas supply line 23 located between the electromagnetic valve 24 and the one-stage decompressor 22.
  • the GMA welding machine 13 supplies electric power to the wire feeding device and the welding torch via the wire feeding device.
  • the wire supply device 15 is provided in a gas supply line 23 located between the flow rate adjustment valve 25 and the GMA welding machine 13 so as to accommodate the electromagnetic valve 24.
  • the wire supply device 15 supplies a wound wire (not shown) to the welding torch 18 at a predetermined supply speed.
  • the welding torch 18 has a contact tip (not shown).
  • electricity sent from the GMA welding machine 13 is supplied to a wire (not shown) via a contact tip (not shown).
  • the wire serves as both an electrode and a filler material, and an arc is formed from the tip of the wire by the current sent from the contact tip.
  • the shield gas supplied from the gas supply line 23 is injected, and the arc is protected from the atmosphere and at the same time the arc itself. Then, the wire is melted by arc plasma to form a droplet at the end of the wire, and this droplet receives an external force to detach from the end of the wire and transfer to the work piece (base material). Done.
  • the control device (not shown) is electrically connected to the GMA welding machine 13, the wire supply device 15, the electromagnetic valve 24, the flow rate adjustment valve 25, and the flow meter 26, and performs overall control of the welding device 10. .
  • the control device includes a storage unit (not shown) and a control unit (not shown).
  • the storage unit stores a program and the like for controlling the welding apparatus 10.
  • the control unit controls the welding apparatus 10 based on a program stored in the storage unit.
  • the gas supply device 11 described above, it is possible to prevent a rush of gas generated at the initial stage of deriving the shield gas from the gas supply source 21 (at the start of welding) and cost. Can be reduced and maintainability can be improved.
  • the gas supply device 11 of the first embodiment by having the flow rate adjustment valve 25 disposed downstream (downstream side) of the electromagnetic valve 24, the upstream side of the flow rate adjustment valve 25 when the electromagnetic valve 24 is opened and closed.
  • a back pressure is applied to the gas supply line located at a position where the pressure in the gas supply line 23 located between the first stage pressure reducer 22 and the solenoid valve 24 is the pressure on the outlet side of the first stage pressure reducer 22. It is possible to reduce the pressure difference closer to. As a result, it is possible to suppress pressure fluctuations when the electromagnetic valve 24 is opened and closed, and thus it is possible to prevent a rush of shield gas at the start of welding (in other words, at the start of supply of the shield gas).
  • the one-stage pressure reducer 22 and the flow rate adjusting valve 25 are lower in cost than the two-stage pressure reducer 112 used in the conventional apparatus shown in FIGS.
  • the configuration is simple. In other words, according to the gas supply device 11 of the first embodiment, it is possible to prevent a gas rush that occurs at the initial stage (at the start of welding) of deriving the shield gas from the gas supply source 21 and to reduce the cost of the gas supply device 11. In addition, the maintainability of the gas supply device 11 can be improved.
  • FIG. 1 a welding apparatus including one gas supply source 21 and one welding torch 18 that uses the gas is illustrated.
  • the present invention may be applied to one of the gas supply lines, and the same effect as the present invention can be obtained.
  • a GMA welding machine 13 a wire supply device 15, a solenoid valve 24, a flow rate adjustment valve 25, a flow meter 26, and a welding torch 18 are installed on one of the gas supply lines from the upstream side of the gas flow.
  • the shielding gas is supplied to the welding torch 18 through only one gas supply line 23 .
  • a branch gas line (not shown) may be provided, and the shield gas may be supplied to the tip of the welding torch 18 through the branch gas line.
  • a check valve (not shown) may be provided in the branch gas line.
  • the case where the pressure in the gas supply source 21 is high has been described as an example.
  • the pressure in the gas supply source 21 is low (for example, Even in the range of 0.1 to 1.0 MPa, gas rush can be prevented.
  • the gas supply device 11 of the first embodiment by increasing the distance between the electromagnetic valve 24 and the flow rate adjusting valve 25, it is possible to lengthen the time during which the residual gas flows when the electromagnetic valve 24 is closed. it can.
  • the time for afterflow performed after the welding process is increased. Since it becomes possible to lengthen, the oxidation of the electrode (not shown) which comprises the welding torch 18 can be suppressed.
  • At least one branch gas line (not shown) branched from the gas supply line 23. Since the flow of the shield gas is not interrupted, the oxidation of the electrode can be further suppressed.
  • the gas supply method of 1st Embodiment at the time of using the welding apparatus 10 shown in FIG. 1 is demonstrated.
  • the pressure is reduced using the one-stage pressure reducer 22 so that the pressure of the shield gas derived from the gas supply source 21 filled with the shield gas at a high pressure becomes a predetermined pressure.
  • the back pressure is applied to the gas supply line 23 located on the upstream side of the flow rate adjustment valve 25, whereby the one-stage pressure reducer 22.
  • the pressure in the gas supply line 23 located between the electromagnetic valve 24 and the pressure on the outlet side of the single-stage decompressor 22 can be reduced, thereby reducing the pressure difference. That is, since it becomes possible to suppress the pressure fluctuation at the time of opening and closing of the electromagnetic valve 24, the rush of shield gas can be prevented in the initial stage of welding.
  • the one-stage pressure reducer 22 and the flow rate adjusting valve 25 are lower in cost than the two-stage pressure reducer 112 used in the conventional apparatus shown in FIGS.
  • the configuration is simple. In other words, according to the gas supply apparatus gas supply method of the first embodiment, it is possible to prevent a gas rush that occurs at the initial stage (the initial stage of welding) in which the shield gas is derived from the gas supply source 21, and the gas supply apparatus 11 The cost can be reduced and the maintainability of the gas supply device 11 can be improved.
  • FIG. 2 is a diagram schematically showing a schematic configuration of a welding apparatus according to the second embodiment of the present invention.
  • a GTA welding apparatus is illustrated as an example of the welding apparatus 30 including the gas supply device 11.
  • the welding apparatus 30 of the second embodiment is for GTA instead of the GMA welding machine 13, the wire supply apparatus 15, and the welding torch 18 included in the welding apparatus 10 of the first embodiment. Except for having a welding machine 31 and a welding torch 32 and having a different arrangement position of the electromagnetic valve 24, the welding apparatus 10 is configured in the same manner.
  • the GTA welding machine 31 is provided in a gas supply line 23 located between the electromagnetic valve 24 and the one-stage decompressor 22.
  • the GTA welder 31 supplies power to the tungsten electrode of the welding torch 18.
  • the shield gas when the GTA welder 31 is used can be appropriately selected depending on the material constituting the workpiece (not shown).
  • the material to be welded is a metal such as carbon steel, aluminum, aluminum alloy, copper, and copper alloy
  • the shielding gas for example, a simple argon gas, a mixed gas of argon and helium, or the like can be used.
  • examples of the shielding gas include a mixed gas of argon and hydrogen, a mixed gas of argon, helium and hydrogen, a mixed gas of argon and nitrogen, and argon, helium and nitrogen.
  • a mixed gas or the like can be used.
  • the electromagnetic valve 24 is provided in the gas supply line 23 in the GTA welding machine 31.
  • the welding torch 32 is a welding torch for GTA welding, and is connected to the other end of the gas supply line 23.
  • the welding apparatus 30 (GTA welding apparatus) of this embodiment has the same gas supply apparatus 11 as the gas supply apparatus 11 included in the welding apparatus of the first embodiment, it is the same as the welding apparatus 10 of the first embodiment. An effect can be obtained.
  • the gas supply method of the second embodiment using the welding apparatus 30 can be performed by the same method as the gas supply method described in the first embodiment, and the same effect can be obtained.
  • FIG. 3 is a diagram schematically showing a schematic configuration of a welding apparatus according to a first modification of the second embodiment of the present invention.
  • the same components as those of the welding apparatus 30 of the second embodiment shown in FIG. 3 are identical components as those of the welding apparatus 30 of the second embodiment shown in FIG.
  • the welding apparatus 35 of the first modification of the second embodiment includes a GTA welding machine 31 that constitutes the welding apparatus 30 of the second embodiment, and is disposed outside the electromagnetic valve 24.
  • the GTA welding machine 31 is configured in the same manner as the welding device 30 except that the opening and closing of the electromagnetic valve 24 can be controlled.
  • the same effect as the welding apparatus 30 of the second embodiment having the gas supply device 11 can be obtained.
  • the solenoid valve 24 is installed independently, the maintenance of the solenoid valve 24 can be performed easily.
  • FIG. 4 is a diagram schematically showing a schematic configuration of a welding apparatus according to a second modification of the second embodiment of the present invention.
  • a welding device 40 according to a second modification of the second embodiment includes a solenoid valve 24, a flow rate adjustment valve 25, and a welding device 35 according to the first modification of the second embodiment.
  • the flowmeter 26 is configured in the same manner as the welding device 35 except that the electromagnetic valve control device 41 is integrated.
  • the welding device 40 having such a configuration also includes the gas supply device 11, the same effects as those of the welding device 35 according to the first modification of the second embodiment can be obtained.
  • FIG. 5 is a diagram schematically showing a schematic configuration of a welding apparatus according to the third embodiment of the present invention.
  • the same reference numerals are given to the same components as the structures shown in FIGS. 1 and 2 (specifically, welding apparatuses 10 and 30).
  • the welding device 45 of the third embodiment has a configuration of the welding device 10 of the first embodiment, a GTA welding machine 31, a welding torch 32, and a branch line 46 (second ), A solenoid valve 47 (another solenoid valve), a flow rate adjustment valve 48 (another flow rate adjustment valve), and a flow meter 49. Yes.
  • the branch line 46 is branched from the gas supply line 23 located between the one-stage pressure reducer 22 and the GMA welding machine 13, and is connected to the welding torch 32.
  • the electromagnetic valve 47 is provided in the branch line 46 and is accommodated in the GTA welder 31.
  • the flow rate adjustment valve 48 is provided in the branch line 46 located at the subsequent stage of the electromagnetic valve 47. As the flow rate adjustment valve 48, for example, the same flow rate adjustment valve 25 as described above can be used.
  • the GTA welding machine 31 is configured to be able to control the electromagnetic valve 47.
  • the welding apparatus 45 of the third embodiment configured as described above, two types of welding, GMA welding and GTA welding, can be performed, and the initial stage (welding of the shielding gas from the gas supply source 21) In the initial stage of the gas, it is possible to prevent gas rush.
  • the cost of the gas supply device 11 can be reduced and the maintainability of the gas supply device 11 can be improved.
  • the welding method of the third embodiment using the welding device 45 is the same as that of the second embodiment except that either the gas supply line 23 or the branch line 46 is selected as the line for supplying the shield gas. A similar effect can be obtained.
  • FIG. 6 is a diagram schematically showing a schematic configuration of a welding apparatus according to the fourth embodiment of the present invention.
  • the same components as those of the welding apparatus 10 shown in FIG. 6 are identical to the same components as those of the welding apparatus 10 shown in FIG.
  • the welding apparatus 50 according to the fourth embodiment is different from the gas supply apparatus 11 that constitutes the welding apparatus 10 according to the first embodiment except that a gas supply apparatus 51 is used. It is configured in the same way.
  • the gas supply device 51 has a branch line 53 (first branch line) and a constant flow valve 54 in place of the flow rate adjustment valve 25 constituting the gas supply device 11 described in the first embodiment.
  • the configuration is the same as that of the gas supply device 11.
  • the branch line 53 is a front stage of the electromagnetic valve 24, is further branched from the gas supply line 23 located in the front stage of the GMA welding machine 13, and is connected to the constant flow valve 54.
  • the constant flow valve 54 is provided in the gas supply line 23 located between the electromagnetic valve 24 and the flow meter 26.
  • the constant flow valve 54 has a function of changing the supply amount of the shield gas supplied to the flow meter 26 side according to the pressure on the upstream side of the gas supply line 23 transmitted to the constant flow valve 54 via the branch line 53.
  • the constant flow valve 54 is a mechanism that maintains a preset gas flow rate. If the pressure on the upstream side of the gas supply line 23 is increased, the flow path to be supplied to the flow meter 26 side is reduced. If the pressure on the upstream side of the gas supply line 23 is reduced, the flow path to be supplied to the flow meter 26 side. Increase As the constant flow valve 54, for example, a flow control valve, a flow control valve, or the like can be used.
  • the gas supply device 51 of the fourth embodiment by having the branch line 53 and the constant flow valve 54, the gas supply located upstream of the constant flow valve 54 when the electromagnetic valve 24 is opened and closed.
  • the constant flow valve 54 applies a back pressure in the gas supply line 23 located on the upstream side of the constant flow valve 54.
  • the pressure in the gas supply line 23 located between the first stage pressure reducer 22 and the electromagnetic valve 24 can be brought close to the pressure on the outlet side of the first stage pressure reducer 22, and the pressure difference can be reduced. Become.
  • the one-stage pressure reducer 22 and the constant flow valve 54 are compared with the two-stage pressure reducer 112 used in the conventional apparatus shown in FIGS.
  • the cost is low and the configuration is simple. That is, according to the gas supply device 51 of the fourth embodiment, it is possible to prevent a rush of shield gas that is generated at the initial stage of deriving the shield gas from the gas supply source 21 (at the start of welding), and to reduce the cost of the gas supply device 11. While being able to reduce, the maintainability of the gas supply apparatus 51 can be improved.
  • the welding device 50 having the gas supply device 51 can obtain the same effects as the gas supply device 51. Further, the gas supply device 51 can supply a shield gas by the same method (gas supply method) as the gas supply measure 11 described in the first embodiment.
  • branch position of the branch line 53 a case where the branch line 53 is branched from the gas supply line 23 positioned between the one-stage decompressor 22 and the GMA welding machine 13 is taken as an example.
  • the branch position of the branch line 53 should just be the front
  • the case where the shielding gas is supplied to the welding torch 18 through only one gas supply line 23 has been described as an example.
  • at least one branch gas line (not shown) branched from the gas supply line 23 may be provided, and the shield gas may be supplied to the tip of the welding torch 18 via the branch gas line.
  • the case where the pressure in the gas supply source 21 is high has been described as an example.
  • the gas supply device 51 described above has a low pressure in the gas supply source 21 (for example, Even in the range of 0.1 to 1.0 MPa, gas rush can be prevented.
  • the gas supply device 51 of the fourth embodiment by increasing the distance between the solenoid valve 24 and the constant flow valve 54, it is possible to lengthen the time during which the residual gas flows when the solenoid valve 24 is closed. it can. In this way, by increasing the distance between the solenoid valve 24 and the constant flow valve 54 and increasing the time during which the residual gas flows when the solenoid valve 24 is closed, the time of afterflow performed after the welding process is increased. Since it becomes possible to lengthen, the oxidation of the electrode (not shown) which comprises the welding torch 18 can be suppressed.
  • FIG. 7 is a diagram schematically showing a schematic configuration of a welding apparatus according to the fifth embodiment of the present invention.
  • the same reference numerals are given to the same components as the structures shown in FIGS. 2 and 6 (specifically, the welding apparatuses 30 and 50).
  • the welding apparatus 60 of the fifth embodiment is different from the gas supply apparatus 51 described in FIG. 6 in place of the gas supply apparatus 11 constituting the welding apparatus 30 of the second embodiment. Is configured in the same manner as the welding apparatus 30.
  • the welding device 60 of the fifth embodiment configured as described above can obtain the same effects as the welding device 50 of the fourth embodiment.
  • the gas supply device 51 shown in FIGS. 6 and 7 may be used instead of the gas supply device 11 constituting the welding devices 35, 40, and 45 shown in FIGS. 3, 4, and 5. Further, in the welding device 45 shown in FIG. 5, the gas supply device 11 and the gas supply device 51 may be used.
  • the gas supply device 11 or the gas supply device 51 is applied to the welding devices 10, 30, 35, 40, 45, 50, 60 is described as an example.
  • the gas supply devices 11 and 51 may be used for supplying gas in fields other than welding.
  • the gas supply apparatuses 11 and 51 can be used in combination with other apparatuses in which gas rush flow is a problem, including, for example, a gas mixer.
  • FIG. 8 is a diagram illustrating an example of a gas supply device with a mixing function that can use three types of shield gas.
  • the gas supply device 70 with a mixing function includes a first shield gas supply line 71 that supplies a first shield gas, and a second shield gas supply line 72 that supplies a second shield gas.
  • the third shield gas supply line 73 for supplying the third shield gas, the solenoid valves 76 to 78, the solenoid valve controller 79, the flow meters 81 to 83, the dollar valves 85 to 87, and the check valve 91 To 93 and a single-stage pressure reducer (not shown).
  • the first shield gas supply line 71 has one end connected to a first shield gas supply source (not shown) that supplies the first shield gas, and the other end connected to one end of the line 74.
  • One end of the second shield gas supply line 72 is connected to a second shield gas supply source (not shown) that supplies the second shield gas, and the other end is connected to one end of the line 74.
  • the third shield gas supply line 73 has one end connected to a third shield gas supply source (not shown) that supplies a third shield gas, and the other end connected to one end of the line 74.
  • the solenoid valve 76, the flow meter 81, the needle valve 85, and the check valve 91 are provided in the first shield gas supply line 71.
  • the electromagnetic valve 76, the flow meter 81, the needle valve 85, and the check valve 91 are arranged in this order with respect to the direction from the first shield gas supply source (not shown) toward the line 74.
  • the electromagnetic valve 77, the flow meter 82, the needle valve 86, and the check valve 92 are provided in the second shield gas supply line 72.
  • the electromagnetic valve 77, the flow meter 82, the needle valve 86, and the check valve 92 are arranged in this order with respect to the direction from the second shield gas supply source (not shown) toward the line 74.
  • the electromagnetic valve 78, the flow meter 83, the needle valve 87, and the check valve 93 are provided in the third shield gas supply line 73.
  • the electromagnetic valve 78, the flow meter 83, the needle valve 87, and the check valve 93 are arranged in this order with respect to the direction from the third shield gas supply source (not shown) toward the line 74.
  • a gas mixer (not shown) may be provided at the intersection of the first to third shield gas supply lines 71 to 73.
  • the solenoid valves 76 to 78 are electrically connected to the solenoid valve control unit 79.
  • the other end of the line 74 is connected to the welding torch 75.
  • the electromagnetic valve control unit 79 performs opening / closing control of the electromagnetic valves 76 to 78.
  • the line 74 functions as a gas mixing unit that mixes at least two types of shield gases. It is also possible to supply only one type of shield gas.
  • the first shield gas supply line 71 located before the solenoid valve 76, the second shield gas supply line 72 located before the solenoid valve 77, and the third shield gas supply line 73 located before the solenoid valve 78 include Each is provided with a single-stage decompressor (not shown). That is, the gas supply device 70 with a mixing function includes a plurality of gas supply devices including a shield gas supply line, an electromagnetic valve, a flow meter, a needle valve, and a check valve.
  • the type of shield gas supplied to the welding torch 75 is changed or mixed so as to have a desired composition depending on the welding target and the welding timing.
  • the shield gas can be supplied to the welding torch 75.
  • the electromagnetic valve control unit 79 for example, manual operation (switch), wiring work for existing equipment, or opening / closing control of the electromagnetic valves 76 to 78 can be performed by a current sensor using a magnetic core. In particular, when a split-type current sensor or a clamp-type current sensor is used, the presence or absence of current in the wiring for controlling other existing valves or the wiring for controlling a welding robot, etc.
  • the opening and closing of the electromagnetic valves 76 to 78 used in the apparatus using the shield gas mixer can be controlled in accordance with the presence or absence of the current (that is, the movement of the valve or the like controlled by the current). .
  • the case where the shield gas is supplied has been described as an example.
  • pilots are provided around the electrodes constituting the welding torches 18, 32, and 75. Gas may be supplied, and at the same time, shielding gas may be supplied to shield the welded part from the atmosphere.
  • a pilot gas supply source that supplies pilot gas instead of the shield gas supply source, and a pilot gas supply line through which pilot gas flows instead of the shield gas supply line.
  • the present invention can also be applied to such supply of pilot gas, and the effects as described above can be expected.
  • Example 1 Shielding gas when a shielding gas is supplied using the welding apparatus 10 shown in FIG. 1 (hereinafter referred to as “Example 1”) and the welding apparatus 100 shown in FIG. 17 (hereinafter referred to as “Comparative Example 1”).
  • Example 1 Shielding gas when a shielding gas is supplied using the welding apparatus 10 shown in FIG. 1 (hereinafter referred to as “Example 1”) and the welding apparatus 100 shown in FIG. 17 (hereinafter referred to as “Comparative Example 1”).
  • the pressure fluctuation in the supply lines 23 and 113 was examined. Pressure fluctuations are visually observed by installing digital pressure gauges between the shield gas supply source 21 and the solenoid valve 24 (upstream side) and between the shield gas supply source 111 and the solenoid valve 115 (upstream side). The pressure fluctuation was observed.
  • the pressure setting on the outlet side (outlet side) of the shield gas supply sources 21 and 111 when the flow rate of the shield gas is 20 L / min is 0.2 MPa, and the shield when the flow rate of the shield gas is 5 L / min.
  • the pressure setting on the outlet side (outlet side) of the gas supply sources 21 and 111 was set to 0.22 MPa.
  • the inner diameter of the shield gas supply lines 23 and 113 was 6 mm.
  • the length of the shield gas supply line 23 located between the shield gas supply source 21 and the electromagnetic valve 24 and the length of the shield gas supply line 113 located between the shield gas supply source 111 and the electromagnetic valve 115 are also shown.
  • the length of the shield gas supply line 113 located between the electromagnetic valve 24 and the flow rate adjustment valve 25 was 300 mm.
  • a needle valve (JNMU6 (model number)) manufactured by Pisco Corporation was used as the flow rate adjustment valve 25.
  • Example 1 the pressure fluctuation range could be reduced to about 1/21 to 1/6 of the pressure fluctuation range of Comparative Example 1 without depending on the supply amount of the shielding gas. . Further, in Example 1, it was confirmed that the shield gas rises quickly when the solenoid valve is opened, and the fall when the solenoid valve is closed is earlier than that of Comparative Example 1.
  • FIGS. 9 shows the relationship between the instantaneous flow rate and elapsed time when the flow rate of the shield gas is 20 L / min and the pressure setting on the outlet side (outlet side) of the shield gas supply source is 0.2 MPa in Comparative Example 1. It is data which shows.
  • FIG. 10 shows the relationship between the instantaneous flow rate and elapsed time when the shield gas flow rate is 20 L / min and the pressure setting on the outlet side (outlet side) of the shield gas supply source is 0.2 MPa in Example 1.
  • FIG. 11 shows the relationship between the instantaneous flow rate and the elapsed time when the shield gas flow rate is 5 L / min and the pressure setting on the outlet side (outlet side) of the shield gas supply source is 0.22 MPa in Comparative Example 1.
  • FIG. 12 shows the relationship between the instantaneous flow rate and the elapsed time when the flow rate of the shield gas is 5 L / min and the pressure setting on the outlet side (outlet side) of the shield gas supply source is 0.22 MPa in Example 1.
  • the “instantaneous flow rate” shown in FIGS. 9 to 12 refers to the flow rate of the gas that flows instantaneously when the solenoid valve is opened. The flow of gas that is instantaneously generated when the solenoid valve is opened is called rush current.
  • Example 2 Using the welding apparatus 10 shown in FIG. 1, only the pressure setting on the outlet side (outlet side) of the shield gas supply source 21 when the flow rate of the shield gas is 5 L / min is changed from 0.22 MPa to 0.7 MPa, Other than this, the above-described conditions, digital pressure gauge, and mass flow meter were used to examine the pressure fluctuation in the shield gas supply line 23 when the shield gas was supplied, and the relationship between the instantaneous flow rate and the elapsed time.
  • FIG. 13 shows the relationship between the instantaneous flow rate and the elapsed time when the flow rate of the shield gas is 5 L / min and the pressure setting on the outlet side (outlet side) of the shield gas supply source is 0.7 MPa.
  • the pressure was 0.7 to 0.71 MPa, and the pressure fluctuation range was 0.01 MPa. Even when the flow rate of the shielding gas was changed from 5 L / min to 20 L / min, it was 0.7 to 0.71 MPa, and the pressure fluctuation range was 0.01 MPa. As shown in FIG. 13, even when the pressure on the outlet side (outlet side) of the shield gas supply source 21 was increased, it was confirmed that there was no shield gas rush.
  • Example 2 In the welding apparatus 10 shown in FIG. 1, except that the length of the shield gas supply line 23 located between the electromagnetic valve 24 and the flow rate adjusting valve 25 is changed from 300 mm (data shown in FIG. 10) to 5,300 mm. , Instantaneous flow rate and elapsed time under the same conditions (shield gas flow rate: 20 L / min, shield gas supply outlet (outlet side) pressure setting: 0.2 MPa) as the data shown in FIG. Data showing the relationship between The result is shown in FIG. In the case of FIG.
  • Example 4 In the welding apparatus 10 shown in FIG. 1, except that the length of the shield gas supply line 23 located between the electromagnetic valve 24 and the flow rate adjustment valve 25 is changed from 300 mm (data shown in FIG. 12) to 5,300 mm.
  • the instantaneous flow rate and elapsed time under the same conditions as when the data shown in FIG. 12 was acquired (the flow rate of the shield gas: 5 L / min and the pressure setting on the outlet side (outlet side) of the shield gas supply source is 0.22 MPa) Data showing the relationship with time was obtained. The result is shown in FIG.
  • the present invention is applicable to a gas supply device that supplies shield gas to a user, a gas supply device with a mixing function including a plurality of gas supply devices, a welding device, and a gas supply method.
  • Second shield gas supply line 73 ... third shield gas supply Line, 76, 77, 78 ... Solenoid valve, 79 ... Solenoid valve controller, 74 ... Line, 75 ... Welding torch, 76-78 ... Solenoid valve, 79 ... Solenoid valve controller, 81-83 ... Flow meter, 85-87 ... Needle valve, 91-93 ... Check valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本発明は、シールドガス供給源からシールドガスを導出初期に発生するシールドガスの突流を防止可能で、かつコストを低減、及びメンテナンス性の向上を図ることの可能なガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法を提供することを課題とし、高圧でシールドガスが充填されたシールドガス供給源(21)と、シールドガス供給源(21)のシールドガス導出口に設けられ、シールドガス供給源(21)から導出されたシールドガスの圧力を所定の圧力まで減圧させる1段式減圧器(22)と、一端が一段式減圧器(22)に接続され、他端がシールドガスの使用先に接続されたシールドガス供給ライン(23)と、シールドガス供給ライン(23)に設けられた電磁弁(24)と、電磁弁(24)と使用先との間に位置するシールドガス供給ライン(23)に設けられた流量調整弁(25)とを有する。

Description

ガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法
 本発明は、ガスを使用先に供給するガス供給装置、複数のガス供給装置を含む混合機能付きガス供給装置、ガス供給装置を含む溶接装置、及びガス供給方法に関する。
 本願は、2015年9月28日に、日本に出願された特願2015-189080号に基づき優先権を主張し、その内容をここに援用する。
 従来、ガスが高圧で充填されたガス供給源から使用先にガスを供給する際に、ガス供給源(例えば、ボンベ)から導出するガスの圧力を十分に小さくして、使用先に供給している。
 このような技術(ガス供給装置)は、アーク溶接を実施するアーク溶接装置にも適用されている。
 アーク溶接は、コストや汎用性の高さから最も広く用いられている溶接プロセスであり、非消耗電極を用いるGas Tungsten Arc溶接(以下、「GTA溶接」という)と、消耗電極を用いるGas Metal Arc溶接(以下、「GMA溶接」という)とに大別される。
 GTA溶接は、高融点金属(例えば、タングステン)を陰極の材料として用い、陰極と、陽極となる母材との間に発生するアーク放電を介してプラズマを生成し、これを熱源として母材を溶融接合する。
 一方、GMA溶接では、溶接ワイヤを陽極とし、母材を陰極とする。GMA溶接では、アークプラズマにより、溶接ワイヤを溶融させることでワイヤ端に溶滴を形成し、この溶滴が外力を受けてワイヤ端を離脱し、母材へと移行することで溶接を行う方法である。
 図17は、従来のガス供給装置を具備するGMA溶接装置の概略構成を示す図である。
 次に、図17を参照して、従来のGMA溶接装置100について説明する。
 従来のGMA溶接装置100は、ガス供給装置101と、溶接機103と、ワイヤ供給装置105と、溶接トーチ106とを有する。
 ガス供給装置101は、ガス供給源111と、2段式減圧器112と、ガス供給ライン113と、電磁弁115とを有する。
 ガス供給源111としては、例えば、高圧でシールドガスが充填されたボンベを用いることができる。
 2段式減圧器112は、ガス供給源111のガス導出部に設けられており、ガス供給ライン113の一端に接続されている。2段式減圧器112は、ガスが高圧充填されたガス供給源111からガスを導出する初期の段階(溶接時の初期段階)において発生しやすいシールドガスの突流(所望の流量よりも一時的に多くのガスが放出される現象)を抑制することで、シールドガスを節約する機能を有する。2段式減圧器112としては、例えば、特許文献1に開示されたガス調整器を用いることができる。
 図18は、従来の2段式減圧器の一例を示す図である。
 ここで、図18を参照して、従来の2段式減圧器116の一例について説明する。
 従来の2段式減圧器116は、継手116Aと、1段目減圧部116Bと、調整圧力計116Cと、2段目減圧部116Fと、ノズル116Eと、流量計116Dとを有する。
 高圧ガスは、継手116Aから1段目減圧部116Bに導入され、所定の圧力まで減圧される。このガスは、更に2段目減圧部116Fに導入され、使用する圧力まで減圧され、ノズル116Eから取り出される。このガス使用量は、流量計116Dに指示される。なお、継手116Aに導入される圧力は調整圧力計116Cに指示される。
 ガス供給ライン113は、その他端が溶接トーチ106に接続されている。ガス供給ライン113は、シールドガスを溶接トーチ106に供給する。
 電磁弁115は、ワイヤ供給装置105内に位置するガス供給ライン113に設けられている。電磁弁115が開くと、溶接トーチ106にシールドガスが供給される。
 溶接機103は、2段式減圧器112の後段に位置するガス供給ライン113に設けられている。
 ワイヤ供給装置105は、溶接トーチ106にワイヤを供給する。溶接トーチ106は、被溶接物(図示せず)の溶接を行う。
 図19は、従来のガス供給装置を含んだGTA溶接装置の概略構成を示す図である。
 次に、図19を参照して、従来のGTA溶接装置120について説明する。
 従来のGTA溶接装置120は、図17に示すGMA溶接装置100を構成するワイヤ供給装置105を構成要素から除くとともに、溶接機103及び溶接トーチ106に替えて溶接機121及び溶接トーチ122を有し、かつ電磁弁115の配設位置が異なること以外は、GMA溶接装置100と同様に構成されている。
 溶接機121は、2段式減圧器112と溶接トーチ122との間に位置するガス供給ライン113に設けられている。電磁弁115は、溶接機121内に位置するガス供給ライン113に設けられている。
実公昭62-113875号公報
 しかしながら、2段式減圧器112は、複雑な構造であるため、メンテナンスしにくいという問題があった。
 また、2段式減圧器112は、コストが高いという問題もあった。
 そこで、本発明は、ガス供給源からガスを導出初期に発生するガスの突流を防止可能で、かつコストを低減でき、かつメンテナンス性の向上が可能なガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法を提供することを課題とする。
 上記課題を解決するため、以下のガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法を提供する。
(1)高圧でガスが充填されたガス供給源と、前記ガス供給源のガス導出口に設けられ、前記ガス供給源から導出された前記ガスの圧力を所定の圧力まで減圧させる1段式減圧器と、一端が前記1段式減圧器と接続され、他端が前記ガスの使用先と接続されたガス供給ラインと、前記ガス供給ラインに設けられた電磁弁と、前記電磁弁と前記使用先との間に位置する前記ガス供給ラインに設けられた流量調整弁とを有することを特徴とするガス供給装置。
(2)前記流量調整弁に替えて、前記電磁弁の後段に位置する前記ガス供給ラインに設けられた定流量弁と、前記電磁弁の前段に位置する前記ガス供給ラインから分岐され、前記定流量弁と接続された第1の分岐ラインとを有することを特徴とする(1)記載のガス供給装置。
(3)前記流量調整弁は、ニードル弁であることを特徴とする(1)記載のガス供給装置。
(4)前記流量調整弁の後段に位置する前記ガス供給ラインに設けられ、前記ガスの流量を計測する流量計を有することを特徴とする(1)または(3)記載のガス供給装置。
(5)前記シールドガス供給源に替えて、パイロットガスを供給するパイロットガス供給源と、前記シールドガス供給ラインに替えて、前記パイロットガスが流れるパイロットガス供給ラインとを含むことを特徴とする(1)から(4)のいずれかに記載のガス供給装置。
(6)(1)から(4)のいずれかに記載のガス供給装置を複数有し、一端が複数の前記ガス供給装置を構成する各シールドガス供給ラインと接続され、他端が使用先と接続され、複数のシールドガスを混合させる機能を有するラインを含むことを特徴とする混合機能付きガス供給装置。
(7)前記複数のガス供給装置を構成する電磁弁と電気的に接続され、該電磁弁を制御する電磁弁制御部を含み、前記電磁弁制御部は、磁気コアを用いた電流センサであることを特徴とする(6)記載の混合機能付きガス供給装置。
(8)(1)から(4)のいずれかに記載のガス供給装置を有する溶接装置であって、前記使用先が溶接トーチであり、前記ガス供給装置が、前記シールドガスを供給する装置であることを特徴とする溶接装置。
(9)(1)から(4)のいずれかに記載のガス供給装置と、前記電磁弁と前記1段減圧器との間に位置する前記シールドガス供給ラインに設けられたGMA用溶接機と、前記1段式減圧器と前記GMA用溶接機との間に位置する前記シールドガス供給ラインから分岐された第2の分岐ラインと、前記第2の分岐ラインに設けられた他の電磁弁と、前記他の電磁弁の後段に位置する前記第2の分岐ラインに設けられた他の流量調整弁と、前記他の電磁弁を制御可能なGTA用溶接機とを有することを特徴とする溶接装置。
(10)1段式減圧器を用いて、高圧でシールドガスが充填されたシールドガス供給源から導出された前記シールドガスの圧力が所定の圧力となるように減圧させる減圧工程と、一端が前記1段式減圧器と接続され、他端が前記シールドガスの使用先と接続されたシールドガス供給ラインに設けられた電磁弁の開閉時において、該電磁弁の後段に配置された流量調整弁により、該流量調整弁の上流側に位置する前記シールドガス供給ライン内に背圧を印加する背圧印加工程とを有することを特徴とするガス供給方法。
(11)前記使用先として、溶接トーチを用い、前記シールドガスを用いることを特徴とする(10)記載のガス供給方法。
(12)前記シールドガスに替えて、パイロットガスを供給することを特徴とする(10)または(11)記載のガス供給方法。
 本発明によれば、ガス供給源からガスを導出初期に発生するガスの突流を防止でき、かつコストを低減でき、かつメンテナンス性の向上を図ることができる。
本発明の第1実施形態に係る溶接装置の概略構成を模式的に示す図である。 本発明の第2実施形態に係る溶接装置の概略構成を模式的に示す図である。 本発明の第2実施形態の第1変形例に係る溶接装置の概略構成を模式的に示す図である。 本発明の第2実施形態の第2変形例に係る溶接装置の概略構成を模式的に示す図である。 本発明の第3実施形態に係る溶接装置の概略構成を模式的に示す図である。 本発明の第4実施形態に係る溶接装置の概略構成を模式的に示す図である。 本発明の第5実施形態に係る溶接装置の概略構成を模式的に示す図である。 3種類のシールドガスを使用可能な混合機能付きガス供給装置の一例を示す図である。 比較例1において、シールドガスの流量を20L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.2MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 実施例1において、シールドガスの流量を20L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.2MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 比較例1において、シールドガスの流量を5L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.22MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 実施例1において、シールドガスの流量を5L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.22MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 実施例2において、シールドガスの流量を5L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.7MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 実施例3において、図1に示す溶接装置を構成する電磁弁と流量調整弁との間に位置するガス供給ラインの長さを5,300mとし、シールドガスの流量を20L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.2MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 実施例4において、図1に示す溶接装置を構成する電磁弁と流量調整弁との間に位置するガス供給ラインの長さを5300mとし、シールドガスの流量を5L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.2MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 比較例2において、シールドガスの流量を20L/minとし、ガス供給源の導出口側(出口側)の圧力設定を0.2MPaとしたときの瞬時流量と経過時間との関係を示すデータである。 従来のガス供給装置を具備するGMA溶接装置の概略構成を示す図である。 従来の2段式減圧器の一例を示す図である。 従来のガス供給装置を具備するGTA溶接装置の概略構成を示す図である。
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の溶接装置、ガス供給装置、及び混合機能付きガス供給装置の寸法関係とは異なる場合がある。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る溶接装置の概略構成を模式的に示す図である。なお、図1では、ガス供給装置11を含む溶接装置の一例として、GMA溶接装置を図示する。
 図1に示されるように、溶接装置10は、ガス供給装置11と、GMA用溶接機13と、ワイヤ供給装置15と、溶接トーチ18と、制御装置(図示せず)とを有する。
 ガス供給装置11は、ガス供給源21と、1段式減圧器22と、ガス供給ライン23と、電磁弁24と、流量調整弁25と、流量計26とを有する。
 ガス供給源21には、高圧でガスが充填されている。ガス供給源21としては、例えば、高圧(例えば、15MPa程度)でシールドガスが充填されたボンベを用いることができる。以下、ガス供給源21の一例として、シールドガスが充填されたボンベを用いた場合を例に挙げて説明する。
 上記シールドガスは、被溶接物(図示せず)を構成する材料によって適宜選択することができる。被溶接物の材料が炭素鋼やステンレス鋼の場合には、例えば、二酸化炭素ガス、アルゴンと二酸化炭素との混合ガス、アルゴンと酸素との混合ガス、アルゴンとヘリウムと二酸化炭素との混合ガス、アルゴンとヘリウムと酸素の混合ガス等を用いることができる。
 また、被溶接物の材料がアルミニウムまたはアルミニウム合金の場合には、被溶接物の厚さによってシールドガスを選択することができ、アルゴンガス、アルゴンとヘリウムとの混合ガス(ヘリウムリッチの混合ガスまたはアルゴンリッチの混合ガス)等を用いることができる。
 一方、被溶接物の材料がステンレスの場合は、アルゴンと水素との混合ガス、アルゴンとヘリウムと水素との混合ガス、アルゴンと窒素との混合ガス、アルゴンとヘリウムと窒素との混合ガス等を用いることができる。
 1段式減圧器22は、ガス供給源21のガス導出部に設けられており、ガス供給ライン23の一端に接続されている。1段式減圧器22は、先に説明した図17及び図19に示す従来の装置で使用されている2段式減圧器112よりも簡単な構造を有する。そのため、1段式減圧器22は、2段式減圧器112と比較して、コストが安く、かつメンテナンス性の高い減圧器である。
 ガス供給源21内の圧力が15MPaである場合、1段式減圧器22は、例えば、ガス供給源21から導出されるシールドガスの圧力を0.2MPa程度まで減圧する。
 ガス供給ライン23は、その一端が1段式減圧器22に接続されており、他端がシールドガスの使用先である溶接トーチ18に接続されている。ガス供給ライン23は、ガス供給源21から導出されたシールドガスを、溶接トーチ18に供給するためのラインである。
 電磁弁24は、ワイヤ送給装置15内のガス供給ライン23に設けられている。
 流量調整弁25は、電磁弁24を収容するワイヤ供給装置15の後段に位置するガス供給ライン23に設けられている。言い換えれば、流量調整弁25は、電磁弁24と溶接トーチ18との間に位置するガス供給ライン23に設けられている。
 流量調整弁25は、シールドガスの流量を絞ることの可能な弁であればよい。流量調整弁25としては、例えば、ニードル弁を用いることができる。
 流量計26は、流量調整弁25と溶接トーチ18との間に位置するガス供給ライン23に設けられている。流量計26は、流量調整弁25を通過したシールドガスの流量を計測する。
 上述した電磁弁24、及び流量調整弁25は、制御装置(図示せず)と電気的に接続されており、制御装置(図示せず)により制御される。
 GMA用溶接機13は、電磁弁24と、1段式減圧器22との間に位置するガス供給ライン23に設けられている。GMA用溶接機13は、ワイヤ送給装置と、ワイヤ送給装置を介して溶接トーチとに電力を供給する。
 ワイヤ供給装置15は、電磁弁24を収容するように、流量調整弁25とGMA用溶接機13との間に位置するガス供給ライン23に設けられている。ワイヤ供給装置15は、溶接トーチ18に対して、巻回されたワイヤ(図示せず)を所定の供給速度を供給する。
 溶接トーチ18は、コンタクトチップ(図示せず)を有する。溶接トーチ18は、GMA用溶接機13から送られてきた電気がコンタクトチップ(図示せず)を介して、ワイヤ(図示せず)に供給される。
 上記ワイヤは、電極と溶加材とを兼ねており、ワイヤの先端からは、コンタクトチップから送られてきた電流によりアークが形成される。
 溶接トーチ18からは、ガス供給ライン23から供給されたシールドガスが噴射され、アークを大気から保護すると同時にアークそのものともなる。
 そして、アークプラズマにより、ワイヤを溶融させることでワイヤ端に溶滴を形成し、この溶滴が外力を受けてワイヤ端を離脱し、被溶接物(母材)へと移行することにより溶接が行われる。
 制御装置(図示せず)は、GMA用溶接機13、ワイヤ供給装置15、電磁弁24、流量調整弁25、及び流量計26と電気的に接続されており、溶接装置10の制御全般を行う。
 制御装置(図示せず)は、記憶部(図示せず)と、制御部(図示せず)とを有する。記憶部には、溶接装置10の制御を行うためのプログラム等が格納されている。制御部は、記憶部に格納されたプログラムに基づいて、溶接装置10の制御を行う。
 第1実施形態の溶接装置10によれば、上述したガス供給装置11を有することで、ガス供給源21からシールドガスを導出初期(溶接開始時)に発生するガスの突流を防止でき、かつコストを低減できるとともに、メンテナンス性を向上させることができる。
 第1実施形態のガス供給装置11によれば、電磁弁24の後段(下流側)に配置された流量調整弁25を有することで、電磁弁24の開閉時において、流量調整弁25の上流側に位置するガス供給ライン内に背圧を印加して、1段式減圧器22と電磁弁24との間に位置するガス供給ライン23内の圧力を1段式減圧器22の出口側の圧力に近づけて圧力差を小さくすることが可能となる。
 これにより、電磁弁24の開閉時における圧力変動を抑制することが可能となるので、溶接開始時(言い換えれば、シールドガス供給開始時)にシールドガスの突流を防止することができる。
 また、1段式減圧器22及び流量調整弁25(例えば、ニードル弁)は、図17及び図19に示す従来の装置で使用されている2段式減圧器112と比較して、コストが低く、かつ簡単な構成とされている。
 つまり、第1実施形態のガス供給装置11によれば、ガス供給源21からシールドガスを導出する初期(溶接開始時)に発生するガスの突流を防止でき、かつガス供給装置11のコストを低減できるとともに、ガス供給装置11のメンテナンス性を向上させることもできる。
 なお、図1では、1台のガス供給源21とそのガスを使用する1台の溶接トーチ18とを具備する溶接装置を図示した。
 しかしながら、溶接作業の多い工場では、1台の大型ガス供給源と、1台の1段式減圧器とを設置し、そこからの減圧ガスを複数のガス供給ラインに供給する場合がある。
 このような場合には、ガス供給ラインの一つに対して、本願発明を適用してもよく、本願発明と同様な効果を得ることができる。
 例えば、ガス供給ラインの一つに対して、ガスの流れの上流から、GMA用溶接機13、ワイヤ供給装置15、電磁弁24、流量調整弁25、流量計26及び溶接トーチ18を設置し、電磁弁24の開閉時において、流量調整弁25の上流側に位置するガス供給ライン内に圧力を印加して、ガス供給源と、電磁弁24との間に位置するガス供給ライン23内の圧力をガス供給源の圧力に近づけ、これにより圧力差を小さくすることで、上記効果と同様な効果を得ることができる。
 なお、第1実施形態では、1つのガス供給ライン23のみを介して、溶接トーチ18にシールドガスを供給する場合を例に挙げて説明したが、例えば、ガス供給ライン23から分岐した少なくとも1つの分岐ガスライン(図示せず)を設け、該分岐ガスラインを介して、溶接トーチ18の先端にシールドガスを供給してもよい。この場合、上記分岐ガスラインに、逆止弁(図示せず)を設けるとよい。
 このように、分岐ガスラインに逆止弁を設けることで、アークが発生している状態で、シールドガスを供給するラインを切り替えた場合でも、トーチ先端と逆止弁との距離が短いため、ガスの切替が早く、突流防止機能によりアークの乱れを抑制することができる。
 また、第1実施形態では、一例として、ガス供給源21内の圧力が高い場合を例に挙げて説明したが、上述したガス供給装置11は、ガス供給源21内の圧力が低い場合(例えば、0.1~1.0MPaの範囲内)でも、ガスの突流を防止することができる。
 また、第1実施形態のガス供給装置11では、電磁弁24と流量調整弁25との間の距離を長くすることで、電磁弁24を閉じた場合の残ガスの流れる時間を長くすることができる。
 このように、電磁弁24と流量調整弁25との間の距離を長くして、電磁弁24を閉じた場合の残ガスの流れる時間を長くすることで、溶接処理後に行うアフターフローの時間を長くすることが可能となるので、溶接トーチ18を構成する電極(図示せず)の酸化を抑制することができる。
 アークの発生中にシールドガスを切り替える場合には、ガス供給ライン23から分岐した少なくとも1つの分岐ガスライン(図示せず)を設けることが好ましい。シールドガスの流れが途切れることがなくなるので、より電極の酸化を抑制することができる。
 次に、図1を参照して、図1に示す溶接装置10を用いた場合の第1実施形態のガス供給方法について説明する。
 第1実施形態のガス供給方法は、高圧でシールドガスが充填されたガス供給源21から導出されたシールドガスの圧力が所定の圧力となるように、1段式減圧器22を用いて減圧させる減圧工程と、一端が1段式減圧器22と接続され、他端がシールドガスの溶接トーチ18(使用先)と接続されたガス供給ライン23に設けられた電磁弁24の開閉時において、電磁弁24の後段に配置された流量調整弁25により、流量調整弁25の上流側に位置するガス供給ライン23内に背圧を印加する背圧印加工程とを有する。
 第1実施形態のガス供給方法によれば、電磁弁24の開閉時において、流量調整弁25の上流側に位置するガス供給ライン23内に背圧を印加することで、1段式減圧器22と電磁弁24との間に位置するガス供給ライン23内の圧力を1段式減圧器22の出口側の圧力に近づけ、これにより圧力差を小さくすることが可能となる。
 つまり、電磁弁24の開閉時における圧力変動を抑制することが可能となるので、溶接の初期段階において、シールドガスの突流を防止することができる。
 また、1段式減圧器22及び流量調整弁25(例えば、ニードル弁)は、図17及び図19に示す従来の装置で使用されている2段式減圧器112と比較して、コストが低く、かつ簡単な構成とされている。
 つまり、第1実施形態のガス供給装置ガス供給方法によれば、ガス供給源21からシールドガスを導出する初期(溶接の初期段階)に発生するガスの突流を防止でき、かつガス供給装置11のコストを低減できるとともに、ガス供給装置11のメンテナンス性を向上させることができる。
 (第2実施形態)
 図2は、本発明の第2実施形態に係る溶接装置の概略構成を模式的に示す図である。なお、図2では、ガス供給装置11を含む溶接装置30の一例として、GTA溶接装置を図示する。
 図2に示されるように、第2実施形態の溶接装置30は、第1実施形態の溶接装置10が具備するGMA用溶接機13、ワイヤ供給装置15、及び溶接トーチ18に替えて、GTA用溶接機31、及び溶接トーチ32を有し、かつ電磁弁24の配設位置が異なること以外は、溶接装置10と同様に構成される。
 GTA用溶接機31は、電磁弁24と1段式減圧器22との間に位置するガス供給ライン23に設けられている。GTA用溶接機31は、溶接トーチ18のタングステン電極に対して電力を供給する。
 GTA用溶接機31を用いた場合のシールドガスは、被溶接物(図示せず)を構成する材料によって適宜選択することができる。被溶接物の材料が、炭素鋼、アルミニウム、アルミニウム合金、銅、及び銅合金等の金属の場合、シールドガスとしては、例えば、アルゴン単体ガス、アルゴンとヘリウムとの混合ガス等が使用できる。
 一方、被溶接物の材料がステンレスの場合、シールドガスとしては、例えば、アルゴンと水素との混合ガス、アルゴンとヘリウムと水素との混合ガス、アルゴンと窒素との混合ガス、アルゴンとヘリウムと窒素との混合ガス等を用いることができる。
 電磁弁24は、GTA用溶接機31内のるガス供給ライン23に設けられている。
 溶接トーチ32は、GTA溶接用の溶接トーチであり、ガス供給ライン23の他端に接続されている。
 本実施形態の溶接装置30(GTA溶接装置)は、第1実施形態の溶接装置が具備するガス供給装置11と同様のガス供給装置11を有するので、第1実施形態の溶接装置10と同様な効果を得ることができる。
 また、溶接装置30を用いた第2実施形態のガス供給方法は、第1実施形態で説明したガス供給方法と同様な手法で行うことができ、同様な効果を得ることができる。
 図3は、本発明の第2実施形態の第1変形例に係る溶接装置の概略構成を模式的に示す図である。なお、図3において、図2に示す第2実施形態の溶接装置30と同一構成部分には、同一符号を付す。
 図3に示されるように、第2実施形態の第1変形例の溶接装置35は、第2実施形態の溶接装置30を構成するGTA用溶接機31が電磁弁24の外側に配置され、かつGTA用溶接機31により電磁弁24の開閉を制御可能な構成とされていること以外は、溶接装置30と同様に構成される。
 このような構成とされた溶接装置35においても、ガス供給装置11を有する第2実施形態の溶接装置30と同様な効果を得ることができる。
 また、本変形例の溶接装置35では、電磁弁24が独立して設置されるため、電磁弁24のメンテナンスを容易に行うことができる。
 図4は、本発明の第2実施形態の第2変形例に係る溶接装置の概略構成を模式的に示す図である。なお、図4において、図3に示す第2実施形態の第1変形例に係る溶接装置35と同一構成部分には、同一符号を付す。
 図4に示されるように、第2実施形態の第2変形例の溶接装置40は、第2実施形態の第1変形例に係る溶接装置35を構成する電磁弁24、流量調整弁25、及び流量計26をまとめて、電磁弁制御装置41としたこと以外は、溶接装置35と同様に構成されている。
 このような構成とされた溶接装置40においても、ガス供給装置11を有するので、第2実施形態の第1変形例に係る溶接装置35と同様な効果を得ることができる。
 (第3実施形態)
 図5は、本発明の第3実施形態に係る溶接装置の概略構成を模式的に示す図である。なお、図5において、図1及び図2に示す構造体(具体的には、溶接装置10、30)と同一構成部分には、同一符号を付す。
 図5に示されるように、第3実施形態の溶接装置45は、第1実施形態の溶接装置10の構成に、さらに、GTA用溶接機31と、溶接トーチ32と、分岐ライン46(第2の分岐ライン)と、電磁弁47(他の電磁弁)と、流量調整弁48(他の流量調整弁)と、流量計49とを有すること以外は、溶接装置10と同様な構成とされている。
 分岐ライン46は、1段式減圧器22とGMA用溶接機13との間に位置するガス供給ライン23から分岐されており、溶接トーチ32に接続されている。
 電磁弁47は、分岐ライン46に設けられるとともに、GTA用溶接機31内に収容されている。
 流量調整弁48は、電磁弁47の後段に位置する分岐ライン46に設けられている。流量調整弁48としては、例えば、先に説明した流量調整弁25と同様なものを用いることができる。
 GTA用溶接機31は、電磁弁47を制御可能な構成とされている。
 上記構成とされた第3実施形態の溶接装置45によれば、GMA溶接とGTA溶接との2種類の溶接を行うことが可能になるとともに、ガス供給源21からシールドガスを導出する初期(溶接の初期段階)に発生するガスの突流を防止できる。
 また、ガス供給装置11のコストを低減できるとともに、ガス供給装置11のメンテナンス性を向上させることができる。
 また、溶接装置45を用いた第3実施形態の溶接方法は、シールドガスを供給するラインとして、ガス供給ライン23または分岐ライン46のどちらかを選択すること以外は、第2実施形態で同様な手法で行うことができ、同様な効果を得ることができる。
 (第4実施形態)
 図6は、本発明の第4実施形態に係る溶接装置の概略構成を模式的に示す図である。なお、図6において、図1に示す溶接装置10と同一構成部分には、同一符号を付す。
 図6に示されるように、第4実施形態の溶接装置50は、第1実施形態の溶接装置10を構成するガス供給装置11に替えて、ガス供給装置51を用いること以外は、溶接装置10と同様に構成されている。
 ガス供給装置51は、第1実施形態で説明したガス供給装置11を構成する流量調整弁25に替えて、分岐ライン53(第1の分岐ライン)と、定流量弁54とを有すること以外は、ガス供給装置11と同様に構成されている。
 分岐ライン53は、電磁弁24の前段であり、さらにGMA用溶接機13の前段に位置するガス供給ライン23から分岐されており、定流量弁54に接続されている。
 定流量弁54は、電磁弁24と流量計26との間に位置するガス供給ライン23に設けられている。定流量弁54は、分岐ライン53を介して、定流量弁54に伝送されるガス供給ライン23の上流側の圧力に応じて、流量計26側に供給するシールドガスの供給量を変化させる機能を有する。
 定流量弁54は、あらかじめ設定したガス流量を維持する機構である。ガス供給ライン23の上流側の圧力が高くなれば、流量計26側に供給する流路を小さくし、ガス供給ライン23の上流側の圧力が低くなれば、流量計26側に供給する流路を大きくする。
 定流量弁54としては、例えば、フローコントロールバルブ、流調バルブ等を用いることができる。
 第4実施形態のガス供給装置51によれば、上記の通り、分岐ライン53及び定流量弁54を有することで、電磁弁24の開閉時において、定流量弁54の上流側に位置するガス供給ライン23の圧力に応じて、定流量弁54の上流側に位置するガス供給ライン23内に定流量弁54が背圧を印加する。1段式減圧器22と電磁弁24との間に位置するガス供給ライン23内の圧力を1段式減圧器22の出口側の圧力に近づけることができ、圧力差を小さくすることが可能となる。
 これにより、電磁弁24の開閉時における圧力変動を抑制することが可能となるので、溶接開始時(言い換えれば、シールドガス供給開始時)にシールドガスの突流を防止することができる。
 また、1段式減圧器22及び定流量弁54(例えば、フローコントロールバルブ、流調バルブ)は、図17及び図19に示す従来の装置で使用されている2段式減圧器112と比較して、コストが低く、かつ簡単な構成とされている。
 つまり、第4実施形態のガス供給装置51によれば、ガス供給源21からシールドガスを導出する初期(溶接開始時)に発生するシールドガスの突流を防止でき、かつガス供給装置11のコストを低減できるとともに、ガス供給装置51のメンテナンス性を向上させることができる。
 また、上記ガス供給装置51を有する溶接装置50は、ガス供給装置51と同様な効果を得ることができる。
 また、上記ガス供給装置51は、第1実施形態で説明したガス供給措置11と同様な手法(ガス供給方法)で、シールドガスを供給することができる。
 なお、図6では、分岐ライン53の分岐位置の一例として、1段式減圧器22とGMA用溶接機13との間に位置するガス供給ライン23から分岐ライン53を分岐させた場合を例に挙げて説明したが、分岐ライン53の分岐位置は、電磁弁24の前段であればよく、図6に示す分岐位置に限定されない。
 また、第4実施形態では、1つのガス供給ライン23のみを介して、溶接トーチ18にシールドガスを供給する場合を例に挙げて説明した。しかしながら、例えば、ガス供給ライン23から分岐した少なくとも1つの分岐ガスライン(図示せず)を設け、該分岐ガスラインを介して、溶接トーチ18の先端にシールドガスを供給してもよい。この場合、上記分岐ガスラインに、逆止弁(図示せず)を設けるとことが好ましい。
 このように、分岐ガスラインに逆止弁を設けることで、アークが発生している状態で、シールドガスを供給するラインを切り替えた場合でも、トーチ先端と逆止弁との距離が短いため、ガスの切替が早く、突流防止機能によりアークが乱れることを抑制することができる。
 また、第4実施形態では、一例として、ガス供給源21内の圧力が高い場合を例に挙げて説明したが、上述したガス供給装置51は、ガス供給源21内の圧力が低い場合(例えば、0.1~1.0MPaの範囲内)でも、ガスの突流を防止することができる。
 また、第4実施形態のガス供給装置51において、電磁弁24と定流量弁54との間の距離を長くすることで、電磁弁24を閉じた場合の残ガスの流れる時間を長くすることができる。
 このように、電磁弁24と定流量弁54との間の距離を長くして、電磁弁24を閉じた場合の残ガスの流れる時間を長くすることで、溶接処理後に行うアフターフローの時間を長くすることが可能となるので、溶接トーチ18を構成する電極(図示せず)の酸化を抑制することができる。
 特に、ガス供給ライン23から分岐した少なくとも1つの分岐ガスライン(図示せず)を設け、アークの発生中にシールドガスを切り替える場合には、シールドガスの流れが途切れることがなくなるので、より電極の酸化を抑制することができる。
 (第5実施形態)
 図7は、本発明の第5実施形態に係る溶接装置の概略構成を模式的に示す図である。なお、図7において、図2及び図6に示す構造体(具体的には、溶接装置30、50)と同一構成部分には、同一符号を付す。
 図7に示されるように、第5実施形態の溶接装置60は、第2実施形態の溶接装置30を構成するガス供給装置11に替えて、図6で説明したガス供給装置51を用いること以外は、溶接装置30と同様に構成されている。
 このような構成とされた第5実施形態の溶接装置60は、第4実施形態の溶接装置50と同様な効果を得ることができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明はかかる特定実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、図3、図4、及び図5に示す溶接装置35、40、45を構成するガス供給装置11に替えて、図6及び図7に示すガス供給装置51を用いてもよい。
 また、図5に示す溶接装置45において、ガス供給装置11と、ガス供給装置51とを用いてもよい。
 また、第1から第5実施形態では、一例として、溶接装置10、30、35、40、45、50、60にガス供給装置11またはガス供給装置51を適用した場合を例に挙げて説明したが、溶接以外の分野のガスの供給に、ガス供給装置11、51を用いてもよい。
 具体的には、ガス供給装置11、51は、例えば、ガス混合器などを含む、そのほかのガス突流が問題となる装置と組み合わせて用いることができる。
 図8は、3種類のシールドガスを使用可能な混合機能付きガス供給装置の一例を示す図である。
 図8に示されるように、混合機能付きガス供給装置70は、第1のシールドガスを供給する第1シールドガス供給ライン71と、第2のシールドガスを供給する第2シールドガス供給ライン72と、第3のシールドガスを供給する第3シールドガス供給ライン73と、電磁弁76~78と、電磁弁制御部79と、流量メータ81~83とにドル弁85~87と、逆止弁91~93と、一段式減圧器(図示せず)とを有する。
 第1シールドガス供給ライン71は、その一端が第1のシールドガスを供給する第1シールドガス供給源(図示せず)と接続されており、他端がライン74の一端に接続されている。第2シールドガス供給ライン72は、その一端が第2のシールドガスを供給する第2シールドガス供給源(図示せず)と接続されており、他端がライン74の一端に接続されている。第3シールドガス供給ライン73は、その一端が第3のシールドガスを供給する第3シールドガス供給源(図示せず)と接続されており、他端がライン74の一端に接続されている。
 電磁弁76、流量メータ81、ニードル弁85、及び逆止弁91は、第1シールドガス供給ライン71に設けられている。電磁弁76、流量メータ81、ニードル弁85、及び逆止弁91は、この順番で、第1シールドガス供給源(図示せず)からライン74に向かう方向に対して配置されている。
 電磁弁77、流量メータ82、ニードル弁86、及び逆止弁92は、第2シールドガス供給ライン72に設けられている。電磁弁77、流量メータ82、ニードル弁86、及び逆止弁92は、この順番で、第2シールドガス供給源(図示せず)からライン74に向かう方向に対して配置されている。
  電磁弁78、流量メータ83、ニードル弁87、及び逆止弁93は、第3シールドガス供給ライン73に設けられている。電磁弁78、流量メータ83、ニードル弁87、及び逆止弁93は、この順番で、第3シールドガス供給源(図示せず)からライン74に向かう方向に対して配置されている。また、第1から第3のシールドガス供給ライン71~73の交差部に、ガスミキサー(図示せず)を設けてもよい。
 電磁弁76~78は、電磁弁制御部79と電気的に接続されている。ライン74は、その他端が溶接トーチ75に接続されている。電磁弁制御部79は、電磁弁76~78の開閉制御を行う。
 ライン74は、少なくとも2種類のシールドガスを混合するガス混合部として機能する。なお、1種類のシールドガスのみを供給することも可能である。
 電磁弁76の前段に位置する第1シールドガス供給ライン71、電磁弁77の前段に位置する第2シールドガス供給ライン72、及び電磁弁78の前段に位置する第3シールドガス供給ライン73には、それぞれ一段式減圧器(図示せず)が設けられている。
 つまり、混合機能付きガス供給装置70は、シールドガス供給ライン、電磁弁、流量メータ、ニードル弁、及び逆止弁よりなるガス供給装置を複数含んだ構成とされている。
 上記構成とされた混合機能付きガス供給装置70を用いることで、溶接の対象や溶接のタイミングによって、溶接トーチ75に供給するシールドガスの種類を変更したり、所望の組成となるように混合されたシールドガスを溶接トーチ75に供給したりすることができる。また、溶接トーチ(75)の手前のライン(74)にバッファータンクを取り付けても良い。
 上記電磁弁制御部79としては、例えば、手動操作(スイッチ)、既存設備に対し配線作業、或いは磁気コアを利用した電流センサ等により電磁弁76~78の開閉制御を行うことができる。又、特に、分割式電流センサやクランプ式電流センサを用いる場合、専門知識を必要とせずに、既存の他の弁を制御する配線や、溶接ロボット等を制御する配線の電流の有無を感知し、それらの電流の有無(つまり、それらの電流によって制御される弁等の動き)に対応して、上記シールドガス混合器を用いる装置で使用する電磁弁76~78の開閉を制御することができる。
 なお、第1から第5実施形態、及び図8では、一例として、シールドガスを供給する場合を例に挙げて説明したが、溶接トーチ18、32、75を構成する電極の周りには、パイロットガスが供給され、同時に溶接部分を大気から遮断するシールドガスも供給される場合がある。
 この場合、シールドガス供給源に替えて、パイロットガスを供給するパイロットガス供給源と、シールドガス供給ラインに替えて、パイロットガスが流れるパイロットガス供給ラインとを設ける必要がある。本発明は、このようなパイロットガスの供給にも適用することができ、上述したような効果が期待できる。
 以下、実験例について説明するが、本発明は、下記実験例に限定されない。
(実験例1)
[実施例1および比較例1]
 図1に示す溶接装置10(以下、「実施例1」という)と、図17に示す溶接装置100(以下、「比較例1」という)とを用いて、シールドガスを供給した際のシールドガス供給ライン23、113内の圧力変動を調べた。
 圧力変動は、シールドガス供給源21と電磁弁24との間(上流側)およびシールドガス供給源111と電磁弁115との間(上流側)に、それぞれデジタル圧力計を設置して、目視にて圧力の変動を観察した。
 このとき、シールドガスの流量が20L/minのときのシールドガス供給源21、111の導出口側(出口側)の圧力設定を0.2MPaとし、シールドガスの流量が5L/minのときのシールドガス供給源21、111の導出口側(出口側)の圧力設定を0.22MPaとした。
 シールドガス供給ライン23、113の内径は、φ6mmとした。また、シールドガス供給源21と電磁弁24との間に位置するシールドガス供給ライン23の長さ、及びシールドガス供給源111と電磁弁115との間に位置するシールドガス供給ライン113の長さは、5,000mmとした。
 そして、電磁弁24と流量調整弁25との間に位置するシールドガス供給ライン113の長さは、300mmとした。
 また、流量調整弁25として、ピスコ社製のニードル弁(JNMU6(型番))を用いた。
 この結果、比較例1では、シールドガスの流量が20L/minのときの圧力は、0.04~0.22MPaの範囲で変動し、圧力の変動幅が0.18MPaであった。
 一方、実施例1では、シールドガスの流量が20L/minのときの圧力は、0.2~0.23MPaの範囲で変動し、圧力の変動幅が0.03MPaであった。
 また、比較例1では、シールドガスの流量が5L/minのときの圧力は、0.01~0.22MPaの範囲で変動し、圧力の変動幅が0.21MPaであった。
 一方、実施例1では、シールドガスの流量が20L/minのときの圧力は、0.22~0.23MPaの範囲で変動し、圧力の変動幅が0.01MPaであった。
 上記結果から、シールドガスの供給量に依存することなく、実施例1では、比較例1の圧力変動幅の1/21~1/6程度まで圧力変動幅を小さくすることができることが確認できた。
 また、実施例1は、比較例1と比較して、電磁弁を開にしたときのシールドガスの立ち上がりが早く、電磁弁を閉にした時の立下りも早いことが確認できた。
 次に、上記条件にて、電磁弁24、115が開いた際のシールドガスの流量の変動をアズビル社製のマスフローメータ(CMS0050(型番))を用いて調べた。この結果を図9~図12に示す。
 図9は、比較例1において、シールドガスの流量が20L/minとし、シールドガス供給源の導出口側(出口側)の圧力設定を0.2MPaとしたときの瞬時流量と経過時間との関係を示すデータである。
 図10は、実施例1において、シールドガスの流量が20L/minとし、シールドガス供給源の導出口側(出口側)の圧力設定を0.2MPaとしたときの瞬時流量と経過時間との関係を示すデータである。
 図11は、比較例1において、シールドガスの流量が5L/minとし、シールドガス供給源の導出口側(出口側)の圧力設定を0.22MPaとしたときの瞬時流量と経過時間との関係を示すデータである。
 図12は、実施例1において、シールドガスの流量が5L/minとし、シールドガス供給源の導出口側(出口側)の圧力設定を0.22MPaとしたときの瞬時流量と経過時間との関係を示すデータである。
 なお、図9~図12に示す「瞬時流量」とは、電磁弁を開にした際、瞬時に流れたガスの流量のことをいう。そして、電磁弁を開にした際に瞬時に発生するガスの流れのことを突流という。
 図9~図12に示されるように、比較例1では、シールドガスの流量の大きさに関わらず、シールドガスの供給開始後に突流が発生していることが確認できた。また、図9及び図12の結果から、シールドガスの流量が少ないと、突流が大きくなることが確認できた。
 一方、実施例1では、シールドガスの流量の大きさに関わらず、シールドガスの供給開始後に突流が発生していないことが確認できた。
 [実施例2]
  図1に示す溶接装置10を用い、シールドガスの流量が5L/minのときのシールドガス供給源21の導出口側(出口側)の圧力設定のみを0.22MPaから0.7MPaに変更し、これ以外は、上述した条件、デジタル圧力計、及びマスフローメータを用いて、シールドガスを供給した際のシールドガス供給ライン23内の圧力変動、及び瞬時流量と経過時間との関係について調べた。
 図13に、シールドガスの流量が5L/minとし、シールドガス供給源の導出口側(出口側)の圧力設定を0.7MPaとしたときの瞬時流量と経過時間との関係を示す。
 圧力は、0.7~0.71MPaであり、圧力変動幅は、0.01MPaであった。なお、シールドガスの流量が5L/minを20L/minに変更した場合にも、0.7~0.71MPaであり、圧力変動幅は、0.01MPaであった。
 図13に示されるように、シールドガス供給源21の導出口側(出口側)の圧力を高くした場合でも、シールドガスの突流がないことが確認できた。
 (実験例2)
[実施例3]
 図1に示す溶接装置10において、電磁弁24と流量調整弁25との間に位置するシールドガス供給ライン23の長さを300mm(図10に示すデータ)から5,300mmに変更したこと以外は、図10に示すデータを取得したときと同じ条件(シールドガスの流量:20L/min、シールドガス供給源の導出口側(出口側)の圧力設定:0.2MPa)で、瞬時流量と経過時間との関係を示すデータを取得した。この結果を図14に示す。 図10の場合(電磁弁24と流量調整弁25との間に位置するシールドガス供給ライン23の長さを300mmの場合)、電磁弁を開けた時点からシールドガスの流量が安定するまでの時間は2秒かかり、電磁弁を閉じた時点から残ガスがゼロになるまでの時間は1.9秒かかった。
 なお、ここでの「残ガス」とは、シールドガス供給ライン23に残存するガスのことをいう。
 図14に示すように、実施例3では、電磁弁を開けた時点からシールドガスの流量が安定するまでの時間は2秒かかり、電磁弁を閉じた時点から残ガスがゼロになるまでの時間は0.8秒かかった。
 また、実施例3では、シールドガスの突流は確認できなかった。 
[実施例4]
 図1に示す溶接装置10において、電磁弁24と流量調整弁25との間に位置するシールドガス供給ライン23の長さを300mm(図12に示すデータ)から5,300mmに変更したこと以外は、図12に示すデータを取得したときと同じ条件(シールドガスの流量:5L/minとし、シールドガス供給源の導出口側(出口側)の圧力設定を0.22MPa)で、瞬時流量と経過時間との関係を示すデータを取得した。この結果を図15に示す。 
 図12の場合(電磁弁24と流量調整弁25との間に位置するシールドガス供給ライン23の長さを300mmの場合)には、電磁弁を開けた時点からシールドガスの流量が安定するまでの時間は0.85秒かかり、電磁弁を閉じた時点から残ガスがゼロになるまでの時間は0.6秒かかった。
 一方、実施例4では、図15に示すように、電磁弁を開けた時点からシールドガスの流量が安定するまでの時間は0.85秒かかり、電磁弁を閉じた時点から残ガスがゼロになるまでの時間は7秒かかった。
 この結果から、電磁弁24と流量調整弁25との間に位置するシールドガス供給ライン23の長さが長くなると、電磁弁24を閉じた時点から残ガスがゼロになるまでの時間が長くなることが確認できた。
 また、実施例4では、シールドガスの突流は確認できなかった。
[比較例2]
 図1に示す溶接装置10が具備する流量調整弁25に替えて、アズビル社製のマスフローコントローラ(CMS0050(型番))を用いて、図10のデータを取得時に使用した条件(シールドガスの流量:20L/min、シールドガス供給源の導出口側(出口側)の圧力設定:0.2MPa)にて、瞬時流量と経過時間との関係を示すデータを取得した。この結果を図16に示す。
 図16に示されるように、マスフローコントローラを用いた場合、スタートから18秒間は、シールドガスの流量が安定しないことが確認できた。
 本発明は、シールドガスを使用先に供給するガス供給装置、複数のガス供給装置を含む混合機能付きガス供給装置、溶接装置、及びガス供給方法に適用可能である。
10、30、35、40、45、50、60…溶接装置、11、51…ガス供給装置、13…GMA用溶接機、15…ワイヤ供給装置、18、32…溶接トーチ、21…シールドガス供給源、22…1段式減圧器、23…シールドガス供給ライン、24、47…電磁弁、25、48…流量調整弁、26、49…流量計、31…GTA用溶接機、41…電磁弁制御装置、46、53…分岐ライン、54…定流量弁、70…混合機能付きガス供給装置、71…第1シールドガス供給ライン、72…第2シールドガス供給ライン、73…第3シールドガス供給ライン、76、77、78…電磁弁、79…電磁弁制御部、74…ライン、75…溶接トーチ、76~78…電磁弁、79…電磁弁制御部、81~83…流量メータ、
85~87…ニードル弁、91~93…逆止弁

Claims (12)

  1.  高圧でシールドガスが充填されたシールドガス供給源と、
     前記シールドガス供給源のシールドガス導出口に設けられ、前記シールドガス供給源から導出された前記シールドガスの圧力を所定の圧力まで減圧させる1段式減圧器と、
     一端が前記1段式減圧器と接続され、他端が前記シールドガスの使用先と接続されたシールドガス供給ラインと、
     前記シールドガス供給ラインに設けられた電磁弁と、
     前記電磁弁と前記使用先との間に位置する前記シールドガス供給ラインに設けられた流量調整弁とを有することを特徴とするガス供給装置。
  2.  前記流量調整弁に替えて、前記電磁弁の後段に位置する前記シールドガス供給ラインに設けられた定流量弁と、
     前記電磁弁の前段に位置する前記シールドガス供給ラインから分岐され、前記定流量弁と接続された第1の分岐ラインとを有することを特徴とする請求項1記載のガス供給装置。
  3.  前記流量調整弁は、ニードル弁であることを特徴とする請求項1記載のガス供給装置。
  4.  前記流量調整弁の後段に位置する前記シールドガス供給ラインに設けられ、前記シールドガスの流量を計測する流量計を有することを特徴とする請求項1または3記載のガス供給装置。
  5.  前記シールドガス供給源に替えて、パイロットガスを供給するパイロットガス供給源と、
     前記シールドガス供給ラインに替えて、前記パイロットガスが流れるパイロットガス供給ラインとを含むことを特徴とする請求項1から4のいずれか1項記載のガス供給装置。
  6.  請求項1から4のいずれか1項記載のガス供給装置を複数有し、
     一端が複数の前記ガス供給装置を構成する各シールドガス供給ラインと接続され、他端が使用先と接続され、複数のシールドガスを混合させる機能を有するラインを含むことを特徴とする混合機能付きガス供給装置。
  7.  前記複数のガス供給装置を構成する電磁弁と電気的に接続され、該電磁弁を制御する電磁弁制御部を含み、
     前記電磁弁制御部は、磁気コアを用いた電流センサであることを特徴とする請求項6記載の混合機能付きガス供給装置。
  8.  請求項1から4のいずれか1項記載のガス供給装置を有する溶接装置であって、
     前記使用先が溶接トーチであり、
     前記ガス供給装置が、前記シールドガスを供給する装置であることを特徴とする溶接装置。
  9.  請求項1から4のいずれか1項記載のガス供給装置と、
     前記電磁弁と前記1段減圧器との間に位置する前記シールドガス供給ラインに設けられたGMA用溶接機と、
     前記1段式減圧器と前記GMA用溶接機との間に位置する前記シールドガス供給ラインから分岐された第2の分岐ラインと、
     前記第2の分岐ラインに設けられた他の電磁弁と、
     前記他の電磁弁の後段に位置する前記第2の分岐ラインに設けられた他の流量調整弁と、
     前記他の電磁弁を制御可能なGTA用溶接機とを有することを特徴とする溶接装置。
  10.  1段式減圧器を用いて、高圧でシールドガスが充填されたシールドガス供給源から導出された前記シールドガスの圧力が所定の圧力となるように減圧させる減圧工程と、
     一端が前記1段式減圧器と接続され、他端が前記シールドガスの使用先と接続されたシールドガス供給ラインに設けられた電磁弁の開閉時において、該電磁弁の後段に配置された流量調整弁により、該流量調整弁の上流側に位置する前記シールドガス供給ライン内に背圧を印加する背圧印加工程とを有することを特徴とするガス供給方法。
  11.  前記使用先として、溶接トーチを用い、
     前記シールドガスを用いることを特徴とする請求項10記載のガス供給方法。
  12.  前記シールドガスに替えて、パイロットガスを供給することを特徴とする請求項10または11記載のガス供給方法。
PCT/JP2016/078525 2015-09-28 2016-09-27 ガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法 WO2017057400A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017543453A JP6766058B2 (ja) 2015-09-28 2016-09-27 ガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法
SG11201801342TA SG11201801342TA (en) 2015-09-28 2016-09-27 Gas supply device, gas supply device having mixing function, welding device, and gas supply method
US15/754,354 US20180290229A1 (en) 2015-09-28 2016-09-27 Gas supply device, gas supply device having mixing function, welding device, and gas supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015189080 2015-09-28
JP2015-189080 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017057400A1 true WO2017057400A1 (ja) 2017-04-06

Family

ID=58423617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078525 WO2017057400A1 (ja) 2015-09-28 2016-09-27 ガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法

Country Status (4)

Country Link
US (1) US20180290229A1 (ja)
JP (1) JP6766058B2 (ja)
SG (1) SG11201801342TA (ja)
WO (1) WO2017057400A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109514053A (zh) * 2017-09-19 2019-03-26 株式会社达谊恒 焊接系统
US20220219256A1 (en) * 2021-01-08 2022-07-14 Clay Hubler Orbital welding purge systems
WO2024084317A1 (en) * 2022-10-17 2024-04-25 Esab Ab Method for mixing fluids for a plasma cutting torch

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10537958B2 (en) 2016-08-15 2020-01-21 Illinois Tool Works Inc. System and method for controlling shielding gas flow in a welding device
US20210283724A1 (en) * 2020-03-11 2021-09-16 Illinois Tool Works Inc. Smart manifolds for welding-type systems
US11938574B2 (en) * 2021-01-22 2024-03-26 Illinois Tool Works Inc. Gas surge prevention using improved flow regulators in welding-type systems
US11801482B2 (en) 2021-02-17 2023-10-31 Illinois Tool Works Inc. Mixing fluids in welding-type equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148825A (en) * 1976-06-07 1977-12-10 Shirou Sakurai Automatic gaseous material feeders
JPS607500U (ja) * 1983-06-28 1985-01-19 三菱重工業株式会社 ガスの供給圧力遠隔制御装置
JPH09314332A (ja) * 1996-05-22 1997-12-09 Ondo Kogyo Kk 溶接方法及び溶接装置
JP2009502504A (ja) * 2005-07-20 2009-01-29 ティーアールアイ・トゥール・インコーポレーテッド 構成可能なデュアルプロセス溶接ヘッドおよびその構成方法
JP2011202685A (ja) * 2010-03-24 2011-10-13 Taiyo Nippon Sanso Corp 高圧ガスの定量供給装置および定量供給方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO326154B1 (no) * 2002-04-02 2008-10-06 Weltec As System og fremgangsmate for styring av dekkgassforsyning til et tradsveiseapparat.
US7019248B1 (en) * 2005-02-22 2006-03-28 Gerald Daniel Uttrachi Welding shielding gas flow-control device
US20080053965A1 (en) * 2006-02-24 2008-03-06 Scott Laymon Method of mixing shielding gases for welding
NO328089B1 (no) * 2007-09-03 2009-11-30 Weltec As Dekkgasstromningsstyrer for et sveiseapparat
JP2011002026A (ja) * 2009-06-18 2011-01-06 Jtekt Corp 回動付勢機構及びこれを備えたプーリ装置
US20130112660A1 (en) * 2011-11-08 2013-05-09 Lincoln Global, Inc. Welding torch with gas flow control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148825A (en) * 1976-06-07 1977-12-10 Shirou Sakurai Automatic gaseous material feeders
JPS607500U (ja) * 1983-06-28 1985-01-19 三菱重工業株式会社 ガスの供給圧力遠隔制御装置
JPH09314332A (ja) * 1996-05-22 1997-12-09 Ondo Kogyo Kk 溶接方法及び溶接装置
JP2009502504A (ja) * 2005-07-20 2009-01-29 ティーアールアイ・トゥール・インコーポレーテッド 構成可能なデュアルプロセス溶接ヘッドおよびその構成方法
JP2011202685A (ja) * 2010-03-24 2011-10-13 Taiyo Nippon Sanso Corp 高圧ガスの定量供給装置および定量供給方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109514053A (zh) * 2017-09-19 2019-03-26 株式会社达谊恒 焊接系统
US20220219256A1 (en) * 2021-01-08 2022-07-14 Clay Hubler Orbital welding purge systems
WO2024084317A1 (en) * 2022-10-17 2024-04-25 Esab Ab Method for mixing fluids for a plasma cutting torch

Also Published As

Publication number Publication date
JPWO2017057400A1 (ja) 2018-07-19
US20180290229A1 (en) 2018-10-11
SG11201801342TA (en) 2018-04-27
JP6766058B2 (ja) 2020-10-07

Similar Documents

Publication Publication Date Title
WO2017057400A1 (ja) ガス供給装置、混合機能付きガス供給装置、溶接装置、及びガス供給方法
US8129652B2 (en) Welding stability system and method
US7326875B2 (en) Method for supplying a plasma torch with a gas, mixed gas, or gas mixture, comprising volumetric flow regulation in combination with pressure regulation; and arrangement for carrying out said method
KR20000034947A (ko) 단락 회로형 용접기
JP2007275971A (ja) プラズマトーチ
EP3670061A1 (en) Hybrid electroslag cladding
EP3501717A1 (en) System for the electronic regulation of the flow of protective gas in welding equipment
US20150027997A1 (en) Welding torch, welding apparatus and method of welding using hollow electrode and filler material
WO2008091280A2 (en) Outer-loop control for use shielding gas
JP2019051546A (ja) 溶接システム
WO2017057380A1 (ja) プラズマ溶接方法
WO2015098603A1 (ja) プラズマ切断装置
JP2013202663A (ja) プラズマ切断方法、プラズマ切断装置
WO2018012586A1 (ja) 溶接システム
CN210080922U (zh) 一种基于tig电弧的钛合金增材制造装置
JP6711971B2 (ja) アーク溶接方法および溶接装置
JP3209619U (ja) 溶接装置
KR101177872B1 (ko) 싱글케이블의 컨트롤 배선 수 감소가 가능한 용접 장치 및 와이어 피더
CN104985284A (zh) 一种双丝气电立焊机
JPH09314332A (ja) 溶接方法及び溶接装置
JP2024015628A (ja) 2重シールドtig溶接装置
KR20150001465A (ko) 용접 보호가스 공급장치
JP2024017020A (ja) 2重シールドtig溶接装置
KR102228164B1 (ko) 그루브 폭 변동에 대한 적응제어 방법
JP3566863B2 (ja) 小径鋼管の高速プラズマ溶接造管方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543453

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15754354

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851571

Country of ref document: EP

Kind code of ref document: A1