WO2017056646A1 - 表示素子、表示素子の駆動方法、表示装置、及び、電子機器 - Google Patents

表示素子、表示素子の駆動方法、表示装置、及び、電子機器 Download PDF

Info

Publication number
WO2017056646A1
WO2017056646A1 PCT/JP2016/071002 JP2016071002W WO2017056646A1 WO 2017056646 A1 WO2017056646 A1 WO 2017056646A1 JP 2016071002 W JP2016071002 W JP 2016071002W WO 2017056646 A1 WO2017056646 A1 WO 2017056646A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
source
light emitting
drain region
ramp waveform
Prior art date
Application number
PCT/JP2016/071002
Other languages
English (en)
French (fr)
Inventor
直史 豊村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/760,572 priority Critical patent/US10636354B2/en
Publication of WO2017056646A1 publication Critical patent/WO2017056646A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0259Details of the generation of driving signals with use of an analog or digital ramp generator in the column driver or in the pixel circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp

Definitions

  • the present disclosure relates to a display element, a display element driving method, a display device, and an electronic apparatus.
  • a display element including a current-driven light emitting unit and a display device including the display element are well known.
  • a display element including a light-emitting portion using electroluminescence of an organic material (hereinafter sometimes simply referred to as an organic EL display element) is noted as a display element capable of high-luminance emission by low-voltage direct current drive. Has been.
  • An organic EL display element driven by an active matrix system includes a drive circuit for driving the light emitting unit in addition to the light emitting unit configured by an organic layer including a light emitting layer.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2003-223136 describes that a ramp waveform voltage having a ramp waveform is used for driving such a display element.
  • the ramp waveform is only used for comparison with the video signal voltage written in the display element in advance. That is, the luminance information of the image to be displayed is applied to the display element as a video signal voltage. Therefore, it is necessary to apply a ramp waveform and a video signal to the display element.
  • An object of the present disclosure is to provide a display element that can supply luminance information of an image to be displayed only by a ramp waveform, more specifically, a degree of inclination of the ramp waveform, a driving method of the display element, and the display element.
  • An object of the present invention is to provide a display device including the electronic device including the display device.
  • a display element includes: A light emitting unit and a drive circuit for driving the light emitting unit,
  • the drive circuit includes at least a drive transistor and a capacitor.
  • a voltage is supplied to one source / drain region, and the other source / drain region is connected to the light emitting unit.
  • the current according to the voltage held in the capacitor unit is configured to flow to the light emitting unit via the driving transistor,
  • the voltage of the capacitor is set so that the driving transistor is in a non-conductive state and the voltage of the ramp waveform is applied to the other source / drain region while the gate electrode is electrically floating, and then the ramp waveform
  • a predetermined constant voltage is applied to the gate electrode while the voltage application is continued, a voltage corresponding to the slope of the ramp waveform is held in the capacitor unit. It is a display element.
  • a display element driving method includes: A light emitting portion and a drive circuit for driving the light emitting portion.
  • the drive circuit includes at least a drive transistor and a capacitor portion.
  • a voltage is applied to one source / drain region. Is used, and the other source / drain region is connected to the light emitting portion, and a current corresponding to the voltage held in the capacitor portion is supplied to the light emitting portion through the driving transistor.
  • the voltage of the capacitor is set so that the driving transistor is in a non-conductive state and the gate electrode is in an electrically floating state, a ramp waveform voltage is applied to the other source / drain region, and then the ramp waveform By applying a predetermined constant voltage to the gate electrode in a state where the application of the voltage is continued, the voltage corresponding to the degree of the slope of the ramp waveform is held in the capacitor unit.
  • This is a display element driving method.
  • a display device includes: A display unit in which display elements are arranged, and a drive unit for driving the display unit, With The display element includes a light emitting unit and a driving circuit for driving the light emitting unit, and the driving circuit includes at least a driving transistor and a capacitor unit.
  • the driving transistor one source / drain is provided. A voltage is supplied to the region, and the other source / drain region is connected to the light emitting unit, and a current corresponding to the voltage held in the capacitor unit flows through the driving transistor to the light emitting unit.
  • the drive unit sets the voltage of the capacitor unit so that the drive transistor is in a non-conductive state and the gate electrode is in an electrically floating state, and applies a ramp waveform voltage to the other source / drain region, Thereafter, by applying a predetermined constant voltage to the gate electrode in a state where the application of the voltage of the ramp waveform is continued, the voltage corresponding to the degree of the ramp waveform is held in the capacitor unit. It is a display device.
  • an electronic device provided with a display device,
  • the display device A display unit in which display elements are arranged, and a drive unit for driving the display unit,
  • the display element includes a light emitting unit and a driving circuit for driving the light emitting unit, and the driving circuit includes at least a driving transistor and a capacitor unit.
  • the driving transistor one source / drain is provided. A voltage is supplied to the region, and the other source / drain region is connected to the light emitting unit, and a current corresponding to the voltage held in the capacitor unit flows through the driving transistor to the light emitting unit.
  • the drive unit sets the voltage of the capacitor unit so that the drive transistor is in a non-conductive state and the gate electrode is in an electrically floating state, and applies a ramp waveform voltage to the other source / drain region, Thereafter, by applying a predetermined constant voltage to the gate electrode in a state where the application of the voltage of the ramp waveform is continued, the voltage corresponding to the degree of the ramp waveform is held in the capacitor unit. It is an electronic device.
  • the ramp waveform is generated in the other source / drain region in a state where the voltage of the capacitor is set so that the driving transistor is in a non-conductive state and the gate electrode is electrically floating.
  • the voltage corresponding to the slope of the ramp waveform is held in the capacitor unit by applying a predetermined constant voltage to the gate electrode in a state where the ramp waveform voltage is continuously applied.
  • the luminance information of the image to be displayed can be supplied according to the degree of inclination of the ramp waveform.
  • the voltage held in the capacitor is also affected by the characteristics of the drive transistor, and as a result, luminance variations due to variations in the characteristics of the drive transistor are reduced.
  • an image with reduced luminance unevenness can be displayed.
  • the effect described here is not necessarily limited, and there may be any effect described in the present disclosure.
  • FIG. 1 is a conceptual diagram of a display device according to the first embodiment.
  • FIG. 2 is a schematic partial cross-sectional view of a portion including a display element in the display unit.
  • FIG. 3 is a schematic timing chart for explaining the operation of the display device according to the first embodiment, more specifically, the operation of the (n, m) th display element of the display device.
  • FIG. 4 is a schematic timing chart for explaining the operation of [period-H m ] shown in FIG.
  • FIG. 5A and FIG. 5B are diagrams schematically illustrating a conductive state / non-conductive state of each transistor constituting the display element driving circuit according to the display device of the first embodiment.
  • FIG. 6B are diagrams schematically showing the conduction state / non-conduction state of each transistor constituting the display element driving circuit according to the display device of the first embodiment, following FIG. 5B.
  • FIG. 7A and FIG. 7B are diagrams schematically showing the conduction state / non-conduction state of each transistor constituting the display element driving circuit according to the display device of the first embodiment, following FIG. 6B.
  • FIG. 8A and FIG. 8B are diagrams schematically showing the conduction state / non-conduction state of each transistor constituting the display element driving circuit according to the display device of the first embodiment, following FIG. 7B.
  • FIG. 7A and FIG. 7B are diagrams schematically showing the conduction state / non-conduction state of each transistor constituting the display element driving circuit according to the display device of the first embodiment, following FIG. 7B.
  • FIG. 7A and FIG. 7B are diagrams schematically showing the conduction state / non-conduction state of each transistor constituting the display element driving circuit according to the display device of the
  • FIG. 9 is a diagram schematically illustrating the conductive state / non-conductive state of each transistor constituting the display element driving circuit according to the display device of the first embodiment, following FIG. 8B.
  • 10A and 10B are external views of a single-lens reflex digital still camera with interchangeable lenses.
  • FIG. 10A shows a front view thereof
  • FIG. 10B shows a rear view thereof.
  • FIG. 11 is an external view of a head mounted display.
  • FIG. 12 is an external view of a see-through head mounted display.
  • the display element is scanned at a constant cycle, The period during which the ramp waveform voltage is applied to the other source / drain region of the driving transistor is set to a certain length within the period. It can be configured. In this case, The period during which a predetermined constant voltage is applied to the gate electrode in a state where the application of the ramp waveform voltage is continued is set to a constant length within the cycle. It can be configured.
  • the drive transistor may be configured by a field effect transistor.
  • the configuration of the field effect transistor is not particularly limited as long as it does not hinder the operation.
  • the driving transistor may be an n-channel field effect transistor, and the capacitor may be connected between the gate electrode of the driving transistor and the other source / drain region.
  • the drive circuit further includes a first switching element, In the first switching element, a voltage having a ramp waveform is applied to one end, and the other end is connected to the other source / drain region of the driving transistor, When the first switching element is turned on, a voltage having a ramp waveform can be applied to the other source / drain region of the driving transistor.
  • a voltage having a ramp waveform can be applied to one end of the first switching element via a coupling capacitor.
  • the other end of the first switching element can be connected to the other source / drain region of the driving transistor via a coupling capacitor.
  • the drive circuit further includes a second switching element, In the second switching element, a predetermined constant voltage is applied to one end, and the other end is connected to the gate electrode of the driving transistor. When the second switching element is turned on, a predetermined constant voltage can be applied to the gate electrode of the driving transistor.
  • a well-known switching element can be used as the first switching element or the second switching element described above. From the viewpoint of common manufacturing processes, these are preferably composed of field effect transistors.
  • a state in which the voltage of the capacitor portion is set so that the driving transistor becomes non-conductive by applying a predetermined constant voltage to the gate electrode and then cut off, and the gate electrode is electrically floating It can be set as the structure.
  • the light emitting portion can be configured to emit light by the current flowing through the driving transistor.
  • the light emitting unit may be configured by a current-driven electro-optic element in which the light emission luminance changes according to the flowing current value.
  • the current-driven light emitting unit include an organic electroluminescence light emitting unit, an LED light emitting unit, and a semiconductor laser light emitting unit. These light emitting portions can be configured using known materials and methods. From the viewpoint of configuring a flat display device, it is preferable that the light emitting unit is composed of an organic electroluminescence light emitting unit.
  • the drive unit used in the present disclosure including the various preferable configurations described above includes, for example, circuits such as a scanning unit, a data driver, and a power supply unit. These can be configured using known circuit elements or the like.
  • the display device may have a so-called monochrome display configuration or a color display configuration.
  • one pixel includes a plurality of sub-pixels. Specifically, one pixel includes three of a red light-emitting subpixel, a green light-emitting subpixel, and a blue light-emitting subpixel. A configuration including two sub-pixels can be adopted.
  • a set of these three types of sub-pixels plus one or more types of sub-pixels for example, a set of sub-pixels that emit white light to improve brightness, a color reproduction range
  • a set of sub-pixels that emit complementary colors for enlargement, a set of sub-pixels that emit yellow for expanding the color reproduction range, and yellow and cyan for expanding the color reproduction range It can also be composed of a set of subpixels).
  • VGA 640, 480
  • S-VGA 800, 600
  • XGA 1024, 768
  • APRC 1152, 900
  • S-XGA 1280, 1024
  • U-XGA 1600, 1200
  • HD-TV (1920, 1080)
  • Q-XGA 2048, 1536
  • (1920, 1035) (1920, 1035)
  • 720, 480 (1280, 960)
  • the present invention is not limited to these values.
  • the display element constituting the display unit is formed in a certain plane (for example, formed on a support), and the light emitting unit is, for example, a driving circuit that drives the light emitting unit via an interlayer insulating layer. It is formed above.
  • a transistor constituting the driving circuit for example, a thin film transistor (TFT) can be cited.
  • the transistor may be an enhancement type or a depletion type.
  • an LDD structure Lightly Doped Drain structure
  • the LDD structure may be formed asymmetrically. For example, since a large current flows through the driving transistor when the display element emits light, an LDD structure may be formed only in one of the source / drain regions that become the drain region during light emission.
  • the configuration of the drive circuit is not particularly limited.
  • the term “one source / drain region” may be used to mean a source / drain region connected to the power supply side.
  • the transistor being in a conductive state means a state in which a channel is formed between the source / drain regions. It does not matter whether current flows from one source / drain region of the transistor to the other source / drain region.
  • the transistor being in a non-conductive state means a state in which no channel is formed between the source / drain regions.
  • the source / drain regions can be composed of conductive materials such as polysilicon or amorphous silicon containing impurities, as well as metals, alloys, conductive particles, their laminated structures, organic materials (conductivity high Molecule).
  • the capacitor part constituting the drive circuit can be composed of one electrode, the other electrode, and a dielectric layer sandwiched between these electrodes. The same applies to the coupling capacity and auxiliary capacity described later.
  • the transistors and the like constituting the drive circuit are formed in a certain plane (for example, formed on a support), and the light emitting portion is formed of, for example, the transistors and the capacitor portion constituting the drive circuit via an interlayer insulating layer. It is formed above.
  • the other source / drain region of the driving transistor is connected to one end of the light emitting unit (an anode electrode provided in the light emitting unit) via a contact hole, for example.
  • the structure which formed the transistor in the semiconductor substrate etc. may be sufficient.
  • Various wirings such as a scanning line, a data line, or a power supply line are formed on a certain plane (for example, on a support). These wirings can have a known configuration or structure.
  • high strain point glass soda glass (Na 2 O ⁇ CaO ⁇ SiO 2 ), borosilicate glass (Na 2 O ⁇ B 2 O 3 ⁇ SiO 2 ), forsterite (2MgO ⁇
  • flexible polymer materials such as polyethersulfone (PES), polyimide, polycarbonate (PC), polyethylene
  • PET terephthalate
  • Various coatings may be applied to the surface of the support or the substrate.
  • the constituent materials of the support and the substrate may be the same or different. If a support body and a substrate made of a polymer material having flexibility are used, a display device having flexibility can be configured.
  • the length (time length) of the horizontal axis indicating each period is a schematic one and does not indicate the ratio of the time length of each period. The same applies to the vertical axis.
  • the waveform shape in the timing chart is also schematic.
  • the first embodiment relates to a display element, a display device, and a driving method thereof according to the present disclosure.
  • FIG. 1 is a conceptual diagram of a display device according to the first embodiment.
  • the display device 1 includes a display unit 2 in which a display element 3 including a light emitting unit ELP and a driving circuit 4 that drives the light emitting unit ELP is disposed, and a driving unit 100 that drives the display unit 2.
  • the display elements 3 are arranged in a two-dimensional matrix in a state of being connected to the first scanning line WS1, the second scanning line WS2, the power supply line DS, and the data line DTL.
  • the first scanning line WS1, the second scanning line WS2, and the feeder line DS are provided to extend in the row direction (X direction in FIG. 1), and the data line DTL is in the column direction (Y direction in FIG. 1). It is provided to extend.
  • FIG. 1 shows the connection relationship for one display element 3, more specifically, for the (n, m) th display element 3 described later.
  • the driving unit 100 includes a power supply unit 101, a scanning unit 102, and a data driver 103.
  • the scanning unit 102 includes a first scanning unit 102A and a second scanning unit 102B.
  • a driving voltage or the like is supplied from the power supply unit 101 to the feeder line DS.
  • a signal is supplied from the first scanning unit 102A to the first scanning line WS1, and a signal is supplied from the second scanning unit 102B to the second scanning line WS2.
  • a ramp waveform voltage is supplied from the data driver 103 to the data line DTL.
  • the display unit 2 displays an image (display area) in a two-dimensional matrix of N in the row direction and M in the column direction, for a total of N ⁇ M.
  • Display element 3 The number of rows of display elements 3 in the display area is M, and the number of display elements 3 constituting each row is N.
  • the number of the first scanning line WS1, the second scanning line WS2, and the feeder line DS is M, respectively.
  • the number of data lines DTL is N.
  • Drive circuit 4 to which the display device 3 comprises includes at least a driving transistor TR Drv and the capacitor section C HD.
  • a voltage is supplied to one source / drain region, and the other source / drain region is connected to the light emitting unit ELP and corresponds to the voltage held in the capacitor unit C HD .
  • the current is configured to flow to the light emitting unit ELP through the driving transistor TR Drv .
  • the light emitting unit ELP includes a current-driven electro-optic element whose emission luminance changes according to a flowing current value, more specifically, an organic electroluminescence light emitting unit.
  • the driving unit 100, the driving transistor TR Drv is a and gate electrode to set the voltage of the capacitor portion C HD to be non-conductive electrically floating In this state, a ramp waveform voltage is applied to the other source / drain region, and then a predetermined constant voltage is applied to the gate electrode while the ramp waveform voltage is continuously applied. and it holds the voltage corresponding to the degree of tilt in the capacitance section C HD.
  • the drive transistor TR Drv is composed of an n-channel field effect transistor.
  • one source / drain region is connected to the power supply line DS, and the other source / drain region is one end of the light emitting unit ELP, more specifically, an anode electrode provided in the light emitting unit ELP. It is connected to the.
  • Capacitance section C HD is connected between the gate electrode and the other source / drain region of the drive transistor TR Drv.
  • the capacitor portion C HD is used to hold a gate electrode voltage (so-called gate-source voltage) with respect to the source region of the driving transistor TR Drv .
  • the “source region” in this case means a source / drain region on the side that functions as a “source region” when the light emitting unit ELP emits light.
  • one source / drain region (the side connected to the power supply line DS in FIG. 1) of the driving transistor TR Drv functions as a drain region, and the other source / drain region (light emitting unit ELP).
  • One end of the electrode, specifically, the side connected to the anode electrode serves as a source region.
  • the drive circuit 4 further includes a first switching element TR WS1 .
  • the first switching element TR WS1 is composed of an n-channel field effect transistor, like the drive transistor TR Drv .
  • the gate electrode of the first switching element TR WS1 is connected to the first scanning line WS1, and conduction / non-conduction of the first switching element TR WS1 is controlled by a signal from the first scanning unit 102A.
  • a ramp waveform voltage is applied to one end (one source / drain region), and the other end (the other source / drain region) is the other source of the drive transistor TR Drv. / Connected to the drain region. Then, when the first switching element TR WS1 is turned on, a voltage having a ramp waveform is applied to the other source / drain region of the drive transistor TR Drv .
  • one end of the first switching element TR WS1 is connected to the data line DTL via the coupling capacitor C CP. Accordingly, a voltage having a ramp waveform is applied to one end of the first switching element TR WS1 via the coupling capacitor C CP .
  • the configuration in which the position of the coupling capacitor C CP is switched that is, the other end of the first switching element TR WS1 is connected to the other source / drain region of the drive transistor TR Drv through the coupling capacitor C CP. It is good also as composition which has.
  • the drive circuit 4 further includes a second switching element TR WS2 .
  • the second switching element TR WS2 is also composed of an n-channel field effect transistor.
  • the gate electrode of the second switching element TR WS2 is connected to the second scanning line WS2, and conduction / non-conduction of the second switching element TR WS2 is controlled by a signal from the second scanning unit 102B.
  • a predetermined constant voltage V Ini is applied to one end (one source / drain region), and the other end (the other source / drain region) is the gate of the drive transistor TR Drv . Connected to the electrode. Then, when the second switching element TR WS2 is turned on, a predetermined constant voltage V Ini is applied to the gate electrode of the drive transistor TR Drv .
  • first switching element TR WS1 and the second switching element TR WS2 can also be configured by p-channel field effect transistors.
  • the display element 3 may further include another transistor.
  • a symbol ND g indicates a node including elements connected to the gate electrode of the drive transistor TR Drv .
  • the node ND g is configured by connecting the other end of the second switching element TR WS2 and one electrode of the capacitor portion C HD to the gate electrode of the drive transistor TR Drv .
  • a symbol ND s indicates a node configured by an element connected to the other source / drain region of the driving transistor TR Drv .
  • the node ND s is configured by connecting the anode electrode of the light emitting unit ELP and the other end of the first switching element TR WS1 to the other source / drain region of the drive transistor TR Drv .
  • the display device 1 is, for example, a monochrome display device, and one display element 3 constitutes one pixel.
  • the display device 1 is line-sequentially scanned in units of rows by the scanning signal from the scanning unit 102.
  • the display element 3 located in the mth row and the nth column is hereinafter referred to as the (n, m) th display element 3 or the (n, m) th pixel.
  • a scanning period (horizontal scanning period) assigned to the display element 3 in the m-th row is represented by a symbol H m .
  • the display elements 3 constituting each of the N pixels arranged in the m-th row are driven simultaneously.
  • the light emission / non-light emission timing is controlled in units of rows to which they belong.
  • FR times / second
  • a scanning period (so-called horizontal scanning period) per row when the display device 1 is line-sequentially scanned in units of rows is (1 / FR).
  • a video signal D Sig representing a gradation corresponding to an image to be displayed is input to the display device 1 from a device (not shown).
  • the video signal D Sig is a digital signal having a gradation bit number such as 8 bits, 16 bits, and 24 bits.
  • the video signal corresponding to the (n, m) -th display element 3 may be represented as D Sig (n, m) .
  • the data driver 103 generates a ramp waveform voltage whose magnitude corresponds to the value of the video signal D Sig and supplies it to the data line DTL.
  • the data line DTL is supplied with a ramp waveform voltage whose inclination corresponds to the value of the video signal D Sig for each horizontal scanning period.
  • the voltage of the ramp waveform corresponding to the video signal D Sig is expressed as V Sig .
  • the voltage V Sig of the ramp waveform corresponds to, for example, the (n, m) th display element 3, it may be expressed as a voltage V Sig (n, m) .
  • the power supply unit 101 supplies the drive voltage V DS-H and the initialization voltage V DS-L to the power supply line DS.
  • the light emitting part ELP is composed of an organic electroluminescence light emitting part.
  • the light emitting unit ELP has a known configuration and structure including an anode electrode, a hole transport layer, a light emitting layer, an electron transport layer, a cathode electrode, and the like.
  • a voltage V Cath (for example, 0 [volt]) is applied to the other end (specifically, cathode electrode) of the light emitting unit ELP.
  • the threshold voltage required for light emission of the light emitting unit ELP is represented as V th-EL .
  • the symbol C EL represents the capacity of the light emitting unit ELP.
  • an auxiliary capacitor C Sub connected in parallel to the light emitting unit ELP may be provided.
  • the auxiliary capacitor C Sub is provided, but this is merely an example.
  • the auxiliary capacitor C Sub may be omitted.
  • FIG. 2 is a schematic partial cross-sectional view of a portion including a display element in the display unit.
  • the driving transistor TR Drv , the first switching element TR WS1 , the second switching element TR WS2 , the capacitor part C HD , and the coupling capacitor C CP are formed on the support 21.
  • a light emitting portion ELP is formed above these via an interlayer insulating layer 40.
  • the other source / drain region of the drive transistor TR Drv is connected to an anode electrode provided in the light emitting unit ELP through a contact hole.
  • FIG. 2 illustrates only the drive transistor TR Drv and capacitance section C HD.
  • the first switching element TR WS1 , the second switching element TR WS2 , and the coupling capacitor C CP are hidden and cannot be seen.
  • the drive transistor TR Drv includes a gate electrode 31, a gate insulating layer 32, one source / drain region 35A provided in the semiconductor layer 33, the other source / drain region 35B, and one source / drain region 35A and the other.
  • the portion of the semiconductor layer 33 between the source / drain regions 35B is composed of the corresponding channel forming region 34.
  • the capacitor portion C HD is composed of one electrode 36, a dielectric layer composed of the extending portion of the gate insulating layer 32, and the other electrode 37.
  • the gate electrode 31, part of the gate insulating layer 32, and one electrode 36 constituting the capacitor portion C HD are formed on the support 21.
  • One source / drain region 35A of the drive transistor TR Drv is connected to the wiring 38 (corresponding to the power supply line DS), and the other source / drain region 35B is connected to the other electrode 37.
  • the driving transistor TR Drv, the capacitor portion C HD, and the like are covered with the interlayer insulating layer 40.
  • the anode electrode 51, the hole transport layer, the light emitting layer, the electron transport layer, and the cathode electrode 53 are provided on the interlayer insulating layer 40.
  • a light emitting unit ELP is provided.
  • the hole transport layer, the light emitting layer, and the electron transport layer are represented by one layer 52.
  • a second interlayer insulating layer 54 is provided on the portion of the interlayer insulating layer 40 where the light emitting part ELP is not provided, and the transparent substrate 22 is disposed on the second interlayer insulating layer 54 and the cathode electrode 53.
  • the light emitted from the light emitting layer passes through the substrate 22 and is emitted to the outside.
  • the other electrode 37 and the anode electrode 51 are connected by a contact hole provided in the interlayer insulating layer 40.
  • the cathode electrode 53 is connected to the wiring 39 (voltage V Cath) provided on the extended portion of the gate insulating layer 32 through the contact holes 56 and 55 provided in the second interlayer insulating layer 54 and the interlayer insulating layer 40. Corresponding to the common power supply line to be supplied).
  • the area of the electrodes constituting the capacitor portion C HD, the area of the electrodes constituting the light emitting section ELP is larger.
  • the capacitance value has a relationship such that the capacitance C EL of the light emitting unit ELP> the capacitance of the capacitance unit C HD .
  • the drive transistor TR Drv shown in FIG. 1 is set so as to operate in the saturation region in the light emitting state of the display element 3, and is driven so as to flow the drain current I ds according to the following equation (1). .
  • one source / drain region of the drive transistor TR Drv serves as a drain region
  • the other source / drain region serves as a source region.
  • one source / drain region of the drive transistor TR Drv may be simply referred to as a drain region
  • the other source / drain region may be simply referred to as a source region.
  • Effective mobility
  • L Channel length
  • W Channel width
  • V gs Voltage of gate electrode with respect to source region (gate-source voltage)
  • V th threshold voltage
  • C ox (relative permittivity of gate insulating layer) ⁇ (vacuum permittivity) / (thickness of gate insulating layer) k ⁇ (1/2) ⁇ (W / L) ⁇ C ox
  • L Channel length
  • V gs Voltage of gate electrode with respect to source region (gate-source voltage)
  • V th threshold voltage
  • C ox (relative permittivity of gate insulating layer) ⁇ (vacuum permittivity) / (thickness of gate insulating layer) k ⁇ (1/2) ⁇ (W / L) ⁇ C ox
  • L Channel length
  • V gs Voltage of gate electrode with respect to source region (gate-source voltage)
  • V th threshold voltage
  • C ox (relative permittivity of gate insul
  • I ds k ⁇ ⁇ ⁇ (V gs ⁇ V th ) 2 (1)
  • the light emitting unit ELP of the display element 3 emits light. Furthermore, the magnitude of the value of the drain current I ds, the intensity of light is controlled at the light emitting section ELP of when the drain current I ds flows.
  • FIG. 3 is a schematic timing chart for explaining the operation of the display device according to the first embodiment, more specifically, the operation of the (n, m) th display element of the display device.
  • FIG. 4 is a schematic timing chart for explaining the operation of [period-H m ] shown in FIG.
  • FIG. 5 to FIG. 9 are diagrams schematically showing conduction states / non-conduction states of the respective transistors constituting the display element driving circuit according to the display device of the first embodiment.
  • the outline of the operation of the display device is as follows. Based on the operation of the driving unit 100, the display element 3 is scanned at a constant cycle. First, the driving after the transistor TR initialization voltage to one of the source / drain regions of Drv V DS-L is applied a potential of the other of the source / drain regions are initialized, the driving transistor TR Drv predetermined gate electrode of When the constant voltage V Ini is applied and then the application is cut off, the voltage of the capacitor portion C HD is set so that the drive transistor TR Drv becomes non-conductive and the gate electrode is electrically floating. ([Period -H mP ] to [Period -H m-1 ] in FIG. 3).
  • a ramp waveform voltage is applied to the other source / drain region, and then a predetermined constant voltage V Ini is applied to the gate electrode while the ramp waveform voltage is continuously applied.
  • a voltage corresponding to the degree of inclination is held in the capacitor C HD (the first half of [period-H m ] in FIG. 3).
  • a predetermined constant voltage V Ini is held in the capacitor section C HD, by application of a predetermined constant voltage V Ini to the gate electrode of the driving transistor TR Drv is cut off, the driving transistor TR
  • the light emitting unit ELP emits light by the current flowing through Drv (after the second half of [period-H m ] in FIG. 3).
  • the period during which the ramp waveform voltage is applied to the other source / drain region of the drive transistor TR Drv is set to a certain length within the period.
  • the period during which the predetermined constant voltage V Ini is applied to the gate electrode while the ramp waveform voltage is continuously applied is set to a constant length within the cycle.
  • V Ini A predetermined constant voltage applied to one source / drain region of the second switching element TR WS2 ⁇ ⁇ ⁇ 0 V
  • V DS-L Initially the potential of the other source / drain region of the drive transistor TR Drv Initialization voltage for conversion to -1 volt
  • V DS-H Drive voltage ... 20 volt
  • V th Threshold voltage of drive transistor TR Drv ... 3 volt
  • V Cath Cathode electrode of light emitting part ELP Voltage applied to ⁇ ⁇ ⁇ 0 volt
  • V th-EL Threshold voltage of light emitting part ELP ⁇ ⁇ ⁇ 4 volt
  • the ramp waveform supplied to the data line DTL changes in slope according to the value of the video signal D Sig with reference to 0 volt, and the peak value becomes 20 volts when the video signal D Sig is maximum. It is assumed that it is set as follows.
  • Period-H mP (see FIGS. 3, 5A, and 5B)
  • This [period-H mP ] is, for example, an operation in the previous display frame, and is a period in which the light emission continued by the (n, m) th display element 3 after the completion of the previous various processes is extinguished. .
  • the value of the symbol “P” may be set as appropriate based on the specifications of the display device.
  • the driving voltage V DS-H is supplied to the power supply line DS m , and the light emitting unit ELP in the display element 3 constituting the (n, m) -th pixel has the above-described formula (1).
  • the luminance of the display element 3 constituting the (n, m) th pixel is a value corresponding to the drain current I ds ′.
  • the drive transistor TR Drv is in a conductive state, and the first switching element TR WS1 and the second switching element TR WS2 are in a non-conductive state (see FIG. 5A).
  • the initialization voltage V DS-L is applied to one source / drain region of the drive transistor TR Drv to initialize the potential of the other source / drain region.
  • the voltage supplied to the power supply line DS m is switched from the drive voltage V DS-H to the initialization voltage V DS-L .
  • the driving transistor TR Drv is in a conducting state, (in other words, represents the potential of the node ND s, by symbol V s) potential of the other of the source / drain regions of the driving transistor TR Drv is initialized to V DS-L Is done. Since the initialization voltage V DS-L is set so as not to exceed (V th ⁇ EL + V Cath ), the voltage across the light emitting portion ELP is less than V th ⁇ EL . Accordingly, since no current flows through the light emitting unit ELP, the light emitting unit ELP is turned off (see FIG. 5B).
  • the second scanning line WS2 m is set to the high level, and the second switching element TR WS2 is brought into a conductive state.
  • a constant voltage V Ini is applied to the gate electrode of the drive transistor TR Drv .
  • the potential of the node ND g, represented by the symbol V g the potential of the gate electrode of the driving transistor TR Drv becomes V Ini.
  • the potential of the node ND s also changes due to the potential change of the node ND g .
  • the capacitance value composed of the parasitic capacitance C EL and the auxiliary capacitance C Sub of the light emitting unit ELP is larger than the value of the capacitance unit C HD , the change in the potential of the node ND s is small.
  • the change in the potential of the node ND s caused by the potential change of the node ND g is an explanation without considering.
  • the voltage of the capacitor C HD (in other words, the gate-source voltage V gs of the drive transistor TR Drv ) is set to (V Ini ⁇ V DS ⁇ L ).
  • the constant voltage V Ini is set so that (V Ini ⁇ V DS ⁇ L ) does not exceed the threshold voltage V th . Accordingly, the drive transistor TR Drv is in a non-conducting state (see FIG. 6A).
  • the second scanning line WS2 m is set to a low level, and the second switching element TR WS2 is turned off.
  • the application of the constant voltage V Ini at the gate electrode of the drive transistor TR Drv is cut off.
  • the potential of the node ND g and the node ND s does not change (see FIG. 6B). This state is maintained until [Period -H m-2 ].
  • the period during which the ramp waveform voltage is applied to the other source / drain region of the driving transistor TR Drv (in other words, the period during which the first scanning line WS1 m is set to the high level in FIG. 4) is constant within the period. It is set to length. Then, a period in which a predetermined constant voltage V Ini is applied to the gate electrode in a state where the application of the ramp waveform voltage is continued (in other words, a period in which the second scanning line WS2 m is set to the high level in FIG. 4). ) Is set to a certain length within the period. Note that the lengths of these periods may be set by appropriately selecting suitable values according to the design of the display element and the like.
  • the gate of the drive transistor TR Drv By interrupting the application of the predetermined constant voltage V Ini to the electrodes, the light emitting part ELP is caused to emit light by the current flowing through the driving transistor TR Drv .
  • the data line DTL n, voltage V Sig (m, n) of the ramp waveform magnitude of inclination corresponding to the value of the video signal D Sig (m, n) are supplied.
  • the ramp waveform has a falling shape.
  • [Period -H m ] is a state where the voltage of the capacitor C HD is set so that the driving transistor TR Drv is in a non-conductive state, and the gate electrode is electrically floating. State.
  • the first scanning line WS1 m is set to the high level, and the first switching element TR WS1 is turned on.
  • a voltage having a ramp waveform that falls is applied to the node ND s via the coupling capacitor C CP .
  • the potential of the node ND s also falls.
  • the connected capacitance portion C HD and node ND g and the node ND s also falling the potential of the node ND g, it decreases (see FIGS. 4 and 7B).
  • the gate-source voltage V gs of the driving transistor TR Drv increases, The voltage Vth is exceeded.
  • the driving transistor TR Drv becomes conductive, and a current through the driving transistor TR Drv flows into the parasitic capacitance C EL (and also the auxiliary capacitance C Sub ) of the light emitting unit ELP, thereby increasing the potential of the node ND s. Try to.
  • the node ND s since the application of the voltage of the ramp waveform through a coupling capacitor C CP is continued, it attempts to decrement up the potential of the node ND s.
  • the driving transistor TR gate of Drv - (in other words, the voltage of the capacitor portion C HD) source voltage V gs value of the rise of the potential of the node ND s due to the current through the driving transistor TR Drv flows Then, the decrease in the potential of the node ND s due to the continued application of the ramp waveform voltage via the coupling capacitor C CP settles so as to maintain a balance.
  • the first scanning line WS1 m and the second scanning line WS2 m are set to a low level, and the first switching element TR WS1 and the second switching element TR WS2 are turned off.
  • the drive transistor TR Drv Application of a predetermined constant voltage V Ini to the gate electrode is interrupted (see FIGS. 4 and 8B).
  • the potential of the node ND s by the current flowing through the driving transistor TR Drv increases.
  • the gate electrode of the driving transistor TR Drv is in a floating state, moreover, because although there are capacitor portion C HD, occurs in the gate electrode of the same phenomenon driving transistor TR Drv TR D as in so-called bootstrap circuit, the node potential of ND g also rises.
  • the light emitting unit ELP starts light emission (see FIG. 9).
  • the current flowing through the light emitting unit ELP is the drain current I ds flowing from the drain region to the source region of the driving transistor TR Drv TR D , it can be expressed by Expression (1).
  • the gate of the drive transistor TR Drv - source voltage V gs is for outputting a current that reflects the extent of inclination of the irrespective of the characteristic of the driving transistor TR Drv ramp waveform virtually characteristic variations of the driving transistor TR Drv Is not reflected in the current value. Therefore, good uniformity can be realized.
  • the present disclosure is not limited to the above-described embodiment, and various modifications based on the technical idea of the present disclosure are possible.
  • the numerical values, structures, substrates, raw materials, processes, and the like given in the above-described embodiments are merely examples, and different numerical values, structures, substrates, raw materials, processes, and the like may be used as necessary.
  • the drive transistor TR Drv can be configured by a p-channel transistor.
  • the anode electrode and the cathode electrode of the light emitting unit ELP are connected to each other, and the voltage value supplied to the power supply line, the ramp waveform supplied to the data line, or the like corresponding to the difference in conductivity type is used. What is necessary is just to change suitably.
  • the display device of the present disclosure described above is a display unit (display device) of an electronic device in any field that displays a video signal input to the electronic device or a video signal generated in the electronic device as an image or video.
  • a display unit such as a television set, a digital still camera, a notebook personal computer, a mobile terminal device such as a mobile phone, a video camera, a head mounted display (head mounted display), and the like.
  • the display device of the present disclosure also includes a module-shaped one with a sealed configuration.
  • a display module formed by attaching a facing portion such as transparent glass to the pixel array portion is applicable.
  • the display module may be provided with a circuit unit for inputting / outputting signals from the outside to the pixel array unit, a flexible printed circuit (FPC), and the like.
  • FPC flexible printed circuit
  • a digital still camera and a head mounted display will be exemplified as specific examples of the electronic apparatus using the display device of the present disclosure.
  • the specific example illustrated here is only an example, and is not limited thereto.
  • 10A and 10B are external views of a single-lens reflex digital still camera with interchangeable lenses.
  • FIG. 10A shows a front view thereof
  • FIG. 10B shows a rear view thereof.
  • the interchangeable-lens single-lens reflex digital still camera has, for example, an interchangeable photographing lens unit (interchangeable lens) 312 on the front right side of the camera body (camera body) 311 and is gripped by the photographer on the front left side.
  • the grip part 313 is provided.
  • a monitor 314 is provided at the center of the back surface of the camera body 311.
  • a viewfinder (eyepiece window) 315 is provided above the monitor 314. The photographer can determine the composition by viewing the viewfinder 315 and visually recognizing the light image of the subject guided from the photographing lens unit 312.
  • the display device of the present disclosure can be used as the viewfinder 315. That is, the interchangeable lens single-lens reflex type digital still camera according to this example is manufactured by using the display device of the present disclosure as the viewfinder 315.
  • FIG. 11 is an external view of a head mounted display.
  • the head-mounted display has, for example, ear hooking portions 412 for mounting on the user's head on both sides of the glasses-shaped display portion 411.
  • the display device of the present disclosure can be used as the display unit 411. That is, the head mounted display according to the present example is manufactured by using the display device of the present disclosure as the display unit 411.
  • FIG. 12 is an external view of a see-through head mounted display.
  • the see-through head mounted display 511 includes a main body 512, an arm 513, and a lens barrel 514.
  • the main body 512 is connected to the arm 513 and the glasses 500. Specifically, the end portion of the main body portion 512 in the long side direction is coupled to the arm 513, and one side surface of the main body portion 512 is coupled to the glasses 500 via a connection member.
  • the main body 512 may be directly attached to the head of the human body.
  • the main body 512 incorporates a control board for controlling the operation of the see-through head mounted display 511 and a display unit.
  • the arm 513 connects the main body 512 and the lens barrel 514 to support the lens barrel 514. Specifically, the arm 513 is coupled to the end portion of the main body portion 512 and the end portion of the lens barrel 514 to fix the lens barrel 514.
  • the arm 513 includes a signal line for communicating data related to an image provided from the main body 512 to the lens barrel 514.
  • the lens barrel 514 projects image light provided from the main body 512 via the arm 513 toward the eyes of the user wearing the see-through head mounted display 511 through the eyepiece.
  • the display device of the present disclosure can be used for the display unit of the main body unit 512.
  • a light emitting unit and a drive circuit for driving the light emitting unit includes at least a drive transistor and a capacitor.
  • the drive transistor a voltage is supplied to one source / drain region, and the other source / drain region is connected to the light emitting unit.
  • the current according to the voltage held in the capacitor unit is configured to flow to the light emitting unit via the driving transistor,
  • the voltage of the capacitor is set so that the driving transistor is in a non-conductive state and the voltage of the ramp waveform is applied to the other source / drain region while the gate electrode is electrically floating, and then the ramp waveform
  • a predetermined constant voltage is applied to the gate electrode while the voltage application is continued, a voltage corresponding to the slope of the ramp waveform is held in the capacitor unit.
  • Display element. [2] The display element is scanned at a constant cycle, The period during which the ramp waveform voltage is applied to the other source / drain region of the driving transistor is set to a certain length within the period.
  • the period during which a predetermined constant voltage is applied to the gate electrode in a state where the application of the ramp waveform voltage is continued is set to a constant length within the cycle.
  • the drive transistor is an n-channel field effect transistor, The capacitor is connected between the gate electrode of the driving transistor and the other source / drain region.
  • the drive circuit further includes a first switching element, In the first switching element, a voltage having a ramp waveform is supplied to one end, and the other end is connected to the other source / drain region of the driving transistor, When the first switching element is turned on, a voltage having a ramp waveform is applied to the other source / drain region of the driving transistor.
  • the display element according to any one of [1] to [4].
  • a voltage having a ramp waveform is supplied to one end of the first switching element via a coupling capacitor.
  • the other end of the first switching element is connected to the other source / drain region of the driving transistor via a coupling capacitor.
  • the drive circuit further includes a second switching element, In the second switching element, a predetermined constant voltage is supplied to one end, and the other end is connected to the gate electrode of the driving transistor, When the second switching element is turned on, a predetermined constant voltage is applied to the gate electrode of the driving transistor.
  • the display element according to any one of [1] to [7]. [9] After an initializing voltage is applied to one source / drain region of the driving transistor and the potential of the other source / drain region is initialized, a predetermined constant voltage is applied to the gate electrode of the driving transistor, and then the applied voltage is applied. By being cut off, the voltage of the capacitor is set so that the drive transistor is in a non-conductive state, and the gate electrode is in an electrically floating state.
  • the display element according to any one of [1] to [8]. [10] After the voltage corresponding to the slope of the ramp waveform is held in the capacitor section, the ramp waveform voltage is applied to the other source / drain region of the drive transistor, and a predetermined constant voltage is applied to the gate electrode of the drive transistor. By interrupting the application, the light emitting part is caused to emit light by the current flowing through the driving transistor.
  • the display element according to any one of [1] to [9].
  • the light emitting unit is composed of a current-driven electro-optic element in which the light emission luminance changes according to the flowing current value.
  • the display element according to any one of [1] to [10].
  • the light emitting part consists of an organic electroluminescence light emitting part, The display element according to the above [11].
  • the drive circuit includes at least a drive transistor and a capacitor portion. In the drive transistor, a voltage is applied to one source / drain region. Is used, and the other source / drain region is connected to the light emitting portion, and a current corresponding to the voltage held in the capacitor portion is supplied to the light emitting portion through the driving transistor.
  • the voltage of the capacitor is set so that the driving transistor is in a non-conductive state and the gate electrode is in an electrically floating state, a ramp waveform voltage is applied to the other source / drain region, and then the ramp waveform
  • a predetermined constant voltage By applying a predetermined constant voltage to the gate electrode in a state where the application of the voltage is continued, the voltage corresponding to the degree of the slope of the ramp waveform is held in the capacitor unit.
  • the period during which a predetermined constant voltage is applied to the gate electrode in a state where the application of the ramp waveform voltage is continued is set to a constant length within the cycle.
  • the drive transistor is an n-channel field effect transistor, The capacitor is connected between the gate electrode of the driving transistor and the other source / drain region.
  • the drive circuit further includes a first switching element, In the first switching element, a voltage having a ramp waveform is supplied to one end, and the other end is connected to the other source / drain region of the driving transistor, When the first switching element is turned on, a voltage having a ramp waveform is applied to the other source / drain region of the driving transistor.
  • the drive circuit further includes a second switching element, In the second switching element, a predetermined constant voltage is supplied to one end, and the other end is connected to the gate electrode of the driving transistor, When the second switching element is turned on, a predetermined constant voltage is applied to the gate electrode of the driving transistor.
  • the method for driving a display element according to any one of [13] to [19]. [21] After an initializing voltage is applied to one source / drain region of the driving transistor and the potential of the other source / drain region is initialized, a predetermined constant voltage is applied to the gate electrode of the driving transistor, and then the applied voltage is applied.
  • the voltage of the capacitor is set so that the drive transistor is in a non-conductive state, and the gate electrode is in an electrically floating state.
  • the display element driving method according to any one of [13] to [20]. [22] After the voltage corresponding to the slope of the ramp waveform is held in the capacitor section, the ramp waveform voltage is applied to the other source / drain region of the drive transistor, and a predetermined constant voltage is applied to the gate electrode of the drive transistor. By interrupting the application, the light emitting part is caused to emit light by the current flowing through the driving transistor.
  • the display element driving method according to any one of [13] to [21].
  • the light emitting unit is composed of a current-driven electro-optic element in which the light emission luminance changes according to the flowing current value.
  • the display element driving method according to any one of [13] to [22].
  • the light emitting part consists of an organic electroluminescence light emitting part, The method for driving a display element according to the above [23].
  • a voltage is applied to the region, and the other source / drain region is connected to the light emitting unit, and a current corresponding to the voltage held in the capacitor unit is configured to flow to the light emitting unit via the driving transistor.
  • the drive unit sets the voltage of the capacitor unit so that the drive transistor is in a non-conductive state and the gate electrode is in an electrically floating state, and applies a ramp waveform voltage to the other source / drain region, Thereafter, by applying a predetermined constant voltage to the gate electrode in a state where the application of the voltage of the ramp waveform is continued, the voltage corresponding to the degree of the ramp waveform is held in the capacitor unit. Display device.
  • the display element is scanned at a constant cycle, The period during which the ramp waveform voltage is applied to the other source / drain region of the driving transistor is set to a certain length within the period.
  • the period during which a predetermined constant voltage is applied to the gate electrode in a state where the application of the ramp waveform voltage is continued is set to a constant length within the cycle.
  • the drive transistor is an n-channel field effect transistor, The capacitor is connected between the gate electrode of the driving transistor and the other source / drain region.
  • the display device according to any one of [25] to [27].
  • the drive circuit further includes a first switching element, In the first switching element, a voltage having a ramp waveform is supplied to one end, and the other end is connected to the other source / drain region of the driving transistor, When the first switching element is turned on, a voltage having a ramp waveform is applied to the other source / drain region of the driving transistor.
  • the display device according to any one of [25] to [28]. [30] A voltage having a ramp waveform is supplied to one end of the first switching element via a coupling capacitor. The display device according to [29] above. [31] The other end of the first switching element is connected to the other source / drain region of the driving transistor via a coupling capacitor. The display device according to [29] above.
  • the drive circuit further includes a second switching element, In the second switching element, a predetermined constant voltage is supplied to one end, and the other end is connected to the gate electrode of the driving transistor, When the second switching element is turned on, a predetermined constant voltage is applied to the gate electrode of the driving transistor.
  • the display device according to any one of [25] to [31]. [33] After an initializing voltage is applied to one source / drain region of the driving transistor and the potential of the other source / drain region is initialized, a predetermined constant voltage is applied to the gate electrode of the driving transistor, and then the applied voltage is applied. By being cut off, the voltage of the capacitor is set so that the drive transistor is in a non-conductive state, and the gate electrode is in an electrically floating state.
  • the display device according to any one of [25] to [32]. [34] After the voltage corresponding to the slope of the ramp waveform is held in the capacitor section, the ramp waveform voltage is applied to the other source / drain region of the drive transistor, and a predetermined constant voltage is applied to the gate electrode of the drive transistor. By interrupting the application, the light emitting part is caused to emit light by the current flowing through the driving transistor.
  • the display device according to any one of [25] to [33].
  • the light emitting unit is composed of a current-driven electro-optic element in which the light emission luminance changes according to the flowing current value.
  • the display device according to any one of [25] to [34].
  • the light emitting part consists of an organic electroluminescence light emitting part, The display device according to [35] above.
  • An electronic device provided with a display device, The display device A display unit in which display elements are arranged, and a drive unit for driving the display unit, With The display element includes a light emitting unit and a driving circuit for driving the light emitting unit, and the driving circuit includes at least a driving transistor and a capacitor unit. In the driving transistor, one source / drain is provided. A voltage is supplied to the region, and the other source / drain region is connected to the light emitting unit, and a current corresponding to the voltage held in the capacitor unit flows through the driving transistor to the light emitting unit.
  • the drive unit sets the voltage of the capacitor unit so that the drive transistor is in a non-conductive state and the gate electrode is in an electrically floating state, and applies a ramp waveform voltage to the other source / drain region, Thereafter, by applying a predetermined constant voltage to the gate electrode in a state where the application of the voltage of the ramp waveform is continued, the voltage corresponding to the degree of the ramp waveform is held in the capacitor unit.
  • the display element is scanned at a constant cycle, The period during which the ramp waveform voltage is applied to the other source / drain region of the driving transistor is set to a certain length within the period.
  • the period during which a predetermined constant voltage is applied to the gate electrode in a state where the application of the ramp waveform voltage is continued is set to a constant length within the cycle.
  • the drive transistor is an n-channel field effect transistor,
  • the capacitor is connected between the gate electrode of the driving transistor and the other source / drain region.
  • the drive circuit further includes a first switching element, In the first switching element, a voltage having a ramp waveform is supplied to one end, and the other end is connected to the other source / drain region of the driving transistor, When the first switching element is turned on, a voltage having a ramp waveform is applied to the other source / drain region of the driving transistor.
  • the electronic device according to any one of [37] to [40].
  • a voltage having a ramp waveform is supplied to one end of the first switching element via a coupling capacitor.
  • the other end of the first switching element is connected to the other source / drain region of the driving transistor via a coupling capacitor.
  • the drive circuit further includes a second switching element, In the second switching element, a predetermined constant voltage is supplied to one end, and the other end is connected to the gate electrode of the driving transistor, When the second switching element is turned on, a predetermined constant voltage is applied to the gate electrode of the driving transistor.
  • the electronic device according to any one of [37] to [43]. [45] After an initializing voltage is applied to one source / drain region of the driving transistor and the potential of the other source / drain region is initialized, a predetermined constant voltage is applied to the gate electrode of the driving transistor, and then the applied voltage is applied. By being cut off, the voltage of the capacitor is set so that the drive transistor is in a non-conductive state, and the gate electrode is in an electrically floating state.
  • the electronic device according to any one of [37] to [44]. [46] After the voltage corresponding to the slope of the ramp waveform is held in the capacitor section, the ramp waveform voltage is applied to the other source / drain region of the drive transistor, and a predetermined constant voltage is applied to the gate electrode of the drive transistor. By interrupting the application, the light emitting part is caused to emit light by the current flowing through the driving transistor.
  • the electronic device according to any one of [37] to [45].
  • the light emitting unit is composed of a current-driven electro-optic element in which the light emission luminance changes according to the flowing current value.
  • the electronic device according to any one of [37] to [46].
  • the light emitting part consists of an organic electroluminescence light emitting part, The electronic device according to [47] above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

表示素子は、発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態で、他方のソース/ドレイン領域にランプ波形の電圧が印加され、その後、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加されることによってランプ波形の傾きの程度に応じた電圧が容量部に保持される。

Description

表示素子、表示素子の駆動方法、表示装置、及び、電子機器
 本開示は、表示素子、表示素子の駆動方法、表示装置、及び、電子機器に関する。
 電流駆動型の発光部を備えた表示素子、及び、係る表示素子を備えた表示装置が周知である。例えば、有機材料のエレクトロルミネッセンスを利用した発光部を備えた表示素子(以下、単に、有機EL表示素子と略称する場合がある)は、低電圧直流駆動による高輝度発光が可能な表示素子として注目されている。
 液晶表示装置と同様に、例えば、有機EL表示素子を備えた表示装置においても、駆動方式として、単純マトリクス方式、及び、アクティブマトリクス方式が周知である。アクティブマトリクス方式は、構造が複雑になるといった欠点はあるが、画像の輝度を高いものとすることができる等の利点を有する。アクティブマトリクス方式により駆動される有機EL表示素子にあっては、発光層を含む有機層等から構成された発光部に加えて、発光部を駆動するための駆動回路を備えている。
 このような表示素子の駆動にランプ波形の傾斜波電圧を利用するといったことが、例えば、特開2003-223136号公報(特許文献1)等に記載されている。
特開2003-223136号公報
 特許文献1などにおいて、ランプ波形は専ら、事前に表示素子に書き込んだ映像信号電圧との比較に用いられるに過ぎない。即ち、表示すべき画像の輝度情報は、映像信号電圧として表示素子に印加されるといった構成である。従って、表示素子には、ランプ波形と映像信号とを印加する必要がある。
 本開示の目的は、ランプ波形のみ、より具体的には、ランプ波形の傾きの程度によって表示すべき画像の輝度情報を供給することができる表示素子、係る表示素子の駆動方法、係る表示素子を備えた表示装置、係る表示装置を備えた電子機器を提供することにある。
 上記の目的を達成するための本開示に係る表示素子は、
 発光部と発光部を駆動するための駆動回路とを備えており、
 駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
 駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態で、他方のソース/ドレイン領域にランプ波形の電圧が印加され、その後、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加されることによってランプ波形の傾きの程度に応じた電圧が容量部に保持される、
表示素子である。
 上記の目的を達成するための本開示に係る表示素子の駆動方法は、
 発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されている表示素子を用いて、
 駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
表示素子の駆動方法である。
 上記の目的を達成するための本開示に係る表示装置は、
 表示素子が配置された表示部、及び、表示部を駆動する駆動部、
を備えており、
 表示素子は、発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
 駆動部は、駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
表示装置である。
 上記の目的を達成するための本開示に係る電子機器は、
 表示装置を備えた電子機器であって、
 表示装置は、
 表示素子が配置された表示部、及び、表示部を駆動する駆動部、
を備えており、
 表示素子は、発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
 駆動部は、駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
電子機器である。
 本開示に係る表示素子によれば、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態で、他方のソース/ドレイン領域にランプ波形の電圧が印加され、その後、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加されることによってランプ波形の傾きの程度に応じた電圧が容量部に保持される。従って、ランプ波形の傾きの程度によって表示すべき画像の輝度情報を供給することができる。また、容量部に保持される電圧は駆動トランジスタの特性にも影響されるので、結果として、駆動トランジスタの特性のばらつきによる輝度ばらつきも軽減される。本開示の表示装置や電子機器にあっては、輝度ムラが軽減された画像を表示することができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果があってもよい。
図1は、第1の実施形態に係る表示装置の概念図である。 図2は、表示部における表示素子を含む部分の模式的な一部断面図である。 図3は、第1の実施形態に係る表示装置の動作、より具体的には、表示装置の第(n,m)番目の表示素子の動作を説明するための模式的なタイミングチャートである。 図4は、図3に示す[期間-Hm]の動作を説明するための模式的なタイミングチャートである。 図5A及び図5Bは、第1の実施形態の表示装置に係る表示素子の駆動回路を構成する各トランジスタの導通状態/非導通状態等を模式的に示す図である。 図6A及び図6Bは、図5Bに引き続き、第1の実施形態の表示装置に係る表示素子の駆動回路を構成する各トランジスタの導通状態/非導通状態等を模式的に示す図である。 図7A及び図7Bは、図6Bに引き続き、第1の実施形態の表示装置に係る表示素子の駆動回路を構成する各トランジスタの導通状態/非導通状態等を模式的に示す図である。 図8A及び図8Bは、図7Bに引き続き、第1の実施形態の表示装置に係る表示素子の駆動回路を構成する各トランジスタの導通状態/非導通状態等を模式的に示す図である。 図9は、図8Bに引き続き、第1の実施形態の表示装置に係る表示素子の駆動回路を構成する各トランジスタの導通状態/非導通状態等を模式的に示す図である。 図10は、レンズ交換式一眼レフレックスタイプのデジタルスチルカメラの外観図であり、図10Aにその正面図を示し、図10Bにその背面図を示す。 図11は、ヘッドマウントディスプレイの外観図である。 図12は、シースルーヘッドマウントディスプレイの外観図である。
 以下、図面を参照して、実施形態に基づいて本開示を説明する。本開示は実施形態に限定されるものではなく、実施形態における種々の数値や材料は例示である。以下の説明において、同一要素または同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は、以下の順序で行う。
1.本開示に係る表示素子、表示素子の駆動方法、表示装置、及び、電子機器全般に関する説明
2.第1の実施形態、その他
[本開示に係る表示素子、表示素子の駆動方法、表示装置、及び、電子機器全般に関する説明]
 本開示に係る表示素子、表示素子の駆動方法、表示装置、及び、電子機器(以下、これらを単に、「本開示」と呼ぶ場合がある)にあっては、
 表示素子は一定の周期で走査され、
 駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間は、周期内において一定の長さに設定されている、
構成とすることができる。この場合において、
 ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加される期間は、周期内において一定の長さに設定されている、
構成とすることができる。
 上述した好ましい構成を含む本開示にあっては、駆動トランジスタは電界効果トランジスタから成る構成とすることができる。電界効果トランジスタの構成は、動作に支障が生じない限り、特に限定されない。例えば、駆動トランジスタはnチャネル型の電界効果トランジスタから成り、容量部は、駆動トランジスタのゲート電極と他方のソース/ドレイン領域との間に接続されている構成とすることができる。
 上述した各種の好ましい構成を含む本開示において、
 駆動回路は、更に、第1スイッチング素子を含んでおり、
 第1スイッチング素子にあっては、一端にランプ波形の電圧が印加されると共に、他端は駆動トランジスタの他方のソース/ドレイン領域に接続されており、
 第1スイッチング素子が導通状態とされることによって、駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される構成とすることができる。
 この場合において、第1スイッチング素子の一端には、カップリング容量を介してランプ波形の電圧が印加される構成とすることができる。あるいは又、第1スイッチング素子の他端は、カップリング容量を介して、駆動トランジスタの他方のソース/ドレイン領域に接続されている構成とすることができる。
 上述した各種の好ましい構成を含む本開示において、
 駆動回路は、更に、第2スイッチング素子を含んでおり、
 第2スイッチング素子にあっては、一端に所定の一定電圧が印加されると共に、他端は駆動トランジスタのゲート電極に接続されており、
 第2スイッチング素子が導通状態とされることによって、駆動トランジスタのゲート電極に所定の一定電圧が印加される構成とすることができる。
 上述した第1スイッチング素子や第2スイッチング素子として、周知のスイッチング素子を使用することができる。尚、製造プロセスの共通化などといった観点からは、これらを、電界効果トランジスタから構成することが好ましい。
 上述した各種の好ましい構成を含む本開示にあっては、駆動トランジスタの一方のソース/ドレイン領域に初期化電圧が印加されて他方のソース/ドレイン領域の電位が初期化された後、駆動トランジスタのゲート電極に所定の一定電圧が印加された後その印加が遮断されることによって、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態とされる構成とすることができる。
 上述した各種の好ましい構成を含む本開示にあっては、ランプ波形の傾きの程度に応じた電圧が容量部に保持された後、駆動トランジスタのゲート電極への所定の一定電圧の印加が遮断されることで、駆動トランジスタを介して流れる電流によって発光部を発光させる構成とすることができる。
 上述した各種の好ましい構成を含む本開示において、発光部は、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子から成る構成とすることができる。電流駆動型の発光部として、有機エレクトロルミネッセンス発光部、LED発光部、半導体レーザ発光部などを挙げることができる。これらの発光部は、周知の材料や方法を用いて構成することができる。平面型の表示装置を構成する観点からは、中でも、発光部は有機エレクトロルミネッセンス発光部から成る構成が好ましい。
 上述した各種の好ましい構成を含む本開示に用いられる駆動部は、例えば、走査部、データドライバ、及び、電源部といった回路から構成される。これらは、周知の回路素子等を用いて構成することができる。
 表示装置は、所謂モノクロ表示の構成であってもよいし、カラー表示の構成であってもよい。カラー表示の構成とする場合には、1つの画素は複数の副画素から成る構成、具体的には、1つの画素は、赤色発光副画素、緑色発光副画素、及び、青色発光副画素の3つの副画素から成る構成とすることができる。更には、これらの3種の副画素に更に1種類あるいは複数種類の副画素を加えた1組(例えば、輝度向上のために白色光を発光する副画素を加えた1組、色再現範囲を拡大するために補色を発光する副画素を加えた1組、色再現範囲を拡大するためにイエローを発光する副画素を加えた1組、色再現範囲を拡大するためにイエロー及びシアンを発光する副画素を加えた1組)から構成することもできる。
 表示装置の画素(ピクセル)の値として、VGA(640,480)、S-VGA(800,600)、XGA(1024,768)、APRC(1152,900)、S-XGA(1280,1024)、U-XGA(1600,1200)、HD-TV(1920,1080)、Q-XGA(2048,1536)の他、(1920,1035)、(720,480)、(1280,960)等、画像表示用解像度の幾つかを例示することができるが、これらの値に限定するものではない。
 表示部を構成する表示素子は、或る平面内に形成され(例えば、支持体上に形成され)ており、発光部は、例えば、層間絶縁層を介して、発光部を駆動する駆動回路の上方に形成されている。
 駆動回路を構成するトランジスタとして、例えば、薄膜トランジスタ(TFT)を挙げることができる。トランジスタは、エンハンスメント型であってもよいし、デプレッション型であってもよい。nチャネル型のトランジスタにあってはLDD構造(Lightly Doped Drain構造)が形成されていてもよい。場合によっては、LDD構造は非対称に形成されていてもよい。例えば、駆動トランジスタに大きな電流が流れるのは表示素子の発光時であるので、発光時においてドレイン領域となる一方のソース/ドレイン領域にのみLDD構造を形成した構成とすることもできる。本開示の動作に適合する限り、駆動回路の構成は特に限定するものではない。
 1つのトランジスタの有する2つのソース/ドレイン領域において、「一方のソース/ドレイン領域」という用語を、電源側に接続されたソース/ドレイン領域といった意味において使用する場合がある。また、トランジスタが導通状態にあるとは、ソース/ドレイン領域間にチャネルが形成されている状態を意味する。係るトランジスタの一方のソース/ドレイン領域から他方のソース/ドレイン領域に電流が流れているか否かは問わない。一方、トランジスタが非導通状態にあるとは、ソース/ドレイン領域間にチャネルが形成されていない状態を意味する。また、ソース/ドレイン領域は、不純物を含有したポリシリコンやアモルファスシリコン等の導電性物質から構成することができるだけでなく、金属、合金、導電性粒子、これらの積層構造、有機材料(導電性高分子)から成る層から構成することができる。
 駆動回路を構成する容量部は、一方の電極、他方の電極、及び、これらの電極に挟まれた誘電体層から構成することができる。後述するカップリング容量や補助容量においても同様である。駆動回路を構成するトランジスタ等は、或る平面内に形成され(例えば、支持体上に形成され)、発光部は、例えば、層間絶縁層を介して、駆動回路を構成するトランジスタ及び容量部の上方に形成されている。また、駆動トランジスタの他方のソース/ドレイン領域は、発光部の一端(発光部に備えられたアノード電極等)に、例えば、コンタクトホールを介して接続されている。尚、半導体基板等にトランジスタを形成した構成であってもよい。
 走査線やデータ線、あるいは給電線などといった各種の配線は、或る平面上(例えば、支持体上)に形成される。これらの配線は、周知の構成や構造とすることができる。
 支持体や後述する基板の構成材料として、高歪点ガラス、ソーダガラス(Na2O・CaO・SiO2)、硼珪酸ガラス(Na2O・B23・SiO2)、フォルステライト(2MgO・SiO2)、鉛ガラス(Na2O・PbO・SiO2)等のガラス材料の他、可撓性を有する高分子材料、例えば、ポリエーテルスルホン(PES)やポリイミド、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)に例示される高分子材料を例示することができる。尚、支持体や基板の表面に各種のコーティングが施されていてもよい。支持体と基板の構成材料は、同じであってもよいし異なっていてもよい。可撓性を有する高分子材料から成る支持体および基板を用いれば、可撓性を有する表示装置を構成することができる。
 本明細書における各種の式に示す条件は、式が数学的に厳密に成立する場合の他、式が実質的に成立する場合にも満たされる。式の成立に関し、表示素子や表示装置の設計上あるいは製造上生ずる種々のばらつきの存在は許容される。
 以下の説明で用いるタイミングチャートにおいて、各期間を示す横軸の長さ(時間長)は模式的なものであり、各期間の時間長の割合を示すものではない。縦軸においても同様である。また、タイミングチャートにおける波形の形状も模式的なものである。
[第1の実施形態]
 第1の実施形態は、本開示に係る表示素子、表示装置、及び、それらの駆動方法に関する。
 図1は、第1の実施形態に係る表示装置の概念図である。
 表示装置1は、発光部ELPと発光部ELPを駆動する駆動回路4とを備えた表示素子3が配置された表示部2、及び、表示部2を駆動する駆動部100を備えている。
 表示部2において、表示素子3は、第1走査線WS1、第2走査線WS2、給電線DS、及び、データ線DTLに接続された状態で、2次元マトリクス状に配置されている。第1走査線WS1、第2走査線WS2、及び、給電線DSは、行方向(図1においてX方向)に延在して設けられ、データ線DTLは、列方向(図1においてY方向)に延在して設けられている。
 尚、図示の都合上、図1においては、1つの表示素子3、より具体的には、後述する第(n,m)番目の表示素子3についての結線関係を示した。
 駆動部100は、電源部101、走査部102、及び、データドライバ103から構成されてている。走査部102は、第1走査部102Aと、第2走査部102Bとを備えている。
 給電線DSには、電源部101から駆動電圧などが供給される。第1走査線WS1には、第1走査部102Aから信号が供給され、第2走査線WS2には第2走査部102Bから信号が供給される。データ線DTLには、データドライバ103から、ランプ波形の電圧が供給される。
 図1では図示されていないが、表示部2が画像を表示する領域(表示領域)は、行方向にN個、列方向にM個、合計N×M個の、2次元マトリクス状に配列された表示素子3から構成されている。表示領域における表示素子3の行数はMであり、各行を構成する表示素子3の数はNである。
 第1走査線WS1、第2走査線WS2、及び、給電線DSの本数は、それぞれM本である。第m行目(但し、m=1,2・・・,M)の表示素子3は、第m番目の第1走査線WS1m、第m番目の第2走査線WS2m、第m番目の給電線DSmに接続されており、1つの表示素子行を構成する。尚、図1では、第1走査線WS1m、第2走査線WS2m、及び、給電線DSmのみが示されている。
 また、データ線DTLの本数はN本である。第n列目(但し、n=1,2・・・,N)の表示素子3は、第n番目のデータ線DTLnに接続されている。尚、図1では、データ線DTLnのみが示されている。
 表示素子3が備える駆動回路4は、駆動トランジスタTRDrvと容量部CHDとを少なくとも含んでいる。駆動トランジスタTRDrvにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部ELPに接続され、容量部CHDに保持される電圧に応じた電流が駆動トランジスタTRDrvを介して発光部ELPに流れるように構成されている。発光部ELPは、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子、より具体的には、有機エレクトロルミネッセンス発光部から構成されている。
 図3などを参照して後で詳しく説明するが、駆動部100は、駆動トランジスタTRDrvが非導通状態となるように容量部CHDの電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部CHDに保持させる。
 第1の実施形態において、駆動トランジスタTRDrvはnチャネル型の電界効果トランジスタから構成されている。駆動トランジスタTRDrvにおいて、一方のソース/ドレイン領域は給電線DSに接続されており、他方のソース/ドレイン領域は発光部ELPの一端、より具体的には、発光部ELPに備えられたアノード電極に接続されている。容量部CHDは、駆動トランジスタTRDrvのゲート電極と他方のソース/ドレイン領域との間に接続されている。
 容量部CHDは、駆動トランジスタTRDrvのソース領域に対するゲート電極の電圧(所謂ゲート-ソース間電圧)を保持するために用いられる。この場合の「ソース領域」とは、発光部ELPが発光するときに「ソース領域」として働く側のソース/ドレイン領域を意味する。表示素子3の発光状態においては、駆動トランジスタTRDrvの一方のソース/ドレイン領域(図1において給電線DSに接続されている側)はドレイン領域として働き、他方のソース/ドレイン領域(発光部ELPの一端、具体的には、アノード電極に接続されている側)はソース領域として働く。
 駆動回路4は、更に、第1スイッチング素子TRWS1を含んでいる。第1スイッチング素子TRWS1は、駆動トランジスタTRDrvと同様にnチャネル型の電界効果トランジスタから構成されている。第1スイッチング素子TRWS1のゲート電極は第1走査線WS1に接続されており、第1スイッチング素子TRWS1の導通/非導通は、第1走査部102Aからの信号によって制御される。
 第1スイッチング素子TRWS1にあっては、一端(一方のソース/ドレイン領域)にランプ波形の電圧が印加されると共に、他端(他方のソース/ドレイン領域)は駆動トランジスタTRDrvの他方のソース/ドレイン領域に接続されている。そして、第1スイッチング素子TRWS1が導通状態とされることによって、駆動トランジスタTRDrvの他方のソース/ドレイン領域にランプ波形の電圧が印加される。
 図1に示す例では、第1スイッチング素子TRWS1の一端は、カップリング容量CCPを介してデータ線DTLに接続されている。従って、第1スイッチング素子TRWS1の一端には、カップリング容量CCPを介してランプ波形の電圧が印加される。尚、カップリング容量CCPの位置を入れ替えた構成、即ち、第1スイッチング素子TRWS1の他端は、カップリング容量CCPを介して、駆動トランジスタTRDrvの他方のソース/ドレイン領域に接続されている構成としてもよい。
 駆動回路4は、更に、第2スイッチング素子TRWS2を含んでいる。第2スイッチング素子TRWS2も、駆動トランジスタTRDrvと同様にnチャネル型の電界効果トランジスタから構成されている。第2スイッチング素子TRWS2のゲート電極は第2走査線WS2に接続されており、第2スイッチング素子TRWS2の導通/非導通は、第2走査部102Bからの信号によって制御される。
 第2スイッチング素子TRWS2にあっては、一端(一方のソース/ドレイン領域)に所定の一定電圧VIniが印加されると共に、他端(他方のソース/ドレイン領域)は駆動トランジスタTRDrvのゲート電極に接続されている。そして、第2スイッチング素子TRWS2が導通状態とされることによって、駆動トランジスタTRDrvのゲート電極に所定の一定電圧VIniが印加される。
 尚、第1スイッチング素子TRWS1や第2スイッチング素子TRWS2を、pチャネル型の電界効果トランジスタから構成することもできる。また、表示素子3は更に別のトランジスタを備えていてもよい。
 符号NDgは、駆動トランジスタTRDrvのゲート電極に接続される要素で構成されるノードを示す。ノードNDgは、駆動トランジスタTRDrvのゲート電極に、第2スイッチング素子TRWS2の他端と、容量部CHDの一方の電極とが接続されて構成される。
 符号NDsは、駆動トランジスタTRDrvの他方のソース/ドレイン領域に接続される要素で構成されるノードを示す。ノードNDsは、駆動トランジスタTRDrvの他方のソース/ドレイン領域に、発光部ELPのアノード電極と、第1スイッチング素子TRWS1の他端とが接続されて構成される。
 表示装置1は、例えばモノクロ表示の表示装置であり、1つの表示素子3が1つの画素を構成する。走査部102からの走査信号によって、表示装置1は行単位で線順次走査される。第m行、第n列目に位置する表示素子3を、以下、第(n,m)番目の表示素子3あるいは第(n,m)番目の画素と呼ぶ。また、第m行目の表示素子3に割り当てられる走査期間(水平走査期間)を、符号Hmで表す。
 表示装置1にあっては、第m行目に配列されたN個の画素のそれぞれを構成する表示素子3が同時に駆動される。換言すれば、行方向に沿って配されたN個の表示素子3にあっては、その発光/非発光のタイミングは、それらが属する行単位で制御される。表示装置1の表示フレームレートをFR(回/秒)と表せば、表示装置1を行単位で線順次走査するときの1行当たりの走査期間(いわゆる水平走査期間)は、(1/FR)×(1/M)秒未満である。
 表示装置1には、例えば図示せぬ装置から、表示すべき画像に応じた階調を表す映像信号DSigが入力される。映像信号DSigは、8ビット、16ビットおよび24ビットなどといった階調ビット数のデジタル信号である。入力される映像信号DSigのうち、第(n,m)番目の表示素子3に対応する映像信号をDSig(n,m)と表す場合がある。
 データドライバ103は、傾きの大きさが映像信号DSigの値に対応したランプ波形の電圧を生成し、データ線DTLに供給する。データ線DTLには、水平走査期間毎に、傾きの大きさが映像信号DSigの値に対応したランプ波形の電圧が供給される。映像信号DSigに対応するランプ波形の電圧をVSigと表す。また、ランプ波形の電圧VSigが例えば第(n,m)番目の表示素子3に対応するものであることを示す場合に、電圧VSig(n,m)と表す場合がある。
 電源部101は、駆動電圧VDS-Hと初期化電圧VDS-Lを給電線DSに供給する。
 発光部ELPは、有機エレクトロルミネッセンス発光部から構成されている。発光部ELPは、アノード電極、正孔輸送層、発光層、電子輸送層、及び、カソード電極等から成る周知の構成や構造を有する。
 発光部ELPの他端(具体的には、カソード電極)には、電圧VCath(例えば0[ボルト])が印加される。発光部ELPの発光に必要とされる閾値電圧をVth-ELと表す。発光部ELPのアノード電極とカソード電極との間にVth-EL以上の電圧が印加されると、発光部ELPは発光する。
 符号CELは、発光部ELPの容量を表す。尚、発光部ELPの容量が小さくて表示素子3を駆動する上で支障を生ずるなどといった場合には、発光部ELPに対して並列に接続される補助容量CSubを設ければよい。以下、補助容量CSubが設けられているとして説明するが、これは例示に過ぎない。補助容量CSubは省略されていてもよい。
 ここで、発光部ELPやトランジスタなどの配置関係について説明する。図2は、表示部における表示素子を含む部分の模式的な一部断面図である。
 駆動トランジスタTRDrv、第1スイッチング素子TRWS1、及び、第2スイッチング素子TRWS2、並びに、容量部CHD、及び、カップリング容量CCPは、支持体21上に形成されている。そして、これらの上方に層間絶縁層40を介して発光部ELPが形成されている。また、駆動トランジスタTRDrvの他方のソース/ドレイン領域は、発光部ELPに備えられたアノード電極に、コンタクトホールを介して接続されている。尚、図2においては、駆動トランジスタTRDrvや容量部CHDのみを図示する。第1スイッチング素子TRWS1、第2スイッチング素子TRWS2、及び、カップリング容量CCPは隠れて見えない。
 駆動トランジスタTRDrvは、ゲート電極31、ゲート絶縁層32、半導体層33に設けられた一方のソース/ドレイン領域35A、他方のソース/ドレイン領域35B、及び、一方のソース/ドレイン領域35Aと他方のソース/ドレイン領域35Bとの間の半導体層33の部分が該当するチャネル形成領域34から構成されている。一方、容量部CHDは、一方の電極36、ゲート絶縁層32の延在部から構成された誘電体層、及び、他方の電極37から成る。ゲート電極31、ゲート絶縁層32の一部、及び、容量部CHDを構成する一方の電極36は、支持体21上に形成されている。駆動トランジスタTRDrvの一方のソース/ドレイン領域35Aは配線38(給電線DSに対応する)に接続され、他方のソース/ドレイン領域35Bは他方の電極37に接続されている。駆動トランジスタTRDrv及び容量部CHD等は、層間絶縁層40で覆われており、層間絶縁層40上に、アノード電極51、正孔輸送層、発光層、電子輸送層、及び、カソード電極53から成る発光部ELPが設けられている。尚、図面においては、正孔輸送層、発光層、及び、電子輸送層を1層52で表した。発光部ELPが設けられていない層間絶縁層40の部分の上には、第2層間絶縁層54が設けられ、第2層間絶縁層54及びカソード電極53上には透明な基板22が配置されており、発光層にて発光した光は、基板22を通過して、外部に出射される。尚、他方の電極37とアノード電極51とは、層間絶縁層40に設けられたコンタクトホールによって接続されている。また、カソード電極53は、第2層間絶縁層54、層間絶縁層40に設けられたコンタクトホール56,55を介して、ゲート絶縁層32の延在部上に設けられた配線39(電圧VCathが供給される共通給電線に対応する)に接続されている。
 尚、容量部CHDを構成する電極の面積に対して、発光部ELPを構成する電極の面積は大きい。一般的に、容量値は、発光部ELPの容量CEL>容量部CHDの容量といった関係にある。
 図1に示す駆動トランジスタTRDrvは、表示素子3の発光状態においては、飽和領域で動作するように電圧設定されており、以下の式(1)に従ってドレイン電流Idsを流すように駆動される。上述したように、表示素子3の発光状態においては、駆動トランジスタTRDrvの一方のソース/ドレイン領域はドレイン領域として働き、他方のソース/ドレイン領域はソース領域として働く。説明の都合上、以下、駆動トランジスタTRDrvの一方のソース/ドレイン領域を単にドレイン領域と呼び、他方のソース/ドレイン領域を単にソース領域と呼ぶ場合がある。尚、
μ :実効的な移動度
L :チャネル長
W :チャネル幅
gs:ソース領域に対するゲート電極の電圧(ゲート-ソース間電圧)
th:閾値電圧
ox:(ゲート絶縁層の比誘電率)×(真空の誘電率)/(ゲート絶縁層の厚さ)
k≡(1/2)・(W/L)・Cox
とする。
ds=k・μ・(Vgs-Vth2  (1)
 このドレイン電流Idsが発光部ELPを流れることで、表示素子3の発光部ELPが発光する。更には、このドレイン電流Idsの値の大小によって、ドレイン電流Idsが流れているときの発光部ELPにおける光の強さが制御される。
 以上、表示装置1の概要について説明した。次いで、図を参照して、表示装置1の動作について説明する。
 図3は、第1の実施形態に係る表示装置の動作、より具体的には、表示装置の第(n,m)番目の表示素子の動作を説明するための模式的なタイミングチャートである。図4は、図3に示す[期間-Hm]の動作を説明するための模式的なタイミングチャートである。図5ないし図9は、第1の実施形態の表示装置に係る表示素子の駆動回路を構成する各トランジスタの導通状態/非導通状態等を模式的に示す図である。
 表示装置の動作の概要は以下の通りである。駆動部100の動作に基づいて、表示素子3は一定の周期で走査される。先ず、駆動トランジスタTRDrvの一方のソース/ドレイン領域に初期化電圧VDS-Lが印加されて他方のソース/ドレイン領域の電位が初期化された後、駆動トランジスタTRDrvのゲート電極に所定の一定電圧VIniが印加された後その印加が遮断されることによって、駆動トランジスタTRDrvが非導通状態となるように容量部CHDの電圧が設定され且つゲート電極が電気的に浮遊している状態とされる(図3の[期間-Hm-P]~[期間-Hm-1])。次いで、他方のソース/ドレイン領域にランプ波形の電圧が印加され、その後、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧VIniが印加されることによってランプ波形の傾きの程度に応じた電圧が容量部CHDに保持される(図3の[期間-Hm]の前半)。そして、ランプ波形の傾きの程度に応じた電圧が容量部CHDに保持された後、駆動トランジスタTRDrvのゲート電極への所定の一定電圧VIniの印加が遮断されることで、駆動トランジスタTRDrvを介して流れる電流によって発光部ELPを発光させる(図3の[期間-Hm]の後半以降)。尚、駆動トランジスタTRDrvの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間は、周期内において一定の長さに設定されている。そして、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧VIniが印加される期間は、周期内において一定の長さに設定されている。
 以下の説明において、電圧あるいは電位の値を以下のとおりとするが、これは、あくまでも説明のための値であり、これらの値に限定されるものではない。
Ini :第2スイッチング素子TRWS2の一方のソース/ドレイン領域に印加される所
     定の一定電圧
     ・・・0ボルト
DS-L :駆動トランジスタTRDrvの他方のソース/ドレイン領域の電位を初期化するた
     めの初期化電圧
     ・・・-1ボルト
DS-H :駆動電圧
     ・・・20ボルト
th  :駆動トランジスタTRDrvの閾値電圧
     ・・・3ボルト
Cath :発光部ELPのカソード電極に印加される電圧
     ・・・0ボルト
th-EL:発光部ELPの閾値電圧
     ・・・4ボルト
 尚、データ線DTLに供給されるランプ波形は、0ボルトを基準として映像信号DSigの値に対応して傾きが変化すると共に、映像信号DSigが最大のときに波高値が20ボルトになるように設定されているものとする。
  [期間-Hm-P](図3、図5A、及び、図5B参照)
 この[期間-Hm-P]は、例えば、前の表示フレームにおける動作であり、前回の各種の処理完了後に第(n,m)番目の表示素子3が継続している発光を消灯させる期間である。尚、符号「P」の値は、表示装置の仕様などに基づいて適宜設定すればよい。
 この期間の途中まで給電線DSmには駆動電圧VDS-Hが供給され、第(n,m)番目の画素を構成する表示素子3における発光部ELPには、上述した式(1)に基づくドレイン電流Ids’が流れており、第(n,m)番目の画素を構成する表示素子3の輝度は、係るドレイン電流Ids’に対応した値である。駆動トランジスタTRDrvは導通状態、第1スイッチング素子TRWS1と第2スイッチング素子TRWS2は非導通状態である(図5A参照)。
 次いで、駆動トランジスタTRDrvの一方のソース/ドレイン領域に初期化電圧VDS-Lが印加されて他方のソース/ドレイン領域の電位が初期化される。
 具体的には、[期間-Hm-P]の途中において、給電線DSmに供給する電圧が駆動電圧VDS-Hから初期化電圧VDS-Lに切り替えられる。駆動トランジスタTRDrvは導通状態であるので、駆動トランジスタTRDrvの他方のソース/ドレイン領域の電位(換言すれば、ノードNDsの電位、符号Vsで表す)は、VDS-Lに初期化される。初期化電圧VDS-Lは(Vth-EL+VCath)を超えないように設定されているので、発光部ELPの両端の電圧はVth-EL未満となる。従って、発光部ELPには電流が流れなくなるので、発光部ELPは消灯する(図5B参照)。
  [期間-Hm-(P-1)](図3、図6A、及び、図6B参照)
 この[期間-Hm-(P-1)]において、駆動トランジスタTRDrvのゲート電極に所定の一定電圧VIniが印加された後その印加が遮断されることによって、駆動トランジスタTRDrvが非導通状態となるように容量部CHDの電圧が設定され且つゲート電極が電気的に浮遊している状態とされる。
 即ち、第2走査線WS2mをハイレベルとして、第2スイッチング素子TRWS2を導通状態とする。これによって、駆動トランジスタTRDrvのゲート電極に一定電圧VIniが印加される。駆動トランジスタTRDrvのゲート電極の電位(換言すれば、ノードNDgの電位、符号Vgで表す)は、VIniとなる。
 尚、ノードNDgの電位変化によって、ノードNDsの電位も変化する。しかしながら、発光部ELPの寄生容量CELと補助容量CSubから成る容量値が、容量部CHDの値に対して大きな値であれば、ノードNDsの電位の変化は小さい。以下、ノードNDgの電位変化により生ずるノードNDsの電位の変化は考慮せずに説明を行う。
 容量部CHDの電圧(換言すれば、駆動トランジスタTRDrvのゲート-ソース間電圧Vgs)は、(VIni-VDS-L)に設定される。一定電圧VIniは、(VIni-VDS-L)が閾値電圧Vthを超えないように設定されている。従って、駆動トランジスタTRDrvは非導通状態となる(図6A参照)。
 その後、第2走査線WS2mをローレベルとして、第2スイッチング素子TRWS2を非導通状態とする。これによって、駆動トランジスタTRDrvのゲート電極における一定電圧VIniの印加が遮断される。ノードNDg及びノードNDsの電位は変化しない(図6B参照)。この状態を[期間-Hm-2]まで維持する。
  [期間-Hm-1](図3、及び、図7A参照)
 この[期間-Hm-1]の途中で、給電線DSmに供給する電圧が初期化電圧VDS-Lから駆動電圧VDS-Hに切り替えられる。駆動トランジスタTRDrvは非導通状態であるので、ノードNDsの電位は従前の値を維持する。ノードNDgにおいても同様である。駆動トランジスタTRDrvが非導通状態となるように容量部CHDの電圧が設定されている状態であって、且つ、ゲート電極が電気的に浮遊している状態である。
  [期間-Hm](図3、図4、図7B、図8A、図8B、及び、図9参照)
 この[期間-Hm]において、駆動トランジスタTRDrvが非導通状態となるように容量部CHDの電圧が設定され且つゲート電極が電気的に浮遊している状態で、他方のソース/ドレイン領域にランプ波形の電圧が印加され、その後、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧VIniが印加されることによってランプ波形の傾きの程度に応じた電圧が容量部CHDに保持される。
 駆動トランジスタTRDrvの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間(換言すれば、図4において第1走査線WS1mがハイレベルとされる期間)は、周期内において一定の長さに設定されている。そして、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧VIniが印加される期間(換言すれば、図4において第2走査線WS2mがハイレベルとされる期間)は、周期内において一定の長さに設定されている。尚、これらの期間の長さは、表示素子などの設計に応じて、適宜好適な値を選択して設定すればよい。
 そして、ランプ波形の傾きの程度に応じた電圧が容量部CHDに保持された後、駆動トランジスタTRDrvの他方のソース/ドレイン領域へのランプ波形の電圧の印加と、駆動トランジスタTRDrvのゲート電極への所定の一定電圧VIniの印加とが遮断されることで、駆動トランジスタTRDrvを介して流れる電流によって発光部ELPを発光させる。
 [期間-Hm]において、データ線DTLnには、傾きの大きさが映像信号DSig(m,n)の値に対応したランプ波形の電圧VSig(m,n)が供給される。尚、第1の実施形態にあっては、ランプ波形は立ち下がる形状である。
 [期間-Hm]の始期は、駆動トランジスタTRDrvが非導通状態となるように容量部CHDの電圧が設定されている状態であって、且つ、ゲート電極が電気的に浮遊している状態である。ここで、第1走査線WS1mをハイレベルとして、第1スイッチング素子TRWS1を導通状態とする。ノードNDsには、カップリング容量CCPを介して、立ち下がるランプ波形の電圧が印加される。これによって、ノードNDsの電位も立ち下がり低下する。また、ノードNDgとノードNDsとは容量部CHDで接続されているので、ノードNDgの電位も立ち下がり、低下する(図4、図7B参照)。
 その後、第1スイッチング素子TRWS1の導通状態を維持し、ノードNDsへのランプ波形の電圧の印加が継続されている状態で、第2走査線WS2mをハイレベルとして、第2スイッチング素子TRWS2を導通状態とする。これによって、駆動トランジスタTRDrvのゲート電極に一定電圧VIniが印加される(図4、図8A参照)。
 ノードNDsの電位が立ち下がり低下している状態で、駆動トランジスタTRDrvのゲート電極に一定電圧VIniが印加されるので、駆動トランジスタTRDrvのゲート-ソース間電圧Vgsは拡大し、閾値電圧Vthを超える。これによって、駆動トランジスタTRDrvは導通状態となり、駆動トランジスタTRDrvを介した電流が、発光部ELPの寄生容量CEL(更には、補助容量CSub)に流れ込み、ノードNDsの電位を上昇させようとする。一方、ノードNDsには、カップリング容量CCPを介してランプ波形の電圧の印加が継続されているので、ノードNDsの電位を立ち下げようとする。
 結局、駆動トランジスタTRDrvのゲート-ソース間電圧Vgs(換言すれば、容量部CHDの電圧)の値は、駆動トランジスタTRDrvを介した電流が流れることによるノードNDsの電位の上昇と、カップリング容量CCPを介してランプ波形の電圧の印加が継続されることによるノードNDsの電位の低下とがバランスを保つように落ちつく。
 たとえば、あるランプ波形に対して傾きがより急峻になれば、ノードNDsの電位を低下させる作用が強くなり、ゲート-ソース間電圧Vgsは大きくなる。逆に、あるランプ波形に対して傾きがより緩やかになれば、ゲート-ソース間電圧Vgsは小さくなる。結果として、ランプ波形の傾きに応じた電圧が容量部CHDに保持される。
 その後、第1走査線WS1m及び第2走査線WS2mをローレベルとし、第1スイッチング素子TRWS1及び第2スイッチング素子TRWS2を非導通状態とする。これによって、ランプ波形の傾きの程度に応じた電圧が容量部CHDに保持された後、駆動トランジスタTRDrvの他方のソース/ドレイン領域へのランプ波形の電圧の印加と、駆動トランジスタTRDrvのゲート電極への所定の一定電圧VIniの印加とが遮断される(図4、図8B参照)。
 駆動トランジスタTRDrvを介して流れる電流によってノードNDsの電位は上昇する。そして、駆動トランジスタTRDrvのゲート電極は浮遊状態にあり、しかも、容量部CHDが存在するが故に、所謂ブートストラップ回路におけると同様の現象が駆動トランジスタTRDrvTRDのゲート電極に生じ、ノードNDgの電位も上昇する。
 ノードNDsの電位が上昇し、(Vth-EL+VCath)を超えると、発光部ELPは発光を開始する(図9参照)。このとき、発光部ELPを流れる電流は、駆動トランジスタTRDrvTRDのドレイン領域からソース領域へと流れるドレイン電流Idsであるので、式(1)で表すことができる。
 そして、駆動トランジスタTRDrvのゲート-ソース間電圧Vgsは、駆動トランジスタTRDrvの特性に依らずランプ波形の傾きの程度を反映する電流を出力するため、事実上、駆動トランジスタTRDrvの特性ばらつきは電流値に反映されないようになる。従って、良好なユニフォミティを実現できる。
 以上、本開示の実施形態について具体的に説明したが、本開示は、上述の実施形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値、構造、基板、原料、プロセスなどはあくまでも例に過ぎず、必要に応じて、これらと異なる数値、構造、基板、原料、プロセスなどを用いてもよい。
 例えば、駆動トランジスタTRDrvをpチャネル型トランジスタから構成することもできる。この場合、例えば、発光部ELPのアノード電極とカソード電極とを入れ替えた結線を行うとともに、導電型の相違に対応して、給電線に供給する電圧値や、データ線に供給するランプ波形などを適宜変更すればよい。
 以上説明した本開示の表示装置は、電子機器に入力された映像信号、若しくは、電子機器内で生成した映像信号を、画像若しくは映像として表示するあらゆる分野の電子機器の表示部(表示装置)として用いることができる。一例として、例えば、テレビジョンセット、デジタルスチルカメラ、ノート型パーソナルコンピュータ、携帯電話機等の携帯端末装置、ビデオカメラ、ヘッドマウントディスプレイ(頭部装着型ディスプレイ)等の表示部として用いることができる。
 本開示の表示装置は、封止された構成のモジュール形状のものをも含む。一例として、画素アレイ部に透明なガラス等の対向部が貼り付けられて形成された表示モジュールが該当する。尚、表示モジュールには、外部から画素アレイ部への信号等を入出力するための回路部やフレキシブルプリントサーキット(FPC)などが設けられていてもよい。以下に、本開示の表示装置を用いる電子機器の具体例として、デジタルスチルカメラ及びヘッドマウントディスプレイを例示する。但し、ここで例示する具体例は一例に過ぎず、これに限られるものではない。
(具体例1)
 図10は、レンズ交換式一眼レフレックスタイプのデジタルスチルカメラの外観図であり、図10Aにその正面図を示し、図10Bにその背面図を示す。レンズ交換式一眼レフレックスタイプのデジタルスチルカメラは、例えば、カメラ本体部(カメラボディ)311の正面右側に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
 そして、カメラ本体部311の背面略中央にはモニタ314が設けられている。モニタ314の上部には、ビューファインダ(接眼窓)315が設けられている。撮影者は、ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。
 上記の構成のレンズ交換式一眼レフレックスタイプのデジタルスチルカメラにおいて、そのビューファインダ315として本開示の表示装置を用いることができる。すなわち、本例に係るレンズ交換式一眼レフレックスタイプのデジタルスチルカメラは、そのビューファインダ315として本開示の表示装置を用いることによって作製される。
(具体例2)
 図11は、ヘッドマウントディスプレイの外観図である。ヘッドマウントディスプレイは、例えば、眼鏡形の表示部411の両側に、使用者の頭部に装着するための耳掛け部412を有している。このヘッドマウントディスプレイにおいて、その表示部411として本開示の表示装置を用いることができる。すなわち、本例に係るヘッドマウントディスプレイは、その表示部411として本開示の表示装置を用いることによって作製される。
(具体例3)
 図12は、シースルーヘッドマウントディスプレイの外観図である。シースルーヘッドマウントディスプレイ511は、本体部512、アーム513および鏡筒514で構成される。
 本体部512は、アーム513および眼鏡500と接続される。具体的には、本体部512の長辺方向の端部はアーム513と結合され、本体部512の側面の一側は接続部材を介して眼鏡500と連結される。尚、本体部512は、直接的に人体の頭部に装着されてもよい。
 本体部512は、シースルーヘッドマウントディスプレイ511の動作を制御するための制御基板や、表示部を内蔵する。アーム513は、本体部512と鏡筒514とを接続させ、鏡筒514を支える。具体的には、アーム513は、本体部512の端部および鏡筒514の端部とそれぞれ結合され、鏡筒514を固定する。また、アーム513は、本体部512から鏡筒514に提供される画像に係るデータを通信するための信号線を内蔵する。
 鏡筒514は、本体部512からアーム513を経由して提供される画像光を、接眼レンズを通じて、シースルーヘッドマウントディスプレイ511を装着するユーザの目に向かって投射する。このシースルーヘッドマウントディスプレイ511において、本体部512の表示部に、本開示の表示装置を用いることができる。
 尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 尚、本開示の技術は以下のような構成も取ることができる。
[1]
 発光部と発光部を駆動するための駆動回路とを備えており、
 駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
 駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態で、他方のソース/ドレイン領域にランプ波形の電圧が印加され、その後、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加されることによってランプ波形の傾きの程度に応じた電圧が容量部に保持される、
表示素子。
[2]
 表示素子は一定の周期で走査され、
 駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[1]に記載の表示素子。
[3]
 ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[1]又は[2]に記載の表示素子。
[4]
 駆動トランジスタはnチャネル型の電界効果トランジスタから成り、
 容量部は、駆動トランジスタのゲート電極と他方のソース/ドレイン領域との間に接続されている、
上記[1]ないし[3]のいずれかに記載の表示素子。
[5]
 駆動回路は、更に、第1スイッチング素子を含んでおり、
 第1スイッチング素子にあっては、一端にランプ波形の電圧が供給されると共に、他端は駆動トランジスタの他方のソース/ドレイン領域に接続されており、
 第1スイッチング素子が導通状態とされることによって、駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される、
上記[1]ないし[4]のいずれかに記載の表示素子。
[6]
 第1スイッチング素子の一端には、カップリング容量を介してランプ波形の電圧が供給される、
上記[5]に記載の表示素子。
[7]
 第1スイッチング素子の他端は、カップリング容量を介して、駆動トランジスタの他方のソース/ドレイン領域に接続されている、
上記[5]に記載の表示素子。
[8]
 駆動回路は、更に、第2スイッチング素子を含んでおり、
 第2スイッチング素子にあっては、一端に所定の一定電圧が供給されると共に、他端は駆動トランジスタのゲート電極に接続されており、
 第2スイッチング素子が導通状態とされることによって、駆動トランジスタのゲート電極に所定の一定電圧が印加される、
上記[1]ないし[7]のいずれかに記載の表示素子。
[9]
 駆動トランジスタの一方のソース/ドレイン領域に初期化電圧が印加されて他方のソース/ドレイン領域の電位が初期化された後、駆動トランジスタのゲート電極に所定の一定電圧が印加された後その印加が遮断されることによって、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態とされる、
上記[1]ないし[8]のいずれかに記載の表示素子。
[10]
 ランプ波形の傾きの程度に応じた電圧が容量部に保持された後、駆動トランジスタの他方のソース/ドレイン領域へのランプ波形の電圧の印加と、駆動トランジスタのゲート電極への所定の一定電圧の印加とが遮断されることで、駆動トランジスタを介して流れる電流によって発光部を発光させる、
上記[1]ないし[9]のいずれかに記載の表示素子。
[11]
 発光部は、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子から構成されている、
上記[1]ないし[10]のいずれかに記載の表示素子。
[12]
 発光部は有機エレクトロルミネッセンス発光部から成る、
上記[11]に記載の表示素子。
[13]
 発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されている表示素子を用いて、
 駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
表示素子の駆動方法。
[14]
 表示素子は一定の周期で走査され、
 駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[13]に記載の表示素子の駆動方法。
[15]
 ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[13]又は[14]に記載の表示素子の駆動方法。
[16]
 駆動トランジスタはnチャネル型の電界効果トランジスタから成り、
 容量部は、駆動トランジスタのゲート電極と他方のソース/ドレイン領域との間に接続されている、
上記[13]ないし[15]のいずれかに記載の表示素子の駆動方法。
[17]
 駆動回路は、更に、第1スイッチング素子を含んでおり、
 第1スイッチング素子にあっては、一端にランプ波形の電圧が供給されると共に、他端は駆動トランジスタの他方のソース/ドレイン領域に接続されており、
 第1スイッチング素子が導通状態とされることによって、駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される、
上記[13]ないし[16]のいずれかに記載の表示素子の駆動方法。
[18]
 第1スイッチング素子の一端には、カップリング容量を介してランプ波形の電圧が供給される、
上記[17]に記載の表示素子の駆動方法。
[19]
 第1スイッチング素子の他端は、カップリング容量を介して、駆動トランジスタの他方のソース/ドレイン領域に接続されている、
上記[17]に記載の表示素子の駆動方法。
[20]
 駆動回路は、更に、第2スイッチング素子を含んでおり、
 第2スイッチング素子にあっては、一端に所定の一定電圧が供給されると共に、他端は駆動トランジスタのゲート電極に接続されており、
 第2スイッチング素子が導通状態とされることによって、駆動トランジスタのゲート電極に所定の一定電圧が印加される、
上記[13]ないし[19]のいずれかに記載の表示素子の駆動方法。
[21]
 駆動トランジスタの一方のソース/ドレイン領域に初期化電圧が印加されて他方のソース/ドレイン領域の電位が初期化された後、駆動トランジスタのゲート電極に所定の一定電圧が印加された後その印加が遮断されることによって、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態とされる、
上記[13]ないし[20]のいずれかに記載の表示素子の駆動方法。
[22]
 ランプ波形の傾きの程度に応じた電圧が容量部に保持された後、駆動トランジスタの他方のソース/ドレイン領域へのランプ波形の電圧の印加と、駆動トランジスタのゲート電極への所定の一定電圧の印加とが遮断されることで、駆動トランジスタを介して流れる電流によって発光部を発光させる、
上記[13]ないし[21]のいずれかに記載の表示素子の駆動方法。
[23]
 発光部は、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子から構成されている、
上記[13]ないし[22]のいずれかに記載の表示素子の駆動方法。
[24]
 発光部は有機エレクトロルミネッセンス発光部から成る、
上記[23]に記載の表示素子の駆動方法。
[25]
 表示素子が配置された表示部、及び、表示部を駆動する駆動部、
を備えており、
 表示素子は、発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が印加されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
 駆動部は、駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
表示装置。
[26]
 表示素子は一定の周期で走査され、
 駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[25]に記載の表示装置。
[27]
 ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[25]又は[26]に記載の表示装置。
[28]
 駆動トランジスタはnチャネル型の電界効果トランジスタから成り、
 容量部は、駆動トランジスタのゲート電極と他方のソース/ドレイン領域との間に接続されている、
上記[25]ないし[27]のいずれかに記載の表示装置。
[29]
 駆動回路は、更に、第1スイッチング素子を含んでおり、
 第1スイッチング素子にあっては、一端にランプ波形の電圧が供給されると共に、他端は駆動トランジスタの他方のソース/ドレイン領域に接続されており、
 第1スイッチング素子が導通状態とされることによって、駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される、
上記[25]ないし[28]のいずれかに記載の表示装置。
[30]
 第1スイッチング素子の一端には、カップリング容量を介してランプ波形の電圧が供給される、
上記[29]に記載の表示装置。
[31]
 第1スイッチング素子の他端は、カップリング容量を介して、駆動トランジスタの他方のソース/ドレイン領域に接続されている、
上記[29]に記載の表示装置。
[32]
 駆動回路は、更に、第2スイッチング素子を含んでおり、
 第2スイッチング素子にあっては、一端に所定の一定電圧が供給されると共に、他端は駆動トランジスタのゲート電極に接続されており、
 第2スイッチング素子が導通状態とされることによって、駆動トランジスタのゲート電極に所定の一定電圧が印加される、
上記[25]ないし[31]のいずれかに記載の表示装置。
[33]
 駆動トランジスタの一方のソース/ドレイン領域に初期化電圧が印加されて他方のソース/ドレイン領域の電位が初期化された後、駆動トランジスタのゲート電極に所定の一定電圧が印加された後その印加が遮断されることによって、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態とされる、
上記[25]ないし[32]のいずれかに記載の表示装置。
[34]
 ランプ波形の傾きの程度に応じた電圧が容量部に保持された後、駆動トランジスタの他方のソース/ドレイン領域へのランプ波形の電圧の印加と、駆動トランジスタのゲート電極への所定の一定電圧の印加とが遮断されることで、駆動トランジスタを介して流れる電流によって発光部を発光させる、
上記[25]ないし[33]のいずれかに記載の表示装置。
[35]
 発光部は、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子から構成されている、
上記[25]ないし[34]のいずれかに記載の表示装置。
[36]
 発光部は有機エレクトロルミネッセンス発光部から成る、
上記[35]に記載の表示装置。
[37]
 表示装置を備えた電子機器であって、
 表示装置は、
 表示素子が配置された表示部、及び、表示部を駆動する駆動部、
を備えており、
 表示素子は、発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
 駆動部は、駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
電子機器。
[38]
 表示素子は一定の周期で走査され、
 駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[37]に記載の電子機器。
[39]
 ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加される期間は、周期内において一定の長さに設定されている、
上記[37]又は[38]に記載の電子機器。
[40]
 駆動トランジスタはnチャネル型の電界効果トランジスタから成り、
 容量部は、駆動トランジスタのゲート電極と他方のソース/ドレイン領域との間に接続されている、
上記[37]ないし[39]のいずれかに記載の電子機器。
[41]
 駆動回路は、更に、第1スイッチング素子を含んでおり、
 第1スイッチング素子にあっては、一端にランプ波形の電圧が供給されると共に、他端は駆動トランジスタの他方のソース/ドレイン領域に接続されており、
 第1スイッチング素子が導通状態とされることによって、駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される、
上記[37]ないし[40]のいずれかに記載の電子機器。
[42]
 第1スイッチング素子の一端には、カップリング容量を介してランプ波形の電圧が供給される、
上記[41]に記載の電子機器。
[43]
 第1スイッチング素子の他端は、カップリング容量を介して、駆動トランジスタの他方のソース/ドレイン領域に接続されている、
上記[41]に記載の電子機器。
[44]
 駆動回路は、更に、第2スイッチング素子を含んでおり、
 第2スイッチング素子にあっては、一端に所定の一定電圧が供給されると共に、他端は駆動トランジスタのゲート電極に接続されており、
 第2スイッチング素子が導通状態とされることによって、駆動トランジスタのゲート電極に所定の一定電圧が印加される、
上記[37]ないし[43]のいずれかに記載の電子機器。
[45]
 駆動トランジスタの一方のソース/ドレイン領域に初期化電圧が印加されて他方のソース/ドレイン領域の電位が初期化された後、駆動トランジスタのゲート電極に所定の一定電圧が印加された後その印加が遮断されることによって、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態とされる、
上記[37]ないし[44]のいずれかに記載の電子機器。
[46]
 ランプ波形の傾きの程度に応じた電圧が容量部に保持された後、駆動トランジスタの他方のソース/ドレイン領域へのランプ波形の電圧の印加と、駆動トランジスタのゲート電極への所定の一定電圧の印加とが遮断されることで、駆動トランジスタを介して流れる電流によって発光部を発光させる、
上記[37]ないし[45]のいずれかに記載の電子機器。
[47]
 発光部は、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子から構成されている、
上記[37]ないし[46]のいずれかに記載の電子機器。
[48]
 発光部は有機エレクトロルミネッセンス発光部から成る、
上記[47]に記載の電子機器。
1・・・表示装置、2・・・表示部、3・・・表示素子、4・・・駆動回路、21・・・支持体、22・・・透明な基板、31・・・ゲート電極、32・・・ゲート絶縁層、33・・・半導体層、34・・・チャネル形成領域、35A・・・一方のソース/ドレイン領域、35B・・・他方のソース/ドレイン領域、36・・・一方の電極、37・・・他方の電極、38,39・・・配線、40・・・層間絶縁層、51・・・アノード電極、52・・・正孔輸送層、発光層、及び、電子輸送層、53・・・カソード電極、54・・・第2層間絶縁層、55,56・・・コンタクトホール、100・・・駆動部、101・・・電源部、102・・・走査部、102A・・・第1走査部、102B・・・第2走査部、103・・・データドライバ、WS1・・・第1走査線、WS2・・・第2走査線、DTL・・・データ線、DS・・・給電線、TRWS1・・・第1スイッチング素子、TRWS2・・・第2スイッチング素子、TRDrv・・・駆動トランジスタ、CHD・・・容量部、CCP・・・カップリング容量、ELP・・・発光部、CEL・・・発光部ELPの容量、CSub・・・補助容量、NDg・・・駆動トランジスタのゲート電極等により構成されるノード、NDs・・・駆動トランジスタのソース領域等により構成されるノード、311・・・カメラ本体部、312・・・撮影レンズユニット、313・・・グリップ部、314・・・モニタ、315・・・ビューファインダ、500・・・眼鏡、511・・・シースルーヘッドマウントディスプレイ、512・・・本体部、513・・・アーム、514・・・鏡筒

Claims (15)

  1.  発光部と発光部を駆動するための駆動回路とを備えており、
     駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
     駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態で、他方のソース/ドレイン領域にランプ波形の電圧が印加され、その後、ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加されることによってランプ波形の傾きの程度に応じた電圧が容量部に保持される、
    表示素子。
  2.  表示素子は一定の周期で走査され、
     駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される期間は、周期内において一定の長さに設定されている、
    請求項1に記載の表示素子。
  3.  ランプ波形の電圧の印加が継続されている状態でゲート電極に所定の一定電圧が印加される期間は、周期内において一定の長さに設定されている、
    請求項2に記載の表示素子。
  4.  駆動トランジスタはnチャネル型の電界効果トランジスタから成り、
     容量部は、駆動トランジスタのゲート電極と他方のソース/ドレイン領域との間に接続されている、
    請求項1に記載の表示素子。
  5.  駆動回路は、更に、第1スイッチング素子を含んでおり、
     第1スイッチング素子にあっては、一端にランプ波形の電圧が供給されると共に、他端は駆動トランジスタの他方のソース/ドレイン領域に接続されており、
     第1スイッチング素子が導通状態とされることによって、駆動トランジスタの他方のソース/ドレイン領域にランプ波形の電圧が印加される、
    請求項1に記載の表示素子。
  6.  第1スイッチング素子の一端には、カップリング容量を介してランプ波形の電圧が供給される、
    請求項5に記載の表示素子。
  7.  第1スイッチング素子の他端は、カップリング容量を介して、駆動トランジスタの他方のソース/ドレイン領域に接続されている、
    請求項5に記載の表示素子。
  8.  駆動回路は、更に、第2スイッチング素子を含んでおり、
     第2スイッチング素子にあっては、一端に所定の一定電圧が供給されると共に、他端は駆動トランジスタのゲート電極に接続されており、
     第2スイッチング素子が導通状態とされることによって、駆動トランジスタのゲート電極に所定の一定電圧が印加される、
    請求項1に記載の表示素子。
  9.  駆動トランジスタの一方のソース/ドレイン領域に初期化電圧が印加されて他方のソース/ドレイン領域の電位が初期化された後、駆動トランジスタのゲート電極に所定の一定電圧が印加された後その印加が遮断されることによって、駆動トランジスタが非導通状態となるように容量部の電圧が設定され且つゲート電極が電気的に浮遊している状態とされる、
    請求項1に記載の表示素子。
  10.  ランプ波形の傾きの程度に応じた電圧が容量部に保持された後、駆動トランジスタの他方のソース/ドレイン領域へのランプ波形の電圧の印加と、駆動トランジスタのゲート電極への所定の一定電圧の印加とが遮断されることで、駆動トランジスタを介して流れる電流によって発光部を発光させる、
    請求項1に記載の表示素子。
  11.  発光部は、流れる電流値に応じて発光輝度が変化する電流駆動型の電気光学素子から構成されている、
    請求項1に記載の表示素子。
  12.  発光部は有機エレクトロルミネッセンス発光部から成る、
    請求項11に記載の表示素子。
  13.  発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されている表示素子を用いて、
     駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
    表示素子の駆動方法。
  14.  表示素子が配置された表示部、及び、表示部を駆動する駆動部、
    を備えており、
     表示素子は、発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が印加されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
     駆動部は、駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
    表示装置。
  15.  表示装置を備えた電子機器であって、
     表示装置は、
     表示素子が配置された表示部、及び、表示部を駆動する駆動部、
    を備えており、
     表示素子は、発光部と発光部を駆動するための駆動回路とを備えており、駆動回路は、駆動トランジスタと容量部とを少なくとも含んでおり、駆動トランジスタにあっては、一方のソース/ドレイン領域には電圧が供給されると共に、他方のソース/ドレイン領域は発光部に接続され、容量部に保持される電圧に応じた電流が駆動トランジスタを介して発光部に流れるように構成されており、
     駆動部は、駆動トランジスタが非導通状態となるように容量部の電圧を設定し且つゲート電極を電気的に浮遊している状態として、他方のソース/ドレイン領域にランプ波形の電圧を印加し、その後、ランプ波形の電圧の印加を継続している状態でゲート電極に所定の一定電圧を印加することによって、ランプ波形の傾きの程度に応じた電圧を容量部に保持させる、
    電子機器。
PCT/JP2016/071002 2015-09-30 2016-07-15 表示素子、表示素子の駆動方法、表示装置、及び、電子機器 WO2017056646A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/760,572 US10636354B2 (en) 2015-09-30 2016-07-15 Display element, method for driving display element, display device, and electronic device to display image with reduced luminance unevenness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-193472 2015-09-30
JP2015193472A JP2017068033A (ja) 2015-09-30 2015-09-30 表示素子、表示素子の駆動方法、表示装置、及び、電子機器

Publications (1)

Publication Number Publication Date
WO2017056646A1 true WO2017056646A1 (ja) 2017-04-06

Family

ID=58423472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071002 WO2017056646A1 (ja) 2015-09-30 2016-07-15 表示素子、表示素子の駆動方法、表示装置、及び、電子機器

Country Status (3)

Country Link
US (1) US10636354B2 (ja)
JP (1) JP2017068033A (ja)
WO (1) WO2017056646A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153352A1 (ja) * 2020-01-27 2021-08-05 ソニーセミコンダクタソリューションズ株式会社 表示装置
US12022581B2 (en) 2020-01-27 2024-06-25 Sony Semiconductor Solutions Corporation Display device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116539B2 (ja) * 2017-11-27 2022-08-10 株式会社ジャパンディスプレイ 表示装置
JP7237918B2 (ja) * 2018-02-14 2023-03-13 ソニーセミコンダクタソリューションズ株式会社 画素回路、表示装置、画素回路の駆動方法および電子機器
JP7014030B2 (ja) * 2018-04-20 2022-02-01 マツダ株式会社 車両用蓄電装置
TWI749825B (zh) * 2020-10-23 2021-12-11 友達光電股份有限公司 斜波產生電路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005709A (ja) * 2001-06-21 2003-01-08 Hitachi Ltd 画像表示装置
JP2009008799A (ja) * 2007-06-27 2009-01-15 Sharp Corp 表示装置およびその駆動方法
JP2011170181A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 発光装置、発光装置の駆動方法および電子機器
JP2012247471A (ja) * 2011-05-25 2012-12-13 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2013044847A (ja) * 2011-08-23 2013-03-04 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892732B2 (ja) 2002-01-31 2007-03-14 株式会社日立製作所 表示装置の駆動方法
JP5141192B2 (ja) * 2007-11-02 2013-02-13 ソニー株式会社 有機エレクトロルミネッセンス発光部の駆動方法
JP6082908B2 (ja) * 2012-11-13 2017-02-22 株式会社Joled 表示装置および表示装置の駆動方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005709A (ja) * 2001-06-21 2003-01-08 Hitachi Ltd 画像表示装置
JP2009008799A (ja) * 2007-06-27 2009-01-15 Sharp Corp 表示装置およびその駆動方法
JP2011170181A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 発光装置、発光装置の駆動方法および電子機器
JP2012247471A (ja) * 2011-05-25 2012-12-13 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2013044847A (ja) * 2011-08-23 2013-03-04 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153352A1 (ja) * 2020-01-27 2021-08-05 ソニーセミコンダクタソリューションズ株式会社 表示装置
US12022581B2 (en) 2020-01-27 2024-06-25 Sony Semiconductor Solutions Corporation Display device

Also Published As

Publication number Publication date
JP2017068033A (ja) 2017-04-06
US20180247590A1 (en) 2018-08-30
US10636354B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2017221584A1 (ja) 表示装置及び電子機器
WO2017056646A1 (ja) 表示素子、表示素子の駆動方法、表示装置、及び、電子機器
JP2005004173A (ja) 電気光学装置およびその駆動装置
US11100860B2 (en) Display device, display device driving method, display element, and electronic apparatus
US20240032343A1 (en) Display device and electronic device
JP7160223B2 (ja) 表示素子、表示装置、及び、電子機器
WO2017056648A1 (ja) 表示素子の駆動方法、表示装置、及び、電子機器
US10270462B2 (en) Digital analog conversion circuit, data driver, display device, electronic apparatus and driving method of digital analog conversion circuit, driving method of data driver, and driving method of display device
WO2018042907A1 (ja) 表示装置及び電子機器
WO2021090536A1 (ja) 表示装置、表示装置の駆動方法、及び、電子機器
WO2020031656A1 (ja) 表示装置、表示装置の駆動方法、及び、電子機器
WO2020184081A1 (ja) 表示装置、及び、電子機器
US11615748B2 (en) Display device and electronic device
CN112785983B (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15760572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850823

Country of ref document: EP

Kind code of ref document: A1