WO2023210046A1 - 電縫鋼管およびその製造方法 - Google Patents

電縫鋼管およびその製造方法 Download PDF

Info

Publication number
WO2023210046A1
WO2023210046A1 PCT/JP2022/041580 JP2022041580W WO2023210046A1 WO 2023210046 A1 WO2023210046 A1 WO 2023210046A1 JP 2022041580 W JP2022041580 W JP 2022041580W WO 2023210046 A1 WO2023210046 A1 WO 2023210046A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
electric resistance
resistance welded
cooling
Prior art date
Application number
PCT/JP2022/041580
Other languages
English (en)
French (fr)
Inventor
晃英 松本
信介 井手
昌士 松本
稜 仲澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023513267A priority Critical patent/JP7276641B1/ja
Publication of WO2023210046A1 publication Critical patent/WO2023210046A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present disclosure relates to an electric resistance welded steel pipe and a method for manufacturing the same.
  • Patent Document 1 discloses that the size of prior austenite grains has a structure in which the grain size number is 9.0 or more, and the tensile strength is Seamless steel pipes have been proposed that have a tensile strength of 700 MPa or more and an elongation of 25% or more.
  • Patent Document 2 discloses a bending forming method that has a tensile strength in the tube axis direction of 750 to 980 MPa, which is characterized by a small aspect ratio of prior austenite grains of tempered martensite. ERW steel pipes for torsion beams with high durability have been proposed.
  • Patent Documents 1 and 2 ensure high toughness and high workability by controlling the average grain size and shape of prior austenite, but these methods alone cannot produce localized coarse grains. It has been difficult to suppress the decrease in toughness and workability due to the presence of .
  • the present disclosure has been made in view of the above circumstances, and is an electric resistance welded steel pipe with high strength, excellent workability, and toughness, suitable for machine structural steel pipes used in parts of automobiles, construction machinery, and industrial machinery.
  • the purpose is to provide a method for producing the same.
  • high strength refers to a yield stress in the tube axis direction of 650 MPa or more and a tensile strength of 750 MPa or more.
  • the yield stress is 700 MPa or more and the tensile strength is 800 MPa or more.
  • the yield ratio in the tube axis direction is preferably 90% or less.
  • the total elongation in the tube axis direction is preferably 25% or more.
  • TS tensile strength (MPa)
  • D outer diameter (mm)
  • t wall thickness of the steel pipe (mm)
  • L length in the pipe axial direction (mm).
  • high toughness or “excellent toughness” refers to a Charpy impact value of 60 J/cm 2 or more at -60°C. Preferably, it is 70 J/cm 2 or more.
  • the present inventors have conducted extensive studies regarding the above problem. As a result, it was found that when some of the prior austenite is coarse, the martensite generated therefrom also becomes coarse, resulting in a decrease in toughness and workability.
  • the present inventors have found that by making prior austenite uniformly fine, it is possible to suppress the formation of coarse martensite, obtain uniformly fine martensite, and improve toughness and workability. I thought it was possible.
  • the present disclosure has been completed based on this knowledge through further study. That is, the gist of the present disclosure is as follows.
  • An electric resistance welded steel pipe having a base metal part and a welded part, the composition of which is, in mass %, C: 0.150% or more and 0.500% or less, Si: 0.05% or more and 1.00% or less, Mn: 0.10% or more and 2.00% or less, P: 0.050% or less, S: 0.0200% or less, Al: 0.005% or more and 0.100% or less, N: 0.0100% or less, Contains Cr: 0.10% or more and 1.00% or less and B: 0.0002% or more and 0.0050% or less, with the remainder consisting of Fe and unavoidable impurities, and the steel structure at the center of the wall thickness of the base metal part is , a volume fraction of martensite: 90% or more, the remainder containing one or more of ferrite, bainite, pearlite, and austenite, an average crystal grain size: 10 ⁇ m or less, and a grain size: 50 ⁇ m
  • a hot rolling step in which hot rolling is performed at a finish rolling end temperature of 750°C or higher and 900°C or lower and a total reduction rate of 50% or higher at 930°C or lower, and after the hot rolling step, the plate is An average cooling rate at the center of thickness: 5°C/s or more and 30°C/s or less, a cooling stop temperature at the center of the plate thickness: 400°C or more and 650°C or less, and after the cooling step, 400°C A winding process in which the hot-rolled steel plate is wound at 650° C.
  • a pipe-making process in which the hot-rolled steel plate is formed into a cylindrical shape by cold roll forming and subjected to electric resistance welding to produce a steel pipe material
  • a sizing step in which the steel pipe material is reduced in diameter at a rate of 3.0% or less in circumference, and after the sizing step, heated in a temperature range of 850° C. or more and 1050° C. or less for 100 seconds or more and 1000 seconds or less.
  • a quenching process in which the average cooling rate at the center of the thickness between at least 800°C and 400°C is 40°C/s or more, and cooling to 100°C or less, and after the quenching process, 450°C.
  • a method for manufacturing an electric resistance welded steel pipe comprising a tempering step of heating in a temperature range of 600° C. or less for more than 70 seconds.
  • an electric resistance welded steel pipe with high strength and excellent workability and toughness which is suitable for mechanical structural steel pipes used in parts of automobiles, construction machines, and industrial machines, and a method for manufacturing the same.
  • FIG. 3 is a schematic diagram of a circumferential cross section (vertical cross section in the tube axis direction) of an electric resistance welded portion of an electric resistance welded steel pipe.
  • FIG. 1 shows a vertical cross section of an ERW steel pipe according to the present disclosure in the pipe axis direction.
  • the electric resistance welded steel pipe of the present disclosure includes a base metal portion 1 and a welded portion (a welded heat affected zone 2 and a bonded portion 3, which will be described later).
  • the base material portion 1 of the electric resistance welded steel pipe of the present disclosure has, in mass %, C: 0.150% or more and 0.500% or less, Si: 0.05% or more and 1.00% or less, and Mn: 0.10% or more.
  • the balance contains one or more of ferrite, bainite, pearlite, and austenite, the average crystal grain size is 10 ⁇ m or less, and the volume fraction of prior austenite with a grain size of 50 ⁇ m or more is 40 % or less.
  • C is an element that increases the strength of steel through solid solution strengthening. Further, C is an element that improves hardenability and contributes to the formation of martensite. In order to obtain such an effect, 0.150% or more of C is contained. On the other hand, when the C content exceeds 0.500%, the strength becomes too high, resulting in poor workability and toughness, and also poor weldability. Therefore, the C content is set to 0.150% or more and 0.500% or less.
  • the C content is preferably 0.180% or more, more preferably 0.200% or more.
  • the C content is preferably 0.480% or less, more preferably 0.460% or less.
  • Si is an element that increases the strength of steel through solid solution strengthening. Further, Si is an element that improves hardenability and contributes to the generation of martensite. In order to obtain such an effect, 0.05% or more of Si is contained. On the other hand, when the Si content exceeds 1.00%, the strength becomes too high and the workability and toughness decrease. Further, oxides are likely to be generated in the electric resistance welded part, and the properties of the welded part are deteriorated. Therefore, the Si content is set to 0.05% or more and 1.00% or less. The Si content is preferably 0.08% or more, more preferably 0.10% or more. On the other hand, the Si content is preferably 0.80% or less, more preferably 0.50% or less.
  • Mn is an element that increases the strength of steel through solid solution strengthening. Moreover, Mn is an element that improves hardenability and contributes to the generation of martensite. In order to obtain such an effect, it is necessary to contain 0.10% or more of Mn. On the other hand, when the Mn content exceeds 2.00%, the strength becomes too high and the workability and toughness decrease. Further, oxides are likely to be generated in the electric resistance welded part, and the properties of the welded part are deteriorated. Therefore, the Mn content is set to 0.10% or more and 2.00% or less. The Mn content is preferably 0.20% or more, more preferably 0.30% or more. On the other hand, the Mn content is preferably 1.50% or less, more preferably 1.20% or less.
  • the P content is set to 0.050% or less.
  • the P content is preferably 0.020% or less, more preferably 0.010% or less. Although there is no particular lower limit to the P content, it is preferable that the P content be 0.002% or more, since excessive reduction will lead to a rise in smelting costs.
  • S (S: 0.0200% or less) S usually exists as MnS in steel, but MnS is stretched thin during the hot rolling process and has a negative effect on ductility and toughness. Therefore, in the present disclosure, it is preferable to reduce S as an unavoidable impurity as much as possible, but up to 0.0200% is allowable. Therefore, the S content is set to 0.0200% or less.
  • the S content is preferably 0.0100% or less, more preferably 0.0080% or less. Although there is no particular lower limit for S, it is preferable for S to be 0.0002% or more, since excessive reduction will lead to a rise in smelting costs.
  • Al 0.005% or more and 0.100% or less
  • Al is an element that acts as a strong deoxidizing agent. In order to obtain such an effect, it is necessary to contain 0.005% or more of Al.
  • the Al content exceeds 0.100%, weldability deteriorates, alumina-based inclusions increase, and the surface quality deteriorates. Moreover, the toughness of the welded part also decreases. Therefore, the Al content is set to 0.100% or less.
  • the Al content is preferably 0.010% or more, more preferably 0.015% or more.
  • the Al content is preferably 0.080% or less, more preferably 0.070% or less.
  • N is an unavoidable impurity, and is an element that has the effect of reducing ductility and toughness by firmly fixing the movement of dislocations.
  • the N content is set to 0.0100% or less.
  • the N content is preferably 0.0080% or less. Note that although there is no particular lower limit to N, it is preferable that N be 0.0010% or more, since excessive reduction will lead to a rise in refining costs.
  • Cr 0.10% or more and 1.00% or less
  • Cr is an element that improves hardenability, contributes to the production of martensite, and increases the strength of steel. In order to obtain such an effect, it is necessary to contain 0.10% or more of Cr. On the other hand, when the Cr content exceeds 1.00%, the strength becomes too high and the workability and toughness decrease. Further, oxides are likely to be generated in the electric resistance welded part, and the properties of the welded part are deteriorated. Therefore, the Cr content is set to 0.10% or more and 1.00% or less.
  • the Cr content is preferably 0.15% or more, more preferably 0.20% or more.
  • the Cr content is preferably 0.80% or less, more preferably 0.60% or less.
  • B is an element that improves hardenability, contributes to the production of martensite, and increases the strength of steel. In order to obtain such an effect, it is necessary to contain 0.0002% or more of B. On the other hand, when the B content exceeds 0.0050%, the strength becomes too high and the workability and toughness decrease. Therefore, the B content is set to 0.0002% or more and 0.0050% or less.
  • the B content is preferably 0.0003% or more, more preferably 0.0005% or more.
  • the B content is preferably 0.0040% or less, more preferably 0.0030% or less.
  • the remainder is Fe and unavoidable impurities.
  • O may be contained in an amount of 0.0050% or less as an unavoidable impurity. Note that O in the present disclosure refers to total oxygen including O as an oxide.
  • the above components are the basic component composition of the electric resistance welded steel pipe in the present disclosure.
  • Cu 1.00% or less
  • Ni 1.00% or less
  • Mo 1.00% or less
  • Nb 0.150% or less
  • V 0.150% or less
  • Ti 0 Ca: 0.150% or less and Ca: 0.0100% or less.
  • Cu is an element that increases the strength of steel through solid solution strengthening, and can be included as necessary.
  • the Cu content is preferably 0.01% or more.
  • a Cu content exceeding 1.00% may lead to a decrease in toughness and deterioration in weldability. Therefore, when Cu is contained, the Cu content is preferably 1.00% or less.
  • the Cu content is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the Cu content is more preferably 0.70% or less, still more preferably 0.50% or less.
  • Ni is an element that increases the strength of steel through solid solution strengthening, and can be included as necessary.
  • the Ni content is preferably 0.01% or more.
  • Ni content is preferably 1.00% or less.
  • the Ni content is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the Ni content is more preferably 0.70% or less, and still more preferably 0.50% or less.
  • Mo 1.00% or less
  • Mo is an element that improves the hardenability of steel and increases the strength of steel, and can be included as necessary.
  • the Mo content is preferably 0.01% or more.
  • Mo content exceeding 1.00% may lead to a decrease in toughness, workability, and weldability. Therefore, when Mo is contained, the Mo content is preferably 1.00% or less.
  • the Mo content is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the Mo content is more preferably 0.70% or less, and still more preferably 0.50% or less.
  • Nb is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel, and also contributes to the refinement of the structure by suppressing the coarsening of austenite during hot rolling. and can be included as necessary.
  • Nb when Nb is contained, it is preferable to contain 0.002% or more of Nb.
  • the Nb content exceeds 0.150%, toughness and workability decrease. Therefore, when Nb is contained, the Nb content is preferably 0.150% or less.
  • the Nb content is more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the Nb content is more preferably 0.100% or less, and still more preferably 0.080% or less.
  • V 0.150% or less
  • V is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel, and can be included as necessary.
  • V when containing V, it is preferable to contain 0.002% or more of V.
  • the V content when the V content exceeds 0.150%, toughness and workability decrease. Therefore, when V is contained, the V content is preferably 0.150% or less.
  • the V content is more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the V content is more preferably 0.100% or less, still more preferably 0.080% or less.
  • Ti 0.150% or less
  • Ti is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel, and also contributes to the refinement of the structure by suppressing the coarsening of austenite during hot rolling. It can be included as necessary. Moreover, since it has a high affinity with N, it is an element that renders N in steel harmless as a nitride and contributes to improving the toughness of steel. In order to obtain the above-mentioned effects, when containing Ti, it is preferable to contain 0.002% or more of Ti. On the other hand, when the Ti content exceeds 0.150%, the yield ratio increases and the toughness decreases. For this reason, the Ti content is preferably 0.150% or less. The Ti content is more preferably 0.005% or more, and still more preferably 0.008% or more. On the other hand, the Ti content is more preferably 0.130% or less, still more preferably 0.110% or less.
  • Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly drawn in the hot rolling process, and can be included as necessary.
  • the Ca content exceeds 0.0100%, Ca oxide clusters are formed in the steel, resulting in poor toughness. Therefore, when Ca is contained, it is preferable that the Ca content is 0.0100% or less.
  • the Ca content is more preferably 0.0008% or more, and still more preferably 0.0010% or more.
  • the Ca content is more preferably 0.0080% or less, and even more preferably 0.0060% or less.
  • the volume fraction of martensite is 90% or more, and the remainder is one or more types of ferrite, bainite, pearlite, and austenite. It is necessary that the average crystal grain size is 10 ⁇ m or less, and the volume fraction of prior austenite with a grain size of 50 ⁇ m or more is 40% or less.
  • Martensite is a hard structure, and in order to obtain the strength required by the present disclosure, martensite with a volume fraction of 90% or more is required.
  • the volume fraction of martensite is preferably 93% or more, more preferably 95% or more.
  • the volume fraction of martensite is preferably 99% or less, more preferably 98% or less.
  • the total volume fraction of each of these tissues should be 10% or less, preferably 7% or less, and more preferably 5% or less with respect to the entire tissue in the same field of view at this position. Note that it is difficult to completely suppress the formation of these structures in the quenching process, and in order to ensure workability, a lower limit of about 1% is allowed.
  • At least the above-mentioned steel structure is present within a range of ⁇ 0.20 mm in the wall thickness direction centering on the wall thickness center (position of 1/2 the wall thickness) of the base material portion 1. It is enough if it exists. If such a steel structure exists, a steel structure within the scope of the present disclosure can be obtained also at other positions in the thickness direction of the base material portion 1, so that the effects of the present disclosure can be similarly obtained. This is because the cooling rate in the hardening process is lowest at the center of the wall thickness.
  • steel structure at the center of wall thickness refers to a predetermined area (preferably 0.10 mm 2 or more) that exists within a range of ⁇ 0.20 mm in the wall thickness direction centering on the center of wall thickness. means the steel structure.
  • Observation of the steel structure is performed as follows. First, a test piece for microstructural observation is prepared so that the observation surface is a vertical section in the longitudinal direction of the tube and the center of the wall thickness of the base material 1, polished, and then corroded with nital. Next, the structure of the test piece is observed and imaged using an optical microscope (magnification: 1000 times) and/or a scanning electron microscope (SEM, magnification: 1000 times). From the optical microscope image and/or SEM image thus obtained, the area ratio of martensite and the remainder (ferrite, pearlite, bainite, austenite) is determined. The area ratio of each tissue is observed in five or more fields of view, and calculated as the average value of the values obtained in each field of view. Note that in the present disclosure, the area ratio obtained by the above-mentioned tissue observation is defined as the volume ratio of each tissue.
  • ferrite is a product of diffusion transformation, and exhibits a nearly recovered structure with a low dislocation density. This includes polygonal ferrite and pseudopolygonal ferrite.
  • Bainite is a multi-phase structure of lath-like ferrite and cementite with high dislocation density.
  • Pearlite is a eutectoid structure of iron and iron carbide (ferrite + cementite), and exhibits a lamellar structure in which linear ferrite and cementite are arranged alternately.
  • Martensite is a lath-like low-temperature transformed structure with extremely high dislocation density. In the SEM image, it shows a bright contrast compared to ferrite and bainite.
  • the area ratio of the structure observed as martensite or austenite is calculated from the obtained SEM image, and the volume ratio of martensite is determined by subtracting the volume ratio of austenite measured by the following method from the area ratio. .
  • the volume fraction of austenite is determined by X-ray diffraction using a test piece prepared in the same manner as the test piece described above. This is the volume fraction determined from the integrated intensity of the (200), (220), and (311) planes of FCC iron and the (200) and (211) planes of BCC iron obtained by such X-ray diffraction.
  • the average crystal grain size of the crystal grains is 10 ⁇ m or less.
  • the average grain size of the crystal grains is preferably 8.0 ⁇ m or less, more preferably 6.0 ⁇ m or less. Note that if the average crystal grain size is too small, workability will deteriorate, so the average crystal grain size is preferably 3.0 ⁇ m or more.
  • the average crystal grain size refers to the average equivalent circular diameter of crystal grains when the crystal grains are defined as regions surrounded by boundaries where the orientation difference between adjacent crystals is 15° or more. Further, the equivalent circle diameter (crystal grain size) is the diameter of a circle having the same area as the target crystal grain.
  • a cross section of the base material 1 parallel to both the pipe longitudinal direction and the wall thickness direction is mirror-polished, and the grain size distribution is measured at the center of the wall thickness using the SEM/EBSD method.
  • a histogram horizontal axis: grain size, vertical axis: abundance ratio of each grain size
  • the arithmetic mean of the grain sizes is determined to be the average crystal grain size.
  • the acceleration voltage is 15 kV
  • the measurement area is 500 ⁇ m ⁇ 500 ⁇ m
  • the measurement step size (measurement resolution) is 0.5 ⁇ m.
  • crystal grains with a crystal grain size of less than 2.0 ⁇ m are excluded from the analysis target as measurement noise.
  • the average crystal grain size is measured in five or more fields of view, and calculated as the average value of the values obtained in each field of view.
  • the volume fraction of prior austenite of 50 ⁇ m or more is 40% or less
  • the volume fraction of prior austenite with a grain size of 50 ⁇ m or more exceeds 40% and is coarse.
  • the volume fraction of coarse prior austenite is set to 40% or less.
  • the volume fraction of coarse prior austenite is preferably 35% or less, more preferably 30% or less.
  • the volume fraction of coarse prior austenite is measured as follows. First, after polishing a cross section parallel to both the tube longitudinal direction and the wall thickness direction of the base material part 1, it was corroded with a saturated picric acid aqueous solution to expose the prior austenite grain boundaries, and was examined using an optical microscope (magnification: 400x). Using , the structure at the center of the wall thickness is imaged in 5 or more fields of view, a histogram of the prior austenite grain size distribution is calculated in each field of view, the area ratio with a circular equivalent diameter of 50 ⁇ m or more is determined, and this is determined as the grain size: 50 ⁇ m or more. The volume fraction of prior austenite is
  • the SEM/EBSD method is used to draw boundaries with a misorientation of 20° or more and 50° or less as prior austenite grain boundaries, and this is used to determine the prior austenite grain size. It is also possible to calculate a histogram of the distribution.
  • the histogram of the prior austenite grain size distribution can be obtained by calculating the area of each prior austenite grain using image processing software (for example, ImageJ 1.52p).
  • the electric resistance welded steel pipe of the present disclosure consists of a base metal portion 1 and a welded portion, and the composition and steel structure of the welded portion of the electric resistance welded steel pipe are similar to the base metal portion 1.
  • the method for producing an ERW steel pipe of the present disclosure includes, for example, heating a steel material having the above-mentioned composition to a heating temperature of 1,100°C to 1,300°C, and then finishing the rough rolling at a temperature of 850°C to 1,150°C.
  • a hot rolling process in which a hot rolled sheet is obtained by hot rolling at a rolling end temperature of 750°C or higher and 900°C or lower and a total reduction rate of 50% or higher at a temperature of 930°C or lower, and after the hot rolling process.
  • a cooling step in which cooling is performed at the center of the thickness of the hot rolled sheet at an average cooling rate of 5° C./s or more and 30° C./s or less, and a cooling stop temperature of 400° C. or more and 650° C. or less, and after the cooling step, 400° C.
  • the method includes a tempering step of heating the steel pipe material at a temperature of 450° C. or more and 600° C. or less for more than 70 seconds.
  • hot-rolled steel sheet includes hot-rolled sheets and hot-rolled steel strips.
  • °C in relation to temperature refers to the surface temperature of the steel material, steel plate (hot-rolled sheet), steel pipe material, and steel pipe.
  • surface temperatures can be measured with a radiation thermometer, etc., and the temperature at the center of the thickness of a steel plate or steel pipe can be determined by calculating the temperature distribution within the cross section of the steel plate or pipe using heat transfer analysis. It can be obtained by correcting the results based on the surface temperature of the steel plate, steel pipe, etc.
  • the melting method for the steel material is not particularly limited, and any known melting method such as a converter, electric furnace, vacuum melting furnace, etc. is suitable.
  • the casting method is not particularly limited, it is manufactured to desired dimensions by a known casting method such as a continuous casting method. It should be noted that there is no problem in applying an ingot-blowing rolling method instead of the continuous casting method.
  • the molten steel may further be subjected to secondary refining such as ladle refining.
  • the heating temperature is more preferably 1120°C or higher. On the other hand, the heating temperature is more preferably 1280°C or lower.
  • the method in addition to the conventional method of manufacturing a steel slab, cooling it once to room temperature, and then heating it again, the method also involves charging the steel slab as a hot piece into a heating furnace without cooling it to room temperature.
  • the energy-saving process of direct rolling in which rolling is performed immediately after a slight heat retention, can also be applied without problems.
  • the rough rolling completion temperature is more preferably 880°C or higher.
  • the rough rolling end temperature is more preferably 1100°C or lower.
  • the finishing rolling start temperature in the present disclosure is preferably in the range of 800°C or higher and 950°C or lower.
  • the finish rolling start temperature is less than 800°C, the steel plate surface temperature falls below the ferrite transformation start temperature during finish rolling, and coarse ferrite is generated, which causes coarse prior austenite to be generated in the subsequent quenching process. becomes.
  • the average crystal grain size of the steel structure of the electric resistance welded steel pipe and the volume fraction of coarse prior austenite that are aimed at in the present disclosure cannot be obtained.
  • the finish rolling start temperature exceeds 950°C, the reduction amount in the austenite non-recrystallization temperature range is insufficient, which causes the austenite in the steel material to become coarse and the structure of the hot rolled steel sheet to become coarse. This causes the formation of coarse prior austenite during the quenching process. As a result, there is a possibility that the average crystal grain size of the steel structure of the electric resistance welded steel pipe and the volume fraction of coarse prior austenite that are aimed at in the present disclosure cannot be obtained.
  • the finish rolling start temperature is more preferably 820° C. or higher.
  • the finish rolling start temperature is more preferably 930°C or lower.
  • the finish rolling end temperature is more preferably 770°C or higher. On the other hand, the finish rolling end temperature is more preferably 880°C or lower.
  • total rolling reduction rate below 930°C: 50% or more In the manufacturing method of the present disclosure, subgrains in austenite are refined in the hot rolling process to refine the structure of the hot rolled steel sheet, thereby achieving the desired average grain size and volume fraction of coarse prior austenite.
  • the structure of the ERW steel pipe is obtained. Further, during heating in the quenching step, austenite is generated mainly from grain boundaries with large misorientation. Therefore, by refining the structure before the quenching process, the area of grain boundaries that serve as austenite nucleation sites increases, and the austenite generated during the quenching process can be made finer.
  • the total reduction ratio of rolling at 930° C. or lower in the hot rolling step is set to 50% or more.
  • the above-mentioned total rolling reduction refers to the sum of the rolling reductions of each rolling pass in a temperature range of 930° C. or lower.
  • the total rolling reduction ratio is preferably 55% or more.
  • the total rolling reduction ratio is preferably 80% or less. More preferably it is 70% or less.
  • the hot rolled sheet is subjected to cooling treatment in the cooling step after the hot rolling step.
  • the average cooling rate at the center of the thickness of the hot-rolled sheet up to the cooling stop temperature is 5°C/s or more and 30°C/s or less
  • the cooling stop temperature at the center of the thickness of the hot-rolled sheet is 400°C or more and 650°C. Cool as below.
  • Average cooling rate in the temperature range from the start of cooling to the end of cooling (described later) at the center of the thickness of the hot-rolled steel sheet is less than 5°C/s
  • the frequency of nucleation will decrease and the structure of the hot-rolled steel sheet will become coarse.
  • the structure of the electric resistance welded steel pipe having the average crystal grain size and the volume fraction of coarse prior austenite that is aimed at in the present disclosure cannot be obtained.
  • the average cooling rate exceeds 30° C./s a large amount of martensite is generated, resulting in a decrease in ductility and toughness. Therefore, forming in the subsequent pipe-making process becomes difficult.
  • the above average cooling rate is preferably 10° C./s or more. On the other hand, the average cooling rate is preferably 25° C./s or less.
  • the cooling stop temperature is preferably 430°C or higher.
  • the cooling stop temperature is preferably 620°C or lower.
  • the average cooling rate is the value (cooling rate) obtained by ((thickness center temperature of hot rolled sheet before cooling - thickness center temperature of hot rolled sheet after cooling)/cooling time). do.
  • examples of the cooling method include water cooling such as water injection from a nozzle, cooling by cooling gas injection, and the like.
  • a cooling operation treatment
  • both sides of the hot-rolled sheet are cooled under the same conditions.
  • the hot rolled sheet After the cooling step, the hot rolled sheet is wound into a coil shape in a winding step, and then left to cool. If the winding temperature is less than 400° C., a large amount of martensite will be generated and the ductility and toughness will decrease, making it difficult to form the tube in the subsequent pipe-making process. On the other hand, when the coiling temperature exceeds 650°C, the frequency of nucleation decreases and the structure of the hot rolled steel sheet becomes coarse, so that it has the average grain size and coarse prior austenite volume ratio targeted in the present disclosure. The structure of the ERW steel pipe cannot be obtained.
  • the winding temperature is preferably 430°C or higher. On the other hand, the winding temperature is preferably 620°C or lower.
  • a hot-rolled sheet wound into a coil is referred to as a hot-rolled steel sheet.
  • the hot rolled steel sheet is subjected to a pipe forming process in the pipe forming process.
  • a hot-rolled steel plate is continuously discharged and formed into a cylindrical open pipe (round steel pipe) by cold roll forming, and the circumferential abutting portions of the open pipe are melted by high-frequency electric resistance heating.
  • the pipes are pressed together using a squeeze roll upset and then electrical resistance welded to form a steel pipe material.
  • the amount of upsetting during electric resistance welding (hereinafter referred to as upsetting amount) shall be at least 20% of the plate thickness so that inclusions such as oxides and nitrides that cause a decrease in toughness can be discharged together with the molten steel. It is preferable. However, if the upset amount exceeds 100% of the plate thickness, the squeeze roll load will become too large. Therefore, the amount of upset is preferably 20% or more and 100% or less of the plate thickness. The amount of upset is more preferably 40% or more of the plate thickness. On the other hand, the upset amount is more preferably 80% or less of the plate thickness.
  • the upset amount is determined as the difference between the outer circumferential length of the steel pipe (open pipe) before electric resistance welding and the outer circumferential length of the steel pipe after electric resistance welding.
  • the diameter of the steel pipe is reduced so that the total circumferential length is reduced by more than 3.0%, the dispersion density of each crystal grain increases, resulting in strain-induced grain boundary movement in the subsequent quenching process. occurs, causing the formation of coarse prior austenite. Therefore, it is important to reduce the diameter so that the circumferential length of the steel pipe decreases at a rate of 3.0% or less. Preferably it is 2.5% or less.
  • the heating temperature in the quenching step is preferably 880°C or higher, and preferably 1000°C or lower. Further, the heating time in the quenching step is preferably 200 seconds or more, and preferably 800 seconds or less.
  • the temperature range that defines the average cooling rate in the quenching step is defined to be at least between 800°C and 400°C. This is because ferrite, pearlite, and bainite are produced in this temperature range.
  • the average cooling rate at the center of the wall thickness of the steel pipe material in the quenching process is less than 40° C./s, the desired martensite fraction cannot be obtained. Preferably it is 50°C/s or more. Although there is no particular upper limit to the average cooling rate, if it exceeds 150° C./s, the effect of increasing the strength with respect to the increase in the cooling rate will be small, and the load on the equipment will only increase. Therefore, the average cooling rate is preferably 150° C./s or less. More preferably it is 130°C/s or less.
  • the thickness center temperature after cooling in the quenching process is over 100°C, the desired martensite fraction cannot be obtained. Therefore, it is important that the thickness center temperature after cooling in the quenching step of the present disclosure is lowered to 100° C. or less. Note that the thickness center temperature after cooling in the quenching step is preferably 60° C. or lower.
  • the heating temperature in the tempering step is preferably 480°C or higher, and preferably 570°C or lower.
  • the heating time is preferably 1000 seconds or less. More preferably, it is 800 seconds or less. On the other hand, the heating time is preferably 100 seconds or more, more preferably 200 seconds or more.
  • the cooling method after heating in the tempering step may be air cooling, water cooling, furnace cooling, etc., and the conditions are not particularly limited, and the material is cooled to room temperature.
  • the electric resistance welded steel pipe of the present disclosure is manufactured. Note that the electric resistance welded steel pipe of the present disclosure has high strength and also has excellent workability and toughness.
  • the amount of stress relaxation at a stress of 40% of the yield stress is preferably 0.50% or more and 5.00% or less of the yield stress.
  • the above-mentioned stress relaxation amount is a value corresponding to the mobile dislocation density, and the larger this value is, the more mobile dislocations are, and plastic deformation is possible with low stress, which lowers the yield stress, lowers the yield ratio, and improves processing efficiency. becomes more sexual.
  • the amount of stress relaxation at a stress of 40% of the yield stress is less than 0.50% of the yield stress, the mobile dislocation density becomes too low, the yield stress and yield ratio become high, and the desired workability cannot be obtained. There may be no.
  • the amount of stress relaxation at a stress of 40% of the yield stress is more than 5.00% of the yield stress, the mobile dislocation density becomes too high and the desired yield stress may not be obtained.
  • the load P (N) at the time of crack occurrence in the flattening test satisfies formula (1).
  • TS tensile strength (MPa)
  • D outer diameter (mm)
  • t wall thickness (mm)
  • L length in the tube axis direction (mm).
  • the larger the load P at the time of crack occurrence in the flattening test the greater the resistance to elliptical deformation of the circumferential cross section of the tube, and the more elliptical deformation becomes difficult to occur.
  • the ERW steel pipe becomes less likely to buckle on the inside of the bend and has excellent workability.
  • an electric resistance welded steel pipe that satisfies formula (1) means that it is an electric resistance welded steel pipe that has even better workability than conventional materials.
  • the welded part (ERW welded part) After polishing the cross section of the ERW steel pipe of the present disclosure, which is perpendicular to the pipe axis direction and including the welded part (ERW welded part), the welded part (ERW welded part) is corroded by corrosive liquid, and when observed with an optical microscope, the welded part (ERW welded part) is The width of the bond portion 3 in the tube circumferential direction is 1.0 ⁇ m or more and 1000 ⁇ m or less over the entire tube thickness.
  • an appropriate corrosive liquid may be selected depending on the steel composition and the type of steel pipe.
  • the bond portion 3 can be visually recognized as a region having a different structure form and contrast from the base material portion 1 and the heat-affected zone 2 in FIG.
  • the bond portion 3 of an electric resistance welded steel pipe made of carbon steel or low alloy steel can be identified as a white region observed under an optical microscope in the above-mentioned cross section corroded by nital.
  • the bond portion 3 of the UOE steel pipe made of carbon steel and low alloy steel can be identified as a region containing a cellular or dendrite-like solidified structure using an optical microscope in the above-mentioned cross section corroded with nital. Note that in the present disclosure, the welded portion is the bond portion 3 and the heat affected zone 2 described above.
  • the electric resistance welded steel pipe of the present disclosure preferably has a wall thickness of 1.5 mm or more and 20 mm or less. Further, the electric resistance welded steel pipe of the present disclosure preferably has an outer diameter of 20 mm or more and 250 mm or less.
  • any conventional method can be used.
  • Molten steel having the composition shown in Table 1 was produced into a slab.
  • the obtained slab was subjected to a hot rolling process, a cooling process, and a winding process under the conditions shown in Table 2 to obtain a hot rolled steel plate.
  • Note that the same number for the steel pipe means the same test (example) in all tables.
  • the hot rolled steel plate was formed into a cylindrical round steel tube by roll forming, and the butt portions were electrical resistance welded.
  • the round steel pipe is subjected to a sizing process in which the diameter is reduced by the diameter reduction ratio shown in Table 2 using rolls placed on the top, bottom, left and right sides of the pipe, followed by a quenching and tempering process under the conditions shown in Table 2.
  • An electric resistance welded steel pipe having an outer diameter D (mm) and a wall thickness t (mm) shown in 2 was obtained.
  • test pieces were taken from the thus obtained electric resistance welded steel pipes and subjected to the following structural analysis, tensile test, stress relaxation test, Charpy impact test, and flattening test. Specimens for the structural analysis, tensile test, stress relaxation test, and Charpy impact test were taken from the base material part 90° away from the electric resistance welded part in the pipe circumferential direction.
  • the flat test piece was an annular test piece with a length L in the tube axis direction of 100 mm.
  • tissue observation A specimen for tissue observation was prepared by taking a sample such that the observation surface was a cross section parallel to both the longitudinal direction and the wall thickness direction of the tube and at the center of the wall thickness, mirror-polished, and then corroded with nital.
  • Tissue observation was performed by observing the structure at the center of the wall thickness using an optical microscope (magnification: 1000x) and a scanning electron microscope (SEM, magnification: 1000x), and an optical microscope image and an SEM image were taken. did.
  • the area ratios of ferrite, bainite, pearlite, and the remainder were determined from the obtained optical microscope image and SEM image.
  • the area ratio of each tissue was observed in 5 visual fields and calculated as the average value of the values obtained in each visual field.
  • the area ratio obtained by the tissue analysis was defined as the volume ratio of each tissue.
  • the volume fraction of austenite was measured by X-ray diffraction using a test piece prepared in the same manner as the test piece for dislocation analysis.
  • the K ⁇ rays of Mo are used to determine the integrated intensities of the (200), (220), and (311) planes of FCC iron and the (200) and (211) planes of BCC iron, and calculate the respective values.
  • the volume fraction of austenite was determined by determining the ratio of the normalized integrated strength of austenite, assuming that the normalized integrated strength divided by the theoretical strength value is proportional to the volume fraction of each phase.
  • a histogram of grain size distribution (horizontal axis: grain size, vertical axis: abundance ratio of each grain size) is calculated using the SEM/EBSD method.
  • the arithmetic mean of the diameters was determined.
  • the grain size is determined by determining the orientation difference between adjacent grains, defining the boundary where the orientation difference is 15° or more as a grain (grain boundary), measuring the equivalent circular diameter of the grain, and calculating the average
  • the equivalent circle diameter was taken as the average crystal grain size.
  • the equivalent circle diameter was defined as the diameter of a circle having the same area as the target crystal grain.
  • the acceleration voltage was 15 kV
  • the measurement area was 500 ⁇ m x 500 ⁇ m
  • the measurement step size was 0.5 ⁇ m.
  • crystal grain size analysis crystal grains with a diameter of 2.0 ⁇ m or less were excluded from the analysis target as measurement noise, and the obtained area ratio was assumed to be equal to the volume ratio.
  • the tensile test was carried out in accordance with the provisions of JIS Z 2241 by taking JIS No. 12A tensile test pieces so that the tensile direction was parallel to the longitudinal direction of the pipe.
  • the yield stress YS (MPa), tensile strength TS (MPa), and total elongation EL (%) were measured, and the yield ratio YR (%) defined by (YS/TS) ⁇ 100 was calculated.
  • Stress relaxation test The stress relaxation test was carried out in accordance with the provisions of JIS Z 2276 by taking JIS No. 12A tensile test pieces so that the tensile direction was parallel to the longitudinal direction of the pipe.
  • the initial stress was 40% of the yield stress determined by a tensile test.
  • the displacement holding time was 500 seconds, and the amount of stress reduction during that time was defined as the amount of stress relaxation.
  • the number of specimens tested in the Charpy impact test was three each, and the average value of the obtained impact values was taken as the Charpy impact value of the base material portion of the hot rolled steel sheet and the electric resistance welded steel pipe.
  • the steel structure at the center of the wall thickness of the base material in the electric resistance welded steel pipe of the example has a martensite volume fraction of 90% or more, an average crystal grain size of 10 ⁇ m or less, and a prior austenite grain size of 50 ⁇ m or more.
  • the volume fraction was 40% or less.
  • the mechanical properties of the electric resistance welded steel pipes of these examples are as follows: yield stress is 650 MPa or more, tensile strength is 780 MPa or more, yield ratio is 93% or less, total elongation is 20% or more, and -60°C
  • the Charpy impact value was 60 J/cm 2 or more, and the load P (N) at the time of cracking in the flattening test satisfied the above formula (1).
  • steel pipe No. 6 of the comparative example had a high C content, so the yield ratio, total elongation, Charpy absorbed energy at -60°C, and load P at the time of cracking in the flattening test did not reach the desired values. I didn't reach it.
  • Comparative example steel pipe No. 8 had a high content of Si and Mn, so the yield ratio, total elongation, Charpy absorbed energy at -60°C, and load P at the time of cracking in the flattening test did not reach the desired values.
  • Ta Comparative example steel pipe No. 8 had a high content of Si and Mn, so the yield ratio, total elongation, Charpy absorbed energy at -60°C, and load P at the time of cracking in the flattening test did not reach the desired values.
  • Comparative Example Steel Pipe No. 12 had a high B content, so the yield ratio, total elongation, Charpy absorbed energy at -60°C, and load P at the time of cracking in the flattening test did not reach the desired values.
  • Comparative Example Steel Pipe No. 14 had a slow average cooling rate in the cooling process, so the average grain size exceeded the range of the present disclosure, and the total elongation and Charpy absorbed energy at -60°C did not reach the desired values. Ta.
  • Comparative Example Steel Pipe No. 15 had a low total reduction rate at 930°C or lower in the hot rolling process, so the volume fraction of prior austenite with a grain size of 50 ⁇ m or more exceeded the range of the present disclosure, and the yield ratio and total reduction were low.
  • the elongation, the Charpy absorbed energy at -60°C, and the load P at the time of cracking in the flattening test did not reach the desired values.
  • Comparative Example Steel Pipe No. 16 had a high temperature in the tempering process, so the amount of stress relaxation was small and the yield ratio did not reach the desired value.
  • Base metal part Weld heat affected zone (weld part) 3 Bond part (welded part)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

自動車や建設機械、産業機械の部品に用いられる機械構造用鋼管に好適な、高強度かつ、加工性および靭性に優れた電縫鋼管を提供する。所定の成分組成を含み、母材部の肉厚中央の鋼組織を、マルテンサイトの体積率を90%以上として残部をフェライト、ベイナイト、パーライトおよびオーステナイトのうちの1種または2種以上とし、さらに平均結晶粒径:10μm以下、粒径:50μm以上の旧オーステナイトの体積率を40%以下の電縫鋼管とする。

Description

電縫鋼管およびその製造方法
 本開示は、電縫鋼管およびその製造方法に関する。
 近年、自動車や建設機械、産業機械においては、燃費の向上や設備の小型化のため部材の高強度化が求められている。また、これらに用いられる機械構造用鋼管には、用途に合わせて曲げ成形、液圧バルジ成形、管端の口広げ成形等の加工が施されるため高い加工性も要求される。さらに、前記の自動車や建設機械、産業機械は、寒冷地で使用される場合があることから高い低温靭性も必要とされる。
 しかし、部材を高強度化すると加工性や靭性が低下してしまい、目的の用途に使用できないという問題があった。
 上記の問題を解決すべく、例えば、特開2019-112705号公報(特許文献1)では、旧オーステナイト粒の大きさが、結晶粒度番号で9.0以上である組織を有し、引張強さが700MPa以上であり、伸びが25%以上である継目無鋼管が提案されている。
 また、国際公開第2020/075297号(特許文献2)では、焼戻しマルテンサイトの旧オーステナイト粒のアスペクト比が小さいことを特徴とした、管軸方向の引張強さが750~980MPaである、曲げ成形性の高いトーションビーム用電縫鋼管が提案されている。
特開2019-112705号公報 国際公開第2020/075297号
 しかしながら、特許文献1および2に記載の鋼管は、旧オーステナイトの平均粒径や形状を制御することにより高靭性や高加工性を確保しているが、これらの方法だけでは、局所的な粗大粒の存在による靭性や加工性の低下を抑制することが困難であった。
 また、管の加工形態としては曲げ加工が施される場合が多い。このとき、曲げ外側においては破断、曲げ内側においては座屈をそれぞれ抑制することにより、加工性を向上させることが可能であるが、特許文献1および2では、そうした観点からの検討はなされておらず、更なる改善の必要があった。
 本開示は上記の事情を鑑みてなされたものであって、自動車や建設機械、産業機械の部品に用いられる機械構造用鋼管に好適な、高強度かつ、加工性および靭性に優れた電縫鋼管およびその製造方法を提供することを目的とする。
 なお、本開示でいう「高強度」とは、管軸方向の降伏応力が650MPa以上であり、かつ引張強さが750MPa以上であることを指す。好ましくは、降伏応力は700MPa以上であり、引張強さは800MPa以上である。
 本開示でいう「高加工性」または「加工性に優れる」とは、管軸方向の降伏比(=(降伏応力/引張強さ)×100)が93%以下であり、かつ管軸方向の全伸びが20%以上であり、さらに、へん平試験(JIS G 3441)における割れ発生時の荷重P(N)が以下の(1)式を満たすことを指す。なお、管軸方向の降伏比は、好ましくは、90%以下である。また、管軸方向の全伸びは、好ましくは25%以上である。
         P≧1.5×TS×t×L/D ・・・(1)
 ただし、(1)式において、TSは引張強度(MPa)、Dは外径(mm)、tは鋼管の肉厚(mm)、Lは管軸方向の長さ(mm)である。
 本開示でいう「高靭性」または「靭性に優れる」とは、-60℃におけるシャルピー衝撃値が60J/cm以上であることを指す。好ましくは、70J/cm以上である。
 本発明者らは、前記課題に関し鋭意検討を行った。その結果、一部の旧オーステナイトが粗大であると、そこから生成したマルテンサイトも粗大となるために、靭性および加工性が低下することを見出した。
 かように組織が粗大であると、脆性破壊の障壁となる大角粒界の割合が低下するため靭性が低下する。また、平均粒径が小さくても、粗大粒が一定の割合で存在すると、そこが脆性破壊の起点となるためやはり靭性は低下する。
 すなわち、本発明者らは、旧オーステナイトを均一に微細とすることで、粗大なマルテンサイトの生成を抑制し、均一に微細なマルテンサイトを得ることができ、靭性および加工性を向上させることができるものと考えた。
 また、かように均一に微細なマルテンサイトは、焼戻し条件を適切に制御し、可動転位密度を適切に制御することによって、高強度と低降伏比の両立が可能であることを併せて見出した。加えて、均一で微細なマルテンサイトにより、一様伸びがより大きくなり、変形時の肉厚分布のばらつきが小さくなり、加工性がより向上することが判明した。
 本開示は、かかる知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本開示の要旨は次のとおりである。
1.母材部と、溶接部を有する電縫鋼管であって、成分組成が、質量%で、C:0.150%以上0.500%以下、Si:0.05%以上1.00%以下、Mn:0.10%以上2.00%以下、P:0.050%以下、S:0.0200%以下、Al:0.005%以上0.100%以下、N:0.0100%以下、Cr:0.10%以上1.00%以下およびB:0.0002%以上0.0050%以下を含み、残部がFeおよび不可避的不純物からなり、前記母材部の肉厚中央の鋼組織が、マルテンサイトの体積率:90%以上であって、残部がフェライト、ベイナイト、パーライトおよびオーステナイトのうちの1種または2種以上を含み、平均結晶粒径:10μm以下であって、粒径:50μm以上の旧オーステナイトの体積率が40%以下である電縫鋼管。
2.前記成分組成に加えてさらに、質量%で、Cu:1.00%以下、Ni:1.00%以下、Mo:1.00%以下、Nb:0.150%以下、V:0.150%以下、Ti:0.150%以下およびCa:0.0100%以下のうちから選んだ1種または2種以上を含む前記1に記載の電縫鋼管。
3.前記1または2に記載の電縫鋼管の製造方法であって、前記成分組成が、質量%で、P:0.002%以上0.050%以下、S:0.0002%以上0.0200%以下およびN:0.0010%以上0.0100%以下である前記1に記載の電縫鋼管。
4.前記1から3の何れか一つに記載の電縫鋼管の製造方法であって、鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、930℃以下での合計圧下率:50%以上である熱間圧延を施す熱間圧延工程と、該熱間圧延工程の後に、板厚中心の平均冷却速度:5℃/s以上30℃/s以下、かかる板厚中心の冷却停止温度:400℃以上650℃以下とする冷却を施す冷却工程と、該冷却工程の後に、400℃以上650℃以下で巻取り、熱延鋼板とする巻取り工程と、前記熱延鋼板を、冷間ロール成形により円筒状に成形し、電縫溶接を施して鋼管素材とする造管工程と、前記鋼管素材を、周長が3.0%以下の割合で減少する縮径を行うサイジング工程と、該サイジング工程の後に、850℃以上1050℃以下の温度範囲で100s以上1000s以下の間加熱し、次いで肉厚中心温度で、少なくとも800℃から400℃の間の肉厚中心の平均冷却速度を40℃/s以上とし、100℃以下まで冷却する焼入れ工程と、該焼入れ工程の後に、450℃以上600℃以下の温度範囲で70s超の間加熱する焼戻し工程とを含む電縫鋼管の製造方法。
5.前記焼戻し工程における450℃以上600℃以下の温度範囲の加熱時間を100s以上1000s以下の間とする前記4に記載の電縫鋼管の製造方法。
 本開示によれば、自動車や建設機械、産業機械の部品に用いられる機械構造用鋼管に好適な、高強度かつ、加工性および靭性に優れた電縫鋼管およびその製造方法を提供することができる。
電縫鋼管の電縫溶接部の管周方向断面(管軸方向垂直断面)の模式図である。
 図1には、本開示に係る電縫鋼管の管軸方向における垂直断面を示している。本開示の電縫鋼管は、母材部1と、溶接部(後述する溶接熱影響部2およびボンド部3)とを有する。本開示の電縫鋼管の母材部1は、質量%で、C:0.150%以上0.500%以下、Si:0.05%以上1.00%以下、Mn:0.10%以上2.00%以下、P:0.050%以下、S:0.0200%以下、Al:0.005%以上0.100%以下、N:0.0100%以下、Cr:0.10%以上1.00%以下、B:0.0002%以上0.0050%以下を含み、残部がFeおよび不可避的不純物からなり、母材部1の肉厚中央の鋼組織は、マルテンサイトの体積率が90%以上であり、残部がフェライト、ベイナイト、パーライトおよびオーステナイトのうちの1種または2種以上を含み、平均結晶粒径が10μm以下であり、粒径:50μm以上の旧オーステナイトの体積率が40%以下である。
 以下に、本開示の電縫鋼管およびその製造方法について説明する。
 まず、本開示において、電縫鋼管の母材部1の成分組成について説明する。本明細書において、特に断りがない限り、成分組成を示す「%」は「質量%」である。
(C:0.150%以上0.500%以下)
 Cは、固溶強化により鋼の強度を上昇させる元素である。また、Cは、焼入れ性を高めてマルテンサイトの生成に寄与する元素である。このような効果を得るためには、0.150%以上のCを含有する。一方、C含有量が0.500%を超えると、強度が高くなり過ぎて加工性および靱性が低下し、また溶接性も悪化する。このため、C含有量は0.150%以上0.500%以下とする。C含有量は、好ましくは0.180%以上であり、より好ましくは0.200%以上である。一方、C含有量は、好ましくは0.480%以下であり、より好ましくは0.460%以下である。
(Si:0.05%以上1.00%以下)
 Siは、固溶強化により鋼の強度を上昇させる元素である。また、Siは、焼入れ性を高めてマルテンサイトの生成に寄与する元素である。このような効果を得るためには、0.05%以上のSiを含有する。一方、Si含有量が1.00%を超えると、強度が高くなり過ぎて加工性および靱性が低下する。また、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下する。このため、Si含有量は0.05%以上1.00%以下とする。Si含有量は、好ましくは0.08%以上であり、より好ましくは0.10%以上である。一方、Si含有量は、好ましくは0.80%以下であり、より好ましくは0.50%以下である。
(Mn:0.10%以上2.00%以下)
 Mnは、固溶強化により鋼の強度を上昇させる元素である。また、Mnは、焼入れ性を高めてマルテンサイトの生成に寄与する元素である。このような効果を得るためには、0.10%以上のMnを含有することが必要である。一方、Mn含有量が2.00%を超えると、強度が高くなり過ぎて加工性および靱性が低下する。また、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下する。このため、Mn含有量は0.10%以上2.00%以下とする。Mn含有量は、好ましくは0.20%以上であり、より好ましくは0.30%以上である。一方、Mn含有量は、好ましくは1.50%以下であり、より好ましくは1.20%以下である。
(P:0.050%以下)
 Pは、粒界に偏析し材料の不均質を招くため、不可避的不純物としてできるだけ低減することが好ましいが、0.050%までは許容できる。このため、本開示ではP含有量を0.050%以下とする。P含有量は、好ましくは0.020%以下であり、より好ましくは0.010%以下である。なお、特にPの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、P含有量は0.002%以上とすることが好ましい。
(S:0.0200%以下)
 Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性および靭性に悪影響を及ぼす。このため、本開示では不可避的不純物としてSをできるだけ低減することが好ましいが、0.0200%までは許容できる。このため、S含有量は0.0200%以下とする。S含有量は、好ましくは0.0100%以下であり、より好ましくは0.0080%以下である。なお、特にSの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。
(Al:0.005%以上0.100%以下)
 Alは、強力な脱酸剤として作用する元素である。このような効果を得るためには、0.005%以上のAlを含有することが必要である。一方、Al含有量が0.100%を超えると溶接性が悪化するとともに、アルミナ系介在物が多くなり、表面性状が悪化する。また溶接部の靱性も低下する。このため、Al含有量は0.100%以下とする。Al含有量は、好ましくは0.010%以上であり、より好ましくは0.015%以上である。一方、Al含有量は、好ましくは0.080%以下であり、より好ましくは0.070%以下である。
(N:0.0100%以下)
 Nは、不可避的不純物であり、転位の運動を強固に固着することで延性および靭性を低下させる作用を有する元素である。本開示の母材部1では、Nは不純物としてできるだけ低減することが望ましいが、Nの含有量は0.0100%までは許容できる。このため、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0080%以下である。なお、特にNの下限は規定しないが、過度の低減は精錬コストの高騰を招くため、Nは0.0010%以上とすることが好ましい。
(Cr:0.10%以上1.00%以下)
 Crは、焼入れ性を高めてマルテンサイトの生成に寄与し、鋼の強度を上昇させる元素である。このような効果を得るためには、0.10%以上のCrを含有することが必要である。一方、Cr含有量が1.00%を超えると、強度が高くなり過ぎて加工性および靱性が低下する。また、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下する。このため、Cr含有量は0.10%以上1.00%以下とする。Cr含有量は、好ましくは0.15%以上であり、より好ましくは0.20%以上である。一方、Cr含有量は、好ましくは0.80%以下であり、より好ましくは0.60%以下である。
(B:0.0002%以上0.0050%以下)
 Bは、焼入れ性を高めてマルテンサイトの生成に寄与し、鋼の強度を上昇させる元素である。このような効果を得るためには、0.0002%以上のBを含有することが必要である。一方、B含有量が0.0050%を超えると、強度が高くなり過ぎて加工性および靱性が低下する。このため、B含有量は0.0002%以上0.0050%以下とする。B含有量は、好ましくは0.0003%以上であり、より好ましくは0.0005%以上である。一方、B含有量は、好ましくは0.0040%以下であり、より好ましくは0.0030%以下である。
 残部はFeおよび不可避的不純物である。ただし、不可避的不純物として、Oを0.0050%以下含有してもよい。なお、本開示でのOは、酸化物としてのOを含むトータル酸素のことを指す。
 上記の成分が本開示における電縫鋼管の基本の成分組成である。
 さらに、必要に応じて、Cu:1.00%以下、Ni:1.00%以下、Mo:1.00%以下、Nb:0.150%以下、V:0.150%以下、Ti:0.150%以下およびCa:0.0100%以下のうちから選んだ1種または2種以上を含有することができる。
(Cu:1.00%以下)
 Cuは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Cuを含有する場合には、Cu含有量は0.01%以上とすることが好ましい。一方、1.00%を超えるCuの含有は、靱性の低下および溶接性の悪化を招くおそれがある。よって、Cuを含有する場合には、Cu含有量は1.00%以下とすることが好ましい。Cu含有量は、より好ましくは、0.05%以上であり、さらに好ましくは、0.10%以上である。一方、Cu含有量は、より好ましくは0.70%以下であり、さらに好ましくは0.50%以下である。
(Ni:1.00%以下)
 Niは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Niを含有する場合には、Ni含有量は0.01%以上とすることが好ましい。一方、1.00%を超えるNiの含有は、靱性、加工性の低下および溶接性の悪化を招くおそれがある。よって、Niを含有する場合には、Ni含有量は1.00%以下とすることが好ましい。Ni含有量は、より好ましくは、0.05%以上であり、さらに好ましくは、0.10%以上である。一方、Ni含有量は、より好ましくは0.70%以下であり、さらに好ましくは、0.50%以下である。
(Mo:1.00%以下)
 Moは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Moを含有する場合には、Mo含有量は0.01%以上とすることが好ましい。一方、1.00%を超えるMoの含有は、靱性、加工性の低下および溶接性の悪化を招くおそれがある。よって、Moを含有する場合には、Mo含有量は1.00%以下とすることが好ましい。Mo含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。一方、Mo含有量は、より好ましくは0.70%以下であり、さらに好ましくは0.50%以下である。
(Nb:0.150%以下)
 Nbは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与し、また、熱間圧延中のオーステナイトの粗大化を抑制することで組織の微細化にも寄与する元素であり、必要に応じて含有することができる。上記した効果を得るため、Nbを含有する場合は、0.002%以上のNbを含有することが好ましい。一方、Nb含有量が0.150%を超えると靱性および加工性が低下する。このため、Nbを含有する場合は、Nb含有量は0.150%以下とすることが好ましい。Nb含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。一方、Nb含有量は、より好ましくは0.100%以下であり、さらに好ましくは0.080%以下である。
(V:0.150%以下)
 Vは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与する元素であり、必要に応じて含有することができる。上記した効果を得るため、Vを含有する場合は、0.002%以上のVを含有することが好ましい。一方、V含有量が0.150%を超えると靱性および加工性が低下する。このため、Vを含有する場合は、V含有量は0.150%以下とすることが好ましい。V含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。一方、V含有量は、より好ましくは0.100%以下であり、さらに好ましくは0.080%以下である。
(Ti:0.150%以下)
 Tiは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与し、熱間圧延中のオーステナイトの粗大化を抑制することで組織の微細化にも寄与する元素であって、必要に応じて含有することができる。また、Nとの親和性が高いため鋼中のNを窒化物として無害化し、鋼の靭性向上にも寄与する元素である。上記した効果を得るため、Tiを含有する場合は、0.002%以上のTiを含有することが好ましい。一方、Ti含有量が0.150%を超えると降伏比が高くなり靱性が低下する。このため、Ti含有量は0.150%以下とするのが好ましい。Ti含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.008%以上である。一方、Ti含有量は、より好ましくは0.130%以下であり、さらに好ましくは0.110%以下である。
(Ca:0.0100%以下)
 Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有することができる。上記した効果を得るため、Caを含有する場合は、0.0005%以上のCaを含有することが好ましい。一方、Ca含有量が0.0100%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化する。このため、Caを含有する場合は、Ca含有量を0.0100%以下とすることが好ましい。Ca含有量は、より好ましくは0.0008%以上であり、さらに好ましくは0.0010%以上である。一方、Ca含有量は、より好ましくは0.0080%以下であり、さらに好ましくは0.0060%以下である。
 次に、本開示の電縫鋼管の鋼組織について説明する。
 本開示の電縫鋼管における母材部1の肉厚中央における鋼組織は、マルテンサイトの体積率が90%以上であり、残部がフェライト、ベイナイト、パーライトおよびオーステナイトのうちの1種または2種以上を含み、平均結晶粒径が10μm以下であって、粒径:50μm以上の旧オーステナイトの体積率が40%以下であることが必要である。
(マルテンサイトの体積率:90%以上)
 マルテンサイトは硬質な組織であり、本開示で必要とする強度を得るためには、体積率で90%以上のマルテンサイトが必要である。マルテンサイトの体積率は、好ましくは93%以上であり、より好ましくは95%以上である。一方、加工性の観点から、マルテンサイトの体積率は、好ましくは99%以下であり、より好ましくは98%以下である。
[残部:フェライト、ベイナイト、パーライトおよびオーステナイトのうちの1種または2種以上]
 電縫鋼管の母材部1の肉厚中央における残部は、フェライト、ベイナイト、パーライトおよびオーステナイトのうちの1種または2種以上とする。これらの組織はそれぞれマルテンサイトとは異なる強度を有しており、マルテンサイトと混合させることで降伏比を低下させ、全伸びを増加させることができる。一方で、これらの組織とマルテンサイトの界面においては、強度差に起因する応力集中により破壊が生じやすいため、これらの組織が多くなると靭性が低下する。そのため、これらの各組織の合計の体積率は、かかる位置の同一視野における組織全体に対して10%以下とし、好ましくは7%以下であり、より好ましくは5%以下である。なお、これらの組織は、焼入れ工程において完全に生成を抑制することが困難であり、かつ加工性を確保するため、その下限として1%程度は許容される。
 本開示の電縫鋼管では、母材部1の肉厚中央(肉厚の1/2の厚みの位置)を中心として肉厚方向に±0.20mmの範囲内に、少なくとも上述の鋼組織が存在していればよい。このように鋼組織が存在していれば、母材部1の肉厚方向の他の位置においても本開示の範囲内の鋼組織が得られるので、本開示の効果は同様に得られる。焼入れ工程における冷却速度は、肉厚中央において最も低くなるためである。そのため、本開示において「肉厚中央における鋼組織」とは、肉厚中央を中心として肉厚方向に±0.20mmの範囲のいずれかに存在する所定の面積(0.10mm以上が好ましい)の鋼組織を意味する。
 鋼組織の観察は以下のようにして行う。まず、組織観察用の試験片を、観察面が母材部1の管長手方向の垂直断面かつ肉厚中央となるように採取し、研磨した後、ナイタール腐食して作製する。次いで、組織観察は、光学顕微鏡(倍率:1000倍)および/または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、上記試験片の組織を観察し、撮像する。かくして得られた光学顕微鏡像および/またはSEM像から、マルテンサイトおよび残部(フェライト、パーライト、ベイナイト、オーステナイト)の面積率を求める。各組織の面積率は、5視野以上で観察を行い、各視野で得られた値の平均値として算出する。なお、本開示では、上記の組織観察により得られる面積率を、各組織の体積率とする。
 ここで、フェライトは拡散変態による生成物のことであり、転位密度が低くほぼ回復した組織を呈する。ポリゴナルフェライトおよび擬ポリゴナルフェライトがこれに含まれる。
 ベイナイトは、転位密度が高いラス状のフェライトとセメンタイトの複相組織である。
 パーライトは、鉄と鉄炭化物の共析組織(フェライト+セメンタイト)であり、線状のフェライトとセメンタイトが交互に並んだラメラ状の組織を呈する。
 マルテンサイトは、転位密度が極めて高いラス状の低温変態組織である。SEM像では、フェライトやベイナイトと比較して明るいコントラストを示す。
 なお、前記光学顕微鏡像およびSEM像では、マルテンサイトとオーステナイトとの識別が難しい。そのため、得られるSEM像からマルテンサイトあるいはオーステナイトとして観察された組織の面積率を算出し、その面積率から以下の方法で測定するオーステナイトの体積率を差し引いた値を、マルテンサイトの体積率とする。
 ここで、かかるオーステナイトの体積率は、前記試験片と同様の方法で作製した試験片を用いて、X線回折により行う。かかるX線回折により得られたfcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)面の積分強度から求めた体積率である。
(平均結晶粒径:10μm以下)
 母材部1の肉厚中央における鋼組織の結晶粒の平均結晶粒径が10μm超の場合、亀裂伝播の障害となる結晶粒界の総面積が小さいため、所望の靱性が得られない。よって、本開示の母材部1では、上記結晶粒の平均結晶粒径は、10μm以下とする。上記結晶粒の平均結晶粒径は、好ましくは8.0μm以下であり、より好ましくは6.0μm以下である。なお、平均結晶粒径が小さすぎると、加工性が低下するため、かかる平均結晶粒径は3.0μm以上であることが好ましい。
 本開示において平均結晶粒径とは、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたときの、該結晶粒の平均円相当径とする。また、円相当径(結晶粒径)とは、対象となる結晶粒と面積が等しい円の直径とする。
 平均結晶粒径の測定としては、まず、母材部1の管長手方向および肉厚方向の両方に平行な断面を鏡面研磨し、肉厚中央において、SEM/EBSD法を用いて、粒径分布のヒストグラム(横軸:粒径、縦軸:各粒径での存在割合としたグラフ)を算出し、粒径の算術平均を求めて、平均結晶粒径とする。測定条件として、加速電圧は15kV、測定領域は500μm×500μm、測定ステップサイズ(測定分解能)は0.5μmとする。なお、結晶粒径解析においては、結晶粒径が2.0μm未満のものは測定ノイズとして解析対象から除外する。平均結晶粒径の測定は5視野以上で行い、各視野で得られた値の平均値として算出する。
(粒径:50μm以上の旧オーステナイトの体積率が40%以下)
 母材部1の肉厚中央の鋼組織における旧オーステナイトのうち、粒径が50μm以上の旧オーステナイト(以下、「粗大な旧オーステナイト」とも呼ぶ。)の旧オーステナイトの体積率が40%超となり粗大粒の割合が高くなると、粗大粒を介して亀裂が容易に伝播するため、所望の靭性が得られない。また、加工中に粗大粒にひずみが集中し、破断が早期に生じるため、所望の加工性が得られない。よって、本開示の母材部1では、粗大な旧オーステナイトの体積率は、40%以下とする。粗大な旧オーステナイトの体積率は、好ましくは35%以下であり、より好ましくは30%以下である。
 なお、粗大な旧オーステナイトの体積率の測定は以下のように行う。まず、母材部1の管長手方向および肉厚方向の両方に平行な断面を研磨した後、ピクリン酸飽和水溶液で腐食して旧オーステナイト粒界を現出させ、光学顕微鏡(倍率:400倍)を用いて、肉厚中央における組織を5視野以上で撮像し、各視野において旧オーステナイト粒径分布のヒストグラムを算出し、円相当径が50μm以上の面積率を求め、これを粒径:50μm以上の旧オーステナイトの体積率とする。
 また、前記のピクリン酸飽和水溶液による腐食の代わりに、SEM/EBSD法を用いて、方位差が20°以上50°以下の境界を旧オーステナイト粒界として描画し、これを用いて旧オーステナイト粒径分布のヒストグラムを算出することもできる。
 かかる旧オーステナイト粒径分布のヒストグラムは、画像処理ソフトウェア(例えば、ImageJ 1.52p)を用いて、各旧オーステナイト粒の面積を算出することで求めることができる。
 なお、本開示の電縫鋼管は、母材部1と溶接部とからなるが、かかる電縫鋼管の溶接部の成分組成および鋼組織は、母材部1と同様である。
 次に、本開示の一実施形態における電縫鋼管の製造方法を説明する。
 本開示の電縫鋼管の製造方法は、例えば、上記した成分組成を有する鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、930℃以下での合計圧下率:50%以上である熱間圧延を施して熱延板とする熱間圧延工程と、該熱間圧延工程後、かかる熱延板の板厚中心で平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下とした冷却を施す冷却工程と、該冷却工程後、400℃以上650℃以下で巻取り熱延鋼板とする巻取り工程と、冷間ロール成形によって前記熱延鋼板を円筒状に成形し、電縫溶接を施して鋼管素材とする造管工程と、該造管工程後、周長が3.0%以下の割合で減少するように前記鋼管素材を縮径するサイジング工程と、該サイジング工程後、前記鋼管素材を850℃以上1050℃以下の温度で100s以上1000s以下の間加熱し、次いで肉厚中心温度で、少なくとも800℃から400℃の間の肉厚中心の平均冷却速度を40℃/s以上とし、100℃以下まで冷却する焼入れ工程と、該焼入れ工程後、前記鋼管素材を450℃以上600℃以下の温度で70s超の間加熱する焼戻し工程と、を含む。
 なお、前記熱延鋼板には、熱延板、熱延鋼帯も含むものとする。
 また、以下の製造方法の説明において、温度に関する「℃」表示は、特に断らない限り、鋼素材、鋼板(熱延板)、鋼管素材および鋼管の表面温度とする。これらの表面温度は、放射温度計等で測定することができ、鋼板板厚中心や鋼管肉厚中心等の温度は、鋼板や鋼管等の断面内の温度分布を伝熱解析により計算し、その結果を鋼板や鋼管等の表面温度によって補正することで求めることができる。
 本開示において、鋼素材(鋼スラブ)の溶製方法は特に限定されず、転炉、電気炉、真空溶解炉等の公知の溶製方法のいずれもが適合する。鋳造方法も特に限定されないが、連続鋳造法等の公知の鋳造方法により、所望寸法に製造される。なお、連続鋳造法に代えて、造塊-分塊圧延法を適用しても何ら問題はない。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。
〔熱間圧延工程〕
(加熱温度:1100℃以上1300℃以下)
 加熱温度が1100℃未満である場合、被圧延材の変形抵抗が大きくなり圧延が困難となる。一方、加熱温度が1300℃を超えると、オーステナイト粒が粗大化し、後の圧延(粗圧延、仕上圧延)において微細なオーステナイト粒が得られず、熱延鋼板の組織が粗大化する。その結果、焼入れ工程の加熱時におけるオーステナイトの核生成サイトが減少するため、焼入れ工程において生成したオーステナイト(電縫鋼管の旧オーステナイト)が粗大化し、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られない。加熱温度は、より好ましくは1120℃以上である。一方、加熱温度は、より好ましくは1280℃以下である。
 なお、本開示の製造方法では、鋼スラブ(スラブ)を製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいは、わずかの保熱を行った後に直ちに圧延する、これらの直送圧延の省エネルギープロセスも問題なく適用できる。
(粗圧延終了温度:850℃以上1150℃以下)
 粗圧延終了温度が850℃未満である場合、後の仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になって、粗大なフェライトが生成し、後の焼入れ工程において粗大な旧オーステナイトが過剰に生成する原因となる。その結果、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られない。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、鋼素材のオーステナイトが粗大化し、熱延鋼板の組織が粗大化し、後の焼入れ工程において粗大な旧オーステナイトが生成する原因となる。その結果、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られない。粗圧延終了温度は、より好ましくは880℃以上である。一方、粗圧延終了温度は、より好ましくは1100℃以下である。
 本開示における仕上圧延開始温度は、800℃以上950℃以下の範囲であることが好ましい。仕上圧延開始温度が800℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、粗大なフェライトが生成することで、後の焼入れ工程において粗大な旧オーステナイトが生成する原因となる。その結果、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られないおそれがある。一方、仕上圧延開始温度が950℃を超えると、オーステナイト未再結晶温度域での圧下量が不足することで、鋼素材のオーステナイトが粗大化し、熱延鋼板の組織が粗大化してしまい、後の焼入れ工程において粗大な旧オーステナイトが生成する原因となる。その結果、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られないおそれがある。なお、仕上圧延開始温度は、より好ましくは820℃以上である。一方、仕上圧延開始温度は、より好ましくは930℃以下である。
(仕上圧延終了温度:750℃以上900℃以下)
 仕上圧延終了温度が750℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になって、粗大なフェライトが生成してしまい、後の焼入れ工程において粗大な旧オーステナイトが生成する原因となる。その結果、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られない。一方、仕上圧延終了温度が900℃を超えると、オーステナイト未再結晶温度域での圧下量が不足することで、鋼素材のオーステナイトが粗大化してしまい、熱延鋼板の組織が粗大化し、後の焼入れ工程において粗大な旧オーステナイトが生成する原因となる。その結果、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られない。仕上圧延終了温度は、より好ましくは770℃以上である。一方、仕上圧延終了温度は、より好ましくは880℃以下である。
(930℃以下における合計圧下率:50%以上)
 本開示の製造方法では、熱間圧延工程においてオーステナイト中のサブグレインを微細化し、熱延鋼板の組織を微細化することで、目的とする平均結晶粒径および粗大な旧オーステナイトの体積率を有する電縫鋼管の組織が得られる。また、焼入れ工程の加熱時には、主に方位差の大きい粒界からオーステナイトが生成する。よって、焼入れ工程前の組織を微細化することにより、オーステナイトの核生成サイトとなる結晶粒界の面積が増加し、焼入れ工程において生成するオーステナイトを微細化することができる。
 熱間圧延工程においてオーステナイト中のサブグレインを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。これを達成するため、本開示の製造方法では、熱間圧延工程における930℃以下の圧延の合計圧下率を50%以上とする。
 なお、上記合計圧下率は、930℃以下の温度域になっている各圧延パスの圧下率の合計を指す。
 上記合計圧下率が50%未満であると、熱間圧延工程において十分な加工ひずみを導入することができないため、本開示で目的とする平均結晶粒径および粗大な旧オーステナイトの体積率を有する電縫鋼管の組織が得られない。上記合計圧下率は、好ましくは55%以上である。
 なお、特にかかる合計圧下率の上限は規定しないが、80%を超えると圧下率の上昇に対する靱性および加工性向上の効果が小さくなり、設備負荷が増大するのみとなる。このため、上記合計圧下率は80%以下が好ましい。より好ましくは70%以下である。
〔冷却工程〕
 本開示の製造方法では、前記熱間圧延工程の後の冷却工程で、熱延板に冷却処理を施す。かかる冷却工程では、冷却停止温度までの熱延板の板厚中心の平均冷却速度を5℃/s以上30℃/s以下、熱延板の板厚中心の冷却停止温度を400℃以上650℃以下として冷却する。
(冷却開始から冷却停止(冷却終了)までの平均冷却速度:5℃/s以上30℃/s以下)
 熱延板の板厚中心で、冷却開始から後述する冷却停止までの温度域における平均冷却速度が5℃/s未満では、核生成頻度が減少し、熱延鋼板の組織が粗大化するため、本開示で目的とする平均結晶粒径および粗大な旧オーステナイトの体積率を有する電縫鋼管の組織が得られない。一方、かかる平均冷却速度が30℃/sを超えると、多量のマルテンサイトが生成し、延性および靱性が低下する。そのため、後の造管工程における成形が困難となる。
 上記平均冷却速度は、好ましくは10℃/s以上である。一方、上記平均冷却速度は、好ましくは25℃/s以下である。
 なお、本開示の製造方法では、冷却前の熱延板表面におけるフェライトの生成を抑制するため、仕上圧延終了後直ちに冷却を開始することが好ましい。
(冷却停止温度:400℃以上650℃以下)
 熱延板の板厚中心で、冷却停止温度が400℃未満では、多量のマルテンサイトが生成し、延性および靱性が低下するため、後の造管工程における成形が困難となる。一方、かかる冷却停止温度が650℃を超えると、核生成頻度が減少し、熱延鋼板の組織が粗大化するため、本開示で目的とする平均結晶粒径および粗大な旧オーステナイトの体積率を有する電縫鋼管の組織が得られない。冷却停止温度は、好ましくは430℃以上である。一方、冷却停止温度は、好ましくは620℃以下である。
なお、本開示において、平均冷却速度は、((冷却前の熱延板の板厚中心温度-冷却後の熱延板の板厚中心温度)/冷却時間)で求められる値(冷却速度)とする。
 また、冷却方法は、ノズルからの水の噴射等の水冷や、冷却ガスの噴射による冷却等が挙げられる。本開示の製造方法では、熱延板の両面が同条件で冷却されるように、熱延板両面に冷却操作(処理)を施すことが好ましい。
〔巻取り工程〕
 前記冷却工程後、巻取り工程で、熱延板をコイル状に巻取り、その後放冷する。巻取り温度が400℃未満では、多量のマルテンサイトが生成し、延性および靱性が低下するため、後の造管工程における成形が困難となる。一方、巻取り温度が650℃を超えると、核生成頻度が減少し、熱延鋼板の組織が粗大化するため、本開示で目的とする平均結晶粒径および粗大な旧オーステナイトの体積率を有する電縫鋼管の組織が得られない。巻取り温度は、好ましくは430℃以上である。一方、巻取り温度は、好ましくは620℃以下である。なお、本開示では、熱延板をコイル状に巻取ったものを熱延鋼板と呼称する。
〔造管工程〕
 巻取り工程後に、造管工程で熱延鋼板に造管処理を施す。かかる造管工程では、熱延鋼板を連続的に払い出しながら、冷間ロール成形により円筒状のオープン管(丸型鋼管)に成形し、該オープン管の周方向突合せ部を高周波電気抵抗加熱により溶融させながら、スクイズロールによるアプセットで圧接接合して電縫溶接し、鋼管素材とする。
 前記電縫溶接時のアプセットの量(以下、アプセット量と記す)は、靱性低下の原因となる酸化物や窒化物等の介在物を溶鋼とともに排出できるように、板厚の20%以上とすることが好ましい。ただし、アプセット量を板厚の100%超にすると、スクイズロール負荷が大きくなり過ぎる。そのため、アプセット量は、板厚の20%以上100%以下とすることが好ましい。アプセット量は、より好ましくは、板厚の40%以上である。一方、アプセット量は、より好ましくは、板厚の80%以下である。
 なお、アプセット量は、電縫溶接前の鋼管(オープン管)の外周長と、電縫溶接後の鋼管の外周長の差として求められる。
〔サイジング工程:鋼管素材を、周長が3.0%以下の割合で減少するように縮径する〕
 造管工程後のサイジング工程では、鋼管素材に対して上下左右に配置されたロールにより該鋼管素材を縮径し、外径および真円度を所望の値に調整する。
 かかるサイジング工程において、鋼管周長が合計で3.0%超の割合で減少するように縮径すると、各結晶粒の転位密度のばらつきが大きくなって、後の焼入れ工程においてひずみ誘起粒界移動が生じ、粗大な旧オーステナイトが生じる原因となる。そのため、鋼管周長が3.0%以下の割合で減少するように縮径することが肝要である。好ましくは2.5%以下である。一方、外径の精度および真円度を向上させるため、鋼管周長が合計で0.5%以上の割合で減少するように鋼管素材を縮径することが好ましい。より好ましくは、1.0%以上である。
〔焼入れ工程:鋼管素材を850℃以上1050℃以下の温度範囲で100s以上1000s以下の間加熱〕
 焼入れ工程における加熱温度が850℃未満または加熱時間が100s未満の場合、組織が完全にオーステナイト化しないため、所望のマルテンサイトの体積率が得られない。一方、焼入れ工程における加熱温度が1050℃超または加熱時間が1000s超の場合、オーステナイトが粗大化してしまい、本開示で目的とする電縫鋼管の鋼組織の平均結晶粒径および粗大な旧オーステナイトの体積率が得られない。焼入れ工程における加熱温度は、好ましくは880℃以上であり、好ましくは1000℃以下である。また、焼入れ工程における加熱時間は、好ましくは200s以上であり、好ましくは800s以下である。
(肉厚中心温度で、少なくとも800℃から400℃の間の肉厚中心の平均冷却速度が40℃/s以上)
 本開示の製造方法では、焼入れ工程における平均冷却速度を規定する温度範囲を、少なくとも800℃から400℃の間に規定する。フェライト、パーライトおよびベイナイトは、この温度範囲において生成するためである。
 また、焼入れ工程における鋼管素材の肉厚中心の平均冷却速度が40℃/s未満である場合、所望のマルテンサイト分率が得られない。好ましくは50℃/s以上である。特にかかる平均冷却速度の上限は規定しないが、150℃/sを超えると冷却速度の上昇に対する強度上昇の効果が小さくなり、設備負荷が増大するのみとなる。よって、かかる平均冷却速度は150℃/s以下が好ましい。より好ましくは130℃/s以下である。
 ここで、当該焼入れ工程における冷却後の肉厚中心温度が100℃超である場合、所望のマルテンサイト分率が得られない。よって、本開示の焼入れ工程における冷却後の肉厚中心温度は、100℃以下まで低下させることが肝要である。なお、焼入れ工程における冷却後の肉厚中心温度は、好ましくは60℃以下である。
〔焼戻し工程:鋼管素材を450℃以上600℃以下の温度範囲で70s超の間加熱〕
 焼戻し工程における加熱温度が450℃未満または加熱時間が70s以下の場合、転位の回復が不十分となるため、所望の靭性および加工性が得られない。さらに、可動転位の回復が不十分となって、可動転位が過剰に残るため、応力緩和量が増加して、降伏応力が低下し、所望の降伏応力が得られない。一方、焼戻し工程における加熱温度が600℃超の場合、可動転位が過剰に回復してしまうため、応力緩和量が過剰に減少してしまい、降伏応力や降伏比が上昇することで、加工性が低下する。焼戻し工程における加熱温度は、好ましくは480℃以上であり、好ましくは570℃以下である。
 また、焼戻し工程における加熱時間は、1000s超の場合、可動転位が過剰に回復してしまうため、応力緩和量が過剰に減少してしまい、降伏応力や降伏比が上昇することで、加工性が低下する場合がある。
 よって、かかる加熱時間は、好ましくは1000s以下である。より好ましくは800s以下である。一方、かかる加熱時間は、好ましくは100s以上であって、より好ましくは200s以上である。
 なお、焼戻し工程における加熱後の冷却方法は、空冷、水冷、炉冷等のいずれも可能であって、特にその条件も限定されず、室温まで冷却される。
 以上の工程を経て、本開示の電縫鋼管が製造される。なお、本開示の電縫鋼管は、高強度であり、優れた加工性および靭性も兼ね備える。
 さらに、本開示の電縫鋼管は、降伏応力の40%の応力における応力緩和量が降伏応力の0.50%以上5.00%以下であることが好ましい。
 前記の応力緩和量は可動転位密度に対応する値であり、この値が大きいほど可動転位が多く、低い応力で塑性変形が可能となるため、降伏応力が低下し、降伏比が低下し、加工性が高くなる。
 降伏応力の40%の応力における応力緩和量が降伏応力の0.50%未満である場合、可動転位密度が低くなりすぎるため、降伏応力および降伏比が高くなって、所望の加工性が得られない場合がある。一方、降伏応力の40%の応力における応力緩和量が降伏応力の5.00%超である場合、可動転位密度が高くなりすぎるため、所望の降伏応力が得られない場合がある。
 また、本開示の電縫鋼管は、へん平試験における割れ発生時の荷重P(N)が(1)式を満たす。
         P≧1.5×TS×t×L/D ・・・(1)
 ただし、(1)式において、TSは引張強度(MPa)、Dは外径(mm)、tは肉厚(mm)、Lは管軸方向の長さ(mm)である。
 管が曲げ変形を受ける際、管周断面は真円から楕円へと変形し、曲げ内側で座屈または曲げ外側で破断する。曲げ内側での座屈は管周断面の楕円変形が大きいと早期に生じる。一方、曲げ外側での破断は降伏比が高く、伸びが小さいと早期に生じる。
 また、へん平試験における割れ発生時の荷重Pが大きいほど、管周断面の楕円変形に対する抵抗が大きく、楕円変形が生じにくくなる。その結果、曲げ内側での座屈が生じにくく、加工性に優れる電縫鋼管になる。
 従来材を用いた予備実験により、へん平試験における割れ発生時の荷重Pは、TSに比例し、Dに反比例し、tの2乗に比例し、Lに比例することを見出した。
 よって、(1)式を満足した電縫鋼管は、従来材よりも一層さらに加工性に優れた電縫鋼管であることを意味する。
 本開示の電縫鋼管は、管軸方向と垂直かつ溶接部(電縫溶接部)を含む断面を研磨後、腐食液により腐食し、光学顕微鏡で観察すると、溶接部(電縫溶接部)のボンド部3の管周方向の幅が、管全厚にわたり1.0μm以上1000μm以下である。
 ここで、腐食液は鋼成分、鋼管の種類に応じて適切なものを選択すればよい。また、ボンド部3は、腐食後の上記断面を図1に模式で示すように、図1において母材部1および熱影響部2と異なる組織形態やコントラストを有する領域として視認できる。例えば、炭素鋼および低合金鋼の電縫鋼管のボンド部3は、ナイタールで腐食した上記断面において、光学顕微鏡で白く観察される領域として特定できる。また、炭素鋼および低合金鋼のUOE鋼管のボンド部3は、ナイタールで腐食した上記断面において、光学顕微鏡でセル状またはデンドライト状の凝固組織を含有する領域として特定できる。なお、本開示において溶接部とは、上記ボンド部3および熱影響部2である。
 本開示の電縫鋼管は、好ましくは肉厚が1.5mm以上20mm以下である。また、本開示の電縫鋼管は、好ましくは外径が20mm以上250mm以下である。
 上述されていない鋼管にかかる製造方法の条件に関しては、いずれも常法に依ることができる。
 以下、実施例に基づいて、本開示をさらに説明する。なお、本開示は以下の実施例に限定されない。
 表1に示す成分組成を有する溶鋼を溶製し、スラブとした。得られたスラブに対し、表2に示す条件の熱間圧延工程、冷却工程、巻取り工程を施して、熱延鋼板とした。なお、鋼管の番号は、全ての表で、同一の番号は同一の試験(実施例)を意味する。
 巻取り工程後、熱延鋼板をロール成形により円筒状の丸型鋼管に成形し、その突合せ部分を電縫溶接した。その後続けて、丸型鋼管の上下左右に配置したロールにより表2に示した縮径率による縮径を加えるサイジング工程を施したのち、表2に示した条件の焼入れ・焼戻し工程を経て、表2に示した外径D(mm)および肉厚t(mm)の電縫鋼管を得た。
 かくして得られた電縫鋼管から各種試験片を採取して、以下に示す組織解析、引張試験、応力緩和試験、シャルピー衝撃試験およびへん平試験を実施した。組織解析、引張試験、応力緩和試験およびシャルピー衝撃試験の試験片は、電縫溶接部から管周方向に90°離れた母材部から採取した。また、へん平試験片は管軸方向の長さLが100mmの環状試験片とした。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 〔組織観察〕
 組織観察用の試験片は、観察面が管長手方向および肉厚方向の両方に平行な断面かつ肉厚中央となるように採取し、鏡面研磨した後、ナイタール腐食して作製した。
 組織観察は、光学顕微鏡(倍率:1000倍)および走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、肉厚中央における組織を観察することで実施し、光学顕微鏡像およびSEM像を撮像した。得られた光学顕微鏡像およびSEM像から、フェライト、ベイナイト、パーライトおよび残部(マルテンサイト、オーステナイト)の面積率を求めた。各組織の面積率は、5視野で観察を行い、各視野で得られた値の平均値として算出した。ここでは、組織解析により得られた面積率を、各組織の体積率とした。
 なお、光学顕微鏡像およびSEM像ではマルテンサイトとオーステナイトの識別が難しいため、得られたSEM像からマルテンサイトあるいはオーステナイトとして観察された組織の面積率を測定し、以下の方法で測定したオーステナイトの体積率を差し引いた値をマルテンサイトの体積率とした。
 すなわち、オーステナイトの体積率の測定は、転位解析用の試験片と同様にして作製した試験片を用いて、X線回折により行った。かかる測定にはMoのKα線を使用し、fcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)面の積分強度をそれぞれ求め、それぞれの値を理論強度値で除した規格化積分強度が各相の体積率に比例するものとして、オーステナイトの規格化積分強度の割合を求めることによってオーステナイトの体積率を求めた。
 平均結晶粒径の測定においては、まず、SEM/EBSD法を用いて、粒径分布のヒストグラム(横軸:粒径、縦軸:各粒径での存在割合としたグラフ)を算出し、粒径の算術平均を求めた。具体的に、結晶粒径は、隣接する結晶粒の間の方位差を求め、方位差が15°以上の境界を結晶粒(結晶粒界)として、結晶粒の円相当径を測定し、平均円相当径を平均結晶粒径とした。このとき、円相当径とは、対象となる結晶粒と面積が等しい円の直径とした。
 上記の測定条件として、加速電圧は15kV、測定領域は500μm×500μm、測定ステップサイズは0.5μmとした。なお、結晶粒径解析においては、結晶粒径が2.0μm以下のものは測定ノイズとして解析対象から除外し、得られた面積率が体積率と等しいとした。
〔引張試験〕
 引張試験は、引張方向が管長手方向と平行になるように、JIS12A号の引張試験片を採取し、JIS Z 2241の規定に準拠して実施した。降伏応力YS(MPa)、引張強度TS(MPa)、全伸びEL(%)を測定し、(YS/TS)×100で定義される降伏比YR(%)を算出した。
〔応力緩和試験〕
 応力緩和試験は、引張方向が管長手方向と平行になるように、JIS12A号の引張試験片を採取し、JIS Z 2276の規定に準拠して実施した。初期応力は引張試験で求めた降伏応力の40%の応力とした。変位の保持時間は500sとし、その間の応力低下量を応力緩和量とした。
〔シャルピー衝撃試験〕
 シャルピー衝撃試験は、得られた電縫鋼管の母材部の肉厚中央から試験片長手方向が管軸方向と平行になるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠して-60℃において実施し、吸収エネルギーを求めた。
 上記シャルピー衝撃試験の試験本数はそれぞれ3本とし、得られた衝撃値の平均値を熱延鋼板および電縫鋼管の母材部のシャルピー衝撃値とした。
〔へん平試験〕
 へん平試験は、得られた電縫鋼管から、管軸方向の長さLが100mmの環状試験片を採取し、溶接部の管外面側は金属光沢が出るように研磨し、JIS G 3441に記載の方法に準拠して実施した。圧縮速度は10mm/minとし、割れが発生した時点で圧縮を停止し、その時点での荷重を割れ発生時の荷重P(N)とした。
 これらの試験により得られた結果をそれぞれ表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3中、No.1~5、17、18は本開示に係る実施例であり、No.6~16、19は比較例である。
 実施例の電縫鋼管における母材部の肉厚中央の鋼組織は、マルテンサイトの体積率が90%以上であり、平均結晶粒径が10μm以下であり、粒径:50μm以上の旧オーステナイトの体積率が40%以下であった。
 また、これらの実施例の電縫鋼管の機械的特性は、いずれも降伏応力が650MPa以上、引張強度が780MPa以上、降伏比が93%以下、全伸びが20%以上であって、-60℃におけるシャルピー衝撃値が60J/cm以上であり、へん平試験における割れ発生時の荷重P(N)が前記(1)式を満たしていた。
 これに対し、比較例の鋼管No.6は、Cの含有量が高かったため、降伏比、全伸び、-60℃におけるシャルピー吸収エネルギーおよびへん平試験における割れ発生時の荷重Pが所望の値に達しなかった。
 比較例の鋼管No.7は、Cの含有量が低かったため、マルテンサイトの体積率が本開示の範囲を下回ってしまい、降伏応力および引張強度が所望の値に達しなかった。
 比較例の鋼管No.8は、SiおよびMnの含有量が高かったため、降伏比、全伸び、-60℃におけるシャルピー吸収エネルギーおよびへん平試験における割れ発生時の荷重Pが所望の値に達しなかった。
 比較例の鋼管No.9は、SiおよびMnの含有量が低かったため、マルテンサイトの体積率が本開示の範囲を下回ってしまい、降伏応力および引張強度が所望の値に達しなかった。
 比較例の鋼管No.10は、Crの含有量が高かったため、降伏比、全伸び、-60℃におけるシャルピー吸収エネルギーおよびへん平試験における割れ発生時の荷重Pが所望の値に達しなかった。
 比較例の鋼管No.11は、Crの含有量が低かったため、マルテンサイトの体積率が本開示の範囲を下回ってしまい、降伏応力および引張強度が所望の値に達しなかった。
 比較例の鋼管No.12は、Bの含有量が高かったため、降伏比、全伸び、-60℃におけるシャルピー吸収エネルギーおよびへん平試験における割れ発生時の荷重Pが所望の値に達しなかった。
 比較例の鋼管No.13は、Bの含有量が低かったため、マルテンサイトの体積率が本開示の範囲を下回ってしまい、降伏応力および引張強度が所望の値に達しなかった。
 比較例の鋼管No.14は、冷却工程における平均冷却速度が遅かったため、平均結晶粒径が本開示の範囲を上回ってしまい、全伸び、-60℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。
 比較例の鋼管No.15は、熱間圧延工程における930℃以下における合計圧下率が低かったため、粒径:50μm以上の旧オーステナイトの体積率が本開示の範囲を上回ってしまい、降伏比、全伸び、-60℃におけるシャルピー吸収エネルギーおよびへん平試験における割れ発生時の荷重Pが所望の値に達しなかった。
 比較例の鋼管No.16は、焼戻し工程における温度が高かったため、応力緩和量が小さくなり、降伏比が所望の値に達しなかった。
 比較例の鋼管No.19は、焼戻し工程における時間が短かったため、応力緩和量が大きくなり、降伏応力が所望の値に達しなかった。
 1 母材部
 2 溶接熱影響部(溶接部)
 3 ボンド部(溶接部)

Claims (5)

  1.  母材部と、溶接部を有する電縫鋼管であって、
     成分組成が、質量%で、
      C:0.150%以上0.500%以下、
      Si:0.05%以上1.00%以下、
      Mn:0.10%以上2.00%以下、
      P:0.050%以下、
      S:0.0200%以下、
      Al:0.005%以上0.100%以下、
      N:0.0100%以下、
      Cr:0.10%以上1.00%以下および
      B:0.0002%以上0.0050%以下
    を含み、残部がFeおよび不可避的不純物からなり、
     前記母材部の肉厚中央の鋼組織が、
      マルテンサイトの体積率:90%以上であって、
      残部がフェライト、ベイナイト、パーライトおよびオーステナイトのうちの1種または2種以上を含み、
      平均結晶粒径:10μm以下であって、
      粒径:50μm以上の旧オーステナイトの体積率が40%以下である
    電縫鋼管。
  2.  前記成分組成に加えてさらに、質量%で、
      Cu:1.00%以下、
      Ni:1.00%以下、
      Mo:1.00%以下、
      Nb:0.150%以下、
      V:0.150%以下、
      Ti:0.150%以下および
      Ca:0.0100%以下
    のうちから選んだ1種または2種以上を含む請求項1に記載の電縫鋼管。
  3.  前記成分組成が、質量%で、
      P:0.002%以上0.050%以下、
      S:0.0002%以上0.0200%以下および
      N:0.0010%以上0.0100%以下
    である請求項1に記載の電縫鋼管。
  4.  請求項1から3の何れか1項に記載の電縫鋼管の製造方法であって、
     鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、930℃以下での合計圧下率:50%以上である熱間圧延を施す熱間圧延工程と、
     該熱間圧延工程の後に、板厚中心の平均冷却速度:5℃/s以上30℃/s以下、かかる板厚中心の冷却停止温度:400℃以上650℃以下とする冷却を施す冷却工程と、
     該冷却工程の後に、400℃以上650℃以下で巻取り、熱延鋼板とする巻取り工程と、
     前記熱延鋼板を、冷間ロール成形により円筒状に成形し、電縫溶接を施して鋼管素材とする造管工程と、
     前記鋼管素材を、周長が3.0%以下の割合で減少する縮径を行うサイジング工程と、
     該サイジング工程の後に、850℃以上1050℃以下の温度範囲で100s以上1000s以下の間加熱し、次いで肉厚中心温度で、少なくとも800℃から400℃の間の肉厚中心の平均冷却速度を40℃/s以上とし、100℃以下まで冷却する焼入れ工程と、
     該焼入れ工程の後に、450℃以上600℃以下の温度範囲で70s超の間加熱する焼戻し工程と
    を含む電縫鋼管の製造方法。
  5.  前記焼戻し工程における450℃以上600℃以下の温度範囲の加熱時間を100s以上1000s以下の間とする請求項4に記載の電縫鋼管の製造方法。
PCT/JP2022/041580 2022-04-27 2022-11-08 電縫鋼管およびその製造方法 WO2023210046A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023513267A JP7276641B1 (ja) 2022-04-27 2022-11-08 電縫鋼管およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-073730 2022-04-27
JP2022073730 2022-04-27

Publications (1)

Publication Number Publication Date
WO2023210046A1 true WO2023210046A1 (ja) 2023-11-02

Family

ID=88518278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041580 WO2023210046A1 (ja) 2022-04-27 2022-11-08 電縫鋼管およびその製造方法

Country Status (1)

Country Link
WO (1) WO2023210046A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328082A (ja) * 2002-03-08 2003-11-19 Nippon Steel Corp 高耐衝撃性電縫鋼管
JP2007154289A (ja) * 2005-12-08 2007-06-21 Nippon Steel Corp 引張強度1700MPa以上の遅れ破壊特性に優れた高耐衝撃性鋼管の製造方法
JP2007262469A (ja) * 2006-03-28 2007-10-11 Jfe Steel Kk 鋼管およびその製造方法
JP2010070789A (ja) * 2008-09-17 2010-04-02 Nippon Steel Corp 疲労特性と曲げ成形性に優れた機械構造鋼管とその製造方法
WO2017056384A1 (ja) * 2015-09-29 2017-04-06 Jfeスチール株式会社 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328082A (ja) * 2002-03-08 2003-11-19 Nippon Steel Corp 高耐衝撃性電縫鋼管
JP2007154289A (ja) * 2005-12-08 2007-06-21 Nippon Steel Corp 引張強度1700MPa以上の遅れ破壊特性に優れた高耐衝撃性鋼管の製造方法
JP2007262469A (ja) * 2006-03-28 2007-10-11 Jfe Steel Kk 鋼管およびその製造方法
JP2010070789A (ja) * 2008-09-17 2010-04-02 Nippon Steel Corp 疲労特性と曲げ成形性に優れた機械構造鋼管とその製造方法
WO2017056384A1 (ja) * 2015-09-29 2017-04-06 Jfeスチール株式会社 高強度中空スタビライザー用電縫鋼管、高強度中空スタビライザー用電縫鋼管の製造方法、高強度中空スタビライザー、および高強度中空スタビライザーの製造方法

Similar Documents

Publication Publication Date Title
JP5516785B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5516784B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
CN115362273B (zh) 电阻焊钢管及其制造方法
JP6947333B2 (ja) 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物
JPWO2019220577A1 (ja) トーションビーム用アズロール電縫鋼管
JPWO2020209060A1 (ja) 角形鋼管およびその製造方法ならびに建築構造物
CN109642284B (zh) 扭力梁用电焊钢管
EP2594655A1 (en) Dual-phase structure oil well pipe and method for producing same
JP5732999B2 (ja) 高強度電縫鋼管およびその製造方法
CN116234644A (zh) 电阻焊钢管及其制造方法
KR20210130219A (ko) 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝
JP5573003B2 (ja) 自動車部材用高張力溶接鋼管
JP2009203492A (ja) 自動車構造部材用高張力溶接鋼管およびその製造方法
CN114729426B (zh) 电阻焊钢管用热轧钢板及其制造方法、电阻焊钢管及其制造方法、管线管、建筑结构物
JP5842577B2 (ja) 耐歪時効性に優れた高靱性低降伏比高強度鋼板
WO2023210046A1 (ja) 電縫鋼管およびその製造方法
JP7276641B1 (ja) 電縫鋼管およびその製造方法
WO2023214472A1 (ja) 熱延鋼板およびその製造方法ならびに電縫鋼管およびその製造方法
JP7160235B1 (ja) 熱間縮径電縫管
JP7439998B1 (ja) 電縫鋼管およびその製造方法
JP7472826B2 (ja) 電縫溶接鋼管およびその製造方法
WO2024100939A1 (ja) 熱延鋼板、電縫鋼管および角形鋼管ならびにラインパイプおよび建築構造物
WO2022239591A1 (ja) 高強度熱延鋼板およびその製造方法、並びに高強度電縫鋼管およびその製造方法
JP2023036442A (ja) 電縫鋼管およびその製造方法
WO2024053168A1 (ja) 電縫鋼管およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023513267

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940317

Country of ref document: EP

Kind code of ref document: A1