WO2017056384A1 - 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法 - Google Patents

高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法 Download PDF

Info

Publication number
WO2017056384A1
WO2017056384A1 PCT/JP2016/003880 JP2016003880W WO2017056384A1 WO 2017056384 A1 WO2017056384 A1 WO 2017056384A1 JP 2016003880 W JP2016003880 W JP 2016003880W WO 2017056384 A1 WO2017056384 A1 WO 2017056384A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hollow stabilizer
strength hollow
steel pipe
electric resistance
Prior art date
Application number
PCT/JP2016/003880
Other languages
English (en)
French (fr)
Inventor
昌利 荒谷
謙一 岩崎
信作 小久保
橋本 裕二
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020187008314A priority Critical patent/KR102081525B1/ko
Priority to US15/763,859 priority patent/US10787720B2/en
Priority to CN201680056549.XA priority patent/CN108138279B/zh
Priority to CA2991104A priority patent/CA2991104C/en
Priority to PL16850567T priority patent/PL3358028T3/pl
Priority to MX2018003854A priority patent/MX2018003854A/es
Priority to MYPI2018700072A priority patent/MY190065A/en
Priority to JP2016566300A priority patent/JP6332473B2/ja
Priority to EP16850567.5A priority patent/EP3358028B1/en
Priority to ES16850567T priority patent/ES2836688T3/es
Publication of WO2017056384A1 publication Critical patent/WO2017056384A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to an electric resistance welded steel pipe suitable for an automobile stabilizer, and more particularly to an improvement in corrosion fatigue resistance of an electric resistance welded steel pipe for a high-strength hollow stabilizer.
  • the present invention relates to a method for producing an electric resistance steel pipe for a high-strength hollow stabilizer, a high-strength hollow stabilizer, and a method for producing a high-strength hollow stabilizer.
  • Such a hollow stabilizer is usually made of a seamless steel pipe or an electric resistance welded steel pipe (hereinafter also referred to as an electric resistance welded steel pipe) and formed into a desired shape in a cold state, and then subjected to tempering such as quenching or quenching and tempering. The product is processed.
  • ERW steel pipes are widely used as a material for hollow stabilizers because they are relatively inexpensive and have excellent dimensional accuracy.
  • Patent Document 1 describes a method for manufacturing a hollow stabilizer having excellent fatigue resistance.
  • the rolling temperature is 600 to 850 ° C and the cumulative reduction ratio is 40% or more.
  • a hollow stabilizer is formed by sequentially performing a forming step of forming into a stabilizer shape by cold bending and a heat treatment step of quenching and tempering. According to the technique described in Patent Document 1, fatigue resistance characteristics can be improved by an inexpensive method.
  • Patent Document 2 describes a steel pipe for a high-strength hollow stabilizer.
  • the steel pipe described in Patent Document 2 is in mass%, C: 0.20 to 0.38%, Si: 0.10 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, W: 0.01 to 1.50%, B And 0.0005 to 0.0050%, and further containing Ti and N in a range of Ti: 0.001 to 0.04%, N: 0.0010 to 0.0100% and satisfying N / 14 ⁇ Ti / 47.9,
  • This is an ERW steel pipe for high-strength hollow stabilizers that has an excellent balance between strength and toughness after quenching or quenching and tempering.
  • a hollow stabilizer having a high hardness exceeding 400 HV and an excellent balance between strength and toughness that could not be obtained can be easily manufactured.
  • Patent Document 3 by mass, C: 0.15 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, Ti: 0.001 to 0.04%, B: 0.0005 As a steel pipe material having a composition containing up to 0.0050%, N: 0.0010 to 0.0100%, and containing Ti and N so as to satisfy (N / 14) ⁇ (Ti / 47.9), the steel pipe material is formed.
  • the ends of the open tube are butted together and the heat input is adjusted so that the bond width is 30 to 65 ⁇ m by high-frequency resistance welding, and ERW welding is performed to form an ERW welded steel tube
  • the ERW welded pipe is heated to a temperature not lower than the Ac 3 transformation point, and the reduction ratio in terms of outer diameter ratio: (1-25 / bond width before diameter reduction rolling ( ⁇ m)) ⁇ 100% or more reduction diameter
  • a method for producing an electric resistance welded steel pipe for heat treatment excellent in flatness, which is rolled and has a bond width of 25 ⁇ m or less is described.
  • the electric resistance welded steel pipe obtained by the manufacturing method described in Patent Document 3 is said to be suitable for a use in which quenching treatment such as a hollow stabilizer is performed. Since the ERW welded steel pipe described in Patent Document 3 has a narrow decarburized layer width in the ERW welded portion, it can suppress a decrease in the quenching hardness of the ERW welded portion even when subjected to quenching treatment by rapid heating for a short time. It is said that it can be a hollow stabilizer with excellent durability.
  • Patent Document 4 in mass%, C: 0.15 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, Ti: 0.001 to 0.04%, B: 0.0005 -0.0050%, N: 0.0010-0.0100%, and Ti and N are contained so as to satisfy (N / 14) ⁇ (Ti / 47.9).
  • An electric resistance welded steel pipe for heat treatment having an excellent flatness of 25 ⁇ m or less is described.
  • the electric resistance welded steel pipe described in Patent Document 4 is said to be suitable for a use in which a quenching process such as a hollow stabilizer is performed.
  • the ERW welded steel pipe described in Patent Document 4 has a narrow decarburized layer width in the ERW welded portion, it can suppress a decrease in the quenching hardness of the ERW welded portion even when subjected to quenching treatment by rapid heating for a short time. It is said that it can be a hollow stabilizer with excellent durability.
  • Patent Documents 1 to 4 can improve the fatigue resistance characteristics in the air atmosphere
  • Patent Documents 1 to 4 refer to the fatigue resistance characteristics in a corrosive environment. Absent. According to the techniques described in Patent Documents 1 to 4, there has been a problem that it cannot be expected that the corrosion resistance fatigue resistance of the high-strength hollow stabilizer ERW steel pipe will be significantly improved.
  • the present invention solves such problems of the prior art, and has a high-strength hollow stabilizer electric resistance steel pipe excellent in corrosion fatigue resistance, a high-strength hollow stabilizer electric-resistance steel pipe manufacturing method, a high-strength hollow stabilizer, and It aims at providing the manufacturing method of a high intensity
  • “high strength” refers to the case where the average hardness in the thickness direction after performing cold forming and quenching and tempering treatment is Vickers hardness of 400 HV or higher, preferably 450 HV or higher. Shall.
  • the average hardness in the thickness direction is 550 HV or more, the toughness is remarkably reduced, so the upper limit is less than 550 HV.
  • excellent in corrosion resistance refers to a fatigue test with a load stress of ⁇ 400 MPa in a 5% NaCl aqueous solution after both cold forming and quenching and tempering treatments. ) And the number of repetitions until cracking is 5.0 ⁇ 10 5 or more.
  • the present inventors examined various factors affecting the corrosion fatigue resistance characteristics of a high-strength hollow stabilizer.
  • corrosion fatigue is the final fracture after each stage of (a) formation and growth of corrosion pits, (b) generation of fatigue cracks starting from corrosion pits, and (c) progress of fatigue cracks. I found out that I would move on.
  • the inventors of the present invention have come to realize that the corrosion fatigue resistance of the high-strength hollow stabilizer can be remarkably improved only by combining measures that suppress the progress of each stage of (A) and (C). It was.
  • MnS particles having a particle size of 10 ⁇ m or more and TiS particles having a particle size of 10 ⁇ m or more serve as starting points for corrosion pits and greatly affect the occurrence of fatigue cracks.
  • the “particle size” refers to the maximum length of each particle.
  • the present inventors added Ca or REM, and used MnS particles having a particle size of 10 ⁇ m or more and TiS particles having a particle size of 10 ⁇ m or more as the starting point of corrosion pits in accordance with JIS G0555. It was found that the occurrence of fatigue cracks starting from corrosion pits can be suppressed by adjusting the cleanliness obtained by the point arithmetic method to 0.1% or less.
  • the present inventors have strengthened the former ⁇ grain boundary in addition to the refinement of crystal grains. I found it important. The inventors decided to contain a small amount of B in order to strengthen the old ⁇ grain boundary. It has been found that the inclusion of a small amount of B can suppress P segregation to the old ⁇ grain boundary, improve the grain boundary strength, and suppress the development of fatigue cracks.
  • the gist of the present invention is as follows.
  • a high-strength hollow having a composition containing 1 type or 2 types selected from Cu: 1% or less and Ni: 1% or less by mass% ERW steel pipe for stabilizer.
  • Nb 0.05% or less
  • W 0.05% or less
  • V 0.5% or less ERW steel pipe for high-strength hollow stabilizer having a composition containing more than seeds.
  • a high-strength hollow stabilizer electric-resistance steel pipe further containing REM: 0.02% or less by mass%.
  • Manufacturing method (8) By mass%, C: 0.20 to 0.40%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, P: 0.1% or less, S: 0.01% or less, Al: 0.01 to 0.10%, Cr : 0.01-0.5%, Ti: 0.01-0.05%, B: 0.0005-0.005%, Ca: 0.0001-0.0050%, N: 0.0050% or less, the composition consisting of the balance Fe and inevitable impurities, particle size: 10 ⁇ m
  • Each of the above TiS particles and the particle size: MnS particles having a particle size of 10 ⁇ m or more each have a structure with a cleanliness of 0.1% or less (including 0%) determined by a point method according to JIS G 0555 , A high-strength hollow stabilizer in which the average grain size of the prior austenite grains is 50 ⁇ m or less and the hardness is Vickers hardness of 400HV or more and less than 550HV.
  • the present invention it is possible to easily manufacture a high-strength hollow stabilizer having a hardness of 400 HV or more and maintaining excellent corrosion fatigue resistance, and has a remarkable industrial effect. Further, according to the present invention, even if the hardness is further increased to 450 HV or higher, there is an effect that no deterioration of the corrosion fatigue resistance property is recognized and it is possible to contribute to further thinning of the stabilizer.
  • the electric-welded steel pipe for high-strength hollow stabilizer of the present invention is preferably a hot-rolled steel sheet, formed into a substantially cylindrical shape by cold forming to form an open pipe, and end portions in the width direction of the open pipe are brought into contact with each other, An electric resistance welded steel pipe is formed by using an electric resistance welded pipe to be welded by electric resistance welding. Next, the electric resistance welded steel pipe is made of the electric resistance welded steel pipe, reheated, and subjected to hot diameter reduction rolling.
  • the high-strength hollow stabilizer ERW steel pipe of the present invention is in mass%, C: 0.20 to 0.40%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, P: 0.1% or less, S: 0.01% or less, Al : 0.01 to 0.10%, Cr: 0.01 to 0.5%, Ti: 0.01 to 0.05%, B: 0.0005 to 0.005%, Ca: 0.0001 to 0.0050%, N: 0.0050% or less, or, further, Cu as a selective element : 1 or less selected from 1% or less, Ni: 1% or less, and / or Nb: 0.05% or less, W: 0.05% or less, V: 1 selected from 0.5% or less It contains seeds or two or more, and / or REM: 0.02% or less, and has a composition consisting of the balance Fe and inevitable impurities.
  • C 0.20 ⁇ 0.40%
  • C promotes the formation of martensite through the improvement of hardenability and has the effect of increasing the strength (hardness) of the steel by solid solution, which is important for increasing the strength of the hollow stabilizer. It is an element.
  • a content of 0.20% or more is required in order to obtain a Vickers hardness of 400 HV or higher after quenching and tempering.
  • the toughness after the quenching process decreases.
  • C is limited to the range of 0.20 to 0.40%.
  • it is 0.22% or more.
  • it is 0.39% or less.
  • Si acts as a deoxidizer and also acts as a solid solution strengthening element. In order to obtain such an effect, a content of 0.1% or more is required. On the other hand, if the content exceeds 1.0%, the ERW weldability decreases. For this reason, Si was limited to the range of 0.1 to 1.0%. In addition, Preferably it is 0.1% or more. Preferably it is 0.5% or less. It is.
  • Mn 0.1-2.0%
  • Mn is an element that contributes to increasing the strength of the steel by solid solution and improves the hardenability of the steel.
  • Mn is limited to the range of 0.1 to 2.0%.
  • it is 0.5% or more.
  • it is 1.8% or less.
  • P 0.1% or less
  • P is an element that exists as an impurity, segregates at grain boundaries, and adversely affects weld cracking and toughness.
  • it is necessary to reduce it to 0.1% or less.
  • Preferably it is 0.05% or less.
  • S 0.01% or less S is an element that is present as sulfide inclusions in steel and reduces hot workability, toughness, and fatigue resistance, and may be reduced to 0.01% or less for hollow stabilizers. Necessary. In addition, Preferably it is 0.005% or less.
  • Al acts as a deoxidizer and combines with N to have an effect of securing a solid solution B amount effective for improving hardenability. Moreover, Al precipitates as AlN and has an action of preventing coarsening of austenite grains during quenching heating. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if the content exceeds 0.10%, the amount of oxide inclusions increases, and the fatigue life may be reduced. Therefore, Al is limited to the range of 0.01 to 0.10%. In addition, Preferably it is 0.01% or more. Preferably it is 0.05% or less.
  • Cr 0.01-0.5% Cr is an element that improves the hardenability of the steel and contributes to the improvement of the corrosion resistance. In order to obtain such an effect, the content of 0.01% or more is required. On the other hand, if the content exceeds 0.5%, the ERW weldability decreases. Therefore, Cr is limited to the range of 0.01 to 0.5%. In addition, Preferably it is 0.1% or more. Preferably it is 0.3% or less.
  • Ti 0.01-0.05% Ti combines with N and has an effect of securing a solid solution B amount effective for improving hardenability. Further, Ti precipitates as fine carbides, contributes to refinement of austenite grains during heat treatment such as quenching, and contributes to improvement of fatigue resistance (corrosion fatigue resistance) in a corrosive environment. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, a content exceeding 0.05% tends to form coarse titanium sulfide (TiS), tends to be a starting point of corrosion pits, and decreases corrosion resistance and corrosion fatigue resistance. Therefore, Ti is limited to the range of 0.01 to 0.05%. In addition, Preferably it is 0.01% or more. Preferably it is 0.04% or less.
  • B 0.0005-0.005%
  • B is an effective element that improves the hardenability of the steel in a small amount.
  • B has the effect
  • action which strengthens a grain boundary and suppresses the grain boundary embrittlement by P segregation.
  • the content exceeds 0.005%, the effect is saturated and economically disadvantageous.
  • B is limited to the range of 0.0005 to 0.005%.
  • it is 0.001% or more.
  • it is 0.003% or less.
  • Ca 0.0001 to 0.0050%
  • Ca is an element having an effect of controlling the form of sulfide inclusions to fine spherical inclusions.
  • the number of coarse MnS particles having a particle size of 10 ⁇ m or more, and the number of coarse TiS particles having a particle size of 10 ⁇ m or more, which are the starting points of corrosion pits is contained in order to reduce to a predetermined amount or zero. In order to acquire such an effect, 0.0001% or more of content is required.
  • Ca was limited to the range of 0.0001 to 0.0050%.
  • it is 0.001% or more.
  • it is 0.003% or less.
  • N 0.0050% or less
  • N is inevitably contained as an impurity. It combines with the nitride-forming elements in the steel and contributes to the suppression of crystal grain coarsening and the increase in strength after tempering. However, the content exceeding 0.0050% lowers the toughness of the welded portion. For this reason, N was limited to 0.0050% or less. In addition, Preferably it is 0.001% or less. Preferably it is 0.003% or less.
  • the above-mentioned components are basic components, but in the present invention, in addition to the basic composition, as a selective element, one or two selected from Cu: 1% or less, Ni: 1% or less, And / or Nb: 0.05% or less, W: 0.05% or less, V: 0.5% or less, and / or REM: 0.02% or less.
  • Cu 1% or less
  • Cu and Ni are elements that improve hardenability and corrosion resistance, and are selected as necessary. Can be contained. In order to obtain such an effect, it is necessary to contain Cu: 0.05% or more and Ni: 0.05% or more.
  • Cu and Ni are both expensive elements. If Cu and Ni are contained in excess of 1% and Ni, respectively, the material cost increases. For this reason, when it contains, it is preferable to limit to Cu: 1% or less and Ni: 1% or less. Moreover, it is preferable to limit to Cu: 0.05% or more and Ni: 0.05% or more. More preferably, Cu: 0.10% or more, Ni: 0.10% or more. More preferably, Cu: 0.50% or less, Ni: 0.50%.
  • Nb 0.05% or less
  • W 0.05% or less
  • V 0.5% or less
  • Nb, W, and V all form fine carbides to give strength (hardness) It is an element that contributes to an increase in the amount, and it can be selected as necessary and can be contained in one or more kinds. In order to obtain such effects, it is necessary to contain Nb: 0.001% or more, W: 0.01% or more, and V: 0.05% or more, respectively. On the other hand, even if it contains more than Nb: 0.05%, W: 0.05%, and V: 0.5%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous.
  • Nb 0.05% or less
  • W 0.05% or less
  • V 0.5% or less
  • Nb 0.001% or more
  • W 0.01% or more
  • V 0.05% or more
  • Nb 0.03% or less
  • W 0.03% or less
  • V 0.3% or less
  • REM 0.02% or less REM is an element having an action to control the form of sulfide inclusions to fine spherical inclusions in the same manner as Ca.
  • 0.001% or more is desirable.
  • the content exceeds 0.02%, the amount of inclusions becomes too large, and on the contrary, it becomes the starting point of fatigue cracks, and the corrosion fatigue resistance characteristics deteriorate.
  • it is preferable to limit REM to 0.02% or less. More preferably, it is 0.001% or more. More preferably, it is 0.01% or less.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • the electric resistance welded steel pipe of the present invention has the above-described composition, and further, the cleanliness of TiS particles having a particle size of 10 ⁇ m or more and MnS particles having a particle size of 10 ⁇ m or more obtained by a point method in accordance with JIS G0555 is 0.1%. It has the following organization (including 0%). TiS particles having a particle size of 10 ⁇ m or more and MnS particles having a particle size of 10 ⁇ m or more serve as a starting point for corrosion pits and reduce corrosion resistance. In addition, the corrosion fatigue resistance is deteriorated in order to promote the generation of fatigue cracks starting from the corrosion pits.
  • TiS particles having a particle size of 10 ⁇ m or more and MnS particles having a particle size of 10 ⁇ m or more are adjusted by adding an appropriate amount of Ca or REM so that the cleanliness is 0.1% or less (including 0%).
  • the ERW steel pipe of the present invention is limited to a structure in which TiS particles having a particle size of 10 ⁇ m or more and MnS particles having a particle size of 10 ⁇ m or more are adjusted to a cleanliness of 0.1% or less.
  • the cleanliness is a value obtained by a point calculation method in accordance with JIS G 0555.
  • the electric-strengthening steel pipe for high-strength hollow stabilizer of the present invention is preferably a hot-rolled steel sheet of the above-described composition, an electric-welded pipe is made into an electric-welded steel pipe, and the electric-welded steel pipe is reheated as a raw material, It is an electric resistance welded steel pipe formed by hot reduction rolling.
  • the electric sewing tube Preferably, it is continuously cold-formed by a plurality of rolls to form a substantially cylindrical open tube, and then the end portions in the width direction of the open tube are brought into contact with each other by a squeeze roll, by high frequency resistance welding, induction heating, It is preferable to use an electric resistance welded steel pipe having a predetermined size.
  • the obtained ERW steel pipe is further reheated and subjected to hot diameter reduction rolling to obtain an ERW steel pipe having a desired size.
  • the reheating temperature is preferably 850 to 1000 ° C. If the reheating temperature is less than 850 ° C., the desired weld toughness may not be ensured. On the other hand, at a high temperature exceeding 1000 ° C., surface decarburization becomes remarkable, and the surface properties may deteriorate. For this reason, the reheating temperature is preferably in the range of 850 to 1000 ° C. In addition, it is preferable that the rolling temperature of hot diameter reduction rolling shall be 650 degreeC or more.
  • the cumulative diameter reduction rate is preferably 30 to 90%. If the cumulative diameter reduction ratio is 30 to 90%, the desired stabilizer shape can be formed without degrading workability.
  • the high-strength hollow stabilizer is manufactured from an ERW steel pipe obtained by the above-described manufacturing method including reduced diameter rolling. Then, the material is subjected to a molding step and a heat treatment step, or a step of sequentially subjecting the inner surface of the tube, the outer surface of the tube, or the outer surface of the tube to shot blasting to obtain a high strength hollow stabilizer.
  • the molding process it is molded into the desired stabilizer shape.
  • any conventional molding method can be applied.
  • Cold bending is preferable from the viewpoint of suppressing surface decarburization. Examples of cold bending include rotary pull bending and press bending.
  • the parts molded into the stabilizer shape are then subjected to a heat treatment step.
  • the heat treatment step includes a quenching process or a quenching and tempering process.
  • the quenching treatment is performed by heating to a temperature not lower than the Ac 3 transformation point and preferably not higher than 1100 ° C., holding for a predetermined time, preferably not less than 1 second, and then putting into a quenching tank, for example, rapid cooling at a cooling rate of 10 to 100 ° C./s. It is preferable to set it as the process to perform. Thereby, high strength and high toughness can be provided.
  • the quenching heating temperature is higher than 1100 ° C., the austenite grains become coarse.
  • the refrigerant of the quenching tank is water, quenching oil, or a mixed liquid of water and polymer with adjusted concentration.
  • the tempering temperature is preferably adjusted according to the desired hardness.
  • the tempering temperature is preferably 200 to 450 ° C.
  • the stabilizer obtained as described above has the above component composition, and the cleanliness of the TiS particles having a particle size of 10 ⁇ m or more and the MnS particles having a particle size of 10 ⁇ m or more determined by a point method in accordance with JIS G 0555 is 0.1. % Of the former austenite grains having an average particle size of 50 ⁇ m or less and a hardness of 400 HV or more and less than 550 HV in terms of Vickers hardness.
  • a hot-rolled steel plate (thickness: 4.5 mm) having the composition shown in Table 1 was continuously formed with a plurality of rolls in a cold state to obtain a substantially cylindrical open tube. Subsequently, the circumferential ends of the open pipe were brought into contact with each other, pressed, and subjected to electric resistance welding using a high-frequency electric resistance welding method to obtain an electric resistance steel pipe (outer diameter 89.1 mm ⁇ ⁇ wall thickness 4.0 mm). Further, the obtained ERW steel pipe was reheated to the heating temperature shown in Table 2, and then subjected to a reduction rolling process for reducing the diameter at a reduction ratio shown in Table 2 with a stretch reducer. ERW steel pipes with dimensions (outer diameter 25.4mm ⁇ x wall thickness 4.0mm) were used as materials for hollow stabilizers.
  • a specimen for tissue observation (a cross section in which the observation surface is parallel to the tube axis direction) is taken from an ERW steel pipe, which is a hollow stabilizer material, and is present using a scanning electron microscope (magnification: 500 to 2000 times).
  • the type, size and number of inclusions (particles) were measured.
  • the type of inclusions was identified by analyzing the constituent elements by an analyzer (EDX analyzer) attached to the scanning electron microscope.
  • grains made the longest part in the cross section the particle size of the particle
  • grains the number of the particle
  • the ERW steel pipe which is a hollow stabilizer material, was subjected to quenching and tempering treatment under the conditions shown in Table 2.
  • the quenching process was set as the process immersed in a water tank, after energizing and heating so that the outer surface of a steel pipe may become the heating temperature shown in Table 2.
  • a tempering treatment was performed for 20 minutes at the temperature shown in Table 2. Since cold working does not affect the average grain size and Vickers hardness of prior austenite grains, in the examples, quenching and tempering treatment was performed without cold working the ERW steel pipe.
  • a specimen was taken from the ERW steel pipe that had been quenched and tempered, and the hardness was measured. Hardness measurement is performed on a cross section (C cross section) perpendicular to the tube axis direction of the steel pipe, using a Vickers hardness meter (load: 500 gf (4.9 N)) at a 0.1 mm pitch from the outer surface of the tube to the inner surface of the tube in the thickness direction. I went.
  • a specimen having a predetermined length was taken from an ERW steel pipe, which is a hollow stabilizer material, and processed into a corrosion fatigue test specimen.
  • a parallel portion having an outer diameter of 24.4 mm ⁇ was formed at the center of the test piece.
  • the obtained test piece was heated by induction heating so that the surface temperature became 950 ° C., and then sprayed to perform quenching treatment.
  • a tempering treatment was performed after the quenching treatment.
  • a fatigue test was conducted in a wet state by wrapping absorbent cotton soaked with 5% NaCl aqueous solution around the center parallel part of the heat-treated specimen, and the number of repetitions until the occurrence of cracking was determined to evaluate the corrosion fatigue resistance characteristics.
  • the test conditions were load stress ⁇ 400 MPa (both swings) and the load cycle was 1 kHz.
  • the hardness after quenching and tempering is 400 HV or more, and the strength is high (high hardness). Furthermore, in a corrosive environment, the number of repetitions is 5.0 ⁇ 10 5 times or more, and it is a high-strength hollow stabilizer electric resistance steel pipe with excellent corrosion fatigue resistance.
  • the comparative example out of the scope of the present invention is that the hardness after quenching and tempering treatment is less than 400 HV, and the desired high strength (high hardness) is not ensured, or corrosion fatigue resistance in a corrosive environment The characteristics are degraded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

耐腐食疲労特性に優れた高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザーおよび高強度中空スタビライザーの製造方法を提供する。 鋼板を電縫造管して得られた電縫鋼管にさらに、熱間縮径圧延を施してなる電縫鋼管であって、質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、残部Feおよび不可避的不純物からなる組成と、粒径:10μm以上のTiS粒子および粒径:10μm以上のMnS粒子をそれぞれ、清浄度で0.1%以下に低減した組織と、を有する。これにより、冷間成形と焼入れ焼戻処理を施した後の、硬さがビッカース硬さで400HV以上550HV未満という高強度(高硬さ)を示し、しかも、旧オーステナイト粒の平均粒径が50μm以下で、中空スタビライザー用として、腐食環境下でも耐疲労特性(耐腐食疲労性)に優れた電縫鋼管となる。

Description

高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法
 本発明は、自動車のスタビライザー用として好適な電縫鋼管に係り、とくに高強度中空スタビライザー用電縫鋼管の耐腐食疲労特性の向上に関する。また、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法に関する。
 従来から、自動車のほとんどに、コーナリング時の車体のローリングを緩和したり、高速走行時の走行安定性を保持するために、スタビライザーが装着されている。最近では、自動車車体の軽量化のために、鋼管を用いた中空スタビライザーが一般的となっている。このような中空スタビライザーは、通常、継目無鋼管や電縫溶接鋼管(以下、電縫鋼管ともいう)を素材として、冷間で所望の形状に成形したのち、焼入れまたは焼入れ焼戻等の調質処理を施されて製品とされる。なかでも、電縫鋼管は、比較的安価でしかも寸法精度に優れることから、中空スタビライザー用素材として、広く利用されている。
 例えば、特許文献1には、耐疲労特性に優れた中空スタビライザーの製造方法が記載されている。特許文献1に記載された技術では、質量%で、C:0.2~0.38%、Si:0.35%以下、Mn:0.3~1.5%、Al:0.1%以下、Ti:0.005~0.1%、B:0.0005~0.005%を含む組成の溶接鋼管に、好ましくは800~1000℃の範囲の温度に加熱する加熱処理を施したのち圧延温度:600~850℃で累積縮径率:40%以上の絞り圧延を施し、さらに冷間曲げ加工によりスタビライザー形状に成形する成形工程と、焼入れ処理および焼戻処理を施す熱処理工程とを順次施し、中空スタビライザーとするとしている。特許文献1に記載された技術によれば、安価な方法で耐疲労特性を向上させることができるとしている。
 また、特許文献2には、高強度中空スタビライザー用鋼管が記載されている。特許文献2に記載された鋼管は、質量%で、C:0.20~0.38%、Si:0.10~0.50%、Mn:0.30~2.00%、Al:0.01~0.10%、W:0.01~1.50%、B:0.0005~0.0050%を含みさらにTi、Nを、Ti:0.001~0.04%、N:0.0010~0.0100%の範囲で、かつN/14<Ti/47.9を満足するように含有する組成を有し、焼入れ処理後、あるいは焼入れ焼戻処理後の強度-靭性バランスに優れる、高強度中空スタビライザー用電縫鋼管である。特許文献2に記載された技術によれば、従来得られなかったような400HVを超える高硬度で、強度-靭性バランスに優れた、中空スタビライザーを容易に製造できるとしている。
 また、特許文献3には、質量%で、C:0.15~0.40%、Si:0.05~0.50%、Mn:0.30~2.00%、Al:0.01~0.10%、Ti:0.001~0.04%、B:0.0005~0.0050%、N:0.0010~0.0100%を含み、かつTi、Nが、(N/14)<(Ti/47.9)を満足するように含有する組成を有する鋼管素材として、該鋼管素材を成形し略円筒状のオープン管としたのち、該オープン管の端部同士を突き合わせて高周波抵抗溶接によりボンド幅が30~65μmとなるように入熱を調整して電縫溶接して電縫溶接鋼管とし、ついで、該電縫溶接鋼管に、Ac変態点以上の温度に加熱し、外径比で圧下率:(1-25/縮径圧延前ボンド幅(μm))×100%以上の縮径圧延を施し、ボンド幅を25μm以下とする、偏平性に優れた熱処理用電縫溶接鋼管の製造方法が記載されている。特許文献3に記載された製造方法で得られた電縫溶接鋼管は、中空スタビライザー等の焼入れ処理を施される使途に好適であるとしている。特許文献3に記載された電縫溶接鋼管は、電縫溶接部の減炭層幅が狭いため、急速短時間加熱による焼入れ処理を施しても、電縫溶接部の焼入れ硬さの低下を抑制でき、耐久性に優れた中空スタビライザーとすることができるとしている。
 また、特許文献4には、質量%で、C:0.15~0.40%、Si:0.05~0.50%、Mn:0.30~2.00%、Al:0.01~0.10%、Ti:0.001~0.04%、B:0.0005~0.0050%、N:0.0010~0.0100%を含み、かつTi、Nが、(N/14)<(Ti/47.9)を満足するように含有する組成を有し、電縫溶接部のボンド幅が25μm以下である偏平性に優れた熱処理用電縫溶接鋼管が記載されている。特許文献4に記載された電縫溶接鋼管は、中空スタビライザー等の焼入れ処理を施される使途に好適であるとしている。特許文献4に記載された電縫溶接鋼管は、電縫溶接部の減炭層幅が狭いため、急速短時間加熱による焼入れ処理を施しても、電縫溶接部の焼入れ硬さの低下を抑制でき、耐久性に優れた中空スタビライザーとすることができるとしている。
特開2005-076047号公報 特開2006-206999号公報 特開2008-208417号公報 特開2013-147751号公報
 上記したように、特許文献1~4に記載された技術によれば、高強度(高硬度)で、かつ自動車のスタビライザーとして要求される耐疲労特性を向上させることができる。
 しかし、とくに寒冷地では冬季の道路の凍結防止対策として、NaCl、CaCl等の塩化物を含む凍結防止剤を路上に散布して、スリップ等の事故を防止している。そのため、塩素イオンを含む水分(雪、氷等)が、車体の下部(足まわり)に付着し、腐食環境を形成する。そのため、最近では、自動車のスタビライザーに対しても、腐食環境下での耐疲労特性、すなわち、耐腐食疲労特性にも優れることが要求されるようになってきた。
 しかし、特許文献1~4に記載された技術では、大気雰囲気中での耐疲労特性の向上は可能であるが、特許文献1~4には、腐食環境下における耐疲労特性についてまでの言及はない。特許文献1~4に記載された技術によっては、高強度中空スタビライザー用電縫鋼管の耐腐食疲労特性の顕著な向上までは期待できないという問題があった。
 そこで、本発明は、このような従来技術の問題を解決し、耐腐食疲労特性に優れた高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザーおよび高強度中空スタビライザーの製造方法を提供することを目的とする。なお、ここでいう「高強度」とは、冷間成形と焼入れ焼戻処理を施した後の肉厚方向の平均硬さが、ビッカース硬さで400HV以上、好ましくは450HV以上である場合をいうものとする。なお、肉厚方向の平均硬さが、550HV以上となると靱性の低下が著しくなるため、550HV未満を上限とする。
 また、ここでいう「耐腐食疲労特性に優れた」とは、冷間成形と焼入れ焼戻処理を施したのち、5%NaCl水溶液の雰囲気中で負荷応力:±400MPaとする疲労試験(両振り)を行い、割れ発生までの繰返し数が5.0×10回以上である場合をいうものとする。
 本発明者らは、上記した目的を達成するために、高強度中空スタビライザーの耐腐食疲労特性に及ぼす各種要因について検討した。
 その結果、腐食疲労は、(イ)腐食ピットの形成とその成長、(ロ)腐食ピットを起点とした疲労き裂の発生、(ハ)疲労き裂の進展、の各段階を経て、最終破壊に移行することを知見した。そして、本発明者らは、とくに(イ)、(ハ)の各段階の進行を抑制する方策を組み合わせて初めて、高強度中空スタビライザーの耐腐食疲労特性を顕著に向上させることができることに思い至った。
 そして、更なる検討により、本発明者らは、粒径:10μm以上のMnS粒子、粒径:10μm以上のTiS粒子が、腐食ピットの起点となり、疲労き裂の発生に大きく影響していることを突き止めた。なお、ここでいう「粒径」は、各粒の最大長さをいうものとする。そして、さらに、本発明者らは、CaあるいはさらにREMを含有させ、腐食ピットの起点となる、粒径:10μm以上のMnS粒子、粒径:10μm以上のTiS粒子をJIS G 0555に準拠して点算法で求めた清浄度で0.1%以下となるように調整することにより、腐食ピットを起点とした疲労き裂の発生を抑制できることを見出した。
 さらに、腐食環境下では水素脆化が、腐食疲労における「(ハ)疲労き裂の進展」に大きく影響することから、本発明者らは、旧オーステナイト粒を微細化し、水素脆化の影響を極力低減する必要のあることに思い至った。本発明者らの更なる検討によれば、微細なTi炭化物を活用し、旧オーステナイト粒を平均粒径で50μm以下に微細化すれば、水素脆化の耐腐食疲労性への影響はほとんど認められないことを見出した。
 さらに、本発明者らは、腐食疲労における「(ハ)疲労き裂の進展」を抑制し、耐腐食疲労特性を向上させるためには、結晶粒の微細化とともに、旧γ粒界の強化も重要であることを知見した。そして、本発明者らは、旧γ粒界の強化のためにBを少量含有することにした。このBの少量含有により、旧γ粒界へのP偏析も抑制でき、粒界強度が向上し、疲労き裂の進展も抑制できることを知見した。
 本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)鋼板を電縫造管して得られた電縫鋼管にさらに、熱間縮径圧延を施してなる電縫鋼管であって、質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、残部Feおよび不可避的不純物からなる組成と、粒径:10μm以上のTiS粒子および粒径:10μm以上のMnS粒子をそれぞれ、JIS G 0555に準拠して点算法で求めた清浄度が0.1%以下(但し、0%を含む)となる組織と、を有し、冷間成形と焼入れ焼戻処理を施した後の、旧オーステナイト粒の平均粒径が50μm以下で、かつ硬さがビッカース硬さで400HV以上550HV未満である高強度中空スタビライザー用電縫鋼管。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種を含有する組成とする高強度中空スタビライザー用電縫鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とする高強度中空スタビライザー用電縫鋼管。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、REM:0.02%以下を含有する高強度中空スタビライザー用電縫鋼管。
(5)質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼板を、冷間成形により、略円筒状に成形してオープン管とし、該オープン管の幅方向端部同士を衝合し、電縫溶接して電縫造管とし、次いで、850~1000℃の温度に加熱し、さらに、圧延温度:650℃以上、累積縮径率:30~90%で熱間縮径圧延を施す高強度中空スタビライザー用電縫鋼管の製造方法。
(6)(5)において、前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種、および/または、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上、および/または、REM:0.02%以下を含有する高強度中空スタビライザー用電縫鋼管の製造方法。
(7)(1)~(4)のいずれかに記載の高強度中空スタビライザー用電縫鋼管に対し、冷間曲げ加工を施し、次いで、焼入れ処理または焼入れ焼戻処理を行う高強度中空スタビライザーの製造方法
(8)質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、残部Feおよび不可避的不純物からなる組成と、粒径:10μm以上のTiS粒子および粒径:10μm以上のMnS粒子をそれぞれ、JIS G 0555に準拠して点算法で求めた清浄度が0.1%以下(但し、0%を含む)となる組織と、を有し、
旧オーステナイト粒の平均粒径が50μm以下で、かつ硬さがビッカース硬さで400HV以上550HV未満である高強度中空スタビライザー。
 本発明によれば、硬さが400HV以上でかつ優れた耐腐食疲労特性を保持する高強度中空スタビライザーを、容易に製造でき、産業上格段の効果を奏する。また、本発明によれば、硬さが450HV以上とさらに高強度化しても、耐腐食疲労特性の低下は認められず、スタビライザーの更なる薄肉化に貢献できる、という効果もある。
 本発明高強度中空スタビライザー用電縫鋼管は、好ましくは熱延鋼板を、冷間成形により、略円筒状に成形してオープン管となし、該オープン管の幅方向端部同士を衝合し、電縫溶接する電縫造管により電縫鋼管となし、ついで該電縫鋼管を素材とし、さらに、再加熱し、熱間縮径圧延を施してなる電縫鋼管である。
 本発明高強度中空スタビライザー用電縫鋼管は、質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、あるいはさらに、選択元素として、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種、および/または、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上、および/または、REM:0.02%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する。
 まず、本発明高強度中空スタビライザー用電縫鋼管の組成限定理由について説明する。以下、とくに断らない限り、質量%は、単に%で記す。
 C:0.20~0.40%
 Cは、焼入れ性の向上を介して、マルテンサイトの生成を促進するとともに、固溶して鋼の強度(硬さ)を増加させる作用を有し、中空スタビライザーの高強度化のために重要な元素である。本発明では、焼入れ焼戻処理後の硬さをビッカース硬さで400HV以上とするためには、0.20%以上の含有を必要とする。一方、0.40%を超えて多量に含有すると、焼入れ処理後の靭性が低下する。このため、Cは0.20~0.40%の範囲に限定した。なお、好ましくは0.22%以上である。好ましくは0.39%以下である。
 Si:0.1~1.0%
 Siは、脱酸剤として作用するとともに、固溶強化元素としても作用する。このような効果を得るためには0.1%以上の含有を必要とする。一方、1.0%を超えて含有すると、電縫溶接性が低下する。このため、Siは0.1~1.0%の範囲に限定した。なお、好ましくは0.1%以上である。好ましくは0.5%以下である。である。
 Mn:0.1~2.0%
 Mnは、固溶して鋼の強度増加に寄与するとともに、鋼の焼入れ性を向上させる元素であり、本発明では、所望の高強度(高硬さ)を確保するために、0.1%以上の含有を必要とする。一方、2.0%を超えて含有すると、靭性の低下、焼割れの危険が増大する。このため、Mnは0.1~2.0%の範囲に限定した。なお、好ましくは0.5%以上である。好ましくは1.8%以下である。
 P:0.1%以下
 Pは、不純物として存在し、粒界等に偏析し、溶接割れ性、靭性に悪影響を及ぼす元素であり、中空スタビライザー用としては0.1%以下に低減することが必要となる。なお、好ましくは0.05%以下である。
 S:0.01%以下
 Sは、鋼中では硫化物系介在物として存在し、熱間加工性、靭性、耐疲労特性を低下させる元素であり、中空スタビライザー用としては0.01%以下に低減することが必要となる。なお、好ましくは0.005%以下である。
 Al:0.01~0.10%
 Alは、脱酸剤として作用するとともに、Nと結合し、焼入れ性向上に有効な固溶B量を確保する効果を有する。また、Alは、AlNとして析出し、焼入れ加熱時のオーステナイト粒の粗大化を防止する作用を有する。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.10%を超えて多量に含有すると、酸化物系介在物量が増加し、疲労寿命を低下させる場合がある。このため、Alは0.01~0.10%の範囲に限定した。なお、好ましくは0.01%以上である。好ましくは0.05%以下である。
 Cr:0.01~0.5%
 Crは、鋼の焼入れ性を向上させるとともに、耐食性の向上に寄与する元素であり、このような効果を得るためには0.01%以上の含有を必要とする。一方、0.5%を超えて含有すると、電縫溶接性が低下する。このため、Crは0.01~0.5%の範囲に限定した。なお、好ましくは0.1%以上である。好ましくは0.3%以下である。
 Ti:0.01~0.05%
 Tiは、Nと結合し、焼入れ性向上に有効な固溶B量を確保する効果を有する。また、Tiは、微細な炭化物として析出し、焼入れ等の熱処理時に、オーステナイト粒の微細化に寄与し、腐食環境における耐疲労特性(耐腐食疲労特性)の向上に寄与する。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.05%を超える含有は、粗大な硫化チタン(TiS)を形成しやすく、腐食ピットの起点となりやすく、耐食性および耐腐食疲労特性が低下する。このため、Tiは0.01~0.05%の範囲に限定した。なお、好ましくは0.01%以上である。好ましくは0.04%以下である。
 B:0.0005~0.005%
 Bは、微量で鋼の焼入れ性を向上させる有効な元素である。また、Bは、粒界を強化する作用を有し、P偏析による粒界脆化を抑制する。このような効果を得るために、0.0005%以上の含有を必要とする。一方、0.005%を超えて含有しても、効果が飽和し経済的に不利となる。このため、Bは0.0005~0.005%の範囲に限定した。なお、好ましくは0.001%以上である。好ましくは0.003%以下である。
 Ca:0.0001~0.0050%
 Caは、硫化物系介在物の形態を微細な略球形の介在物に制御する作用を有する元素である。本発明では、腐食ピットの起点となる粒径:10μm以上の粗大なMnS粒子、粒径:10μm以上の粗大なTiS粒子数を所定量以下に減少ないしは零個とするために含有させる。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.0050%を超えて多量に含有すると、粗大なCaS系のクラスターが多くなりすぎて、かえって疲労き裂の起点となり、耐腐食疲労特性が低下する。このため、Caは0.0001~0.0050%の範囲に限定した。なお、好ましくは0.001%以上である。好ましくは0.003%以下である。
 N:0.0050%以下
 Nは、不純物として不可避的に含有される。鋼中の窒化物形成元素と結合し、結晶粒の粗大化の抑制、さらには焼戻後の強度増加に寄与する。しかし、0.0050%を超える含有は、溶接部の靭性を低下させる。このため、Nは0.0050%以下に限定した。なお、好ましくは0.001%以下である。好ましくは0.003%以下である。
 上記した成分が基本の成分であるが、本発明では、基本の組成に加えてさらに、選択元素として、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種、および/または、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上、および/または、REM:0.02%以下を含有してもよい。
 Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種
 Cu、Niはいずれも、焼入れ性を向上させるとともに、耐食性を向上させる元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Cu:0.05%以上、Ni:0.05%以上の含有を必要とする。一方、Cu、Niはいずれも高価な元素であり、Cu:1%、Ni:1%をそれぞれ超えて含有すると、材料コストの高騰を招く。このため、含有する場合には、Cu:1%以下、Ni:1%以下に限定することが好ましい。また、Cu:0.05%以上、Ni:0.05%以上に限定することが好ましい。なお、より好ましくはCu:0.10%以上、Ni:0.10%以上である。より好ましくはCu:0.50%以下、Ni: 0.50%である。
 Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上
 Nb、W、Vはいずれも、微細な炭化物を形成して強度(硬さ)の増加に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。このような効果を得るためには、それぞれNb:0.001%以上、W:0.01%以上、V:0.05%以上の含有を必要とする。一方、Nb:0.05%、W:0.05%、V:0.5%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できず、経済的に不利となる。また、炭化物が粗大化しやすくなり、靭性に悪影響を及ぼす。このため、含有する場合には、Nb:0.05%以下、W:0.05%以下、V:0.5%以下にそれぞれ限定することが好ましい。なお、より好ましくはNb:0.001%以上、W:0.01%以上、V:0.05%以上である。より好ましくはNb:0.03%%以下、W:0.03%以下、V:0.3%以下である。
 REM:0.02%以下
 REMは、Caと同様に、硫化物系介在物の形態を微細な略球形の介在物に制御する作用を有する元素であり、本発明では、Caの作用を補完する観点から、0.001%以上含有することが望ましい。一方、0.02%を超えて含有すると、介在物量が多くなりすぎて、かえって疲労き裂の起点となり、耐腐食疲労特性が低下する。このため、含有する場合には、REMは0.02%以下に限定することが好ましい。なお、より好ましくは0.001%以上である。より好ましくは0.01%以下である。
 上記した成分以外の残部は、Fe及び不可避的不純物からなる。
 つぎに、本発明高強度中空スタビライザー用電縫鋼管の組織の限定理由について、説明する。
 本発明電縫鋼管は、上記した組成を有し、さらに粒径10μm以上のTiS粒子および粒径10μm以上のMnS粒子をそれぞれ、JIS G 0555に準拠して点算法で求めた清浄度が0.1%以下(但し、0%を含む)となる組織を有する。粒径10μm以上のTiS粒子および粒径10μm以上のMnS粒子は、腐食ピットの起点となり耐食性を低下させる。また、腐食ピットを起点とした疲労き裂の発生を促進するため耐腐食疲労特性を低下させる。そのため、粒径10μm以上のTiS粒子、粒径10μm以上のMnS粒子を清浄度で0.1%以下(0%を含む)となるように、適正量のCaあるいはさらにREMを添加して調整する。粒径10μm以上のTiS粒子、粒径10μm以上のMnS粒子が清浄度で0.1%超と多くなると、腐食ピットの起点となり耐食性、耐腐食疲労性が低下する。このようなことから、本発明の電縫鋼管では、粒径10μm以上のTiS粒子、粒径10μm以上のMnS粒子を清浄度で0.1%以下となるように調整した組織に限定した。なお、清浄度は、JIS G 0555に準拠して点算法で求めた値とする。
 つぎに、本発明高強度中空スタビライザー用電縫鋼管の好ましい製造方法について、説明する。
 本発明高強度中空スタビライザー用電縫鋼管は、上記した組成の、好ましくは熱延鋼板を素材として、電縫造管して電縫鋼管とし、さらに、該電縫鋼管を素材として再加熱し、熱間縮径圧延を施してなる電縫鋼管である。
 電縫造管の方法は特に限定する必要はない。好ましくは複数のロールにより連続して冷間成形して、略円筒状のオープン管となし、ついで該オープン管の幅方向端部同士をスクイズロールで衝合し、高周波抵抗溶接、誘導加熱等により電縫溶接して所定寸法の電縫鋼管とする方法とすることが好ましい。
 ついで、得られた電縫鋼管に、さらに、再加熱し、熱間縮径圧延を施して所望寸法の電縫鋼管とする。なお、再加熱温度は、850~1000℃とすることが好ましい。再加熱温度が850℃未満では、所望の溶接部靭性を確保できない場合がある。一方、1000℃を超える高温では、表面脱炭が著しくなり、表面性状が低下する場合がある。このため、再加熱温度は850~1000℃の範囲の温度が好ましい。なお、熱間縮径圧延の圧延温度は650℃以上とすることが好ましい。圧延温度が650℃未満では、加工性が低下し、所望のスタビライザー形状への成形が難しくなる場合がある。累積縮径率は30~90%が好ましい。累積縮径率が30~90%であれば、加工性を劣化されることなく、所望のスタビライザー形状へ成形することができる。
 高強度中空スタビライザーの製造は、上記した縮径圧延を含む製造方法で得られた電縫鋼管を素材とする。そして、該素材に、成形工程と熱処理工程と、あるいはさらに管内面あるいは管外面あるいは管内外面にショットブラスト処理を順次施す工程を施して、高強度中空スタビライザーとする。
 成形工程では、所望のスタビライザー形状に成形する。成形方法としては、常用の成形方法がいずれも適用できる。冷間曲げ加工とすることが、表面脱炭の抑制という観点から好ましい。冷間曲げ加工では、回転引き曲げ、プレス曲げ等が例示できる。
 スタビライザー形状に成形された部品(中空スタビライザー)は、ついで熱処理工程を施される。熱処理工程は、焼入れ処理、または焼入れ焼戻処理からなる。
 焼入れ処理は、Ac変態点以上好ましくは1100℃以下の温度に加熱し、所定時間、好ましくは1秒以上保持したのち、焼入れ槽に投入し、例えば冷却速度10~100℃/sの、急冷する処理とすることが好ましい。これにより、高強度、高靭性を具備することができる。焼入れ加熱温度が1100℃を超えて高温となるとオーステナイト粒が粗大化する。なお、加熱は、通電加熱とすることが、表面脱炭抑制、生産性の観点から好ましい。また、焼入れ槽の冷媒は、水、または焼入れ油、または濃度を調整した水とポリマーの混合液とすることが好ましい。
 焼入れ処理後には、さらに焼戻処理を施すことが好ましい。焼戻処理は、焼戻温度を所望の硬さに応じて調整することが好ましい。焼戻温度は好適には200~450℃である。焼戻処理を施すことにより、靭性が顕著に向上する。
 なお、熱処理後には、管内面、管外面あるいは管内外面に通常のショットブラスト処理を施すことが耐疲労特性向上のために好ましいことは言うまでもない。
 以上により得られたスタビライザーは、上記成分組成からなり、粒径:10μm以上のTiS粒子および粒径:10μm以上のMnS粒子をそれぞれ、JIS G 0555に準拠して点算法で求めた清浄度が0.1%以下(但し、0%を含む)となる組織と、を有し、旧オーステナイト粒の平均粒径が50μm以下で、かつ硬さがビッカース硬さで400HV以上550HV未満である。
 表1に示す組成の熱延鋼板(板厚:4.5mm)を、冷間で、複数のロールで連続的に成形し、略円筒状のオープン管とした。ついで、該オープン管の円周方向端部同士を衝合、圧接し、高周波電気抵抗溶接法を用いて電縫溶接して電縫鋼管(外径89.1mmφ×肉厚4.0mm)とした。そしてさらに、得られた電縫鋼管に、表2に示す加熱温度に再加熱したのち、ストレッチレデューサーで表2に示す縮径率で縮径圧延する縮径圧延工程を施して、表2に示す寸法(外径25.4mmφ×肉厚4.0mm)の電縫鋼管とし、中空スタビライザー用素材とした。
 中空スタビライザー用素材である電縫鋼管から、組織観察用試験片(観察面が管軸方向に平行な断面)を採取し、走査型電子顕微鏡(倍率:500~2000倍)を用いて、存在する介在物(粒子)の種類、大きさと個数を測定した。介在物の種類は、走査型電子顕微鏡に付設された分析装置(EDX型分析器)により、構成する元素分析を行って同定した。また、介在物粒子の大きさは、断面における最も長い部分を、その粒子の粒径とした。そして、TiS粒子、MnS粒子について、粒径が10μm以上である粒子の個数をそれぞれ計測した。
 また、中空スタビライザー用素材である電縫鋼管に表2に示す条件で焼入れ焼戻処理を施した。なお、焼入れ処理は、鋼管外表面が表2に示す加熱温度となるように、通電加熱したのち、水槽に浸漬する処理とした。焼入れ処理後、表2に示す温度で20min間保持する焼戻処理を施した。なお、冷間加工は旧オーステナイト粒の平均粒径およびビッカース硬さには影響を及ぼさないため、実施例では電縫鋼管を冷間加工することなく焼入れ焼戻処理を施した。
 焼入れ焼戻処理を施された電縫鋼管から試験片を採取し、硬さ測定を行った。硬さ測定は、鋼管の管軸方向に垂直な断面(C断面)について行い、管外表面から肉厚方向に管内表面まで0.1mmピッチでビッカース硬度計(荷重:500gf(4.9N))を用いて行った。
 また、焼入れ焼戻処理を施された電縫鋼管から試験片を採取し、管軸方向に直交する断面を研磨し、腐食液(ピクリン酸水溶液)で腐食し、旧オーステナイト粒界(旧γ粒界)を現出し、光学顕微鏡(倍率:100倍)で観察し、10視野以上で撮像した。そして得られた組織写真を用いて、画像解析により、旧オーステナイト粒の大きさ(平均粒径)を算出した。
 また、中空スタビライザー用素材である電縫鋼管から、所定長さの試験体を採取し、腐食疲労試験用試験片に加工した。なお、試験片の中央部に外径24.4mmφの平行部を形成した。ついで、得られた試験片に、誘導加熱により表面温度で950℃となるように加熱したのち、スプレーを吹きつけて焼入れ処理を施した。焼入れ処理後、焼戻処理を施した。熱処理後の試験片の中央平行部に、5%NaCl水溶液を含ませた脱脂綿を巻きつけ湿潤状態として疲労試験を実施し、割れ発生までの繰り返し数を求め、耐腐食疲労特性を評価した。なお、試験条件は負荷応力±400MPa(両振り)とし、負荷周期は1kHzとした。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、焼入れ焼戻処理後の硬さが400HV以上であり、高強度(高硬さ)である。さらに、腐食環境下において、繰返し回数が5.0×10回以上と、耐腐食疲労特性に優れた高強度中空スタビライザー用電縫鋼管となっている。
 一方、本発明の範囲を外れる比較例は、焼入れ焼戻処理後の硬さが400HV未満であり、所望の高強度(高硬さ)を確保できていないか、腐食環境下での耐腐食疲労特性が低下している。

Claims (8)

  1.  質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、残部Feおよび不可避的不純物からなる組成と、
    粒径:10μm以上のTiS粒子および粒径:10μm以上のMnS粒子をそれぞれ、JIS G 0555に準拠して点算法で求めた清浄度が0.1%以下(但し、0%を含む)となる組織と、を有し、
    冷間成形と焼入れ焼戻処理を施した後の、旧オーステナイト粒の平均粒径が50μm以下で、かつ硬さがビッカース硬さで400HV以上550HV未満である高強度中空スタビライザー用電縫鋼管。
  2.  前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種を含有する組成とする請求項1に記載の高強度中空スタビライザー用電縫鋼管。
  3.  前記組成に加えてさらに、質量%で、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とする請求項1または2に記載の高強度中空スタビライザー用電縫鋼管。
  4.  前記組成に加えてさらに、質量%で、REM:0.02%以下を含有する請求項1ないし3のいずれかに記載の高強度中空スタビライザー用電縫鋼管。
  5.  質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼板を、
    冷間成形により、略円筒状に成形してオープン管とし、
    該オープン管の幅方向端部同士を衝合し、電縫溶接して電縫造管とし、
    次いで、850~1000℃の温度に加熱し、
    さらに、圧延温度:650℃以上、累積縮径率:30~90%で熱間縮径圧延を施す
    高強度中空スタビライザー用電縫鋼管の製造方法。
  6.  前記組成に加えてさらに、質量%で、Cu:1%以下、Ni:1%以下のうちから選ばれた1種または2種、および/または、Nb:0.05%以下、W:0.05%以下、V:0.5%以下のうちから選ばれた1種または2種以上、および/または、REM:0.02%以下を含有する請求項5に記載の高強度中空スタビライザー用電縫鋼管の製造方法。
  7.  請求項1~4のいずれかに記載の高強度中空スタビライザー用電縫鋼管に対し、冷間曲げ加工を施し、次いで、焼入れ処理または焼入れ焼戻処理を行う高強度中空スタビライザーの製造方法。
  8.  質量%で、C:0.20~0.40%、Si:0.1~1.0%、Mn:0.1~2.0%、P:0.1%以下、S:0.01%以下、Al:0.01~0.10%、Cr:0.01~0.5%、Ti:0.01~0.05%、B:0.0005~0.005%、Ca:0.0001~0.0050%、N:0.0050%以下を含み、残部Feおよび不可避的不純物からなる組成と、
    粒径:10μm以上のTiS粒子および粒径:10μm以上のMnS粒子をそれぞれ、JIS G 0555に準拠して点算法で求めた清浄度が0.1%以下(但し、0%を含む)となる組織と、を有し、
    旧オーステナイト粒の平均粒径が50μm以下で、かつ硬さがビッカース硬さで400HV以上550HV未満である高強度中空スタビライザー。
PCT/JP2016/003880 2015-09-29 2016-08-26 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法 WO2017056384A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020187008314A KR102081525B1 (ko) 2015-09-29 2016-08-26 고강도 중공 스테빌라이져용 전봉 강관, 고강도 중공 스테빌라이져용 전봉 강관의 제조 방법, 고강도 중공 스테빌라이져, 및 고강도 중공 스테빌라이져의 제조 방법
US15/763,859 US10787720B2 (en) 2015-09-29 2016-08-26 Electric resistance welded steel pipe for high-strength hollow stabilizer, and method for manufacturing electric resistance welded steel pipe for high-strength hollow stabilizer
CN201680056549.XA CN108138279B (zh) 2015-09-29 2016-08-26 高强度中空稳定器用电阻焊接钢管、高强度中空稳定器用电阻焊接钢管的制造方法、高强度中空稳定器及高强度中空稳定器的制造方法
CA2991104A CA2991104C (en) 2015-09-29 2016-08-26 Electric resistance welded steel pipe for high-strength hollow stabilizer, method for manufacturing electric resistance welded steel pipe for high-strength hollow stabilizer, high-strength hollow stabilizer, and method for manufacturing high-strength hollow stabilizer
PL16850567T PL3358028T3 (pl) 2015-09-29 2016-08-26 Rura stalowa zgrzewana elektrycznie oporowo dla pustego w środku stabilizatora o dużej wytrzymałości, sposób wytwarzania rury stalowej zgrzewanej elektrycznie oporowo dla pustego w środku stabilizatora o dużej wytrzymałości, pusty w środku stabilizator o dużej wytrzymałości i sposób wytwarzania pustego w środku stabilizatora o dużej wytrzymałości
MX2018003854A MX2018003854A (es) 2015-09-29 2016-08-26 Tubo de acero soldado por resistencia electrica para estabilizador hueco de alta resistencia, metodo para la fabricacion de tubo de acero soldado por resistencia electrica para estabilizador hueco de alta resistencia, estabilizador hueco de alta resistencia, y metodo para la fabricacion de estabilizador hueco de alta resistencia.
MYPI2018700072A MY190065A (en) 2015-09-29 2016-08-26 Electric resistance welded steel pipe for high-strength hollow stabilizer, method for manufacturing electric resistance welded steel pipe for high-strength hollow stabilizer, high-strength hollow stabilizer, and method for manufacturing high-strength hollow stabilizer
JP2016566300A JP6332473B2 (ja) 2015-09-29 2016-08-26 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法
EP16850567.5A EP3358028B1 (en) 2015-09-29 2016-08-26 Electric resistance welded steel tube for high-strength hollow stabilizer, method for manufacturing electric resistance welded steel tube for high-strength hollow stabilizer, high-strength hollow stabilizer, and method for manufacturing high-strength hollow stabilizer
ES16850567T ES2836688T3 (es) 2015-09-29 2016-08-26 Tubo de acero soldado por resistencia eléctrica para estabilizador hueco de alta resistencia, método para fabricar un tubo de acero soldado por resistencia eléctrica para estabilizador hueco de alta resistencia, estabilizador hueco de alta resistencia, y método para fabricar un estabilizador hueco de alta resistencia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191003 2015-09-29
JP2015-191003 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056384A1 true WO2017056384A1 (ja) 2017-04-06

Family

ID=58422860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003880 WO2017056384A1 (ja) 2015-09-29 2016-08-26 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法

Country Status (11)

Country Link
US (1) US10787720B2 (ja)
EP (1) EP3358028B1 (ja)
JP (1) JP6332473B2 (ja)
KR (1) KR102081525B1 (ja)
CN (1) CN108138279B (ja)
CA (1) CA2991104C (ja)
ES (1) ES2836688T3 (ja)
MX (1) MX2018003854A (ja)
MY (1) MY190065A (ja)
PL (1) PL3358028T3 (ja)
WO (1) WO2017056384A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079398A1 (ja) * 2016-10-24 2018-05-03 Jfeスチール株式会社 高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法
JP2018095899A (ja) * 2016-12-09 2018-06-21 日新製鋼株式会社 中空部材及びその製造方法
WO2020003720A1 (ja) * 2018-06-27 2020-01-02 Jfeスチール株式会社 中空スタビライザー製造用の電縫鋼管、中空スタビライザー、及びそれらの製造方法
WO2020189097A1 (ja) 2019-03-15 2020-09-24 Jfeスチール株式会社 中空スタビライザー用電縫鋼管およびその製造方法
WO2020203874A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 中空スタビライザー用電縫鋼管及び中空スタビライザー、並びにそれらの製造方法
JP7276641B1 (ja) * 2022-04-27 2023-05-18 Jfeスチール株式会社 電縫鋼管およびその製造方法
WO2023210046A1 (ja) * 2022-04-27 2023-11-02 Jfeスチール株式会社 電縫鋼管およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171209A1 (ja) * 2019-02-21 2020-08-27 日本製鉄株式会社 高強度電縫鋼管および地盤安定化工事用高強度電縫鋼管の使用方法
CN113265581B (zh) * 2020-02-17 2022-10-21 宝山钢铁股份有限公司 一种稳定杆用钢管及其制造方法
CN113549816B (zh) * 2021-06-28 2022-11-18 鞍钢股份有限公司 一种高强高韧电阻焊石油套管用钢及套管的制造方法
CN115522154B (zh) * 2022-10-09 2024-04-16 浙江吉利控股集团有限公司 一种稳定杆及其制备方法、悬架总成和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201543A (ja) * 2001-10-25 2003-07-18 Jfe Steel Kk 加工性に優れた鋼管およびその製造方法
JP2007270349A (ja) * 2006-03-09 2007-10-18 Nippon Steel Corp 中空部品用鋼管及びその製造方法
WO2008105216A1 (ja) * 2007-02-26 2008-09-04 Jfe Steel Corporation 熱処理用電縫溶接鋼管およびその製造方法
WO2009093728A1 (ja) * 2008-01-21 2009-07-30 Jfe Steel Corporation 中空部材およびその製造方法
JP2012246550A (ja) * 2011-05-30 2012-12-13 Jfe Steel Corp 電縫溶接部の成形性、低温靭性および耐疲労特性に優れた電縫鋼管およびその製造方法
WO2013175821A1 (ja) * 2012-05-25 2013-11-28 新日鐵住金株式会社 中空スタビライザ並びに中空スタビライザ用鋼管及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066915B2 (ja) 2003-08-28 2008-03-26 Jfeスチール株式会社 耐疲労特性に優れた中空スタビライザの製造方法
JP4506486B2 (ja) 2005-01-31 2010-07-21 Jfeスチール株式会社 高強度中空スタビライザ用電縫鋼管および高強度中空スタビライザの製造方法
US20150368768A1 (en) * 2013-01-31 2015-12-24 Jfe Steel Corporation Electric Resistance Welded Steel Pipe
JP5516780B2 (ja) 2013-03-13 2014-06-11 Jfeスチール株式会社 偏平性に優れた熱処理用電縫溶接鋼管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201543A (ja) * 2001-10-25 2003-07-18 Jfe Steel Kk 加工性に優れた鋼管およびその製造方法
JP2007270349A (ja) * 2006-03-09 2007-10-18 Nippon Steel Corp 中空部品用鋼管及びその製造方法
WO2008105216A1 (ja) * 2007-02-26 2008-09-04 Jfe Steel Corporation 熱処理用電縫溶接鋼管およびその製造方法
WO2009093728A1 (ja) * 2008-01-21 2009-07-30 Jfe Steel Corporation 中空部材およびその製造方法
JP2012246550A (ja) * 2011-05-30 2012-12-13 Jfe Steel Corp 電縫溶接部の成形性、低温靭性および耐疲労特性に優れた電縫鋼管およびその製造方法
WO2013175821A1 (ja) * 2012-05-25 2013-11-28 新日鐵住金株式会社 中空スタビライザ並びに中空スタビライザ用鋼管及びその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332812B2 (en) 2016-10-24 2022-05-17 Jfe Steel Corporation Electric resistance welded steel tubes for high-strength thin hollow stabilizers, and methods for manufacturing the same
WO2018079398A1 (ja) * 2016-10-24 2018-05-03 Jfeスチール株式会社 高強度薄肉中空スタビライザー用電縫鋼管およびその製造方法
JP2018095899A (ja) * 2016-12-09 2018-06-21 日新製鋼株式会社 中空部材及びその製造方法
WO2020003720A1 (ja) * 2018-06-27 2020-01-02 Jfeスチール株式会社 中空スタビライザー製造用の電縫鋼管、中空スタビライザー、及びそれらの製造方法
JPWO2020003720A1 (ja) * 2018-06-27 2020-07-02 Jfeスチール株式会社 中空スタビライザー製造用の電縫鋼管、中空スタビライザー、及びそれらの製造方法
EP3816313A4 (en) * 2018-06-27 2021-05-05 JFE Steel Corporation ELECTRIC RESISTANCE WELDED STEEL PIPE TO PRODUCE A HOLLOW STABILIZER, HOLLOW STABILIZER AND ITS PRODUCTION PROCESS
KR20210135305A (ko) 2019-03-15 2021-11-12 제이에프이 스틸 가부시키가이샤 중공 스태빌라이저용 전봉 강관 및 그의 제조 방법
WO2020189097A1 (ja) 2019-03-15 2020-09-24 Jfeスチール株式会社 中空スタビライザー用電縫鋼管およびその製造方法
JPWO2020189097A1 (ja) * 2019-03-15 2021-04-01 Jfeスチール株式会社 中空スタビライザー用電縫鋼管およびその製造方法
JPWO2020203874A1 (ja) * 2019-03-29 2020-10-08
CN113631735A (zh) * 2019-03-29 2021-11-09 日本制铁株式会社 中空稳定器用电焊钢管和中空稳定器、以及其制造方法
WO2020203874A1 (ja) * 2019-03-29 2020-10-08 日本製鉄株式会社 中空スタビライザー用電縫鋼管及び中空スタビライザー、並びにそれらの製造方法
JP7138779B2 (ja) 2019-03-29 2022-09-16 日本製鉄株式会社 中空スタビライザー用電縫鋼管及び中空スタビライザー、並びにそれらの製造方法
JP7276641B1 (ja) * 2022-04-27 2023-05-18 Jfeスチール株式会社 電縫鋼管およびその製造方法
WO2023210046A1 (ja) * 2022-04-27 2023-11-02 Jfeスチール株式会社 電縫鋼管およびその製造方法

Also Published As

Publication number Publication date
EP3358028B1 (en) 2020-11-18
CN108138279A (zh) 2018-06-08
CA2991104C (en) 2021-06-15
US10787720B2 (en) 2020-09-29
MX2018003854A (es) 2018-06-15
EP3358028A1 (en) 2018-08-08
ES2836688T3 (es) 2021-06-28
JP6332473B2 (ja) 2018-05-30
CN108138279B (zh) 2020-06-26
CA2991104A1 (en) 2017-04-06
KR20180043344A (ko) 2018-04-27
JPWO2017056384A1 (ja) 2017-10-05
PL3358028T3 (pl) 2021-05-31
US20180305780A1 (en) 2018-10-25
EP3358028A4 (en) 2018-08-15
KR102081525B1 (ko) 2020-02-25
MY190065A (en) 2022-03-24

Similar Documents

Publication Publication Date Title
JP6332473B2 (ja) 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法
JP5892267B2 (ja) 電縫鋼管
JP6885472B2 (ja) 中空スタビライザー製造用の電縫鋼管、及びその製造方法
JP5196934B2 (ja) 高疲労寿命焼入れ・焼戻し鋼管およびその製造方法
JP6631758B1 (ja) 中空スタビライザー製造用の電縫鋼管、中空スタビライザー、及びそれらの製造方法
JP5736929B2 (ja) 加工性および低温靭性に優れた中空部材用超高強度電縫鋼管およびその製造方法
JP2002038242A (ja) 二次加工性に優れた自動車構造部材用ステンレス鋼管
KR102639340B1 (ko) 중공 스태빌라이저용 전봉 강관
JP6796472B2 (ja) 中空部材及びその製造方法
CN113557317B (zh) 中空稳定器用电阻焊钢管和其制造方法
JP5942572B2 (ja) 耐疲労特性に優れた自動車部品用電縫溶接鋼管およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016566300

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2991104

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187008314

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003854

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15763859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE