WO2017056627A1 - 車体の剛性解析方法 - Google Patents

車体の剛性解析方法 Download PDF

Info

Publication number
WO2017056627A1
WO2017056627A1 PCT/JP2016/070406 JP2016070406W WO2017056627A1 WO 2017056627 A1 WO2017056627 A1 WO 2017056627A1 JP 2016070406 W JP2016070406 W JP 2016070406W WO 2017056627 A1 WO2017056627 A1 WO 2017056627A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
mass
skeleton model
lid
rigidity
Prior art date
Application number
PCT/JP2016/070406
Other languages
English (en)
French (fr)
Inventor
斉藤 孝信
平本 治郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020187007827A priority Critical patent/KR101974892B1/ko
Priority to CN201680054626.8A priority patent/CN108140065B/zh
Priority to MX2018003733A priority patent/MX369124B/es
Publication of WO2017056627A1 publication Critical patent/WO2017056627A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a stiffness analysis method for an automobile body, and more particularly to a vehicle skeleton (inertia force) that takes into account the influence of inertia force acting in the driving condition of an automobile.
  • the present invention relates to a vehicle body stiffness analysis method for performing a stiffness analysis of an automotive body structure.
  • Patent Literature 1 discloses a support for stiffness evaluation method for evaluating the rigidity of a vehicle in a running state by numerical analysis.
  • the fitting is a general term for an engine, a transmission, a seat, and the like
  • the lid is a door, a trunk, a hood, and the like.
  • the vehicle stiffness evaluation support method disclosed in Patent Document 1 evaluates the vehicle stiffness in a freely supported state in which the vehicle body is supported by an absorber or a soft bush.
  • the vehicle is provided with fittings and lids.
  • CAE analysis is performed on the vehicle (full body) with the fittings and lids to evaluate the performance of the body frame. Even so, there is no time to go back and modify the body frame design. Therefore, conventionally, there has been no choice but to perform performance evaluation and design of the vehicle body skeleton by CAE analysis only for the vehicle skeleton.
  • the present invention has been made in order to solve the above-described problems, and in a vehicle body skeleton model, these fittings or lids can be substituted for these fittings or lids even before the fittings or lids are determined. It is an object of the present invention to provide a vehicle body rigidity analysis method capable of performing a rigidity analysis with high accuracy in consideration of an inertial force acting when a vehicle is running.
  • a vehicle body rigidity analysis method has a fixed connecting part for fixing or connecting a fitting or a lid, and includes a plane element or a three-dimensional element (A vehicle body stiffness analysis method in which a computer performs a stiffness analysis using an automobile body skeleton model configured using at least one of solid elements), and a fitting or a lid is attached to a fixed connection portion of the body skeleton model.
  • a mass setting body skeleton model generating step for generating a mass setting body skeleton model by setting a mass corresponding to the mass of the fitting or lid at a predetermined position in a fixed or connected region; and the mass setting body skeleton model And a rigidity analysis step for performing a rigidity analysis in consideration of an inertial force acting when the automobile is running.
  • the vehicle body stiffness analysis method according to the present invention is characterized in that, in the above invention, the predetermined position in the mass setting vehicle body skeleton model generation step is set on a straight line or a curve connecting the fixed connecting portions.
  • the predetermined position is set to a rotationally movable center when the fitting or the lid is rotationally movable. It is characterized by being set to a position excluding the axis.
  • the vehicle body rigidity analysis method according to the present invention is the vehicle body rigidity analysis method according to the above invention, wherein the predetermined position in the mass setting vehicle body skeleton model generation step is surrounded by a straight line connecting the fixed connection portions, except on the straight line. Or it sets on the curved surface except the line of the said curve enclosed by the curve which connects the said fixed connection part, It is characterized by the above-mentioned.
  • the mass setting vehicle body skeleton model generation step includes a mass element, a mass element, and a mass element corresponding to a mass of the fitting or the lid. It sets using the rigid body element which connects the said fixed connection part, It is characterized by the above-mentioned.
  • the mass setting vehicle body skeleton model generation step uses a mass element and a beam element as a mass corresponding to a mass of the fitting or the lid.
  • the sum of the mass of the mass element and the beam element that is set corresponds to the mass of the fitting or lid fixed or connected to the fixed connection part.
  • the mass setting vehicle body skeleton model generation step includes a mass corresponding to a mass of the fitting or the lid, and a mass corresponding to a mass of the fitting or the lid. It is characterized by setting using a beam element.
  • the present invention has a fixed connecting portion for fixing or connecting a fitting or a lid, and the vehicle body skeleton model is configured by using at least one of a planar element and a three-dimensional element.
  • a mass setting vehicle skeleton model generating step for generating a mass setting vehicle skeleton model by setting a mass corresponding to the mass of the fitting or lid at a predetermined position in a region fixed or connected to the fixed connecting portion;
  • the model includes a stiffness analysis step that performs a stiffness analysis in consideration of the inertial force that is applied when the vehicle is running, thereby taking into account the inertial force that is applied to the fitting or the lid when the vehicle is running. Can be evaluated.
  • FIG. 1 is a flowchart showing a process flow of a vehicle body rigidity analysis method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining a vehicle body skeleton model used in the vehicle body rigidity analysis method according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram for explaining a mass setting vehicle body skeleton model to be analyzed by the vehicle body rigidity analysis method according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of a stiffness analysis apparatus that implements the vehicle body stiffness analysis method according to the embodiment of the present invention.
  • FIG. 1 is a flowchart showing a process flow of a vehicle body rigidity analysis method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for explaining a vehicle body skeleton model used in the vehicle body rigidity analysis method according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram for explaining a mass setting vehicle body skeleton model to be analyzed
  • FIG. 5 is an explanatory diagram illustrating a predetermined position where the mass is set in the mass setting vehicle body skeleton model generation step of the vehicle body rigidity analysis method according to the embodiment of the present invention.
  • FIG. 6 is an explanatory diagram for explaining the mass setting vehicle skeleton model in which the mass is set in the mass setting vehicle skeleton model generation step of the vehicle body rigidity analysis method according to the embodiment of the present invention.
  • FIG. 7 is an explanatory diagram for explaining a mass setting method in the mass setting vehicle body skeleton model generation step of the vehicle body rigidity analysis method according to the embodiment of the present invention.
  • FIG. 8 is an explanatory diagram for explaining the load constraint conditions in the rigidity analysis of the static torsion of the vehicle body in the embodiment of the present invention.
  • FIG. 9 is a diagram showing a result of displacement in the load direction obtained by rigidity analysis of the static torsion of the vehicle body in the example of the present invention.
  • FIG. 10 is a diagram showing the results of the average torsional stiffness and the rate of change of stiffness (changing rate of stiffness) of the inventive example and the comparative example obtained by the rigidity analysis of the static torsion of the vehicle body in the example of the present invention.
  • FIG. 11 is an explanatory diagram for explaining a load condition (load condition) assuming a lane change in the embodiment of the present invention.
  • FIG. 12 is a diagram showing the results of load point displacement and stiffness change rate in stiffness analysis assuming a lane change in the embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a load condition applied to the front side of the vehicle body in the embodiment of the present invention.
  • FIG. 14 is a diagram showing a result of displacement in the load direction under each load condition applied to the front side of the vehicle body in the example of the present invention.
  • FIG. 15 is a diagram showing the result of the rate of change in rigidity under each load condition applied to the front side of the vehicle body in the example of the present invention.
  • FIG. 16 is a diagram showing the correlation between the stiffness value and the stiffness change rate between the example of the present invention and the comparative example 2 under each load condition given to the front side of the vehicle body in the example of the present invention.
  • FIG. 17 is a diagram illustrating a load condition applied to the rear side of the vehicle body (rear side of automotive body) in the embodiment of the present invention.
  • FIG. 18 is a diagram showing a result of displacement in the load direction under each load condition given to the rear side of the vehicle body in the example of the present invention.
  • FIG. 19 is a diagram showing the result of the rate of change in rigidity under each load condition applied to the rear side of the vehicle body in the example of the present invention.
  • FIG. 20 is a diagram showing the correlation between the stiffness value and the stiffness change rate between the example of the present invention and the comparative example 2 under each load condition applied to the rear side of the vehicle body in the example of the present invention.
  • the vehicle body rigidity analysis method according to the present embodiment includes a fixed connection portion 3 for fixing or connecting a fitting or a lid, and a vehicle body skeleton model 1 configured using at least one of a planar element and a three-dimensional element.
  • the stiffness analysis is performed with the mass setting vehicle body skeleton model 21 (see FIG. 3) generated by setting the mass corresponding to the fitting or the lid as an analysis target.
  • the vehicle body rigidity analysis method according to the present embodiment can be performed using a vehicle body rigidity analysis device 41 (hereinafter simply referred to as a “rigidity analysis device”) configured as shown in the block diagram of FIG.
  • a vehicle body rigidity analysis device 41 hereinafter simply referred to as a “rigidity analysis device” configured as shown in the block diagram of FIG.
  • the vehicle body skeleton model 1 used in the present invention is composed only of skeleton parts such as a chassis, and has a fixed connecting portion 3 for fixing or connecting a fitting or a lid. .
  • the vehicle body skeleton model 1 is configured using at least one of a planar element and a three-dimensional element, and element information thereof is stored in a vehicle body skeleton model file 60 (see FIG. 4).
  • the fixed linking part 3 included in the vehicle body skeleton model 1 includes an upper hinge 3 a that fixes or connects a revolving door, a lower hinge 3 b, a striker (striker). ) 3c and the like.
  • the fixed connecting portion 3 is not limited to these, and is used for fixing fittings such as an engine mount for fixing an engine, a slide door other than a revolving door, and a bonnet.
  • Etc. are also included for fixing or connecting the lid.
  • a stiffness analysis device 41 used in the vehicle body stiffness analysis method according to the present embodiment is a device that performs stiffness analysis using the mass setting vehicle body skeleton model 21 shown in FIG. 3 as an analysis target, and is a personal computer (PC). computer)).
  • the stiffness analyzer 41 includes a display device 43, an input device 45, a storage device 47, a working data memory 49, and an arithmetic process. Part (arithmetic processing unit) 50.
  • a display device 43, an input device 45, a storage device 47, and a work data memory 49 are connected to the arithmetic processing unit 50, and each function is executed according to instructions from the arithmetic processing unit 50.
  • the display device 43 is used for displaying calculation results, and is composed of a liquid crystal monitor (LCD monitor) or the like.
  • the input device 45 is used for an instruction to display the vehicle body skeleton model 1 and the mass setting vehicle body skeleton model 21 by the operator, input of analysis conditions, and the like, and includes a keyboard, a mouse, and the like.
  • the storage device 47 is used for storing a file, and is composed of a hard disk or the like.
  • the storage device 47 stores at least various files such as the vehicle body skeleton model file 60, a program executed by the arithmetic processing unit 50, and the like.
  • the work data memory 49 is used for temporary storage and calculation of data used in the arithmetic processing unit 50, and includes a RAM (random access memory) or the like.
  • the arithmetic processing unit 50 includes a CPU (central processing unit) such as a PC, and includes a mass setting vehicle body skeleton model generation unit 51 and a stiffness analysis unit 53. Each of the above units is realized by the CPU executing a predetermined program.
  • CPU central processing unit
  • the arithmetic processing part 50 is demonstrated in detail based on FIG.
  • the mass setting body skeleton model generation unit 51 sets a mass corresponding to the mass of the equipment or lid at a predetermined position in a region where the equipment or lid is fixed or connected to the fixed connection unit 3 of the body skeleton model 1. Thus, the mass setting vehicle body skeleton model 21 is generated.
  • the stiffness analysis unit 53 analyzes the stiffness of the mass setting vehicle body skeleton model 21 generated by setting the mass of the vehicle body skeleton model 1 by the mass setting vehicle body skeleton model generation unit 51 in consideration of the inertial force acting when the vehicle is running. Is to do.
  • the vehicle body stiffness analysis method includes a mass setting vehicle body skeleton model generation step S1 for setting a mass corresponding to a fitting or a lid in the vehicle body skeleton model 1, A stiffness analysis step S3 for performing a stiffness analysis in consideration of the acting inertial force.
  • a mass setting vehicle body skeleton model generation step S1 for setting a mass corresponding to a fitting or a lid in the vehicle body skeleton model 1
  • a stiffness analysis step S3 for performing a stiffness analysis in consideration of the acting inertial force.
  • each step will be described. Note that each step is executed by a computer in accordance with an instruction from an operator.
  • Mass setting body frame model generation step S1 In the mass setting vehicle body skeleton model generation step S1, a mass corresponding to the mass of the equipment or lid is set at a predetermined position in a region where the equipment or lid is fixed or connected to the fixed connection portion 3 of the vehicle body skeleton model 1. Thus, the mass setting vehicle body skeleton model 21 is generated.
  • This mass setting vehicle body skeleton model generation step S1 is performed by the mass setting vehicle body skeleton model generation unit 51 of the stiffness analyzer 41.
  • the mass element 11 is set at a predetermined position in a region where the fitting or the lid is fixed or connected, which corresponds to the mass of the fitting or the lid.
  • the mass to be set can be set.
  • the predetermined position for setting the mass element 11 is, as shown in FIG. 5, on a straight line L that connects a plurality of fixed connection portions 3 (hinge 3a and striker 3c, hinge 3b and striker 3c, hinge 3a and hinge 3b) ( 5 (a)), or on a curve connecting the fixed connecting portions 3 along the shape of the vehicle body on which a lid or the like is mounted.
  • the rotational movement is possible when the revolving door is rotationally movable on a line connecting the hinge 3a and the hinge 3b of the revolving door.
  • the rotationally movable central axis is substantially at the same position as the boundary of the region where the revolving door is fixed or connected to the vehicle body skeleton model 1.
  • the straight line connecting the hinge 3a and the striker 3c of the revolving door and the straight line connecting the hinge 3b and the striker 3c are located inside the region where the revolving door is fixed or connected to the vehicle body skeleton model 1.
  • the predetermined position for setting the mass corresponding to the fitting or the lid is the rotation movable central axis when the fitting or the lid is rotationally movable on the straight line L or the curved line connecting the plurality of fixed connecting portions 3. It is desirable to set the position excluding the top.
  • the predetermined position for setting the mass corresponding to the fitting or the lid is not limited to the straight line L or the curved line, but on the plane P surrounded by the straight line L (see FIG. 5B). Alternatively, it may be set on a curved surface (not shown) surrounded by a curve.
  • the straight line L or the curve is the boundary of the plane P or the curved surface, it is desirable to set the mass corresponding to the fitting or the lid inside the boundary. Therefore, the predetermined position for setting the mass corresponding to the fitting or the lid is set on the plane P surrounded by the straight line L (except on the straight line L), or on the curved surface surrounded by the curve ( However, it is more preferable to set to (except on the curved line).
  • the fixed connection parts 3 are connected by a straight line so that the two straight lines intersect each other, and the mass element 11 is set on the straight line. It is preferable.
  • the fixed connecting portion 3 may be connected by a curve in accordance with the curvature of the vehicle body, and the mass element 11 may be set on the curve.
  • specific mass setting methods for setting the mass at the predetermined position described above include, for example, the following (1), (2), and (3).
  • a mass element 11 having a mass corresponding to the mass of a fitting or a lid is set at a predetermined position, and the mass element 11 and the fixed connecting portion 3 are connected using a rigid element 15 (FIG. 6A).
  • FIG. 6 (a) is an example in which one mass element 11 is set on the center of the straight line L connecting the fixed connecting portions 3. As shown in FIG. 6 (b), the straight line L is evenly distributed.
  • a plurality of mass elements 11 may be set on the points to be divided. When a plurality of mass elements 11 are set in this way, the mass of each mass element 11 may be determined so that the sum of the mass of each mass element 11 corresponds to the mass of the fitting or the lid.
  • the mass element 11 having a mass corresponding to the mass of the fitting or lid is set at a predetermined position, and the mass element 11 and the fixed coupling portion 3 are connected using the beam element 17 (see FIG. 7A). ).
  • the sum of the masses of the mass element 11 and the beam element 17 is set so as to correspond to the mass of the fitting or lid fixed or coupled to the fixed coupling portion 3.
  • the mass of the beam element 17 is determined by the cross-sectional area given as the cross-sectional property of the beam element 17 and the material density given as the material property. It is done.
  • the cross-sectional area of the beam element 17 is determined, for example, by giving the radius of the beam element 17.
  • the cross-sectional characteristics and material characteristics necessary for transmitting the load due to the inertial force acting on the mass element 11 and the beam element 17 to the mass setting vehicle body skeleton model 21 are given to the beam element 17. It is necessary to set appropriately.
  • the beam element 17 is a linear element, and rod elements can be used as long as they can transmit a tensile load and a compressive load acting in the axial direction of the element. (Bar element) may be used. Similar to the beam element 17, the mass of the rod element is determined by the cross-sectional area (or radius) given as a cross-sectional characteristic and the material density given as a material characteristic.
  • the mass of the beam element 17 is determined by the cross-sectional area given as the cross-sectional characteristic of the beam element 17 and the material density given as the material characteristic.
  • the cross-sectional area of the beam element 17 is determined by giving the radius of the beam element 17, for example.
  • the inertial force acting when the vehicle is running is considered for the mass setting body skeleton model 21 or the mass setting body skeleton model 23 (see FIG. 6) in which the mass is set in the mass setting body skeleton model generation step S1.
  • This is the step of performing rigidity analysis.
  • a load condition load constraint condition
  • the inertial force acting when the vehicle is running is taken into account using an inertia relief method.
  • the inertia relief method is based on a force acting on an object in a uniform-accelerated motion in a state where the object is supported by a support point serving as a reference of inertial force coordinates (free support state).
  • This is an analysis method for obtaining stress and strain, and is used for static analysis of a moving airplane or ship (see Patent Document 1).
  • a mass corresponding to the rotating door component is set at a predetermined position in a region where the rotating door component as a lid is fixed or connected to the fixed connecting portion 3 of the vehicle body skeleton model 1 shown in FIG.
  • Rigidity analysis was performed using the set mass-set vehicle body skeleton model as an analysis target.
  • the mass of the vehicle body skeleton model 1 is about 300 kg, and the mass of the rotating door components set in the vehicle body skeleton model 1 is 10 kg per piece. Therefore, as an example of the invention, ten mass elements 11 are evenly arranged on a straight line connecting the upper hinge 3a and the striker 3c in the vehicle body skeleton model 1, and the mass element 11, the hinge 3a, and the striker 3c are rigid elements 15
  • FIG. 8 shows load constraint conditions.
  • the constraint point was a front suspension mounting position of the vehicle body (see B in FIG. 8) and a rear suspension mounting position of the vehicle body (see C and D in FIG. 8).
  • the rigidity in static torsion was evaluated based on the average torsional rigidity determined as follows. First, a load is applied to the load point (see A in FIG. 8) based on the straight line connecting the sub-frame attachment positions (see C and D in FIG. 8) of the rear side of the vehicle body (angle 0 degree). The average inclination angle is obtained by averaging the inclination angle of the vehicle body viewed from the front side of the vehicle body over the longitudinal direction of the vehicle body. Then, the average torsional rigidity is obtained by dividing the load applied to the load point by the average inclination angle.
  • FIG. 9 the result of the displacement of the load direction of the mass setting vehicle body frame
  • FIG. 10 shows the average torsional rigidity and the rigidity change rate obtained from the displacement obtained from the result of the rigidity analysis.
  • the rigidity change rate is a relative change in the average torsional rigidity obtained based on the rigidity of the vehicle body skeleton model 1 (see Comparative Example 1).
  • the rigidity change rate in the present invention example can be obtained by, for example, the following formula (1).
  • Rigidity change rate (%) (average torsional rigidity of the present invention example ⁇ average torsional rigidity of comparative example 1) / average torsional rigidity of comparative example ⁇ 100 (1)
  • both the inventive example and the comparative example 2 resulted in the same average torsional rigidity as the comparative example 1 in which the vehicle body skeleton model 1 was analyzed, and the stiffness change rate was also slight.
  • a rigidity analysis was performed assuming an automobile in a running state, and the influence of inertial force on the rigidity of the vehicle body was verified.
  • the vehicle in a running state is lane-changed, as shown in FIG. 11, four load points are set at the subframe mounting position on the rear side of the vehicle body (“RH” in FIG. 11).
  • RH subframe mounting position on the rear side of the vehicle body
  • a rigidity analysis was performed by applying a load of 1000 N in the vehicle width direction at each load point, and a value obtained by dividing the load by the displacement at each load point was obtained as the rigidity of the vehicle body.
  • FIG. 12 shows the results of displacement and rigidity change rate in the present invention example, comparative example 1 and comparative example 2.
  • the stiffness change rate was obtained on the basis of the stiffness (Comparative Example 1) obtained by analyzing the vehicle body skeleton model 1 as the analysis target, similarly to the stiffness change rate in the static torsion.
  • an inertial force acts on the mass element 11 having a mass corresponding to the mass of the rotating door component, and the inertial force is transmitted to the mass setting vehicle body skeleton model 23 via the rigid body element 15. . Therefore, the displacement of the example of the present invention is about 30% larger than that of Comparative Example 1 in which the rotating door components are not considered (see FIG. 12A), and as a result, the rigidity is reduced by about 20% (FIG. 12). (See (b)). Furthermore, the example of this invention has shown the result which corresponds in general with the displacement and rigidity change rate of the comparative example 2 which considered the revolving door component model as it is. Therefore, it turns out that the result of the example of the present invention is appropriate.
  • the vehicle body rigidity analysis method according to the present invention is applied to load conditions corresponding to various driving states of the automobile.
  • a load is applied to the front side or rear side of the vehicle body, and the mass corresponding to the mass of the rotating door component is set in the same manner as the rigidity analysis assuming the static torsion and the lane change (example of the present invention).
  • FIG. 13 shows a load condition in which a load is applied to the front side of the vehicle body.
  • the front bending bending at two mounting position of front suspension (referred to as “front-bending”)
  • FIG. 13 (a) is the front suspension mounting position on the right and left sides of the vehicle body (“RH” in FIG. 13 (a)).
  • RH front-bending
  • LH vertical upward load
  • FIG. 13 (b) the front torsion (torsion at two mounting position of front suspension (referred to as “front-torsion”)
  • front-torsion is the position of the front suspension mounting positions on the right and left sides of the vehicle body (FIG. 13 (b)).
  • One of “RH” and “LH”) is given a vertical upward load, and the other is given a vertical downward load.
  • the front single wheel torsion (torsion at one mounting position of front suspension (referred to as “one-side front-torsion”)) shown in FIG. 13 (c) is the right and left front suspension mounting positions (FIG. 13 ( c) (refer to “RH” or “LH”), and a vertical upward load is applied.
  • the front lateral bending (lateral bending at two mounting position of front suspension (referred to as “front lateral bending”)) shown in FIG. 13 (d) is the subframe mounting position on the front side of the vehicle body (FIG. 13 (d)). (Refer to “before RH”, “before LH”, “after RH”, and “after LH”) in the vehicle width direction leftward or rightward.
  • FIG. 14 shows the results of displacement in the load direction obtained by the rigidity analysis in the present invention example
  • FIG. 15 shows the rigidity change rates of the present invention example and the comparative example 2.
  • “Bending” and “lateral bending” shown on the horizontal axis in FIG. 15 correspond to the load conditions shown in FIG. 13 (a) and FIG. 13 (d), respectively.
  • These rigidity change rates are obtained by dividing the difference between the rigidity obtained by dividing the displacement at each load point by the load at each load point and the rigidity of Comparative Example 1 by the rigidity of Comparative Example 1, thereby comparing Comparative Example 1. It was calculated
  • “twist” and “single-wheel torsion” shown on the horizontal axis in FIG. 15 correspond to the load conditions shown in FIGS. 13 (b) and 13 (c), respectively, and the rigidity change under each load condition
  • the rate was calculated as follows. First, when a load is applied to a load point (at least one of “RH” or “LH” in FIG. 13) with reference to a straight line connecting the subframe attachment positions on the rear side of the vehicle body (angle 0 degree), The average inclination angle is obtained by averaging the inclination angle of the vehicle body viewed from the side over the longitudinal direction of the vehicle body. Then, the average torsional rigidity is obtained by dividing the load applied to the load point by the average inclination angle. Further, by dividing the difference between the average torsional rigidity and the average torsional rigidity of Comparative Example 1 by the average torsional rigidity of Comparative Example 1, the stiffness change rate is obtained based on the average torsional rigidity in Comparative Example 1.
  • “twist (reverse direction)” shown on the horizontal axis in FIG. 15 is a load in the direction opposite to the load direction given to the load points (see “RH” and “LH”) shown in FIG. This is the result when.
  • “lateral bending (reverse direction)” shown on the horizontal axis of FIG. 15 corresponds to the load points (“before RH”, “before LH”, “after RH”, “after LH” shown in FIG. It is a result when a load is applied in the direction opposite to the load direction given in “)”.
  • FIG. 16 shows the correlation between the stiffness values obtained in the present invention example and the comparative example 2 (see FIG. 16A) under each load condition shown in FIG. 13 and the present invention example and the comparative example 2. And the correlation of the obtained rigidity change rate (see FIG. 16B).
  • the x-axis indicates the rigidity value or stiffness change rate obtained by the example of the present invention
  • the y-axis indicates the stiffness value or stiffness change rate obtained by the comparative example 2.
  • the stiffness value and the stiffness change rate of the present invention example are approximately 1: 1 with the stiffness value and the stiffness change rate of Comparative Example 2 in which the rotating door components are directly modeled and the stiffness analysis is performed.
  • FIG. 17 shows a load condition when a load is applied to the rear side of the vehicle body.
  • the rear bend bending at two mounting position of rear suspension (referred to as “rear-bending”)
  • FIG. 17 (a) is the right and left rear suspension mounting positions (“RH” in FIG. 17 (a)).
  • RH right and left rear suspension mounting positions
  • ”And“ LH a vertical upward load is applied.
  • the rear torsion tilt at two mounting position of rear suspension (referred to as “rear-torsion”)
  • FIG. 17 (b) is the position of the rear suspension mounting positions on the right and left sides of the vehicle body (FIG. 17 (b)).
  • One of “RH” and “LH”) is given a vertical upward load, and the other is given a vertical downward load.
  • the rear single wheel torsion (torsion at one mounting position of rear suspension (referred to as “one-side rear-torsion”)) shown in FIG. 17 (c) is the rear suspension mounting position on the right and left sides of the vehicle body (FIG. 17 ( c) (refer to “RH” or “LH”), and a vertical upward load is applied.
  • the rear lateral bending (lateral bending at two mounting position of rear suspension (referred to as “rear lateral bending”)) shown in FIG. 17 (d) is the subframe mounting position on the rear side of the vehicle body (FIG. 17 (d)). (Refer to “before RH”, “before LH”, “after RH”, and “after LH”) in the vehicle width direction leftward or rightward.
  • FIG. 18 shows the results of displacement in the load direction obtained by the stiffness analysis in the present invention example
  • FIG. 19 shows the rigidity change rates of the present invention example and the comparative example 2.
  • “Bending” and “lateral bending” shown on the horizontal axis in FIG. 19 correspond to the load conditions shown in FIGS. 17A and 17D, respectively.
  • These stiffness change rates are obtained by dividing the difference between the stiffness obtained by dividing the displacement at each load point by the load at each load point and the stiffness of Comparative Example 1 by the stiffness of Comparative Example 1, thereby comparing the results of Comparative Examples. 1 based on the rigidity in 1.
  • “twist” and “single-wheel torsion” shown on the horizontal axis in FIG. 19 correspond to the load conditions shown in FIG. 17B and FIG. 17C, respectively, and the rigidity change under each load condition
  • the rate was calculated as follows. First, when a load is applied to a load point (at least one of “RH” or “LH” in FIG. 17) with reference to a straight line connecting the front suspension mounting positions of the vehicle body (angle 0 °), The average inclination angle is obtained by averaging the observed inclination angle of the vehicle body in the longitudinal direction of the vehicle body. Then, the average torsional rigidity is obtained by dividing the load applied to the load point by the average inclination angle. Further, by dividing the difference between the average torsional rigidity and the average torsional rigidity of Comparative Example 1 by the average torsional rigidity of Comparative Example 1, the stiffness change rate is obtained based on the average torsional rigidity in Comparative Example 1.
  • “twist (reverse direction)” shown on the horizontal axis of FIG. 19 is a load in the direction opposite to the load direction given to the load points (see “RH” and “LH”) shown in FIG. This is the result when.
  • “lateral bending (reverse direction)” shown on the horizontal axis of FIG. 19 corresponds to the load points (“before RH”, “before LH”, “after RH”, “after LH” shown in FIG. This is the result when a load is applied in the direction opposite to the load direction given in (Ref.).
  • FIG. 20 shows the correlation between the stiffness values obtained in the present invention example and the comparative example 2 (see FIG. 20A) under each load condition shown in FIG. 17 and the present invention example and the comparative example 2.
  • the correlation of the obtained rigidity change rate (refer FIG.20 (b)) is shown.
  • the x-axis indicates the rigidity value or the rigidity change rate obtained by the example of the present invention
  • the y-axis indicates the rigidity value or the rigidity change rate obtained by the comparative example 2.
  • the rigidity value and the rigidity change rate of the example of the present invention are almost 1: 1 with the rigidity value and the rigidity change rate of the comparative example 2 in which the rotating door components are directly modeled and the rigidity analysis is performed.
  • R 2 0.9998 and 0.993. 19 and 20 show that the example of the present invention agrees well with the comparative example 2 in which the rotating door components are modeled as they are under each load condition. Therefore, it was shown that the stiffness analysis method according to the present invention is effective.
  • the vehicle body rigidity analysis method sets a mass corresponding to a fitting or lid in a vehicle body skeleton model having a fixed connecting portion for fixing or coupling the vehicle fitting or lid. It was proved that the rigidity of the vehicle body skeleton in the traveling state can be obtained with high accuracy by performing the rigidity analysis in consideration of the inertial force acting on the fitting or the lid during the traveling.
  • the present invention can be applied to the rigidity analysis of the vehicle body because the rigidity of the vehicle body skeleton in the running state can be obtained with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本発明に係る車体の剛性解析方法は、艤装品又は蓋物を固定又は連結する固定連結部3を有し、平面要素又は立体要素の少なくとも一方を使って構成された自動車の車体骨格モデル1を用いて、コンピュータが剛性解析を行うものであって、艤装品又は蓋物が車体骨格モデル1の固定連結部3に固定又は連結される領域内の所定位置に、艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデル21を生成する質量設定車体骨格モデル生成ステップS1と、質量設定車体骨格モデル21について、自動車の走行時に作用する慣性力を考慮して剛性解析を行う剛性解析ステップS3と、を含むことを特徴とする。

Description

車体の剛性解析方法
 本発明は、車体(automotive body)の剛性解析(stiffness analysis)方法に関し、特に、自動車(automobile)の走行状態(driving condition)において作用する慣性力(inertia force)の影響を考慮して車体骨格(automotive body structure)の剛性解析を行う車体の剛性解析方法に関する。
 近年、自動車産業においては環境問題に起因した車体の軽量化(weight reduction of automotive body)が進められており、車体の設計にCAE解析(computer aided engineering analysis)は欠かせない技術となっている。このCAE解析では、剛性解析、衝突解析(crashworthiness analysis)、振動解析(vibration analysis)等が実施され、車体性能(performance of automotive body)の向上に大きく寄与している。さらに、CAE解析によって車体性能を評価するだけではなく、当該CAE解析で得られた解析結果を用いて数理最適化(mathematical optimization)、板厚最適化(thickness optimization)、形状最適化(shape optimization)、トポロジー最適化(topology optimization)等の最適化解析を行うことにより、各種車体性能の向上や車体の軽量化を図れることが知られている。例えば特許文献1には、走行状態における車両(automotive)の剛性を数値解析(numerical analysis)により評価する剛性評価支援(support for stiffness evaluation)方法が開示されている。
特許第5203851号公報
 車両が実際に走行している状態を考えた場合、例えばレーンチェンジ(lane change)等により車体挙動(behavior on automotive body)が変化する際には、車両の中心位置から離れた位置に配設された艤装品(fittings)又は蓋物(lid component)に作用する慣性力が車体骨格の変形に大きな影響を及ぼす。これは、艤装品又は蓋物であっても、複数の部品が組み合わされた構成部品(assembly)(ASSY)の質量(mass)が10kg以上となることがあり、質量が100~300kg程度である車体骨格にとっては無視することができないためである。そのため、車体骨格の性能を評価する際には、実際の走行時に艤装品又は蓋物に作用する慣性力を考慮した状態で評価することが望まれる。なお、本発明において、艤装品は、エンジン(engine)、トランスミッション(transmission)、シート(sheet)等を総称するものであり、蓋物は、ドア(door)、トランク(trunk)、フード(hood)等を総称するものである。
 ここで、特許文献1に開示されている車両の剛性評価支援方法は、車体がアブソーバ(shock absorber)や柔らかいブッシュ(bush)により支持された、自由支持状態における車両の剛性を評価するものであり、当該車両は艤装品や蓋物が配設されたものである。
 しかしながら、一般的に、車体骨格の設計初期段階では、車両の外観やデザインは決まっておらず、車両の外観やデザインに大きく左右される蓋物や艤装品は、設計後期段階において最終決定されることが多い。そのため、特許文献1に開示されている車両の剛性評価支援方法により、艤装品や蓋物の形状が決定される前の段階において、実際の走行状態で艤装品や蓋物に作用する慣性力を考慮して車体骨格の性能を評価することは難しかった。
 さらに、設計後期段階において艤装品や蓋物が最終決定された際に、艤装品や蓋物が配設された車両(フルボディ(full body))を対象としてCAE解析を行って車体骨格の性能を評価したとしても、そこから遡って車体骨格の設計を修正する時間的な余裕はない。そのため、従来は、車体骨格のみを対象としたCAE解析により車体骨格の性能評価及び設計を行うしかなかった。
 本発明は、上記のような課題を解決するためになされたものであり、自動車の車体骨格モデルにおいて、艤装品又は蓋物が決定される前であっても、これら艤装品又は蓋物の代わりにこれらに相当する質量を設定することにより、自動車の走行時に作用する慣性力を考慮して精度良く剛性解析を行うことができる車体の剛性解析方法を提供することを目的とする。
 上記課題を解決し、目的を達成するために、本発明に係る車体の剛性解析方法は、艤装品又は蓋物を固定又は連結する固定連結部を有し、平面要素(shell elements)又は立体要素(solid elements)の少なくとも一方を使って構成された自動車の車体骨格モデルを用いて、コンピュータが剛性解析を行う車体の剛性解析方法であって、艤装品又は蓋物が前記車体骨格モデルの固定連結部に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデルを生成する質量設定車体骨格モデル生成ステップと、前記質量設定車体骨格モデルについて、前記自動車の走行時に作用する慣性力を考慮して剛性解析を行う剛性解析ステップと、を含むことを特徴とする。
 本発明に係る車体の剛性解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップにおける前記所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上に設定することを特徴とする。
 本発明に係る車体の剛性解析方法は、上記発明において、前記艤装品又は蓋物が回転可動する回転可動部品である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定することを特徴とする。
 本発明に係る車体の剛性解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップにおける前記所定位置を、前記固定連結部を結ぶ直線で囲まれた、前記直線の線上を除く平面上、又は、前記固定連結部を結ぶ曲線で囲まれた、前記曲線の線上を除く曲面上に設定することを特徴とする。
 本発明に係る車体の剛性解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素(mass elements)と、前記質量要素と前記固定連結部を接続する剛体要素とを用いて設定することを特徴とする。
 本発明に係る車体の剛性解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素とはり要素(beam elements)を用いて設定し、前記質量要素とはり要素が有する質量の和は、前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とする。
 本発明に係る車体の剛性解析方法は、上記発明において、前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とする。
 本発明は、艤装品又は蓋物を固定又は連結する固定連結部を有し、平面要素又は立体要素の少なくとも一方を使って構成された自動車の車体骨格モデルにおいて、艤装品又は蓋物が車体骨格モデルの固定連結部に固定又は連結される領域内の所定位置に艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデルを生成する質量設定車体骨格モデル生成ステップと、質量設定車体骨格モデルについて、自動車の走行時に作用する慣性力を考慮して剛性解析を行う剛性解析ステップとを含むことにより、自動車の走行時において艤装品又は蓋物に作用する慣性力を考慮して車体骨格の剛性を評価することができる。
図1は、本発明の実施の形態に係る車体の剛性解析方法の処理の流れを示すフローチャートである。 図2は、本発明の実施の形態に係る車体の剛性解析方法で用いる車体骨格モデルを説明する説明図である。 図3は、本発明の実施の形態に係る車体の剛性解析方法で解析対象とする質量設定車体骨格モデルを説明する説明図である。 図4は、本発明の実施の形態に係る車体の剛性解析方法を実施する剛性解析装置の構成を示すブロック図である。 図5は、本発明の実施の形態に係る車体の剛性解析方法の質量設定車体骨格モデル生成ステップにおいて、質量が設定される所定位置を説明する説明図である。 図6は、本発明の実施の形態に係る車体の剛性解析方法の質量設定車体骨格モデル生成ステップにおいて、質量が設定された質量設定車体骨格モデルを説明する説明図である。 図7は、本発明の実施の形態に係る車体の剛性解析方法の質量設定車体骨格モデル生成ステップにおける質量の設定方法を説明する説明図である。 図8は、本発明の実施例において、車体の静ねじり(static torsion)の剛性解析における荷重拘束(load and constraint)条件を説明する説明図である。 図9は、本発明の実施例において、車体の静ねじりの剛性解析により得られた荷重方向の変位(displacement)の結果を示す図である。 図10は、本発明の実施例において、車体の静ねじりの剛性解析により得られた、本発明例及び比較例の平均ねじり剛性及び剛性変化率(changing rate of stiffness)の結果を示す図である。 図11は、本発明の実施例において、レーンチェンジを想定した荷重条件(荷重条件)を説明する説明図である。 図12は、本発明の実施例において、レーンチェンジを想定した剛性解析における荷重点の変位及び剛性変化率の結果を示す図である。 図13は、本発明の実施例において、車体のフロント側(front side of automotive body)に与える荷重条件を説明する図である。 図14は、本発明の実施例において、車体のフロント側に与えた各荷重条件における荷重方向の変位の結果を示す図である。 図15は、本発明の実施例において、車体のフロント側に与えた各荷重条件における剛性変化率の結果を示す図である。 図16は、本発明の実施例において、車体のフロント側に与えた各荷重条件における、本発明例と比較例2との間の、剛性値及び剛性変化率の相関を示す図である。 図17は、本発明の実施例において、車体のリア側(rear side of automotive body)に与える荷重条件を説明する図である。 図18は、本発明の実施例において、車体のリア側に与えた各荷重条件における荷重方向の変位の結果を示す図である。 図19は、本発明の実施例において、車体のリア側に与えた各荷重条件における剛性変化率の結果を示す図である。 図20は、本発明の実施例において、車体のリア側に与えた各荷重条件における、本発明例と比較例2との間の、剛性値及び剛性変化率の相関を示す図である。
 以下、本発明の実施の形態を、図面を参照して以下に説明する。本実施の形態に係る車体の剛性解析方法は、艤装品又は蓋物を固定又は連結する固定連結部3を有し、平面要素又は立体要素の少なくとも一方を使って構成された自動車の車体骨格モデル1(図2参照)に対して、前記艤装品又は蓋物に相当する質量を設定して生成した質量設定車体骨格モデル21(図3参照)を解析対象として剛性解析を行うものである。本実施の形態に係る車体の剛性解析方法は、図4に示すブロック図のように構成された車体の剛性解析装置41(以下、単に「剛性解析装置」という)を用いて行うことができる。以下、本発明で対象とする車体骨格モデル1及び剛性解析装置41の各構成について説明した後に、本実施の形態に係る車体の剛性解析方法における各ステップについて説明する。
<車体骨格モデル>
 本発明で用いる車体骨格モデル1は、図2に示すように、シャシー等の骨格部品(structural parts)のみで構成されるものであり、艤装品又は蓋物を固定又は連結する固定連結部3を有する。車体骨格モデル1は、平面要素又は立体要素の少なくとも一方を使って構成され、その要素情報等は車体骨格モデルファイル60(図4参照)に格納されている。
 車体骨格モデル1が有する固定連結部3としては、図2に一例を示すように、回転ドア(revolving door)を固定又は連結する上側のヒンジ(hinge)3a、下側のヒンジ3b、ストライカー(striker)3c等が挙げられる。但し、固定連結部3はこれらに限定されるものではなく、エンジンを固定するエンジンマウント(engine mount)等の艤装品を固定するものや、回転ドア以外のスライドドア(slide door)、ボンネット(bonnet)等といった蓋物を固定又は連結するものも含んでいる。
<解析装置>
 本実施の形態に係る車体の剛性解析方法に用いる剛性解析装置41は、図3に一例を示す質量設定車体骨格モデル21を解析対象として剛性解析を行う装置であって、PC(パーソナルコンピュータ(personal computer))等のコンピュータによって構成されている。剛性解析装置41は、図4に示すように、表示装置(display device)43と、入力装置(input device)45と、記憶装置47と、作業用データメモリ49(working data memory)と、演算処理部(arithmetic processing unit)50とを有している。また、演算処理部50には、表示装置43、入力装置45、記憶装置47及び作業用データメモリ49が接続され、演算処理部50の指令によって各機能が実行される。
≪表示装置≫
 表示装置43は、計算結果の表示等に用いられ、液晶モニター(LCD monitor)等で構成される。
≪入力装置≫
 入力装置45は、操作者による車体骨格モデル1や質量設定車体骨格モデル21の表示指示、解析条件の入力等に用いられ、キーボード(keyboard)やマウス(mouse)等で構成される。
≪記憶装置≫
 記憶装置47は、ファイル(file)の記憶等に用いられ、ハードディスク(hard disk)等で構成される。また、記憶装置47は、少なくとも、車体骨格モデルファイル60等の各種ファイルや、演算処理部50が実行するプログラム(program)等を格納する。
≪作業用データメモリ≫
 作業用データメモリ49は、演算処理部50で使用するデータの一時保存や演算等に用いられ、RAM(random access memory)等で構成される。
≪演算処理部≫
 演算処理部50は、PC等のCPU(中央演算処理装置(central processing unit))によって構成され、質量設定車体骨格モデル生成部51と、剛性解析部53と、を備えている。上記各部は、CPUが所定のプログラムを実行することによって実現される。以下、演算処理部50内の各部の構成を、図4に基づいて詳細に説明する。
≪質量設定車体骨格モデル生成部≫
 質量設定車体骨格モデル生成部51は、艤装品又は蓋物が車体骨格モデル1の固定連結部3に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデル21を生成するものである。
≪剛性解析部≫
 剛性解析部53は、質量設定車体骨格モデル生成部51により車体骨格モデル1に質量を設定して生成された質量設定車体骨格モデル21について、自動車の走行時に作用する慣性力を考慮して剛性解析を行うものである。
<車体剛性解析方法>
 本実施の形態に係る車体の剛性解析方法は、図1に示すように、艤装品又は蓋物に相当する質量を車体骨格モデル1に設定する質量設定車体骨格モデル生成ステップS1と、自動車の走行時に作用する慣性力を考慮して剛性解析を行う剛性解析ステップS3と、を含んでいる。以下、各ステップについて説明する。なお、各ステップとも、オペレータ(operator)の指示によりコンピュータが実行するものである。
≪質量設定車体骨格モデル生成ステップ≫
 質量設定車体骨格モデル生成ステップS1は、艤装品又は蓋物が車体骨格モデル1の固定連結部3に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデル21を生成するステップである。この質量設定車体骨格モデル生成ステップS1は、剛性解析装置41の質量設定車体骨格モデル生成部51が行う。
 質量設定車体骨格モデル生成ステップS1においては、図5に示すように艤装品又は蓋物が固定又は連結される領域内の所定位置に質量要素11を設定することにより、艤装品又は蓋物の質量に相当する質量を設定することができる。
 すなわち、質量要素11を設定する所定位置は、図5に示すように、複数の固定連結部3(ヒンジ3a及びストライカー3c、ヒンジ3b及びストライカー3c、ヒンジ3a及びヒンジ3b)を結ぶ直線L上(図5(a)参照)、若しくは、蓋物等が装着された車体の形状に沿って固定連結部3を結ぶ曲線上に設定する。
 図2に示すように、艤装品又は蓋物が回転ドアのように回転可動する回転可動部品においては、回転ドアのヒンジ3aとヒンジ3bとを結ぶ線上に、回転ドアが回転可動する際の回転可動中心軸がある。そして、当該回転可動中心軸は、回転ドアが車体骨格モデル1に固定又は連結される領域の境界とほぼ同位置にある。
 これに対し、回転ドアのヒンジ3aとストライカー3cとを結ぶ直線、及び、ヒンジ3bとストライカー3cとを結ぶ直線は、回転ドアが車体骨格モデル1に固定又は連結される領域の内部に位置する。
 前記した艤装品又は蓋物に相当する質量を車体骨格モデル1に設定するにあたっては、車体骨格モデル1において艤装品又は蓋物が固定又は連結される領域の境界よりも内部に設定する方が、後述する剛性解析ステップS3で艤装品又は蓋物に作用する慣性力を考慮する上で好ましい。そのため、艤装品又は蓋物に相当する質量を設定する所定位置を、複数の固定連結部3を結ぶ直線Lの線上又は曲線の線上のうち、艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定することが望ましい。
 さらに、艤装品又は蓋物に相当する質量を設定する所定位置は、直線Lの線上若しくは曲線の線上に限定されるものではなく、直線Lで囲まれた平面P上(図5(b)参照)、若しくは、曲線で囲まれた曲面上(図示省略)に設定しても良い。
 ここで、直線L又は曲線は、平面P又は曲面の境界であるので、この境界の内側に艤装品又は蓋物に相当する質量を設定することが望ましい。そのため、艤装品又は蓋物に相当する質量を設定する所定位置を、直線Lで囲まれた平面P上(但し、直線Lの線上を除く)に設定するか、或いは曲線で囲まれた曲面上(但し、曲線の線上を除く)に設定することがより好ましい。
 また、艤装品が4点の固定連結部3で固定又は連結される場合は、2本の直線が互いに交差するように固定連結部3を直線で結び、この直線上に質量要素11を設定することが好ましい。なおこの場合においても、固定連結部3は、車体のもつ曲率(curvature)に併せて曲線で接続し、この曲線上に質量要素11を設定しても良い。
 ここで、質量設定車体骨格モデル生成ステップS1において、質量を前記した所定位置に設定する具体的な質量設定方法として、例えば、以下の(1)、(2)及び(3)が挙げられる。
(1)所定位置に艤装品又は蓋物の質量に相当する質量を有する質量要素11を設定し、質量要素11と固定連結部3とを剛体要素15を用いて接続する(図6(a)、(b)参照)。ここで、図6(a)は、固定連結部3を結ぶ直線Lの中心上に一個の質量要素11を設定した例であるが、図6(b)に示すように、直線Lを均等に分割する点上に複数個の質量要素11を設定しても良い。このように複数の質量要素11を設定する場合、各質量要素11の質量の総和が艤装品又は蓋物の質量に相当するように、各質量要素11の質量を決定すれば良い。
(2)所定位置に艤装品又は蓋物の質量に相当する質量を有する質量要素11を設定し、質量要素11と固定連結部3とをはり要素17を用いて接続する(図7(a)参照)。この場合、質量要素11とはり要素17とがそれぞれ有する質量の和は、固定連結部3に固定又は連結される艤装品又は蓋物の質量に相当するように設定する。
 はり要素17の質量は、はり要素17の断面特性(cross-sectional property)として与えられる断面積(cross-sectional area)、及び、材料特性(material property)として与えられる材料密度(material density)により定められる。はり要素17の断面積は、例えば、はり要素17の半径(radius)を与えることにより決定される。
 さらに、後述する剛性解析ステップS3において、質量要素11及びはり要素17に作用する慣性力による荷重を、質量設定車体骨格モデル21に伝達するために必要な断面特性及び材料特性を、はり要素17に適宜設定する必要がある。
 なお、はり要素17は、線状の要素であるが、当該要素の軸方向に作用する引張荷重(tensile load)及び圧縮荷重(compressive load)を伝達できるものであれば、ロッド要素(rod elements)(棒要素)であっても良い。当該ロッド要素の質量は、はり要素17と同様に、断面特性として与えられる断面積(又は半径)、及び、材料特性として与えられる材料密度により決定される。
(3)艤装品又は蓋物の質量に相当する質量を有するはり要素17を用いて設定する(図7(b)参照)。この場合、はり要素17の質量は、はり要素17の断面特性として与えられる断面積、及び、材料特性として与えられる材料密度により定められる。そして、はり要素17の断面積は、例えば、はり要素17の半径を与えることにより決定される。
≪剛性解析ステップ≫
 剛性解析ステップS3は、質量設定車体骨格モデル生成ステップS1において質量が設定された質量設定車体骨格モデル21又は質量設定車体骨格モデル23(図6参照)について、自動車の走行時に作用する慣性力を考慮して剛性解析を行うステップである。剛性解析ステップS3では、剛性解析を行うにあたり、解析条件として質量設定車体骨格モデル21又は質量設定車体骨格モデル23に荷重条件(荷重拘束条件)を設定する。また、自動車の走行時に作用する慣性力は、慣性リリーフ法(inertia relief method)を用いて考慮する。
 ここで、慣性リリーフ法とは、慣性力の座標の基準となる支持点で物体が支持された状態(自由支持状態)において、等加速度運動(uniformly-accelerated motion)中の物体に作用する力から応力(stress)やひずみ(strain)を求める解析手法であり、運動中の飛行機や船の静解析(static analysis)に使用されている(特許文献1参照)。
 このように、剛性解析ステップS3において剛性解析を実行することにより、質量設定車体骨格モデル21における変位や応力等の結果を得ることができ、さらにその結果から質量設定車体骨格モデル21の剛性を算出することができる。
 以下、本発明の効果を確認した実施例について説明する。本実施例では、図2に示した車体骨格モデル1の固定連結部3に蓋物としての回転ドア構成部品が固定又は連結される領域内の所定位置に、当該回転ドア構成部品に相当する質量を設定した質量設定車体骨格モデルを解析対象として剛性解析を行った。
 本実施例において、車体骨格モデル1の質量は約300kgであり、車体骨格モデル1に設定される回転ドア構成部品の質量は一枚当たり10kgである。そこで、発明例として、車体骨格モデル1における上側のヒンジ3aとストライカー3cとを結ぶ直線上に10個の質量要素11を均等に配置し、当該質量要素11、ヒンジ3a及びストライカー3cを剛体要素15によって接続した質量設定車体骨格モデル23(図6(b)参照)を解析対象とした。そして、質量要素11の質量の総和が回転ドア構成部品の質量となるように、各質量要素11の質量(=1kg)を設定した(本発明例)。
 一方、比較例として、回転ドア構成部品に相当する質量を設定せずに車体骨格モデル1のみを解析対象とした場合(比較例1)と、車体骨格モデル1に回転ドア構成部品モデルを組み合わせた車体モデル(図示省略)を解析対象とした場合(比較例2)とについても剛性解析を行った。
 本実施例では、まず、静ねじりを対象に剛性解析を行い、質量設定車体骨格モデル23に設定された質量の影響を検討した。図8に荷重拘束条件を示す。荷重点(図8のA参照)は、車体のフロントサスペンション(front suspension)取付位置であり、鉛直上向きの荷重(=1000N)が与えられている。一方、拘束点(constraint point)は、車体のフロントサスペンション取付位置(図8のB参照)及び車体のリアサスペンション取付位置(図8のC及びD参照)とした。
 静ねじりにおける剛性は、以下のように求めた平均ねじり剛性により評価した。まず、車体のリア側のサブフレーム(sub-frame)取付位置(図8のC及びD参照)を結ぶ直線を基準とし(角度0度)、荷重点(図8のA参照)に荷重を与えた際に車体前方側から見た車体の傾斜角度を、車体前後方向にわたって平均することにより平均傾斜角度を求める。そして、前記荷重点に与えた荷重を、平均傾斜角度により除して平均ねじり剛性を求める。
 図9に、本発明例における質量設定車体骨格モデル23の荷重方向の変位の結果を示す。また、図10に、剛性解析の結果により得られた変位から求めた平均ねじり剛性及び剛性変化率を示す。ここで、剛性変化率は、車体骨格モデル1の剛性(比較例1参照)を基準として求めた平均ねじり剛性の相対変化である。本発明例における剛性変化率は、例えば下記式(1)により求めることができる。
 剛性変化率(%)=(本発明例の平均ねじり剛性-比較例1の平均ねじり剛性)/比較例1の平均ねじり剛性×100 ・・・(1)
 静ねじりを対象とした剛性解析においては、荷重拘束条件として拘束点が設定されているため、質量要素11又は回転ドア構成部品に慣性力が作用しなかった。そのため、本発明例及び比較例2は、ともに車体骨格モデル1を解析対象とした比較例1とほぼ同じ平均ねじり剛性の結果となり、剛性変化率もわずかであった。
 次に、本実施例では、走行状態にある自動車を想定した剛性解析を行い、慣性力が車体の剛性に及ぼす影響について検証した。ここでは、走行状態にある自動車がレーンチェンジする場合を想定して、図11に示すように、車体のリア側のサブフレーム取付位置に4か所の荷重点を設定した(図11の「RH前」、「LH前」、「RH後」、「LH後」参照)。そして、各荷重点の車幅方向に1000Nの荷重を与えて剛性解析を行い、当該荷重を各荷重点における変位で除した値を、車体の剛性として求めた。
 本実施例では、前記した静ねじりと同様に、回転ドア構成部品の質量に相当する質量を設定した場合(本発明例)と、車体骨格モデル1のみを解析対象とした場合(比較例1)と、回転ドア構成部品モデルを組み合わせた車体モデルを解析対象とした場合(比較例2)とについて検討した。
 図12に、本発明例、比較例1及び比較例2における変位及び剛性変化率の結果を示す。ここで、剛性変化率は、前記した静ねじりにおける剛性変化率と同様に、車体骨格モデル1を解析対象として求めた剛性(比較例1)を基準として求めた。
 本発明例では、回転ドア構成部品の質量に相当する質量を有する質量要素11に対して慣性力が作用し、当該慣性力が剛体要素15を介して質量設定車体骨格モデル23へと伝達される。そのため、回転ドア構成部品を考慮していない比較例1に比べて本発明例の変位が約30%大きくなり(図12(a)参照)、その結果として剛性が約20%低下した(図12(b)参照)。さらに、本発明例は、回転ドア構成部品モデルをそのまま考慮した比較例2の変位及び剛性変化率と概ね一致する結果を示している。従って、本発明例の結果が妥当であることが分かる。
 さらに、本実施例では、自動車の様々な走行状態に対応する荷重条件に対して、本発明に係る車体の剛性解析方法を適用した。ここでは、車体のフロント側又はリア側に荷重を与え、前記した静ねじり及びレーンチェンジを想定した剛性解析と同様に、回転ドア構成部品の質量に相当する質量を設定した場合(本発明例)と、車体骨格モデル1のみを解析対象とした場合(比較例1)と、回転ドア構成部品モデルを組み合わせた車体モデルを解析対象とした場合(比較例2)とについて、本発明に係る剛性解析方法を用いて剛性解析を行った。
 図13に、車体のフロント側に荷重を与えた荷重条件を示す。図13(a)に示すフロント曲げ(bending at two mounting position of front suspension(referred to as "front-bending"))は、車体の右側及び左側のフロントサスペンション取付位置(図13(a)の「RH」及び「LH」参照)の双方に鉛直方向上向きの荷重を与えたものである。また、図13(b)に示すフロントねじり(torsion at two mounting position of front suspension(referred to as "front-torsion"))は、車体の右側及び左側のフロントサスペンション取付位置(図13(b)の「RH」及び「LH」参照)の一方に鉛直方向上向きの荷重を、他方に鉛直方向下向きの荷重を与えたものである。
 図13(c)に示すフロント片輪ねじり(torsion at one mounting position of front suspension(referred to as "one-side front-torsion"))は、車体の右側及び左側のフロントサスペンション取付位置(図13(c)の「RH」又は「LH」参照)のいずれか一方に鉛直方向上向きの荷重を与えたものである。また、図13(d)に示すフロント横曲げ(lateral bending at two mounting position of front suspension(referred to as "front lateral bending"))は、車体のフロント側のサブフレーム取付位置(図13(d)の「RH前」、「LH前」、「RH後」及び「LH後」参照)に車幅方向左向き又は右向きに荷重を与えたものである。
 図14に、本発明例における剛性解析により得られた荷重方向の変位の結果を、図15に、本発明例及び比較例2の剛性変化率を示す。図15の横軸に示した「曲げ」及び「横曲げ」は、それぞれ図13(a)及び図13(d)に示した荷重条件に対応している。これらの剛性変化率は、各荷重点における変位を各荷重点の荷重で除して求めた剛性と比較例1の剛性との差を、比較例1の剛性で除すことにより、比較例1における剛性を基準として求めたものである。
 また、図15の横軸に示した「ねじり」及び「片輪ねじり」は、それぞれ図13(b)及び図13(c)に示した荷重条件に対応しており、各荷重条件における剛性変化率は以下のように求めた。まず、車体のリア側のサブフレーム取付位置を結ぶ直線を基準とし(角度0度)、荷重点(図13の「RH」又は「LH」の少なくとも一方)に荷重を与えた際に、車体前方側から見た車体の傾斜角度を車体前後方向にわたって平均することにより平均傾斜角度を求める。そして、前記荷重点に与えた荷重を、平均傾斜角度により除して平均ねじり剛性を求める。さらに、当該平均ねじり剛性と比較例1の平均ねじり剛性との差を、比較例1の平均ねじり剛性で除すことにより、比較例1における平均ねじり剛性を基準として剛性変化率を求める。
 また、図15の横軸に示した「ねじり(逆向き)」は、図13(b)に示した荷重点(「RH」及び「LH」参照)に与えられた荷重方向と逆向きに荷重を与えた場合の結果である。同様に、図15の横軸に示した「横曲げ(逆向き)」は、図13(d)に示した荷重点(「RH前」、「LH前」、「RH後」、「LH後」参照)に与えられえた荷重方向と逆向きに荷重を与えた場合の結果である。
 図16に、図13に示した各荷重条件の下で、本発明例及び比較例2で得られた剛性値の相関(図16(a)参照)と、本発明例及び比較例2で得られた剛性変化率の相関(図16(b)参照)とを示す。図16において、x軸は、本発明例により得られた剛性値又は剛性変化率を示し、y軸は、比較例2により得られた剛性値又は剛性変化率を示している。
 図16に示すように、本発明例の剛性値及び剛性変化率は、ともに回転ドア構成部品をそのままモデル化して剛性解析を行った比較例2の剛性値及び剛性変化率と、ほぼ1:1の高い相関(R=1.000及び0.993)を示している。図15及び図16より、本発明例は、各荷重条件において、回転ドア構成部品をそのままモデル化した比較例2の剛性変化率と良好に一致することが示された。
 次に、本実施例では、車体のリア側に荷重を与えた場合についても剛性解析を行った。図17に、車体のリア側に荷重を与えた場合の荷重条件を示す。図17(a)に示すリア曲げ(bending at two mounting position of rear suspension(referred to as "rear-bending"))は、車体の右側及び左側のリアサスペンション取付位置(図17(a)の「RH」及び「LH」参照)の双方に鉛直方向上向きの荷重を与えたものである。また、図17(b)に示すリアねじり(torsion at two mounting position of rear suspension(referred to as "rear-torsion"))は、車体の右側及び左側のリアサスペンション取付位置(図17(b)の「RH」及び「LH」参照)の一方に鉛直方向上向きの荷重を、他方に鉛直方向下向きの荷重を与えたものである。
 図17(c)に示すリア片輪ねじり(torsion at one mounting position of rear suspension(referred to as "one-side rear-torsion"))は、車体の右側及び左側のリアサスペンション取付位置(図17(c)の「RH」又は「LH」参照)のいずれか一方に鉛直方向上向きの荷重を与えたものである。また、図17(d)に示すリア横曲げ(lateral bending at two mounting position of rear suspension(referred to as "rear lateral bending"))は、車体のリア側のサブフレーム取付位置(図17(d)の「RH前」、「LH前」、「RH後」及び「LH後」参照)に車幅方向左向き又は右向きに荷重を与えたものである。
 図18に、本発明例における剛性解析により得られた荷重方向の変位の結果を、図19に、本発明例及び比較例2の剛性変化率を示す。図19の横軸に示した「曲げ」及び「横曲げ」は、それぞれ図17(a)及び図17(d)に示した荷重条件に対応している。これらの剛性変化率は、各荷重点における変位を各荷重点の荷重で除して求めた剛性性と比較例1の剛性との差を、比較例1の剛性で除すことにより、比較例1における剛性を基準として求めたものである。
 また、図19の横軸に示した「ねじり」及び「片輪ねじり」は、それぞれ図17(b)及び図17(c)に示した荷重条件に対応しており、各荷重条件における剛性変化率は以下のように求めた。まず、車体のフロントサスペンション取付位置を結ぶ直線を基準とし(角度0度)、荷重点(図17中の「RH」又は「LH」の少なくとも一方)に荷重を与えた際に、車体前方側から見た車体の傾斜角度を車体前後方向にわたって平均することにより平均傾斜角度を求める。そして、前記荷重点に与えた荷重を、平均傾斜角度により除して平均ねじり剛性を求める。さらに、当該平均ねじり剛性と比較例1の平均ねじり剛性との差を、比較例1の平均ねじり剛性で除すことにより、比較例1における平均ねじり剛性を基準として剛性変化率を求める。
 また、図19の横軸に示した「ねじり(逆向き)」は、図17(b)に示した荷重点(「RH」及び「LH」参照)に与えられた荷重方向と逆向きに荷重を与えた場合の結果である。同様に、図19の横軸に示した「横曲げ(逆向き)」は、図17(d)に示す荷重点(「RH前」、「LH前」、「RH後」、「LH後」参照)に与えられえた荷重方向と逆向きに荷重を与えた場合の結果である。
 図20に、図17に示した各荷重条件の下で、本発明例及び比較例2で得られた剛性値の相関(図20(a)参照)と、本発明例及び比較例2により得られた剛性変化率の相関(図20(b)参照)とを示す。図20において、x軸は、本発明例により得られた剛性値又は剛性変化率を示し、y軸は、比較例2により得られた剛性値又は剛性変化率を示している。
 図20に示すように、本発明例の剛性値及び剛性変化率は、ともに回転ドア構成部品をそのままモデル化して剛性解析を行った比較例2の剛性値及び剛性変化率と、ほぼ1:1の高い相関(R=0.9998及び0.993)を示している。図19及び図20より、本発明例は、各荷重条件において、回転ドア構成部品をそのままモデル化した比較例2と良好に一致することが示された。従って、本発明に係る剛性解析方法が有効であることが示された。
 以上より、本発明に係る車体の剛性解析方法は、自動車の艤装品又は蓋物を固定又は連結する固定連結部を有する自動車の車体骨格モデルにおいて、艤装品又は蓋物に相当する質量を設定し、自動車の走行時において前記艤装品又は蓋物に作用する慣性力を考慮して剛性解析を行うことにより、走行状態における車体骨格の剛性を精度良く求めることができることが実証された。
 本発明は、走行状態における車体骨格の剛性を精度良く求めることができるため、車体の剛性解析に適用することができる。
 1 車体骨格モデル
 3 固定連結部
 3a ヒンジ(上側)
 3b ヒンジ(下側)
 3c ストライカー
 11 質量要素
 15 剛体要素
 17 はり要素
 21,23 質量設定車体骨格モデル
 41 剛性解析装置
 43 表示装置
 45 入力装置
 47 記憶装置
 49 作業用データメモリ
 50 演算処理部
 51 質量設定車体骨格モデル生成部
 53 剛性解析部
 60 車体骨格モデルファイル

Claims (7)

  1.  艤装品又は蓋物を固定又は連結する固定連結部を有し、平面要素又は立体要素の少なくとも一方を使って構成された自動車の車体骨格モデルを用いて、コンピュータが剛性解析を行う車体の剛性解析方法であって、
     艤装品又は蓋物が前記車体骨格モデルの固定連結部に固定又は連結される領域内の所定位置に、前記艤装品又は蓋物の質量に相当する質量を設定して質量設定車体骨格モデルを生成する質量設定車体骨格モデル生成ステップと、
     前記質量設定車体骨格モデルについて、前記自動車の走行時に作用する慣性力を考慮して剛性解析を行う剛性解析ステップと、
     を含むことを特徴とする車体の剛性解析方法。
  2.  前記質量設定車体骨格モデル生成ステップにおける前記所定位置を、前記固定連結部を結ぶ直線上若しくは曲線上に設定することを特徴とする請求項1に記載の車体の剛性解析方法。
  3.  前記艤装品又は蓋物が回転可動する回転可動部品である場合、前記所定位置を、前記艤装品又は蓋物が回転可動する際の回転可動中心軸上を除いた位置に設定することを特徴とする請求項2に記載の車体の剛性解析方法。
  4.  前記質量設定車体骨格モデル生成ステップにおける前記所定位置を、前記固定連結部を結ぶ直線で囲まれた、前記直線の線上を除く平面上、又は、前記固定連結部を結ぶ曲線で囲まれた、前記曲線の線上を除く曲面上に設定することを特徴とする請求項1に記載の車体の剛性解析方法。
  5.  前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素と、前記質量要素と前記固定連結部を接続する剛体要素とを用いて設定することを特徴とする請求項1乃至4のいずれか一項に記載の車体の剛性解析方法。
  6.  前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、質量要素とはり要素を用いて設定し、
     前記質量要素とはり要素が有する質量の和は、前記固定連結部に固定又は連結される艤装品又は蓋物の質量に相当することを特徴とする請求項1乃至4のいずれか一項に記載の車体の剛性解析方法。
  7.  前記質量設定車体骨格モデル生成ステップは、前記艤装品又は蓋物の質量に相当する質量を、前記艤装品又は蓋物の質量に相当する質量を有するはり要素を用いて設定することを特徴とする請求項1乃至4のいずれか一項に記載の車体の剛性解析方法。
PCT/JP2016/070406 2015-09-28 2016-07-11 車体の剛性解析方法 WO2017056627A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187007827A KR101974892B1 (ko) 2015-09-28 2016-07-11 차체의 강성 해석 방법
CN201680054626.8A CN108140065B (zh) 2015-09-28 2016-07-11 车身的刚度分析方法
MX2018003733A MX369124B (es) 2015-09-28 2016-07-11 Método de análisis de rigidez de carrocería de automóvil.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-189498 2015-09-28
JP2015189498A JP6090400B1 (ja) 2015-09-28 2015-09-28 車体の剛性解析方法

Publications (1)

Publication Number Publication Date
WO2017056627A1 true WO2017056627A1 (ja) 2017-04-06

Family

ID=58261781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070406 WO2017056627A1 (ja) 2015-09-28 2016-07-11 車体の剛性解析方法

Country Status (5)

Country Link
JP (1) JP6090400B1 (ja)
KR (1) KR101974892B1 (ja)
CN (1) CN108140065B (ja)
MX (1) MX369124B (ja)
WO (1) WO2017056627A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108959748A (zh) * 2018-06-22 2018-12-07 上海思致汽车工程技术有限公司 一种副车架与车身柔性连接的接附点的刚度分析方法
CN111027131A (zh) * 2018-10-08 2020-04-17 上海汽车集团股份有限公司 一种目标扭转刚度确定方法及装置
CN112504693A (zh) * 2020-11-25 2021-03-16 东风柳州汽车有限公司 白车身结构静刚度试验装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614301B1 (ja) * 2018-09-14 2019-12-04 Jfeスチール株式会社 車体の振動特性の適正化解析方法及び装置
CN112699460B (zh) * 2020-12-29 2023-04-25 东风汽车集团有限公司 一种白车身后部刚度分析与评价方法
KR102526015B1 (ko) 2021-04-14 2023-04-26 공주대학교 산학협력단 차량 프런트 프레임의 사고수리 전후 강성변화 분석방법 및 이를 이용한 수리차량의 안전성 평가방법
KR102526014B1 (ko) 2021-04-14 2023-04-26 공주대학교 산학협력단 차량 트렁크의 사고수리 전후 강성변화 분석방법 및 이를 이용한 수리차량의 안전성 평가방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053313A (ja) * 2002-07-17 2004-02-19 Toyota Motor Corp 排気管強度解析方法、排気管強度解析装置及び排気管強度解析プログラム
JP2011076240A (ja) * 2009-09-29 2011-04-14 Mazda Motor Corp 車両の企画支援システム
WO2014119176A1 (ja) * 2013-02-01 2014-08-07 Jfeスチール株式会社 形状最適化解析(analysis of shape optimization)方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523851A (en) 1975-06-24 1977-01-12 Enshu Seisaku Kk Fulllautomatic laver producing method
US6766206B1 (en) * 2000-07-26 2004-07-20 Ford Global Technologies, Llc System and method for designing automotive structure using adhesives
CN101976517B (zh) * 2010-09-28 2014-04-16 上海奕洁汽车科技有限公司 汽车油泥模型承载骨架
CN102358355A (zh) * 2011-07-19 2012-02-22 魏国成 超大电动客车
JP5348291B2 (ja) * 2012-03-15 2013-11-20 Jfeスチール株式会社 構造体を構成する部品形状の最適化解析装置
CN104117212B (zh) * 2013-04-27 2017-02-08 上海菲格瑞特汽车科技股份有限公司 汽车模型骨架
CN104573174B (zh) * 2014-11-20 2018-03-09 华晨汽车集团控股有限公司 一种基于cae的车身刚度分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053313A (ja) * 2002-07-17 2004-02-19 Toyota Motor Corp 排気管強度解析方法、排気管強度解析装置及び排気管強度解析プログラム
JP2011076240A (ja) * 2009-09-29 2011-04-14 Mazda Motor Corp 車両の企画支援システム
WO2014119176A1 (ja) * 2013-02-01 2014-08-07 Jfeスチール株式会社 形状最適化解析(analysis of shape optimization)方法及び装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108959748A (zh) * 2018-06-22 2018-12-07 上海思致汽车工程技术有限公司 一种副车架与车身柔性连接的接附点的刚度分析方法
CN111027131A (zh) * 2018-10-08 2020-04-17 上海汽车集团股份有限公司 一种目标扭转刚度确定方法及装置
CN111027131B (zh) * 2018-10-08 2023-09-15 上海汽车集团股份有限公司 一种目标扭转刚度确定方法及装置
CN112504693A (zh) * 2020-11-25 2021-03-16 东风柳州汽车有限公司 白车身结构静刚度试验装置

Also Published As

Publication number Publication date
CN108140065A (zh) 2018-06-08
CN108140065B (zh) 2021-07-13
KR101974892B1 (ko) 2019-05-03
JP2017068320A (ja) 2017-04-06
JP6090400B1 (ja) 2017-03-08
MX369124B (es) 2019-10-30
MX2018003733A (es) 2018-06-18
KR20180041735A (ko) 2018-04-24

Similar Documents

Publication Publication Date Title
WO2017056627A1 (ja) 車体の剛性解析方法
KR102240212B1 (ko) 차체의 접합 위치의 최적화 해석 방법 및 장치
WO2018008233A1 (ja) 車体の接合位置の最適化解析方法及び装置
EP3751435A1 (en) Automotive body adhesive bonding position optimization analysis method and optimization analysis device
JP6614301B1 (ja) 車体の振動特性の適正化解析方法及び装置
JP6098699B1 (ja) 車両の走行解析方法
EP4145329A1 (en) Method for analyzing optimization of vehicle body joint position, and device
JP6354452B2 (ja) サスペンションの振動解析装置,プログラム及び方法
JP7385130B2 (ja) 走行解析方法及び走行解析装置
Huang et al. Effect of compliant linkages on suspension under load
Yenilmez et al. Topology optimization of an anti roll bar of a heavy commercial truck for vehicle dynamics and durability
Bennur et al. Advancement in Vehicle Development Using the Auto Transfer Path Analysis
CN116802639A (zh) 车身零件的分割位置及一体化的确定方法及装置
Różyło Kinematic simulation and numerical analysis of the suspension system of light wheeled vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187007827

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003733

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850804

Country of ref document: EP

Kind code of ref document: A1