WO2017056365A1 - 空気調和装置の室内ユニット - Google Patents
空気調和装置の室内ユニット Download PDFInfo
- Publication number
- WO2017056365A1 WO2017056365A1 PCT/JP2016/003678 JP2016003678W WO2017056365A1 WO 2017056365 A1 WO2017056365 A1 WO 2017056365A1 JP 2016003678 W JP2016003678 W JP 2016003678W WO 2017056365 A1 WO2017056365 A1 WO 2017056365A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blowing
- airflow
- opening
- partial
- indoor unit
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/08—Air-flow control members, e.g. louvres, grilles, flaps or guide plates
- F24F13/10—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
- F24F13/14—Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/20—Casings or covers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/32—Supports for air-conditioning, air-humidification or ventilation units
Definitions
- the present invention relates to an indoor unit of an air conditioner installed on a ceiling.
- Patent Document 1 Conventionally, for example, an indoor unit of an air conditioner as disclosed in Patent Document 1 is known. This type of indoor unit is installed near the ceiling and blows heated or cooled air into the indoor space.
- the present invention has been made in view of such a point, and its purpose is to reduce the difference in temperature in each part of the indoor space while suppressing the discomfort caused by the blown airflow directly hitting the occupant's body. It is to improve comfort.
- the indoor unit (10) of the first aspect can execute all blowing operations and partial blowing operations.
- the all blowing operation conditioned air is supplied to the indoor space (500) from all the blowing openings (24a to 24d).
- the partial blow-out operation the blown air flow in some blow-off openings (24a to 24d) formed in the indoor unit (10) is inhibited by the air flow inhibition mechanism (50).
- the blowout air speed of the remaining blowout openings (24a to 24d) formed in the indoor unit (10) is higher than that during the blowout operation, and the indoor unit (10) out of the indoor space (500) is relatively The blowing airflow reaches a far area.
- the indoor unit (10) of the first aspect performs airflow rotation.
- the controller (90) controls the airflow obstruction mechanism (50) to switch between the full blowout operation and the partial blowout operation. That is, in the airflow rotation of the indoor unit (10), all the blowout operations in which conditioned air is supplied to the region of the indoor space (500) that is relatively close to the indoor unit (10), and the indoor unit of the indoor space (500) A partial blowing operation is performed in which conditioned air is supplied to an area relatively far from (10).
- the plurality of outlet openings (24a to 24d) are configured such that a part of the outlet openings (24b, 24d) is the first opening (24X), and the remaining openings are the remaining openings.
- the blowout openings (24a, 24c) constitute second openings (24Y), respectively, and the controller (90) inhibits the blowout airflow in the second openings (24Y) by the airflow inhibition mechanism (50).
- the indoor unit (10) of the second aspect can execute at least one of the first partial blowing operation and the second partial blowing operation, and the entire blowing operation. Moreover, the indoor unit (10) of the 3rd aspect can perform all blowing operation
- conditioned air is supplied from all the outlet openings (24a to 24d) to the indoor space (500).
- the blow-off air flow in the second opening (24Y) is inhibited by the air flow inhibition mechanism (50).
- the blown air speed of the first opening (24X) becomes higher than that during the blowing operation, and the blown airflow reaches a region relatively far from the indoor unit (10) in the indoor space (500).
- conditioned air is supplied to the indoor space (500) mainly from the blowing openings (24b, 24d) constituting the first opening (24X).
- each of the plurality of blowing openings (24a to 24d) includes a wind direction adjusting blade (51) for changing the direction of the blowing airflow in the vertical direction.
- the controller (90) is provided with a blown airflow from all the blowout openings (24a to 24d) during the full blowout operation in a heating operation in which heated conditioned air is supplied to the indoor space (500). Controls the wind direction adjusting blade (51) so that the blown airflow at the blowout opening (24a to 24d) becomes a horizontal blown state where the blown air velocity becomes higher during the partial blowout operation. is there.
- conditioned air is blown downward from all the blowing openings (24a to 24d). For this reason, the heated conditioned air is supplied to the area near the floor (that is, the feet of the occupants) during the entire blowing operation.
- the conditioned air is blown out in a substantially horizontal direction from a part of the plurality of blowing openings (24a to 24d) provided in the indoor unit (10).
- the blowing airflow having a relatively high flow velocity is blown out in the horizontal direction. For this reason, conditioned air can be made to reach
- each of the plurality of blowout openings (24a to 24d) includes a wind direction adjusting blade (for changing the direction of the blown airflow in the vertical direction) 51) is provided, and the controller (90) includes the first opening (24X) and the first in the heating operation in which heated conditioned air is supplied to the indoor space (500).
- the blowout airflow of the two openings (24Y) is in the downward blowing state
- the blowout airflow of the first opening (24X) is in the horizontal blowing state during the first partial blowing operation
- the second partial blowing operation is performed during the second partial blowing operation.
- the wind direction adjusting blade (51) is controlled so that the blown airflow of the two openings (24Y) is in a horizontal blowing state.
- each of the plurality of outlet openings (24a to 24d) includes a wind direction adjusting blade (51) for changing the direction of the outlet airflow in the vertical direction.
- the controller (90) is provided in the heating operation in which heated conditioned air is supplied to the indoor space (500), and the first opening (24X) and the second opening ( 24Y) is in a downward blowing state, the blowing partial airflow in the first opening (24X) is in a horizontal blowing state during the first partial blowing operation, and the second opening (in the second partial blowing operation).
- the wind direction adjusting blade (51) is controlled so that the blown airflow is in a horizontal blowing state
- the controller (90) further includes a duration of each of the above-mentioned all blowing operations in the airflow rotation, The duration of the first partial blowing operation and The wind direction adjusting blade (51) is controlled so that the duration of the second partial blowing operation is equal to each other.
- the duration of each of the first and second full blowing operations, the duration of the first partial blowing operation, and the duration of the second partial blowing operation are: Match. That is, in the indoor unit (10) of this aspect, the blowing operation is switched every time a certain time elapses.
- a wind direction adjusting blade (51) for changing the direction of the blown airflow in the vertical direction is provided in each of the plurality of blowout openings (24a to 24d).
- the controller (90) is provided with a blown airflow from all the blowout openings (24a to 24d) during the full blowout operation in a cooling operation in which cooled conditioned air is supplied to the indoor space (500).
- the wind direction adjusting blade (51) is controlled so that the blown airflow at the blowout openings (24a to 24d) where the blown wind speed increases during the partial blowout operation becomes a horizontal blown state. is there.
- the flow direction of the conditioned air blown from all the blow-off openings (24a to 24d) fluctuates in the vertical direction during the full blow-out operation of the indoor unit (10). For this reason, during the entire blowing operation, the cooled conditioned air is supplied to a region relatively close to the indoor unit (10) in the indoor space (500).
- the conditioned air is blown out in a substantially horizontal direction from a part of the plurality of blowing openings (24a to 24d) provided in the indoor unit (10).
- the blowing airflow having a relatively high flow velocity is blown out in the horizontal direction. For this reason, conditioned air can be made to reach
- each of the plurality of outlet openings (24a to 24d) includes a wind direction adjusting blade (for changing the direction of the outlet airflow in the vertical direction) 51) is provided, and the controller (90) is configured such that, in the cooling operation in which cooled conditioned air is supplied to the indoor space (500), the first opening (24X) and the first The direction of the blowout airflow of the two openings (24Y) fluctuates, the blowout airflow of the first opening (24X) is in a horizontal blowing state during the first partial blowout operation, and the second partial blowout operation during the second partial blowout operation.
- the wind direction adjusting blade (51) is controlled so that the blown airflow of the two openings (24Y) is in a horizontal blowing state.
- each of the plurality of outlet openings (24a to 24d) includes a wind direction adjusting blade (51) for changing the direction of the outlet airflow in the vertical direction.
- the controller (90) is provided with the first opening (24X) and the second opening during the cooling operation in which the cooled conditioned air is supplied to the indoor space (500).
- the direction of the blowout airflow of (24Y) varies, the blowout airflow of the first opening (24X) is in a horizontal blowing state during the first partial blowout operation, and the second opening during the second partial blowout operation.
- the wind direction adjusting blade (51) is controlled so that the blown airflow of (24Y) is in a horizontal blowing state, and the controller (90) further includes a duration of each of the blowing operations in the airflow rotation. , And the duration of the first partial blowing operation and The said wind direction adjustment blade
- wing (51) is controlled so that it may become longer than each of the continuation time of a 2nd partial blowing operation.
- the flow direction of the conditioned air blown from the first opening (24X) and the second opening (24Y) fluctuates in the vertical direction during the entire blowing operation of the indoor unit (10). .
- the cooled conditioned air is supplied to a region relatively close to the indoor unit (10) in the indoor space (500).
- the conditioned air is blown from the first opening (24X) in a substantially horizontal direction, and during the second partial blowing operation of the indoor unit (10).
- the conditioned air is blown out in a substantially horizontal direction from the second opening (24Y).
- each of the plurality of outlet openings (24a to 24d) is configured to change the direction of the outlet airflow in the vertical direction.
- a wind direction adjusting blade (51) is provided, and the wind direction adjusting blade (51) is configured to be displaceable to a posture that inhibits the blowing air flow of the blowing openings (24a to 24d), and also serves as the air flow inhibiting mechanism (50). Is.
- the wind direction adjusting blade (51) for changing the direction of the blown airflow in the vertical direction also serves as an airflow inhibition mechanism (50) for inhibiting the flow of conditioned air. That is, the wind direction adjusting blade (51) in a predetermined posture prevents the flow of conditioned air blown out from the blowing openings (24a to 24d).
- Each is constituted by a plurality of and the same number of the above-mentioned outlet openings (24a to 24d).
- each of the first opening (24X) and the second opening (24Y) is constituted by a plurality of outlet openings. Further, the number of the blowout openings (24b, 24d) constituting the first opening (24X) and the number of the blowout openings (24a, 24c) constituting the second opening (24Y) coincide.
- blowout openings are formed on the lower surface of the casing (20).
- two of the outlet openings (24b, 24d) constitute the first opening (24X)
- the remaining two outlet openings (24a, 24c) are the second openings ( 24Y).
- the two outlet openings (24b, 24d) constituting the first opening (24X) are arranged with one outlet opening (24b) along the first side of the four sides of the lower surface of the casing (20).
- the other outlet opening (24d) is disposed along the second side opposite to the first side.
- the two outlet openings (24a, 24c) constituting the second opening (24Y) are arranged with one outlet opening (24a) along the third side of the four sides of the lower surface of the casing (20).
- the other outlet opening (24c) is arranged along the fourth side facing the third side.
- the indoor unit that has switched from the rest state to the temperature control state always performs the all-out operation, and the air conditioning load index exceeds the criterion value Controls the air flow inhibition mechanism (50) so that the indoor unit that has switched from the rest state to the temperature control state performs the air flow rotation.
- the controller (90) switches the operation state of the indoor unit (10) between the temperature adjustment state and the sleep state for the purpose of setting the index temperature to the set temperature. In other words, the controller (90) moves the indoor unit (10) from the inactive state to bring the index temperature closer to the set temperature when the index temperature moves away from the set temperature when the indoor unit (10) is in the inactive state. Switch to the adjustment state.
- the controller (90) of the fourteenth aspect compares the air conditioning load index with the determination reference value when the indoor unit (10) switches from the rest state to the temperature control state.
- the controller (90) controls the air flow inhibition mechanism (50) so that the indoor unit (10) always performs the blowing operation.
- the controller (90) controls the airflow inhibition mechanism (50) so that the indoor unit (10) performs airflow rotation.
- the distance sensor (63) that measures the distance from each of the outlet openings (24a to 24d) to each of the wall surfaces located in the direction of blowing the conditioned air.
- the controller (90) is configured to execute the plurality of types of the partial blowing operations in which the blowing openings (24a to 24d) in which the blowing air flow is inhibited by the air flow inhibiting mechanism (50) are different from each other.
- the air flow inhibition mechanism (50) is controlled, and the controller (90) further includes a plurality of types of the partial blowouts capable of executing one or more types of the partial blowout operations executed in the airflow rotation. The operation is selected based on the measurement value of the distance sensor (63).
- the indoor unit (10) of the fifteenth aspect can execute a plurality of types of partial blowing operations.
- the plurality of types of partial blowing operations that can be performed by the indoor unit (10) are different from each other in the blowout openings (24a to 24d) in which the airflow inhibition mechanism (50) inhibits the blown airflow.
- the controller (90) of the fifteenth aspect is one or a plurality of types based on the measurement value of the distance sensor (63) from a plurality of types of partial blowing operations that can be performed by the indoor unit (10). Select partial blowout action.
- the airflow rotation performed by the indoor unit (10) is performed while switching between one type or a plurality of types of partial blowing operations selected by the controller (90) and all blowing operations.
- the whole blowing operation in which conditioned air is supplied to a region relatively close to the indoor unit (10) in the indoor space (500), and the indoor space (500)
- a partial blowing operation is performed in which conditioned air is supplied to a region relatively far from the indoor unit (10).
- an all-out operation in which conditioned air is supplied to a region relatively close to the indoor unit (10) in the indoor space (500), 500), a first partial blowing operation and a second partial blowing operation are performed in which conditioned air is supplied to a region relatively far from the indoor unit (10).
- conditioned air can be supplied to a region relatively close to the indoor unit (10) in the indoor space (500) and a region relatively far from the indoor unit (10), It becomes possible to reduce the difference in temperature in each part of the indoor space (500).
- the indoor unit (10) of the first aspect does not continue to execute the partial blowing operation in the airflow rotation, but switches between the partial blowing operation and the full blowing operation.
- the blown air velocity is higher than that during the blowing operation, so the blown airflow is directly applied to the occupant's body.
- the indoor unit (10) of the second aspect does not continue to perform the first partial blowing operation or the second partial blowing operation in the airflow rotation, but the first partial blowing operation and the second partial. At least one of the blowing operations and all the blowing operations are switched.
- the indoor unit (10) of the third aspect does not continue to execute the first partial blowing operation or the second partial blowing operation in the airflow rotation, but the first partial blowing operation and the second partial. Switch between the blowout operation and the full blowout operation.
- the uncomfortable feeling of the occupant is suppressed as compared with the case where the blown airflow continues to directly hit the occupant's body for a long time. Therefore, according to the aspect of the present disclosure, comfort is improved by reducing a difference in temperature in each part of the indoor space (500) while suppressing discomfort caused by the blown airflow directly hitting the occupant's body. be able to.
- each part of the indoor space (500) does not cause discomfort because the blown airflow directly hits the body of the occupant during the heating operation. Comfort can be improved by reducing the temperature difference in
- the indoor unit (10) is configured to change the direction of the blown airflow in the first opening (24X) and the second opening (24Y) during the whole blowing operation in which the blowing wind speed is relatively low.
- the conditioned air is blown out from the first opening (24X) or the second opening (24Y) in a substantially horizontal direction.
- the directions of the blown airflow at the blowout openings (24a to 24d) in the indoor unit (10) are different from each other.
- the indoor unit (10) of this aspect can blow out conditioned air in the direction (namely, four directions) orthogonal to each side of the lower surface of the casing (20). Therefore, according to this aspect, it becomes possible to reliably supply conditioned air to the area around the indoor unit (10) in the indoor space (500).
- the controller (90) of the fourteenth aspect performs airflow rotation when the operating state of the indoor unit (10) is switched from the resting state to the temperature control state in a state where the air conditioning load index exceeds a predetermined determination reference value.
- the airflow inhibition mechanism (50) is controlled as follows.
- a part blowing operation is performed.
- conditioned air can be supplied to a region of the indoor space (500) that is relatively far from the indoor unit (10) as compared to the full blowing operation.
- the operating state of the indoor unit (10) is in a state where the air conditioning load index exceeds a predetermined determination reference value (that is, a state where the air conditioning load in the indoor space (500) is relatively large).
- a predetermined determination reference value that is, a state where the air conditioning load in the indoor space (500) is relatively large.
- the controller (90) performs one or more types of partial blowing operations executed in the airflow rotation, and a plurality of types of partial blowing operations capable of being executed by the indoor unit (10). Is selected based on the measured value of the distance sensor (63). For this reason, according to this aspect, it is possible to automatically select an appropriate partial blowing operation that can contribute to the improvement of indoor comfort based on the measured value of the distance sensor (63). The convenience of the user of the apparatus can be improved.
- FIG. 1 is a perspective view which looked at the indoor unit of an embodiment from the slanting lower part.
- FIG. 2 is a schematic plan view of the indoor unit in which the top plate of the casing body is omitted.
- FIG. 3 is a schematic cross-sectional view of the indoor unit showing a cross section taken along the line III-O-III of FIG.
- FIG. 4 is a schematic bottom view of the indoor unit.
- FIG. 5 is a block diagram showing the configuration of the controller.
- FIG. 6 is a cross-sectional view of the main part of the decorative panel showing the wind direction adjusting blades in the horizontal blowing position.
- FIG. 7 is a cross-sectional view of the main part of the decorative panel showing the airflow direction adjusting blade in the lower blowing position.
- FIG. 6 is a cross-sectional view of the main part of the decorative panel showing the wind direction adjusting blades in the horizontal blowing position.
- FIG. 7 is a cross-sectional view of the main part of the decorative panel showing
- FIG. 8 is a cross-sectional view of the main part of the decorative panel showing the wind direction adjusting blades at the airflow block position.
- FIG. 9 is an explanatory diagram showing one cycle of the first blowing mode performed by the indoor unit, and schematically shows the lower surface of the indoor unit in each operation.
- FIG. 10A is a plan view of the indoor space showing the temperature distribution in the room when the conventional indoor unit is performing the heating operation.
- FIG. 10B is a plan view of the indoor space showing the temperature distribution in the room when the indoor unit of the embodiment performs airflow rotation during the heating operation.
- FIG. 11A is a plan view of an indoor space showing a temperature distribution in the room when a conventional indoor unit is performing a cooling operation.
- FIG. 15 is an explanatory diagram illustrating one cycle of the fifth blowing mode performed by the indoor unit according to the third modification of the embodiment, and schematically illustrates the lower surface of the indoor unit in each operation.
- FIG. 16 is a schematic bottom view of an indoor unit according to Modification 5 of the embodiment.
- FIG. 17 is sectional drawing of the principal part of the decorative panel which shows the wind direction adjustment blade
- FIG. 18 is sectional drawing of the principal part of the decorative panel which shows the wind direction adjustment blade
- FIG. 19 is sectional drawing of the principal part of the decorative panel which shows the wind direction adjustment blade
- the indoor unit (10) of the present embodiment is configured as a so-called ceiling-embedded type.
- This indoor unit (10) constitutes an air conditioner together with an outdoor unit (not shown).
- a refrigerant circuit is formed in which the refrigerant circulates and performs a refrigeration cycle by connecting the indoor unit (10) and the outdoor unit with a connecting pipe.
- the indoor unit (10) includes a casing (20), an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), and a bell mouth (36). And a controller (90).
- the indoor unit (10) is provided with a suction temperature sensor (61) and a heat exchange temperature sensor (62).
- the casing (20) is installed on the ceiling (501) of the indoor space (500).
- the casing (20) includes a casing body (21) and a decorative panel (22).
- the casing (20) accommodates an indoor fan (31), an indoor heat exchanger (32), a drain pan (33), and a bell mouth (36).
- the casing body (21) is inserted and arranged in an opening formed in the ceiling (501) of the indoor space (500).
- the casing body (21) is formed in a substantially rectangular parallelepiped box shape whose bottom surface is open.
- the casing body (21) includes a substantially flat top plate (21a) and a side plate (21b) extending downward from the peripheral edge of the top plate (21a).
- the indoor fan (31) is a centrifugal blower that blows out air sucked from below toward the outside in the radial direction.
- the indoor fan (31) is disposed at the center inside the casing body (21).
- the indoor fan (31) is driven by the indoor fan motor (31a).
- the indoor fan motor (31a) is fixed to the center of the top plate (21a).
- the indoor heat exchanger (32) is a so-called cross fin type fin-and-tube heat exchanger. As shown in FIG. 2, the indoor heat exchanger (32) is formed in a square shape in a plan view, and is disposed so as to surround the periphery of the indoor fan (31). That is, the indoor heat exchanger (32) is arranged in the secondary space (21d). The indoor heat exchanger (32) causes the air passing from the inside to the outside to exchange heat with the refrigerant in the refrigerant circuit.
- the drain pan (33) is a so-called styrene foam member. As shown in FIG. 3, the drain pan (33) is disposed so as to close the lower end of the casing body (21). On the upper surface of the drain pan (33), a water receiving groove (33b) is formed along the lower end of the indoor heat exchanger (32). The lower end portion of the indoor heat exchanger (32) enters the water receiving groove (33b). The water receiving groove (33b) receives the drain water generated in the indoor heat exchanger (32).
- the decorative panel (22) is a resin member formed in a square thick plate shape.
- the lower part of the decorative panel (22) is formed in a square shape that is slightly larger than the top plate (21a) of the casing body (21).
- the decorative panel (22) is arranged so as to cover the lower surface of the casing body (21).
- the lower surface of the decorative panel (22) constitutes the lower surface of the casing (20) and is exposed to the indoor space (500).
- one suction port (23) having a square shape is formed at the center of the decorative panel (22).
- the suction port (23) penetrates the decorative panel (22) up and down and communicates with the primary space (21c) inside the casing (20).
- the air sucked into the casing (20) flows into the primary space (21c) through the suction port (23).
- a lattice-shaped suction grille (41) is provided at the suction port (23).
- a suction filter (42) is disposed above the suction grille (41).
- the main outlet openings (24a to 24d) are elongated openings corresponding to the cross-sectional shape of the main outlet passages (34a to 34d).
- One main outlet (24a to 24d) is arranged along each of the four sides of the decorative panel (22).
- the second main outlet opening (24b) and the fourth main outlet opening (24d) along two opposite sides of the decorative panel (22) are the first opening (24X).
- the remaining first main outlet opening (24a) and third main outlet opening (24c) constitute the second opening (24Y).
- the auxiliary blowout openings (25a to 25d) are 1/4 arc-shaped openings.
- One sub-blowing opening (25a to 25d) is arranged at each of the four corners of the decorative panel (22).
- the auxiliary blowing openings (25a to 25d) of the decorative panel (22) correspond one-to-one with the auxiliary blowing passages (35a to 35d) of the drain pan (33).
- Each sub blow opening (25a to 25d) communicates with a corresponding sub blow passage (35a to 35d). That is, the first sub-blowing opening (25a) is the first sub-blowing passage (35a), the second sub-blowing opening (25b) is the second sub-blowing passage (35b), and the third sub-blowing opening (25c) is the first.
- the third sub blowout passage (35c) and the fourth sub blowout opening (25d) communicate with the fourth sub blowout passage (35d), respectively.
- a wind direction adjusting blade (51) is provided in each main outlet opening (24a to 24d).
- the wind direction adjusting blade (51) is a member for adjusting the direction of the blown airflow (that is, the direction of the conditioned air flow blown from the main blowout openings (24a to 24d)).
- the wind direction adjusting blade (51) changes the direction of the air flow to the up and down direction. That is, the wind direction adjusting blade (51) changes the direction of the blown airflow so that the angle formed between the direction of the blown airflow and the horizontal direction changes.
- the wind direction adjusting blade (51) is formed in a long and narrow plate shape extending from one end to the other end in the longitudinal direction of the main outlet openings (24a to 24d) of the decorative panel (22). As shown in FIG. 3, the wind direction adjusting blade (51) is supported by the support member (52) so as to be rotatable around a central axis (53) extending in the longitudinal direction.
- the wind direction adjusting blade (51) is curved so that the shape of its transverse cross section (cross section orthogonal to the longitudinal direction) is convex in the direction away from the central axis (53) of the oscillating motion.
- a drive motor (54) is connected to each wind direction adjusting blade (51).
- the wind direction adjusting blade (51) is driven by the drive motor (54), and rotates around the central axis (53) within a predetermined angle range.
- the airflow direction adjusting blade (51) can be displaced to an airflow block position that prevents the flow of air passing through the main blowout openings (24a to 24d), and the main blowout openings (24a to 24d) ) Also serves as an airflow obstruction mechanism (50) that obstructs the blowing airflow.
- the suction temperature sensor (61) is disposed near the entrance of the bell mouth (36) in the primary space (21c).
- the suction temperature sensor (61) measures the temperature of the air flowing through the primary space (21c) (that is, the temperature of the air sucked into the indoor unit (10) from the indoor space (500) through the suction port (23)).
- the heat exchanger temperature sensor (62) is attached to the indoor heat exchanger (32).
- the heat exchanger temperature sensor (62) measures the temperature of the surface of the indoor heat exchanger (32).
- the measured value of the suction temperature sensor (61) and the measured value of the heat exchanger temperature sensor (62) are input to the controller (90).
- the controller (90) is configured to control the operation of the indoor unit (10). Although not shown, the controller (90) is provided with a CPU for performing arithmetic processing, a memory for storing data, a dip switch for an installation worker or a maintenance worker to set the operation of the controller (90), and the like. ing.
- the wind direction control unit (91) is configured to control the position of the wind direction adjusting blade (51) by operating the drive motor (54).
- the controller (90) is configured to individually control the positions of the four wind direction adjusting blades (51). Further, the wind direction control unit (91) positions the wind direction adjusting blades (51) so that the indoor unit (10) can execute a full blow operation, a first partial blow operation, and a second partial blow operation, which will be described later. Is configured to control. Further, the wind direction control unit (91) is arranged so that the indoor unit (10) selectively performs the standard blow mode and the air flow rotation, and the wind direction adjusting blades (51) provided in the main blow openings (24a to 24d). Is configured to change the position.
- the indoor air temperature control unit (92) performs a temperature control operation.
- the operation state of the indoor unit (10) is changed to a temperature adjustment state in which the temperature of the conditioned air is adjusted, so that the index temperature that is an index of the temperature of the indoor space (500) becomes the set temperature.
- This is an operation for switching to a resting state in which the temperature adjustment of the conditioned air is suspended. Details of the temperature control operation will be described later.
- the blowing mode determining unit (93) performs a mode determining operation.
- This mode determination operation is an operation to determine whether the indoor unit (10) whose operation state is switched from the resting state to the temperature adjustment state by the temperature control operation is to execute the standard blowing mode or the airflow rotation. Details of the mode determination operation will be described later.
- the dip switch for setting the blowing mode performed by the installation operator of the indoor unit (10) as the airflow rotation may be provided in addition to the controller (90) of the indoor unit (10).
- This dip switch may be provided, for example, in a controller of an outdoor unit of the air conditioner or a remote controller of the air conditioner.
- the indoor unit (10) selectively performs a cooling operation for cooling the indoor space (500) and a heating operation for heating the indoor space (500).
- the indoor unit (10) in heating operation has a temperature control state in which the indoor heat exchanger (32) functions as a condenser and air is heated in the indoor heat exchanger (32), and the indoor heat exchanger (32).
- the supply of the refrigerant to is stopped, and the operation is switched to a resting state in which the heating of the air in the indoor heat exchanger (32) is suspended.
- the indoor fan (31) operates in the indoor unit (10) during the heating operation both in the temperature control state and in the rest state.
- the indoor fan (31) rotates.
- the indoor air in the indoor space (500) flows into the primary space (21c) in the casing (20) through the suction port (23).
- the air flowing into the primary space (21c) is sucked into the indoor fan (31) and blown out to the secondary space (21d).
- the air flowing into the secondary space (21d) is cooled or heated while passing through the indoor heat exchanger (32), and thereafter, the four main outlet passages (34a to 34d) and the four auxiliary outlet passages (35a). To 35d).
- the air flowing into the main outlet passages (34a to 34d) is blown out to the indoor space (500) through the main outlet openings (24a to 24d).
- the air that has flowed into the auxiliary blowing passages (35a to 35d) is blown into the indoor space (500) through the auxiliary blowing openings (25a to 25d).
- the wind direction adjusting blade (51) changes the direction of the blown airflow by rotating around the central axis (53).
- the wind direction adjusting blade (51) is movable between a horizontal blowing position shown in FIG. 6 and a lower blowing position shown in FIG. Further, the wind direction adjusting blade (51) can be moved to the airflow block position shown in FIG. 8 by further rotating from the lower blowing position shown in FIG.
- the direction of the air flow flowing downward through the main blowing passages (34a to 34d) is changed to the horizontal direction.
- the blown airflow from the blowout openings (24a to 24d) becomes a horizontal blown state.
- the direction of the blown airflow at the main blowout openings (24a to 24d) is, for example, about 20 ° with respect to the horizontal direction. Is set. In this case, strictly speaking, the direction of the blown airflow is slightly lower than the horizontal direction, but it can be said that the direction of the airflow is substantially horizontal.
- the direction of the air flow flowing downward through the main blowing passages (34a to 34d) is generally maintained as it is, and the main blowing is performed.
- the blown airflow from the openings (24a to 24d) is in the bottom blowing state.
- the direction of the blown airflow is an obliquely downward direction slightly inclined in a direction away from the suction port (23) rather than just below.
- the conditioned air blown out from the main blow-out openings (24a to 24d) is immediately sucked into the suction port (23). That is, conditioned air is not substantially supplied to the indoor space (500) from the main outlet openings (24a to 24d) where the airflow direction adjusting blade (51) is located at the airflow block position.
- the wind direction control unit (91) changes the position of the wind direction adjusting blade (51) provided in each main blow-off opening (24a to 24d) so that the indoor unit (10) performs airflow rotation.
- the controller (90) keeps the rotational speed of the indoor fan (31) at a substantially maximum value.
- the operation of the wind direction control unit (91) when the indoor unit (10) performs the first blowing mode as the airflow rotation will be described in detail, and then the indoor unit (10) performs the second and second airflow rotations.
- the operation of the wind direction control unit (91) when performing each third blowing mode will be described.
- ⁇ First blowing mode> As shown in FIG. 9, in one cycle of the first blowing mode performed as the airflow rotation, the first full blowing operation, the first partial blowing operation, the second full blowing operation, and the second partial The blowing operation is performed in order. That is, in one cycle of the first blowing mode, two full blowing operations, one first partial blowing operation, and one second partial blowing operation are performed.
- blowing air speeds of the second main blowing opening (24b) and the fourth main blowing opening (24d) are all higher than the blowing wind speed in the blowing operation.
- the conditioned air is substantially horizontally directed from the second main blow-off opening (24b) and the fourth main blow-off opening (24d) at a higher flow rate than during the full blow-out operation. It is blown out.
- the wind direction control unit (91) sets the wind direction adjusting blades (51) of the two main blowing openings (24a, 24c) constituting the second opening (24Y) to the horizontal blowing position. And the wind direction adjusting blades (51) of the two main blow-off openings (24b, 24d) constituting the first opening (24X) are set at the airflow block position. Therefore, the conditioned air is blown from the first main blow opening (24a) and the third main blow opening (24c) to the indoor space (500), and the second main blow opening (24b) and the fourth main blow opening (24d). ) Is not substantially blown into the indoor space (500).
- the blowing air speeds of the first main blowing opening (24a) and the third main blowing opening (24c) are all higher than the blowing wind speed in the blowing operation.
- the conditioned air is substantially horizontal from the two first main blow-off openings (24a) and the third main blow-off opening (24c) at a higher flow rate than during the blow-out operation. It blows out in the direction.
- conditioned air is blown out from the sub-blowing openings (25a to 25d) in all of the blowing operation, the first partial blowing operation, and the second partial blowing operation.
- the first full blow operation, the first partial blow operation, the second full blow operation, and the second partial blow operation are performed.
- the operation is performed in order.
- the duration of the first full blow operation, the duration of the first partial blow operation, the duration of the second full blow operation, and the second partial blow is set to the same time (for example, 120 seconds).
- the duration of each of the first and second full blowing operations is the duration of the first partial blowing operation and the continuation of the second partial blowing operation. It may be set to a time longer than each of the times.
- 10A and 10B show the simulation results of the temperature distribution in the indoor space (500) during the heating operation of the indoor unit (10).
- 10A and 10B show the air temperature at a position 60 cm from the floor of the indoor space (500), 20 minutes after the indoor unit (10) starts the heating operation.
- temperature is high, so that the area
- the room to be simulated has a substantially square floor and two parallel desks (511) having a partition (510) in the center.
- the indoor unit (10) is arrange
- the conventional indoor unit (610) the wind direction adjusting blades (51) of all the main outlet openings (24a to 24d) are set to the lower blowing position. Then, the conventional indoor unit (610) blows out the air heated when passing through the indoor heat exchanger (32) from all the main blowing openings (24a to 24d) substantially toward the floor surface.
- the air temperature is very high in the central region located below the indoor unit (610). This is presumably because the warm conditioned air blown downward from the indoor unit (610) stays in the central region of the indoor space (500) sandwiched between the two partitions (510).
- the temperature does not rise sufficiently in the peripheral area away from the indoor unit (610). This is presumably because the warm conditioned air blown downward from the indoor unit (610) cannot reach the region closer to the wall (502) than the partition (510).
- warm conditioned air blown out from the indoor unit (10) is blown out in a generally horizontal direction at a higher flow rate than during the full blowout operation. Accordingly, in the first partial blowout operation and the second partial blowout operation, warm conditioned air blown out from the indoor unit (10) flows above the partition (510) and passes through the wall (502) of the indoor space (500). Reach up to. For this reason, in the indoor space (500), the temperature rises even in the peripheral region away from the indoor unit (10).
- the indoor unit (10) of the present embodiment performs the first blowing mode (that is, the airflow rotation) during the heating operation
- the indoor unit (610) performs the indoor operation as compared with the case where the conventional indoor unit (610) performs the heating operation.
- the temperature difference between the central part and the peripheral part of the space (500) is greatly reduced.
- the wind direction control unit (91) performs the two main blow-off openings (24a) constituting the second opening (24Y) in the same manner as the second partial blow-out operation during the heating operation.
- 24c) wind direction adjusting blade (51) is set to the horizontal blowing position
- the two main outlet openings (24b, 24d) constituting the first opening (24X) are set to the airflow block position.
- conditioned air is blown out from the sub-blowing openings (25a to 25d) in all of the blowing operation, the first partial blowing operation, and the second partial blowing operation.
- the first full blowing operation, the first partial blowing operation, the second full blowing operation, and the second partial blowing are performed.
- the operation is performed in order.
- the duration of each of the first and second full blowing operations is the duration of the first partial blowing operation and the duration of the second partial blowing operation. It is set to a longer time than each. For example, the duration of each of the first and second full blowing operations is set to 600 seconds, and the duration of the first partial blowing operation and the duration of the second partial blowing operation are each set to 120 seconds.
- the duration of the first full blow operation, the duration of the first partial blow operation, the duration of the second full blow operation, and the second Each of the duration times of the partial blowing operations may be set to the same time.
- the wind direction adjusting blades (51) of all the main outlet openings (24a to 24d) periodically reciprocate between the horizontal blowing position and the lower blowing position.
- the conventional indoor unit (610) supplies the air cooled when passing through the indoor heat exchanger (32) to the indoor space (500) from all the main outlet openings (24a to 24d).
- the cold conditioned air blown out from the indoor unit (610) stays in the central region of the indoor space (500) sandwiched between the two partitions (510), and as a result, the indoor space (500) It is estimated that the temperature in the central area is very low.
- the temperature is not sufficiently lowered in the peripheral area away from the indoor unit (610). This is presumably because the cold conditioned air blown out from the indoor unit (610) cannot reach the region on the wall (502) side of the partition (510).
- the indoor unit (10) of the present embodiment that performs the first blowing mode has the first full blow operation, the first partial blow operation, the second full blow operation, and the second partial blow operation. It performs in order with blowing operation.
- the cold conditioned air blown from the indoor unit (10) is mainly supplied to the central region of the indoor space (500) sandwiched between the two partitions (510). For this reason, in indoor space (500), temperature falls in the area
- the cold conditioned air blown out from the indoor unit (10) is blown out in a substantially horizontal direction at a higher flow rate than during the full blowout operation. Therefore, in the first partial blowout operation and the second partial blowout operation, the cold conditioned air blown out from the indoor unit (10) flows above the partition (510) and flows into the wall (502) of the indoor space (500). Reach up to. For this reason, in the indoor space (500), the temperature also decreases in the peripheral region away from the indoor unit (10).
- the indoor unit (10) of the present embodiment performs the first blow-out mode (that is, the airflow rotation) during the cooling operation
- the indoor unit (610) performs the indoor operation as compared with the case where the conventional indoor unit (610) performs the cooling operation.
- the temperature difference between the central part and the peripheral part of the space (500) is greatly reduced.
- ⁇ Second blowing mode> As shown in FIG. 12, in one cycle of the second blowing mode performed as the airflow rotation, the entire blowing operation and the first partial blowing operation are sequentially performed. That is, in one cycle of the second blowing mode, the entire blowing operation and the first partial blowing operation are performed once.
- the wind direction control unit (91) sets the wind direction adjusting blades (51) of all the main blow openings (24a to 24d) to the lower blow position. .
- the wind direction control unit (91) includes two main blowing openings (24b, 24d) constituting the first opening (24X).
- the wind direction adjusting blade (51) is set to the horizontal blowing position, and the wind direction adjusting blades (51) of the two main blowing openings (24a, 24c) constituting the second opening (24Y) are set to the airflow block position.
- the conditioned air is blown out from the indoor unit (10) in the same manner as the all blowing operation in the first blowing mode, and the first part of the second blowing mode.
- conditioned air is blown out from the indoor unit (10) in the same manner as in the first partial blowing operation in the first blowing mode.
- the duration of all blowing operations and the duration of the first partial blowing operation are set to the same time (for example, 120 seconds).
- the wind direction control section (91) causes the wind direction adjustment blades (51) of all the main blow openings (24a to 24d) to be blown down to the horizontal blow position. Move back and forth between positions.
- the wind direction control unit (91) includes the two main blow-off openings (24b, 24d) constituting the first opening (24X).
- the wind direction adjusting blade (51) is set to the horizontal blowing position, and the wind direction adjusting blades (51) of the two main blowing openings (24a, 24c) constituting the second opening (24Y) are set to the airflow block position.
- the conditioned air is blown out from the indoor unit (10) as in the all blowing operation in the first blowing mode, and the first part of the second blowing mode.
- conditioned air is blown out from the indoor unit (10) in the same manner as in the first partial blowing operation in the first blowing mode.
- ⁇ Third blowing mode> As shown in FIG. 13, in one cycle of the 3rd blowing mode performed as airflow rotation, all blowing operation and 2nd partial blowing operation are performed in order. That is, in one cycle of the third blowing mode, the entire blowing operation and the second partial blowing operation are performed once.
- the wind direction control unit (91) sets the wind direction adjusting blades (51) of all the main blow openings (24a to 24d) to the lower blow position. .
- the wind direction control unit (91) includes two main blowing openings (24a, 24c) constituting the second opening (24Y).
- the wind direction adjusting blade (51) is set to the horizontal blowing position, and the wind direction adjusting blades (51) of the two main blowing openings (24b, 24d) constituting the first opening (24X) are set to the airflow block position.
- the conditioned air is blown out from the indoor unit (10) as in the all blowing operation in the first blowing mode, and the second part of the third blowing mode.
- conditioned air is blown out from the indoor unit (10) in the same manner as the second partial blowing operation in the first blowing mode.
- the duration of all blowing operations and the duration of the second partial blowing operation are set to the same time (for example, 120 seconds).
- the wind direction control section (91) causes the wind direction adjustment blades (51) of all the main blow openings (24a to 24d) to be blown down to the horizontal blow position. Move back and forth between positions.
- the wind direction control unit (91) includes the two main blow-off openings (24a, 24c) constituting the second opening (24Y).
- the wind direction adjusting blade (51) is set to the horizontal blowing position, and the wind direction adjusting blades (51) of the two main blowing openings (24b, 24d) constituting the first opening (24X) are set to the airflow block position.
- the conditioned air is blown out from the indoor unit (10) in the same manner as the all blowing operation in the first blowing mode, and the second part of the third blowing mode.
- conditioned air is blown out from the indoor unit (10) in the same manner as the second partial blowing operation in the first blowing mode.
- the duration of all blowing operations is set to be longer than the duration of the second partial blowing operation.
- the duration of all the blowing operations is set to 600 seconds
- the duration of the second partial blowing operation is set to 120 seconds.
- the indoor air temperature control unit (92) of the controller (90) performs a temperature control operation.
- the indoor air temperature control unit (92) uses the measured value of the suction temperature sensor (61) as the index temperature Ti and also uses the set temperature Ts stored in the memory of the controller (90).
- the set temperature Ts is input to the memory of the controller (90) when the user of the air conditioner operates a remote controller or the like.
- the indoor air temperature control unit (92) switches the operation state of the indoor unit (10) between the temperature adjustment state and the pause state so that the index temperature Ti becomes the set temperature Ts.
- the indoor air temperature control unit (92) is configured so that the index temperature Ti falls within a target temperature range centered on the set temperature Ts (for example, a range of (Ts ⁇ 1) ° C. to (Ts + 1) ° C.). Switch the operating state of the indoor unit (10) between the temperature control state and the hibernation state.
- the indoor unit (10) During the cooling operation of the indoor unit (10), if the index temperature Ti falls below (Ts-1) ° C. when the operation state of the indoor unit (10) is the temperature adjustment state (Ti ⁇ Ts-1), the room temperature The control unit (92) switches the operation state of the indoor unit (10) from the temperature adjustment state to the rest state so that the temperature of the indoor space (500) does not drop too much. Further, during the cooling operation of the indoor unit (10), if the index temperature Ti exceeds (Ts + 1) ° C. (Ts + 1 ⁇ Ti) when the indoor unit (10) is in the resting state, the indoor space (500) The indoor air temperature control unit (92) switches the operation state of the indoor unit (10) from the resting state to the temperature adjustment state.
- the indoor air temperature control unit (92 ) Switches the operation state of the indoor unit (10) from the temperature adjustment state to the rest state so that the temperature of the indoor space (500) does not rise excessively. Further, during the heating operation of the indoor unit (10), if the index temperature Ti falls below (Ts-1) ° C.
- the indoor air temperature control unit (92) switches the operation state of the indoor unit (10) from the rest state to the temperature adjustment state.
- the indoor air temperature control unit (92) adjusts the temperature from the resting state until a predetermined time (for example, 5 minutes) elapses after the operation state of the indoor unit (10) switches from the temperature regulation state to the resting state. Prohibits switching to the state. This is to avoid frequent starting and stopping of the compressor provided in the outdoor unit and to prevent the compressor from being broken.
- blowing mode determination unit (93) of the controller (90) performs a mode determination operation. This mode determination operation is performed when the indoor air temperature control section (92) switches the operation state of the indoor unit (10) from the rest state to the temperature adjustment state.
- the blowing mode determination unit (93) uses the measured value Tr of the suction temperature sensor (61) and the set temperature Ts stored in the memory of the controller (90).
- the blowing mode determination unit (93) uses the reference temperature difference ⁇ T0 (for example, 3 ° C.) stored in the memory of the controller (90) as the determination reference value.
- the reference temperature difference ⁇ T0 is set to a value larger than the difference between the upper limit value or lower limit value of the target temperature range and the set temperature (1 ° C. in this embodiment).
- the air blowing mode determining unit (93) is an air conditioning load index indicating the air conditioning load of the indoor space (500), during cooling operation, which is obtained by subtracting the set temperature Ts from the measured value Tr of the suction temperature sensor (61).
- the cooling temperature difference ⁇ Tc increases as the indoor cooling load increases, and the heating temperature difference ⁇ Th increases as the indoor heating load increases.
- the blowing mode determination unit (93) compares the air conditioning load index with the determination reference value. Specifically, the blowing mode determination unit (93) compares the cooling temperature difference ⁇ Tc with the reference temperature difference ⁇ T0 during the cooling operation, and compares the heating temperature difference ⁇ Th with the reference temperature difference ⁇ T0 during the heating operation. Compare.
- the blowing mode determining unit (93) determines the blowing mode to be executed by the indoor unit (10) whose operation state is switched from the resting state to the temperature control state, as the standard blowing mode.
- the blowing mode determination unit (93) outputs a command signal for causing the indoor unit (10) to execute the standard blowing mode to the wind direction control unit (91).
- the wind direction control unit (91) that has received the command signal from the blow mode determination unit (93) causes the wind direction control blades of the main blow openings (24a to 24d) so that the indoor unit (10) executes the standard blow mode. (51) is controlled.
- the indoor unit (10) whose operation state has been switched from the rest state to the temperature control state executes the standard blow-out mode.
- Standard blowout mode is an operation mode in which the indoor unit (10) is always blown out. For this reason, in the indoor unit (10), conditioned air whose temperature is adjusted is blown out from all the main blow-off openings (24a to 24d).
- the wind direction control unit (91) sets the wind direction adjusting blades (51) of all the main blowing openings (24a to 24d) to the lower blowing position.
- the wind direction control unit (91) reciprocates the wind direction adjusting blades (51) of all the main blowing openings (24a to 24d) between the horizontal blowing position and the lower blowing position.
- the blowing mode determination unit (93) determines the blowing mode to be executed by the indoor unit (10) in which the operation state is switched from the resting state to the temperature adjustment state, as the airflow rotation.
- the blowing mode executed by the indoor unit (10) as the airflow rotation is performed by the installation worker or the maintenance worker of the indoor unit (10). It is preset by operating the DIP switch of the controller (90).
- the blowing mode determining unit (93) sends a command signal to the indoor unit (10) to execute any one of the first blowing mode, the second blowing mode, and the third blowing mode set in advance as the airflow rotation. Output to the wind direction controller (91).
- the wind direction control unit (91) that has received the command signal from the blowing mode determining unit (93) causes the indoor unit (10) to execute any one of the first blowing mode, the second blowing mode, and the third blowing mode. In this manner, the air direction adjusting blades (51) of the main blowout openings (24a to 24d) are controlled. As a result, the indoor unit (10) whose operation state has been switched from the resting state to the temperature control state performs airflow rotation.
- Partial blowing operation is performed in any of the first blowing mode, the second blowing mode, and the third blowing mode that the indoor unit (10) performs as the airflow rotation. That is, in the first blowing mode, the first partial blowing operation and the second partial blowing operation are performed, in the second blowing mode, the first partial blowing operation is performed, and in the third blowing mode, the second partial blowing is performed. Operation is performed. In these partial blowing operations, conditioned air can be supplied to a region of the indoor space (500) that is relatively far from the indoor unit (10) as compared to the full blowing operation.
- the air flow rotation is executed by the indoor unit (10), and the partial blowout operation performed in the air flow rotation is performed.
- the conditioned air is supplied to an area relatively far from the indoor unit (10) in the indoor space (500).
- the overall temperature of the indoor space (500) can be quickly brought close to the set temperature.
- the indoor unit (10) does not continue to execute the first partial blowing operation or the second partial blowing operation in the airflow rotation, but one of the first partial blowing operation and the second partial blowing operation or Switching between both and all blowing operations is performed. For this reason, compared with the case where the blowing airflow continues to directly hit the occupant's body for a long time, the occupant's discomfort is suppressed. Therefore, according to the present embodiment, it is possible to reduce the difference in temperature in each part of the indoor space (500) and improve comfort while suppressing discomfort caused by the blown airflow directly hitting the occupant's body. Can do.
- the entire blowing operation is performed between the first partial blowing operation and the second partial blowing operation. That is, in the first blowing mode, an operation of supplying conditioned air from one of the first opening (24X) and the second opening (24Y) to the indoor space (500) (that is, the first partial blowing operation or the second partial Next to the blowout operation), a full blowout operation for supplying conditioned air from both the first opening (24X) and the second opening (24Y) to the indoor space (500) is performed.
- all the blowing operations are performed twice in one cycle of the first blowing mode.
- the first blowing mode of the present embodiment only one of the first partial blowing operation and the second partial blowing operation is performed between a certain full blowing operation and the next full blowing operation. For this reason, the supply amount of warm conditioned air to the vicinity of the floor surface of the indoor space (500) can be sufficiently secured. Therefore, according to this embodiment, even when the outside air temperature is relatively low, the temperature near the floor surface of the indoor space (500) (that is, the temperature near the feet of the occupants) can be reliably increased. As a result, the comfort of the indoor space (500) can be sufficiently secured.
- the indoor unit (10) of the present embodiment during the heating operation blows down conditioned air downward from the first opening (24X) and the second opening (24Y) during the entire blowing operation in which the blowing air speed is relatively low.
- the conditioned air is blown out in a substantially horizontal direction from the first opening (24X) or the second opening (24Y).
- the airflow directly hits the occupant's body and does not cause discomfort, reducing the difference in temperature in each part of the indoor space (500) and comforting the indoor space (500) Can be improved.
- the indoor unit (10) of the present embodiment during the cooling operation changes the direction of the blown air flow in the first opening (24X) and the second opening (24Y) during the whole blowing operation in which the blowing wind speed is relatively low.
- conditioned air is blown out in a substantially horizontal direction from the first opening (24X) or the second opening (24Y).
- the blowing airflow directly hits the body of the occupant and does not cause discomfort, reducing the difference in temperature in each part of the indoor space (500) and comforting the indoor space (500) Can be improved.
- the directions of the blown airflow at the blowout openings (24a to 24d) are different from each other.
- the indoor unit (10) of this embodiment can blow out conditioned air in the direction orthogonal to each side of the decorative panel (22) (that is, four directions). Therefore, according to this embodiment, it becomes possible to reliably supply conditioned air to the area around the indoor unit (10) in the indoor space (500).
- the flow of the conditioned air flowing out from the main blowout openings (24a to 24d) is the surface of the wind direction adjusting blade (51) (in FIG. 8).
- wing (51) becomes comparable as low temperature conditioned air.
- the flow of conditioned air flowing out from the main blow-off openings (24a to 24d) is separated from the wind direction adjusting blade (51) in the middle of the back surface (the left concave surface in FIG. 8) of the wind direction adjusting blade (51). .
- the airflow direction adjusting blade (51) has a region near the tip (lower end in FIG. 8) of its back surface in contact with indoor air having relatively high humidity, and water vapor in the air is condensed in this region.
- this state continues for a long time (for example, 5 minutes or more) and the amount of condensed water generated on the back surface of the airflow direction adjusting blade (51) reaches a certain level or more, the condensed water falls as water droplets. There is a risk.
- the wind direction adjusting blade (51) of any of the main blowing openings (24a to 24d) is provided in all of the first to third blowing modes performed as the airflow rotation.
- the duration of the partial blowing operation set at the airflow block position is set to a relatively short time (120 seconds in this embodiment). Therefore, according to the present embodiment, it is possible to prevent water droplets from falling from the wind direction adjusting blade (51) set at the airflow block position.
- the fourth blowing mode in which the entire blowing operation, the first partial blowing operation, and the second partial blowing operation are repeated once is replaced with the first blowing mode.
- it may be configured to be executable in addition to the first to third blowing modes. This fourth blowing mode is executed as an airflow rotation.
- the indoor unit (10) that performs the fourth blowing mode of the present modification repeatedly performs the full blowing operation, the first partial blowing operation, and the second partial blowing operation in order. In one cycle of the fourth blowing mode, the entire blowing operation, the first partial blowing operation, and the second partial blowing operation are performed once.
- the indoor unit (10) of the present modification may execute, as the fourth blowing mode, an operation of sequentially repeating the entire blowing operation, the second partial blowing operation, and the first partial blowing operation. .
- the duration of all blowing operations, the duration of the first partial blowing operation, and the duration of the second partial blowing operation are the same as each other. (For example, 120 seconds).
- the duration of all blowing operation is set to the time longer than each of the continuation time of 1st partial blowing operation, and the duration of 2nd partial blowing operation. Is set.
- the duration of all blowing operations is set to 600 seconds, and the duration of the first partial blowing operation and the duration of the second partial blowing operation are each set to 120 seconds.
- the indoor unit (10) in the indoor space (500) may be used even if the first partial blowing operation and the second partial blowing operation are performed continuously.
- the temperature in a relatively close area does not rise so much.
- the indoor unit (10) in the indoor space (500) can be connected to the indoor unit (10) even if the first partial blowing operation and the second partial blowing operation are continued.
- the temperature in a relatively close area does not drop that much. Therefore, when the air conditioning load is relatively low, as in the present modification, the entire blowing operation, the first partial blowing operation, and the second partial blowing operation are performed once in one cycle of the airflow rotation. You may go.
- the indoor unit (10) of the present embodiment supplies conditioned air to the indoor space (500) from two adjacent main blow-off openings (24a to 24d) as the first partial blow-out operation and the second partial blow-out operation.
- An operation may be performed.
- the first main outlet opening (24a) and the second main outlet opening (24b) constitute the first opening (24X)
- the remaining third main outlet opening (24c) and fourth main outlet opening ( 24d) constitutes the second opening (24Y).
- the wind direction control unit (91) includes the wind direction adjusting blade (51) of the first main blowing opening (24a) and the wind direction adjusting blade (51 of the second main blowing opening (24b)). ) Are set at the horizontal blowing position, and the wind direction adjusting blade (51) of the third main blowing opening (24c) and the wind direction adjusting blade (51) of the fourth main blowing opening (24d) are set at the airflow block position. Therefore, the conditioned air is blown from the first main blow opening (24a) and the second main blow opening (24b) to the indoor space (500), and the third main blow opening (24c) and the fourth main blow opening (24d). ) Is not substantially blown into the indoor space (500).
- the wind direction control unit (91) includes the wind direction adjusting blade (51) of the third main blowing opening (24c) and the wind direction adjusting blade (51 of the fourth main blowing opening (24d)).
- the wind direction adjusting blade (51) of the first main blowing opening (24a) and the wind direction adjusting blade (51) of the second main blowing opening (24b) are set at the airflow block position. Therefore, the conditioned air is blown from the third main blow opening (24c) and the fourth main blow opening (24d) into the indoor space (500), and the first main blow opening (24a) and the second main blow opening (24b). ) Is not substantially blown into the indoor space (500).
- the indoor unit (10) of the present embodiment can execute the fifth blowing mode in which the first partial blowing operation and the second partial blowing operation are alternately repeated in addition to the first to third blowing modes. It may be configured. This fifth blowing mode is executed as an airflow rotation.
- the first partial blowing operation and the second partial blowing operation are performed once.
- the duration of the first partial blowing operation and the duration of the second partial blowing operation are set to the same time.
- the position of the wind direction adjusting blade (51) of the main outlet opening (24a to 24d) may be set to a position downward from the horizontal blowing position.
- the wind direction adjusting blades (51) of all the main blowing openings (24a to 24d) are set to the lower blowing position. In this state, if the temperature of the conditioned air blown out from the indoor unit (10) is lowered, the conditioned air that is not so warm may directly hit the occupant and cause discomfort to the occupant.
- the controller (90) of the indoor unit (10) of this modification forcibly changes the position of the wind direction adjusting blade (51) to the horizontal blowing position when the temperature for determination falls below the reference value during the heating operation. Configured to perform a forced change operation.
- the controller (90) of this modification performs a forced change operation using the measured value of the suction temperature sensor (61) as the determination temperature.
- the controller (90) of this modification is measured by the heat exchanger temperature sensor (62) in a state where the position of the wind direction adjusting blade (51) is set to a position downward from the horizontal blowing position during the heating operation.
- the value is compared with a predetermined reference value (eg 30 ° C.). And if the measured value of the heat exchanger temperature sensor (62) is not less than the reference value, the controller (90) of this modification will leave the position of the wind direction adjusting blade (51) as it is, while the heat exchanger temperature If the measured value of the sensor (62) is less than the reference value, the position of the wind direction adjusting blade (51) is forcibly changed to the horizontal blowing position.
- a predetermined reference value eg 30 ° C.
- the controller (90) of this modification is configured to perform a forced change operation using the measured value of the temperature of the conditioned air blown from the outlet (26) to the indoor space (500) as the determination temperature. May be.
- the controller (90) of this modification compares the measured value of the temperature of the conditioned air blown from the outlet (26) into the indoor space (500) with a predetermined reference value, and according to the result The operation described above is performed.
- the indoor unit (10) of the present embodiment may be configured to automatically select the blowing mode performed as the airflow rotation.
- the indoor unit (10) of this modification includes a distance sensor (63) that measures the distance from the indoor unit (10) to the wall surface of the room.
- a distance sensor (63) that measures the distance from the indoor unit (10) to the wall surface of the room.
- the distance sensor (63) for example, a sensor that measures the distance based on the time until the irradiated ultrasonic wave is reflected by the wall surface and returned can be used.
- the distance sensor (63) provided in the indoor unit (10) of the present modification includes four sensor units (not shown), and measures distances in four directions.
- the distance sensor (63) includes a distance to the wall surface located in the blowing direction (upward in FIG. 16) of the first main blowing opening (24a) and the blowing direction of the second main blowing opening (24b).
- the distance to the wall surface located in the blowing direction left direction in FIG. 16).
- the distance from the wall surface located in the blowing direction of the third main outlet opening (24c) to the indoor unit (10), and the distance from the wall face located in the blowing direction of the fourth main outlet opening (24d) to the indoor unit (10) Is substantially equal to the measured value of the distance sensor (63).
- the distance from the wall surface located in the blowing direction of the first main outlet opening (24a) to the indoor unit (10) and the wall surface located in the blowing direction of the second main outlet opening (24b) to the indoor unit (10) Is substantially equal to a value obtained by subtracting the length of one side of the decorative panel (22) from the measured value of the distance sensor (63).
- the controller (90) of the indoor unit (10) of the present modification performs an automatic selection operation for selecting the blowing mode performed as the airflow rotation based on the measured value of the distance sensor (63).
- the wall surface located in the blowing direction of the second main blow-off opening (24b) and the wall face located in the blow-out direction of the fourth main blow-off opening (24d) are relatively close to the indoor unit (10). It is assumed that the wall surface located in the blowing direction of the blowing opening (24a) and the wall surface located in the blowing direction of the third main blowing opening (24c) are separated from the indoor unit (10).
- the conditioned air reaches the wall surface and an air flow that wraps the indoor space is generated. It is formed.
- the second partial blowing operation that increases the blowing air speed of the first main blowing opening (24a) and the third main blowing opening (24c)
- the conditioned air cannot reach the wall surface, so that an air flow that encloses the indoor space is formed.
- the controller (90) of the present modification selects the second blowing mode shown in FIG. 12 as the airflow rotation performed by the indoor unit (10). That is, in this case, the controller (90) of the present modification selects the first partial blowing operation as the partial blowing operation executed in the airflow rotation. In the second blowing mode, the full blowing operation and the first partial blowing operation are alternately performed, and the second partial blowing operation that cannot allow the conditioned air to reach the wall surface is not performed.
- the controller ( 90) selects the 1st blowing mode shown in FIG. 9 as airflow rotation which an indoor unit (10) performs. That is, in this case, the controller (90) of the present modification selects both the first partial blowing operation and the second partial blowing operation as the partial blowing operations that are executed in the airflow rotation.
- a message indicating that any of a plurality of types of partial blowing operations that can be performed by the unit (10) may be displayed on a display screen of a remote controller or the like.
- the indoor unit (10) of this embodiment may be provided with a floor temperature sensor.
- a floor temperature sensor for example, a non-contact type temperature sensor that measures the temperature based on the amount of infrared rays emitted from the object can be used.
- the indoor air temperature control unit (92) of the controller (90) may perform a temperature control operation using the measured value of the floor temperature sensor.
- the blowing mode determining unit (93) of the controller (90) may perform the mode determining operation using the measured value of the floor temperature sensor.
- the blowing mode determination unit (93) subtracts the measured value Tr of the suction temperature sensor (61) from the measured value Tf of the floor temperature sensor during the cooling operation as an air conditioning load index indicating the air conditioning load of the indoor space (500).
- a value (Tr ⁇ Tf) obtained by subtracting the measured value Tf of the floor temperature sensor from the measured value Tr of the suction temperature sensor (61) is used during heating operation.
- the air conditioning load index (Tf ⁇ Tr) during cooling operation increases as the indoor cooling load increases. Further, the air conditioning load index (Tr ⁇ Tf) during heating operation increases as the heating load in the room increases.
- the blowing mode determination unit (93) compares the air conditioning load index with the determination reference value, Based on the result, it is determined whether the indoor unit (10) is to execute the standard blowing mode or the airflow rotation.
- the indoor unit (10) of the present embodiment may be provided with a wide wind direction adjusting blade (51) as shown in FIGS.
- the wind direction adjusting blade (51) shown in FIGS. 17 to 19 has a width at the center in the longitudinal direction (that is, a length in a direction perpendicular to the central axis (53)) as shown in FIGS. It is wider than (51).
- the wide wind direction adjusting blade (51) shown in FIGS. 17 to 19 is used, the flow of the conditioned air blown from the main blow openings (24a to 24d) can be surely guided in the intended direction. Become.
- the indoor unit (10) of the present embodiment only needs to include a plurality of main outlet openings (24a to 24d) provided with the wind direction adjusting blades (51), and the number of the main outlet openings (24a to 24d) is four. It is not limited to one.
- the indoor unit (10) can prevent the second airflow by blocking the blown airflow in the first main blowout opening with the wind direction adjusting blade (51).
- the operation of increasing the blown air speed of the main blower opening is performed as the first partial blowout operation, and the blown air velocity of the first main blower opening is obstructed by the wind direction adjusting blade (51).
- the operation for increasing the value is performed as the second partial blowing operation.
- the indoor unit (10) of the present embodiment may include a shutter for closing the main blowout openings (24a to 24d) as an airflow inhibition mechanism.
- a shutter for closing the main blowout openings (24a to 24d) as an airflow inhibition mechanism.
- an openable / closable shutter is provided in each of the four main outlet openings (24a to 24d).
- the indoor unit (10) of the present embodiment is not a ceiling-embedded type that is fitted into the opening of the ceiling (501), but is suspended from the ceiling that is installed with the casing (20) suspended from the ceiling (501). It may be a mold.
- the present invention is useful for an indoor unit of an air conditioner installed on a ceiling.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
室内ユニット(10)には、複数の吹出し開口(24a~24d)が形成される。室内ユニット(10)の気流ローテーションでは、全部吹出し動作と一部吹出し動作とが実行される。全部吹出し動作では、全ての吹出し開口(24a~24d)から調和空気が吹き出される。一部吹出し動作では、一部の吹出し開口(24a~24d)の吹出し気流が気流阻害機構によって阻害され、残りの吹出し開口(24a~24d)の吹出し風速が高くなる。その結果、室内空間の各部分における気温の差が縮小し、室内空間の快適性が向上する。
Description
本発明は、天井に設置される空気調和装置の室内ユニットに関するものである。
従来より、例えば特許文献1に開示されているような空気調和装置の室内ユニットが知られている。この種の室内ユニットは、天井付近に設置され、加熱され又は冷却された空気を室内空間へ吹き出す。
この種の室内ユニットは、複数の吹出口を備えており、運転中には原則として全ての吹出口から空気を吹き出す。吹出口の吹出し風速(即ち、吹出口から吹き出される空気の流速)が低いと、室内ユニットに比較的近い領域だけに暖気や冷気が滞留し、室内空間の各部分における気温の差が大きくなり、室内の快適性が損なわれる。
この問題の対策としては、吹出し風速を高め、室内ユニットから離れた場所にも吹出し気流(即ち、吹出口から吹き出される空気の流れ)を到達させることが考えられる。しかし、吹出し風速を高めると、吹出し気流が在室者の体に直接当たり続け、不快感を与えるおそれがある。つまり、吹出し風速を単に高めるだけでは、室内の快適性を向上させることができない。
本発明は、かかる点に鑑みてなされたものであり、その目的は、吹出し気流が在室者の体に直接当たることによる不快感を抑えつつ、室内空間の各部分における気温の差を縮小して快適性を向上させることにある。
本開示の第1の態様は、天井(501)に設置されて室内空間(500)へ調和空気を吹き出す空気調和装置の室内ユニットを対象とする。そして、調和空気の流れを阻害するための気流阻害機構(50)がそれぞれに設けられた複数の吹出し開口(24a~24d)が形成され、全ての上記吹出し開口(24a~24d)から上記室内空間(500)へ調和空気を供給する全部吹出し動作と、一部の上記吹出し開口(24a~24d)の吹出し気流を上記気流阻害機構(50)で阻害することによって残りの上記吹出し開口(24a~24d)の吹出し風速を高める一部吹出し動作とを切り換えながら行う気流ローテーションが実行されるように上記気流阻害機構(50)を制御する制御器(90)を備えるものである。
第1の態様の室内ユニット(10)は、全部吹出し動作と、一部吹出し動作とを実行可能である。全部吹出し動作では、全ての吹出し開口(24a~24d)から調和空気が室内空間(500)へ供給される。一部吹出し動作では、室内ユニット(10)に形成された一部の吹出し開口(24a~24d)の吹出し気流が気流阻害機構(50)によって阻害される。その結果、室内ユニット(10)に形成された残りの吹出し開口(24a~24d)の吹出し風速が全部吹出し動作中に比べて高くなり、室内空間(500)のうち室内ユニット(10)から比較的遠い領域にまで吹出し気流が到達する。一部吹出し動作中は、主に残りの吹出し開口(24a~24d)(即ち、一部吹出し動作中における吹出し風速が全部吹出し動作中に比べて高くなる吹出し開口(24a~24d))から、調和空気が室内空間(500)へ供給される。
第1の態様の室内ユニット(10)は、気流ローテーションを実行する。この気流ローテーションでは、制御器(90)が気流阻害機構(50)を制御することによって、全部吹出し動作と一部吹出し動作とが切り換えて行われる。つまり、室内ユニット(10)の気流ローテーションでは、室内空間(500)のうち室内ユニット(10)に比較的近い領域に調和空気が供給される全部吹出し動作と、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気が供給される一部吹出し動作とが行われる。
本開示の第2の態様は、上記第1の態様において、複数の上記吹出し開口(24a~24d)は、一部の上記吹出し開口(24b,24d)が第1開口(24X)を、残りの上記吹出し開口(24a,24c)が第2開口(24Y)をそれぞれ構成し、上記制御器(90)は、上記第2開口(24Y)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第1開口(24X)の吹出し風速を高める第1一部吹出し動作と、上記第1開口(24X)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第2開口(24Y)の吹出し風速を高める第2一部吹出し動作との少なくとも一方が、上記気流ローテーションにおいて行われるように上記気流阻害機構(50)を制御するものである。
本開示の第3の態様は、上記第1の態様において、複数の上記吹出し開口(24a~24d)は、一部の上記吹出し開口(24b,24d)が第1開口(24X)を、残りの上記吹出し開口(24a,24c)が第2開口(24Y)をそれぞれ構成し、上記制御器(90)は、上記第2開口(24Y)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第1開口(24X)の吹出し風速を高める第1一部吹出し動作と、上記第1開口(24X)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第2開口(24Y)の吹出し風速を高める第2一部吹出し動作とが、上記気流ローテーションにおいて行われるように上記気流阻害機構(50)を制御するものである。
第2の態様の室内ユニット(10)は、第1一部吹出し動作と第2一部吹出し動作の少なくとも一方と、全部吹出し動作とを実行可能である。また、第3の態様の室内ユニット(10)は、全部吹出し動作と、第1一部吹出し動作と、第2一部吹出し動作とを実行可能である。
全部吹出し動作では、全ての吹出し開口(24a~24d)から調和空気が室内空間(500)へ供給される。第1一部吹出し動作では、第2開口(24Y)の吹出し気流が気流阻害機構(50)によって阻害される。その結果、第1開口(24X)の吹出し風速が全部吹出し動作中に比べて高くなり、室内空間(500)のうち室内ユニット(10)から比較的遠い領域にまで吹出し気流が到達する。第1一部吹出し動作中は、主に第1開口(24X)を構成する吹出し開口(24b,24d)から、調和空気が室内空間(500)へ供給される。第2一部吹出し動作では、第1開口(24X)の吹出し気流が気流阻害機構(50)によって阻害される。その結果、第2開口(24Y)の吹出し風速が全部吹出し動作中に比べて高くなり、室内空間(500)のうち室内ユニット(10)から比較的遠い領域にまで吹出し気流が到達する。第2一部吹出し動作中は、主に第2開口(24Y)を構成する吹出し開口(24a,24c)から、調和空気が室内空間(500)へ供給される。
第2の態様の室内ユニット(10)は、気流ローテーションを実行する。この気流ローテーションでは、制御器(90)が気流阻害機構(50)を制御することによって、第1一部吹出し動作と第2一部吹出し動作の少なくとも一方と、全部吹出し動作とが切り換えて行われる。
第3の態様の室内ユニット(10)は、気流ローテーションを実行する。この気流ローテーションでは、制御器(90)が気流阻害機構(50)を制御することによって、全部吹出し動作と、第1一部吹出し動作と、第2一部吹出し動作とが切り換えて行われる。
つまり、第2及び第3の各態様の室内ユニット(10)の気流ローテーションでは、室内空間(500)のうち室内ユニット(10)に比較的近い領域に調和空気が供給される全部吹出し動作と、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気が供給される第1一部吹出し動作または第2一部吹出し動作とが行われる。
本開示の第4の態様は、上記第3の態様において、上記制御器(90)は、上記気流ローテーションにおいて、上記全部吹出し動作と、上記第1一部吹出し動作と、上記全部吹出し動作と、上記第2一部吹出し動作とが順に繰り返されるように上記気流阻害機構(50)を制御するものである。
第4の態様では、室内ユニット(10)の気流ローテーションにおいて、制御器(90)が気流阻害機構(50)を制御することにより、全部吹出し動作と、第1一部吹出し動作と、全部吹出し動作と、第2一部吹出し動作とが順に繰り返し行われる。つまり、この態様の気流ローテーションでは、第1一部吹出し動作と第2一部吹出し動作の間に、全部吹出し動作が行われる。
本開示の第5の態様は、上記第1の態様において、複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、上記制御器(90)は、加熱された調和空気が上記室内空間(500)へ供給される暖房運転において、上記全部吹出し動作中に全ての上記吹出し開口(24a~24d)の吹出し気流が下吹き状態となり、上記一部吹出し動作中に吹出し風速が高くなる上記吹出し開口(24a~24d)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御するものである。
第5の態様では、室内ユニット(10)の全部吹出し動作中に、全ての吹出し開口(24a~24d)から調和空気が下向きに吹き出される。このため、全部吹出し動作中は、加熱された調和空気が床面付近の領域(即ち、在室者の足下)へ供給される。一方、室内ユニット(10)の一部吹出し動作中には、室内ユニット(10)に設けられた複数の吹出し開口(24a~24d)の一部から調和空気が概ね水平方向へ吹き出される。このように、一部吹出し動作では、比較的流速の高い吹出し気流が概ね水平方向へ吹き出される。このため、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内ユニット(10)から比較的遠い領域へ調和空気を到達させることができる。
本開示の第6の態様は、上記第3又は第4の態様において、複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、上記制御器(90)は、加熱された調和空気が上記室内空間(500)へ供給される暖房運転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流が下吹き状態となり、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御するものである。
本開示の第7の態様は、上記第4の態様において、複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、上記制御器(90)は、加熱された調和空気が上記室内空間(500)へ供給される暖房運転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流が下吹き状態となり、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し 気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御し、更に、上記制御器(90)は、上記気流ローテーションにおいて、上記各全部吹出し動作の継続時間と、上記第1一部吹出し動作の継続時間と、上記第2一部吹出し動作の継続時間とが互いに等しくなるように、上記風向調節羽根(51)を制御するものである。
第6,第7の各態様では、室内ユニット(10)の全部吹出し動作中に、第1開口(24X)及び第2開口(24Y)から調和空気が下向きに吹き出される。このため、全部吹出し動作中は、加熱された調和空気が床面付近の領域(即ち、在室者の足下)へ供給される。一方、室内ユニット(10)の第1一部吹出し動作中には、第1開口(24X)から調和空気が概ね水平方向へ吹き出され、室内ユニット(10)の第2一部吹出し動作中には、第2開口(24Y)から調和空気が概ね水平方向へ吹き出される。このように、第1一部吹出し動作および第2一部吹出し動作では、比較的流速の高い吹出し気流が概ね水平方向へ吹き出される。このため、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内ユニット(10)から比較的遠い領域へ調和空気を到達させることができる。
また、第7の態様では、気流ローテーションにおいて、一回目と二回目のそれぞれの全部吹出し動作の継続時間と、第1一部吹出し動作の継続時間と、第2一部吹出し動作の継続時間とが一致する。つまり、この態様の室内ユニット(10)では、一定の時間が経過する毎に、吹出し動作が切り換わる。
本開示の第8の態様は、上記第1の態様において、複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、上記制御器(90)は、冷却された調和空気が上記室内空間(500)へ供給される冷房運転において、上記全部吹出し動作中に全ての上記吹出し開口(24a~24d)の吹出し気流の方向が変動し、上記一部吹出し動作中に吹出し風速が高くなる上記吹出し開口(24a~24d)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御するものである。
第8の態様では、室内ユニット(10)の全部吹出し動作中に、全ての吹出し開口(24a~24d)から吹き出される調和空気の流れ方向が上下方向に変動する。このため、全部吹出し動作中は、冷却された調和空気が室内空間(500)のうち室内ユニット(10)に比較的近い領域へ供給される。一方、室内ユニット(10)の一部吹出し動作中には、室内ユニット(10)に設けられた複数の吹出し開口(24a~24d)の一部から調和空気が概ね水平方向へ吹き出される。このように、一部吹出し動作では、比較的流速の高い吹出し気流が概ね水平方向へ吹き出される。このため、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内ユニット(10)から比較的遠い領域へ調和空気を到達させることができる。
本開示の第9の態様は、上記第3又は第4の態様において、複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、上記制御器(90)は、冷却された調和空気が上記室内空間(500)へ供給される冷房運転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流の方向が変動し、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御するものである。
本開示の第10の態様は、上記第4の態様において、複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、上記制御器(90)は、冷却された調和空気が上記室内空間(500)へ供給される冷房運 転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流の方向が変動し、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御し、更に、上記制御器(90)は、上記気流ローテーションにおいて、上記各全部吹出し動作の継続時間が、上記第1一部吹出し動作の継続時間と上記第2一部吹出し動作の継続時間のそれぞれよりも長くなるように、上記風向調節羽根(51)を制御するものである。
第9,第10の各態様では、室内ユニット(10)の全部吹出し動作中に、第1開口(24X)及び第2開口(24Y)から吹き出される調和空気の流れ方向が上下方向に変動する。このため、全部吹出し動作中は、冷却された調和空気が室内空間(500)のうち室内ユニット(10)に比較的近い領域へ供給される。一方、室内ユニット(10)の第1一部吹出し動作中には、第1開口(24X)から調和空気が概ね水平方向へ吹き出され、室内ユニット(10)の第2一部吹出し動作中には、第2開口(24Y)から調和空気が概ね水平方向へ吹き出される。このように、第1一部吹出し動作および第2一部吹出し動作では、比較的流速の高い吹出し気流が概ね水平方向へ吹き出される。このため、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内ユニット(10)から比較的遠い領域へ調和空気を到達させることができる。
また、第10の態様では、気流ローテーションにおいて、一回目と二回目のそれぞれの全部吹出し動作の継続時間が、第1一部吹出し動作の継続時間よりも長く、且つ第2一部吹出し動作の継続時間よりも長くなる。
本開示の第11の態様は、上記第1~第4のいずれか一つの態様において、複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、上記風向調節羽根(51)は、上記吹出し開口(24a~24d)の吹出し気流を阻害する姿勢に変位可能に構成され、上記気流阻害機構(50)を兼ねるものである。
第11の態様では、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が、調和空気の流れを阻害するための気流阻害機構(50)を兼ねている。つまり、所定の姿勢となった風向調節羽根(51)が、吹出し開口(24a~24d)から吹き出される調和空気の流れを妨げる。
本開示の第12の態様は、上記第2,第3,第4,第6,第7,第9又は第10の態様において、上記第1開口(24X)及び上記第2開口(24Y)のそれぞれは、複数且つ同数の上記吹出し開口(24a~24d)によって構成されるものである。
第12の態様では、第1開口(24X)と第2開口(24Y)のそれぞれが複数の吹出し開口によって構成される。また、第1開口(24X)を構成する吹出し開口(24b,24d)の数と、第2開口(24Y)を構成する吹出し開口(24a,24c)の数が一致する。
本開示の第13の態様は、上記第12の態様において、下面が矩形状のケーシング(20)を備え、上記吹出し開口(24a~24d)は、上記ケーシング(20)の下面の四辺のそれぞれに沿って一つずつ配置され、上記ケーシング(20)の下面の四辺のうち対向する二辺の一方に沿った上記吹出し開口(24b)と他方に沿った上記吹出し開口(24d)とが上記第1開口(24X)を、残りの二つの上記吹出し開口(24a,24c)が上記第2開口(24Y)を、それぞれ構成するものである。
第13の態様では、ケーシング(20)の下面に四つの吹出し開口(24a~24d)が形成される。これら四つの吹出し開口(24a~24d)は、そのうちの二つの吹出し開口(24b,24d)が第1開口(24X)を構成し、残りの二つの吹出し開口(24a,24c)が第2開口(24Y)を構成する。第1開口(24X)を構成する二つの吹出し開口(24b,24d)は、ケーシング(20)の下面の四辺のうちの第1の辺に沿って一方の吹出し開口(24b)が配置され、その第1の辺に対向する第2の辺に沿って他方の吹出し開口(24d)が配置される。第2開口(24Y)を構成する二つの吹出し開口(24a,24c)は、ケーシング(20)の下面の四辺のうちの第3の辺に沿って一方の吹出し開口(24a)が配置され、その第3の辺に対向する第4の辺に沿って他方の吹出し開口(24c)が配置される。
本開示の第14の態様は、上記第1の態様において、上記制御器(90)は、上記室内空間(500)の気温の指標となる指標温度が設定温度となるように、上記室内ユニットの運転状態を、空気の温度調節が行われる温度調節状態と、空気の温度調節が休止する休止状態とに切り換え、更に、上記制御器(90)は、上記室内空間(500)の空調負荷を示す空調負荷指標が所定の判定基準値以下の場合は、上記休止状態から上記温度調節状態に切り換わった上記室内ユニットが上記全部吹出し動作を常に行い、上記空調負荷指標が上記判定基準値を超える場合は、上記休止状態から上記温度調節状態に切り換わった上記室内ユニットが上記気流ローテーションを実行するように、上記気流阻害機構(50)を制御するものである。
第14の態様において、制御器(90)は、指標温度を設定温度にすることを目的として、室内ユニット(10)の運転状態を、温度調節状態と休止状態とに切り換える。つまり、制御器(90)は、室内ユニット(10)が休止状態であるときに指標温度が設定温度から離れると、指標温度を設定温度に近づけるために、室内ユニット(10)を休止状態から温度調節状態へ切り換える。
第14の態様の制御器(90)は、室内ユニット(10)が休止状態から温度調節状態に切り換わる際に、空調負荷指標を判定基準値と比較する。空調負荷指標が所定の判定基準値以下の場合、制御器(90)は、室内ユニット(10)が全部吹出し動作を常時行うように、上記気流阻害機構(50)を制御する。一方、空調負荷指標が所定の判定基準値を超える場合、制御器(90)は、室内ユニット(10)が気流ローテーションを行うように、上記気流阻害機構(50)を制御する。
本開示の第15の態様は、上記第1の態様において、各上記吹出し開口(24a~24d)からの調和空気の吹出し方向に位置する壁面のそれぞれまでの距離を計測する距離センサ(63)を備える一方、上記制御器(90)は、上記気流阻害機構(50)によって吹出し気流が阻害される上記吹出し開口(24a~24d)が互いに異なる複数種類の上記一部吹出し動作を実行できるように上記気流阻害機構(50)を制御し、更に、上記制御器(90)は、上記気流ローテーションにおいて実行される一種類または複数種類の上記一部吹出し動作を、実行可能な複数種類の上記一部吹出し動作の中から上記距離センサ(63)の計測値に基づいて選択するものである。
第15の態様の室内ユニット(10)は、距離センサ(63)を備える。距離センサ(63)は、吹出し開口(24a~24d)からの調和空気の吹出し方向に位置する壁面までの距離を、室内ユニット(10)に形成された複数の吹出し開口(24a~24d)のそれぞれについて計測する。
第15の態様の室内ユニット(10)は、複数種類の一部吹出し動作を実行できる。室内ユニット(10)が実行可能な複数種類の一部吹出し動作は、それぞれにおいて気流阻害機構(50)が吹出し気流を阻害する吹出し開口(24a~24d)が、互いに異なっている。
第15の態様の制御器(90)は、室内ユニット(10)が実行可能な複数種類の一部吹出し動作の中から、距離センサ(63)の計測値に基づいて、一種類または複数種類の一部吹出し動作を選択する。室内ユニット(10)が行う気流ローテーションでは、制御器(90)によって選択された一種類または複数種類の一部吹出し動作と、全部吹出し動作とが切り換えながら行われる。
上記第1の態様の室内ユニット(10)の気流ローテーションでは、室内空間(500)のうち室内ユニット(10)に比較的近い領域に調和空気が供給される全部吹出し動作と、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気が供給される一部吹出し動作とが行われる。
また、上記第2の態様の室内ユニット(10)の気流ローテーションでは、室内空間(500)のうち室内ユニット(10)に比較的近い領域に調和空気が供給される全部吹出し動作と、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気が供給される第1一部吹出し動作と第2一部吹出し動作の少なくとも一方とが行われる。
また、上記第3の態様の室内ユニット(10)の気流ローテーションでは、室内空間(500)のうち室内ユニット(10)に比較的近い領域に調和空気が供給される全部吹出し動作と、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気が供給される第1一部吹出し動作および第2一部吹出し動作とが行われる。
従って、本開示の態様によれば、室内空間(500)のうち室内ユニット(10)に比較的近い領域と、室内ユニット(10)から比較的遠い領域とに調和空気を供給することができ、室内空間(500)の各部分における気温の差を縮小することが可能となる。
ここで、第1の態様の一部吹出し動作では、吹出し風速が全部吹出し動作中に比べて高くなるため、吹出し気流が在室者の体に直接当たる可能性がある。しかし、第1の態様の室内ユニット(10)は、気流ローテーションにおいて、一部吹出し動作を実行し続けるのでは無く、一部吹出し動作と全部吹出し動作とを切り換えて行う。
また、第2,第3の各態様の第1一部吹出し動作および第2一部吹出し動作では、吹出し風速が全部吹出し動作中に比べて高くなるため、吹出し気流が在室者の体に直接当たる可能性がある。しかし、第2の態様の室内ユニット(10)は、気流ローテーションにおいて、第1一部吹出し動作または第2一部吹出し動作を実行し続けるのでは無く、第1一部吹出し動作と第2一部吹出し動作の少なくとも一方と全部吹出し動作とを切り換えて行う。また、第3の態様の室内ユニット(10)は、気流ローテーションにおいて、第1一部吹出し動作または第2一部吹出し動作を実行し続けるのでは無く、第1一部吹出し動作と第2一部吹出し動作と全部吹出し動作とを切り換えて行う。
このため、第1~第3の各態様では、吹出し気流が長時間に亘って在室者の体に直接当たり続ける場合に比べ、在室者の不快感が抑えられる。従って、本開示の態様によれば、吹出し気流が在室者の体に直接当たることによる不快感を抑えつつ、室内空間(500)の各部分における気温の差を縮小して快適性を向上させることができる。
上記第4の態様では、室内ユニット(10)の気流ローテーションにおいて、第1一部吹出し動作と第2一部吹出し動作の間に、全部吹出し動作が行われる。つまり、気流ローテーションでは、第1開口(24X)と第2開口(24Y)の一方から調和空気を室内空間(500)へ供給する動作(即ち、第1一部吹出し動作または第2一部吹出し動作)の次に、第1開口(24X)と第2開口(24Y)の両方から調和空気を室内空間(500)へ供給する全部吹出し動作が行われる。従って、この態様によれば、室内空間(500)のうち室内ユニット(10)から比較的近い領域の快適性を充分に確保することができる。
上記第5の態様において、室内ユニット(10)は、吹出し風速が比較的低い全部吹出し動作中に、全ての吹出し開口(24a~24d)から調和空気を下向きに吹き出す一方、吹出し風速が比較的高い一部吹出し動作中に、室内ユニット(10)に形成された吹出し開口(24a~24d)のうちの一部から調和空気を概ね水平方向に吹き出す。
また、上記第6,第7の各態様において、室内ユニット(10)は、吹出し風速が比較的低い全部吹出し動作中に、第1開口(24X)および第2開口(24Y)から調和空気を下向きに吹き出す一方、吹出し風速が比較的高い第1一部吹出し動作中または第2一部吹出し動作中に、第1開口(24X)または第2開口(24Y)から調和空気を概ね水平方向に吹き出す。
このため、第5,第6,第7の各態様によれば、暖房運転中において、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内空間(500)の各部分における気温の差を縮小して快適性を向上させることができる。
上記第8の態様において、室内ユニット(10)は、吹出し風速が比較的低い全部吹出し動作中に、全ての吹出し開口(24a~24d)の吹出し気流の方向を変動させる一方、吹出し風速が比較的高い一部吹出し動作中に、室内ユニット(10)に形成された吹出し開口(24a~24d)のうちの一部から調和空気を概ね水平方向に吹き出す。
また、上記第9,第10の態様において、室内ユニット(10)は、吹出し風速が比較的低い全部吹出し動作中に、第1開口(24X)および第2開口(24Y)の吹出し気流の方向を変動させる一方、吹出し風速が比較的高い第1一部吹出し動作中または第2一部吹出し動作中に、第1開口(24X)または第2開口(24Y)から調和空気を概ね水平方向に吹き出す。
このため、第8,第9,第10の各態様によれば、冷房運転中において、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内空間(500)の各部分における気温の差を縮小して快適性を向上させることができる。
上記第13の態様では、室内ユニット(10)における各吹出し開口(24a~24d)の吹出し気流の方向が互いに異なる。また、この態様の室内ユニット(10)は、ケーシング(20)の下面の各辺と直交する方向(即ち、四つの方向)へ調和空気を吹き出すことが可能である。従って、この態様によれば、室内空間(500)のうち室内ユニット(10)の周囲の領域へ調和空気を確実に供給することが可能となる。
第14の態様の制御器(90)は、空調負荷指標が所定の判定基準値を超える状態で室内ユニット(10)の運転状態が休止状態から温度調節状態に切り換わると、気流ローテーションが実行されるように気流阻害機構(50)を制御する。
室内ユニット(10)の気流ローテーションでは、一部吹出し動作が行われる。この一部吹出し動作では、全部吹出し動作に比べて、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気を供給することができる。
このため、第14の態様によれば、空調負荷指標が所定の判定基準値を超える状態(即ち、室内空間(500)の空調負荷が比較的大きい状態)で室内ユニット(10)の運転状態が休止状態から温度調節状態に切り換わると、室内ユニット(10)が気流ローテーションを行うことによって、室内空間(500)の気温の指標となる指標温度を設定温度に速やかに近づけることができ、室内空間(500)の快適性を向上させることができる。
ここで、一部吹出し動作において、吹出し開口(24a~24d)から吹き出された調和空気によって形成される流速の比較的高い気流が壁に到達すると、調和空気が壁から床に沿って流れることによって、室内空間(500)の全体を包み込むような気流を形成できる可能性がある。しかし、室内ユニット(10)から壁までの距離が長いと、一部吹出し動作中における吹出し開口(24a~24d)の吹出し気流が壁に到達せず、室内空間(500)の全体を包み込むような気流を形成できない。このため、例えば室内空間(500)の全体を包み込むような気流によって室内空間(500)の温度ムラを抑制しようとする場合は、室内ユニット(10)からの距離が適当な範囲にある壁に向かって調和空気を吹き出す吹出し開口(24a~24d)の吹出し風速を高める必要がある一方、室内ユニット(10)から遠く離れた壁に向かって調和空気を吹き出す吹出し開口(24a~24d)の吹出し風速を高める必要は無い。
これに対し、第15の態様の制御器(90)は、気流ローテーションにおいて実行される一種類または複数種類の一部吹出し動作を、室内ユニット(10)が実行可能な複数種類の一部吹出し動作の中から、距離センサ(63)の計測値に基づいて選択する。このため、この態様によれば、室内の快適性の向上に寄与し得る適切な一部吹出し動作を、距離センサ(63)の計測値に基づいて自動的に選択することが可能となり、空気調和装置のユーザーの利便性を高めることができる。
本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する実施形態および変形例は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
-室内ユニットの構成-
図1に示すように、本実施形態の室内ユニット(10)は、いわゆる天井埋込型に構成されている。この室内ユニット(10)は、図外の室外ユニットと共に空気調和装置を構成する。空気調和装置では、室内ユニット(10)と室外ユニットを連絡配管で接続することによって、冷媒が循環して冷凍サイクルを行う冷媒回路が形成されている。
図1に示すように、本実施形態の室内ユニット(10)は、いわゆる天井埋込型に構成されている。この室内ユニット(10)は、図外の室外ユニットと共に空気調和装置を構成する。空気調和装置では、室内ユニット(10)と室外ユニットを連絡配管で接続することによって、冷媒が循環して冷凍サイクルを行う冷媒回路が形成されている。
図2及び図3に示すように、室内ユニット(10)は、ケーシング(20)と、室内ファン(31)と、室内熱交換器(32)と、ドレンパン(33)と、ベルマウス(36)と、制御器(90)とを備えている。また、室内ユニット(10)には、吸込温度センサ(61)と熱交温度センサ(62)とが設けられている。
〈ケーシング〉
ケーシング(20)は、室内空間(500)の天井(501)に設置されている。ケーシング(20)は、ケーシング本体(21)と化粧パネル(22)とによって構成されている。このケーシング(20)には、室内ファン(31)と、室内熱交換器(32)と、ドレンパン(33)と、ベルマウス(36)とが収容されている。
ケーシング(20)は、室内空間(500)の天井(501)に設置されている。ケーシング(20)は、ケーシング本体(21)と化粧パネル(22)とによって構成されている。このケーシング(20)には、室内ファン(31)と、室内熱交換器(32)と、ドレンパン(33)と、ベルマウス(36)とが収容されている。
ケーシング本体(21)は、室内空間(500)の天井(501)に形成された開口に挿入されて配置されている。ケーシング本体(21)は、下面が開口する概ね直方体状の箱形に形成されている。このケーシング本体(21)は、概ね平板状の天板(21a)と、天板(21a)の周縁部から下方に延びる側板(21b)とを有している。
〈室内ファン〉
図3に示すように、室内ファン(31)は、下方から吸い込んだ空気を径方向の外側に向けて吹き出す遠心送風機である。室内ファン(31)は、ケーシング本体(21)の内部中央に配置されている。室内ファン(31)は、室内ファンモータ(31a)によって駆動される。室内ファンモータ(31a)は、天板(21a)の中央部に固定されている。
図3に示すように、室内ファン(31)は、下方から吸い込んだ空気を径方向の外側に向けて吹き出す遠心送風機である。室内ファン(31)は、ケーシング本体(21)の内部中央に配置されている。室内ファン(31)は、室内ファンモータ(31a)によって駆動される。室内ファンモータ(31a)は、天板(21a)の中央部に固定されている。
〈ベルマウス〉
ベルマウス(36)は、室内ファン(31)の下方に配置されている。このベルマウス(36)は、ケーシング(20)へ流入した空気を室内ファン(31)へ案内するための部材である。ベルマウス(36)は、ドレンパン(33)と共に、ケーシング(20)の内部空間を、室内ファン(31)の吸い込み側に位置する一次空間(21c)と、室内ファン(31)の吹き出し側に位置する二次空間(21d)とに仕切っている。
ベルマウス(36)は、室内ファン(31)の下方に配置されている。このベルマウス(36)は、ケーシング(20)へ流入した空気を室内ファン(31)へ案内するための部材である。ベルマウス(36)は、ドレンパン(33)と共に、ケーシング(20)の内部空間を、室内ファン(31)の吸い込み側に位置する一次空間(21c)と、室内ファン(31)の吹き出し側に位置する二次空間(21d)とに仕切っている。
〈室内熱交換器〉
室内熱交換器(32)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器である。図2に示すように、室内熱交換器(32)は、平面視でロ字状に形成され、室内ファン(31)の周囲を囲むように配置されている。つまり、室内熱交換器(32)は、二次空間(21d)に配置されている。室内熱交換器(32)は、その内側から外側へ向かって通過する空気を、冷媒回路の冷媒と熱交換させる。
室内熱交換器(32)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器である。図2に示すように、室内熱交換器(32)は、平面視でロ字状に形成され、室内ファン(31)の周囲を囲むように配置されている。つまり、室内熱交換器(32)は、二次空間(21d)に配置されている。室内熱交換器(32)は、その内側から外側へ向かって通過する空気を、冷媒回路の冷媒と熱交換させる。
〈ドレンパン〉
ドレンパン(33)は、いわゆる発泡スチロール製の部材である。図3に示すように、ドレンパン(33)は、ケーシング本体(21)の下端を塞ぐように配置されている。ドレンパン(33)の上面には、室内熱交換器(32)の下端に沿った水受溝(33b)が形成されている。水受溝(33b)には、室内熱交換器(32)の下端部が入り込んでいる。水受溝(33b)は、室内熱交換器(32)において生成したドレン水を受け止める。
ドレンパン(33)は、いわゆる発泡スチロール製の部材である。図3に示すように、ドレンパン(33)は、ケーシング本体(21)の下端を塞ぐように配置されている。ドレンパン(33)の上面には、室内熱交換器(32)の下端に沿った水受溝(33b)が形成されている。水受溝(33b)には、室内熱交換器(32)の下端部が入り込んでいる。水受溝(33b)は、室内熱交換器(32)において生成したドレン水を受け止める。
図2に示すように、ドレンパン(33)には、主吹出し通路(34a~34d)と副吹出し通路(35a~35d)とが四つずつ形成されている。主吹出し通路(34a~34d)及び副吹出し通路(35a~35d)は、室内熱交換器(32)を通過した空気が流れる通路であって、ドレンパン(33)を上下方向に貫通している。主吹出し通路(34a~34d)は、断面が細長い長方形状の貫通孔である。主吹出し通路(34a~34d)は、ケーシング本体(21)の四つの辺のそれぞれに沿って一つずつ配置されている。副吹出し通路(35a~35d)は、断面がやや湾曲した矩形状の貫通孔である。副吹出し通路(35a~35d)は、ケーシング本体(21)の四つの角部のそれぞれに一つずつ配置されている。つまり、ドレンパン(33)では、その周縁に沿って、主吹出し通路(34a~34d)と副吹出し通路(35a~35d)とが交互に配置されている。
〈化粧パネル〉
化粧パネル(22)は、四角い厚板状に形成された樹脂製の部材である。化粧パネル(22)の下部は、ケーシング本体(21)の天板(21a)よりも一回り大きな正方形状に形成されている。この化粧パネル(22)は、ケーシング本体(21)の下面を覆うように配置されている。また、化粧パネル(22)の下面は、ケーシング(20)の下面を構成し、室内空間(500)に露出している。
化粧パネル(22)は、四角い厚板状に形成された樹脂製の部材である。化粧パネル(22)の下部は、ケーシング本体(21)の天板(21a)よりも一回り大きな正方形状に形成されている。この化粧パネル(22)は、ケーシング本体(21)の下面を覆うように配置されている。また、化粧パネル(22)の下面は、ケーシング(20)の下面を構成し、室内空間(500)に露出している。
図3及び図4に示すように、化粧パネル(22)の中央部には、正方形状の一つの吸込口(23)が形成されている。吸込口(23)は、化粧パネル(22)を上下に貫通し、ケーシング(20)内部の一次空間(21c)に連通する。ケーシング(20)へ吸い込まれる空気は、吸込口(23)を通って一次空間(21c)へ流入する。吸込口(23)には、格子状の吸込グリル(41)が設けられている。また、吸込グリル(41)の上方には、吸込フィルタ(42)が配置されている。
化粧パネル(22)には、概ね四角い輪状の吹出口(26)が、吸込口(23)を囲むように形成されている。図4に示すように、吹出口(26)は、四つの主吹出し開口(24a~24d)と、四つの副吹出し開口(25a~25d)とに区分されている。
主吹出し開口(24a~24d)は、主吹出し通路(34a~34d)の断面形状に対応した細長い開口である。主吹出し開口(24a~24d)は、化粧パネル(22)の四つの辺のそれぞれに沿って一つずつ配置されている。本実施形態の室内ユニット(10)では、化粧パネル(22)の互いに対向する二つの辺に沿った第2主吹出し開口(24b)及び第4主吹出し開口(24d)が第1開口(24X)を構成し、残りの第1主吹出し開口(24a)及び第3主吹出し開口(24c)が第2開口(24Y)を構成する。
化粧パネル(22)の主吹出し開口(24a~24d)は、ドレンパン(33)の主吹出し通路(34a~34d)と一対一に対応している。各主吹出し開口(24a~24d)は、対応する主吹出し通路(34a~34d)と連通する。つまり、第1主吹出し開口(24a)は第1主吹出し通路(34a)と、第2主吹出し開口(24b)は第2主吹出し通路(34b)と、第3主吹出し開口(24c)は第3主吹出し通路(34c)と、第4主吹出し開口(24d)は第4主吹出し通路(34d)と、それぞれ連通する。
副吹出し開口(25a~25d)は、1/4円弧状の開口である。副吹出し開口(25a~25d)は、化粧パネル(22)の四つの角部のそれぞれに一つずつ配置されている。化粧パネル(22)の副吹出し開口(25a~25d)は、ドレンパン(33)の副吹出し通路(35a~35d)と一対一に対応している。各副吹出し開口(25a~25d)は、対応する副吹出し通路(35a~35d)と連通する。つまり、第1副吹出し開口(25a)は第1副吹出し通路(35a)と、第2副吹出し開口(25b)は第2副吹出し通路(35b)と、第3副吹出し開口(25c)は第3副吹出し通路(35c)と、第4副吹出し開口(25d)は第4副吹出し通路(35d)と、それぞれ連通する。
〈風向調節羽根〉
図4に示すように各主吹出し開口(24a~24d)には、風向調節羽根(51)が設けられている。風向調節羽根(51)は、吹出し気流の方向(即ち、主吹出し開口(24a~24d)から吹き出される調和空気の流れの方向)を調節するための部材である。
図4に示すように各主吹出し開口(24a~24d)には、風向調節羽根(51)が設けられている。風向調節羽根(51)は、吹出し気流の方向(即ち、主吹出し開口(24a~24d)から吹き出される調和空気の流れの方向)を調節するための部材である。
風向調節羽根(51)は、吹出し気流の方向を上下方向に変更する。つまり、風向調節羽根(51)は、吹出し気流の方向と水平方向のなす角度が変化するように、吹出し気流の方向を変化させる。
風向調節羽根(51)は、化粧パネル(22)の主吹出し開口(24a~24d)の長手方向の一端から他端に亘って延びる細長い板状に形成されている。図3に示すように、風向調節羽根(51)は、その長手方向に延びる中心軸(53)まわりに回動自在となるように、支持部材(52)に支持されている。風向調節羽根(51)は、その横断面(長手方向と直交する断面)の形状が揺動運動の中心軸(53)から遠ざかる方向に凸となるように湾曲している。
図4に示すように、各風向調節羽根(51)には、駆動モータ(54)が連結されている。風向調節羽根(51)は、駆動モータ(54)によって駆動され、中心軸(53)まわりに所定の角度範囲で回転移動する。また、詳しくは後述するが、風向調節羽根(51)は、主吹出し開口(24a~24d)を通過する空気の流れを妨げる気流ブロック位置に変位可能となっており、主吹出し開口(24a~24d)の吹出し気流を阻害する気流阻害機構(50)を兼ねている。
〈センサ〉
吸込温度センサ(61)は、一次空間(21c)におけるベルマウス(36)の入口付近に配置されている。吸込温度センサ(61)は、一次空間(21c)を流れる空気の温度(即ち、室内空間(500)から吸込口(23)を通って室内ユニット(10)へ吸い込まれた空気の温度)を計測する。一方、熱交換器温度センサ(62)は、室内熱交換器(32)に取り付けられている。熱交換器温度センサ(62)は、室内熱交換器(32)の表面の温度を計測する。吸込温度センサ(61)の計測値と熱交換器温度センサ(62)の計測値とは、制御器(90)へ入力される。
吸込温度センサ(61)は、一次空間(21c)におけるベルマウス(36)の入口付近に配置されている。吸込温度センサ(61)は、一次空間(21c)を流れる空気の温度(即ち、室内空間(500)から吸込口(23)を通って室内ユニット(10)へ吸い込まれた空気の温度)を計測する。一方、熱交換器温度センサ(62)は、室内熱交換器(32)に取り付けられている。熱交換器温度センサ(62)は、室内熱交換器(32)の表面の温度を計測する。吸込温度センサ(61)の計測値と熱交換器温度センサ(62)の計測値とは、制御器(90)へ入力される。
〈制御器〉
制御器(90)は、室内ユニット(10)の動作を制御するように構成されている。図示しないが、制御器(90)には、演算処理を行うCPU、データを記憶するメモリ、設置作業者や保守作業者が制御器(90)の動作を設定するためのディップスイッチなどが設けられている。
制御器(90)は、室内ユニット(10)の動作を制御するように構成されている。図示しないが、制御器(90)には、演算処理を行うCPU、データを記憶するメモリ、設置作業者や保守作業者が制御器(90)の動作を設定するためのディップスイッチなどが設けられている。
図5に示すように、制御器(90)は、風向制御部(91)と、室内気温制御部(92)と、吹出しモード決定部(93)とを備えている。また、制御器(90)は、室内ファン(31)の回転速度の制御等も行う。
風向制御部(91)は、駆動モータ(54)を作動させることによって風向調節羽根(51)の位置を制御するように構成されている。この制御器(90)は、四つの風向調節羽根(51)の位置を個別に制御するように構成されている。また、風向制御部(91)は、室内ユニット(10)が後述する全部吹出し動作、第1一部吹出し動作、及び第2一部吹出し動作を実行できるように、風向調節羽根(51)の位置を制御するように構成されている。更に、風向制御部(91)は、室内ユニット(10)が標準吹出しモードと気流ローテーションとを選択的に行うように、各主吹出し開口(24a~24d)に設けられた風向調節羽根(51)の位置を変更するように構成されている。
標準吹出しモードにおいて、室内ユニット(10)は、全部吹出し動作だけを行う。つまり、標準吹出しモードは、室内ユニット(10)が全部吹出し動作を常時行う運転モードである。一方、室内ユニット(10)は、気流ローテーションとして、後述する第1吹出しモード、第2吹出しモード、及び第3吹出しモードを実行可能である。室内ユニット(10)が気流ローテーションとして行う吹出しモードは、室内ユニット(10)の設置作業者や保守作業者が制御器(90)のディップスイッチを操作することによって設定される。
室内気温制御部(92)は、温度制御動作を行う。この温度制御動作は、室内空間(500)の気温の指標となる指標温度が設定温度となるように、室内ユニット(10)の運転状態を、調和空気の温度調節が行われる温度調節状態と、調和空気の温度調節が休止する休止状態とに切り換える動作である。温度制御動作の詳細は後述する。
吹出しモード決定部(93)は、モード決定動作を行う。このモード決定動作は、温度制御動作によって運転状態が休止状態から温度調節状態に切り換わる室内ユニット(10)に標準吹出しモードと気流ローテーションのどちらを実行させるかを決定する動作である。モード決定動作の詳細は後述する。
なお、室内ユニット(10)の設置作業者等が気流ローテーションとして実行される吹出しモードを設定するためのディップスイッチは、室内ユニット(10)の制御器(90)以外に設けられていてもよい。このディップスイッチは、例えば、空気調和装置の室外ユニットの制御器や、空気調和装置のリモコンに設けられていてもよい。
また、室内ユニット(10)の設置作業者等が気流ローテーションとして実行される吹出しモードを設定するため手段は、ディップスイッチに限定されない。例えば、室内ユニット(10)の設置作業者等がリモコンを操作することによって、気流ローテーションとして実行される吹出しモードを設定するようにしてもよい。その場合には、リモコンの表示画面に室内ユニット(10)が実行可能な吹出しモードを表示すると、設定作業が容易となる。
-室内ユニットの冷房運転と暖房運転-
室内ユニット(10)は、室内空間(500)を冷房するための冷房運転と、室内空間(500)を暖房するための暖房運転とを選択的に行う。
室内ユニット(10)は、室内空間(500)を冷房するための冷房運転と、室内空間(500)を暖房するための暖房運転とを選択的に行う。
冷房運転中の室内ユニット(10)は、室内熱交換器(32)が蒸発器として機能して室内熱交換器(32)において空気が冷却される温度調節状態と、室内熱交換器(32)への冷媒の供給が停止して室内熱交換器(32)における空気の冷却が休止する休止状態とに切り換わる。なお、冷房運転中の室内ユニット(10)は、温度調節状態と休止状態の両方において室内ファン(31)が作動する。
暖房運転中の室内ユニット(10)は、室内熱交換器(32)が凝縮器として機能して室内熱交換器(32)において空気が加熱される温度調節状態と、室内熱交換器(32)への冷媒の供給が停止して室内熱交換器(32)における空気の加熱が休止する休止状態とに切り換わる。なお、暖房運転中の室内ユニット(10)は、温度調節状態と休止状態の両方において室内ファン(31)が作動する。
-室内ユニット内における空気の流れ-
室内ユニット(10)の運転中には、室内ファン(31)が回転する。室内ファン(31)が回転すると、室内空間(500)の室内空気が、吸込口(23)を通ってケーシング(20)内の一次空間(21c)へ流入する。一次空間(21c)へ流入した空気は、室内ファン(31)に吸い込まれ、二次空間(21d)へ吹き出される。
室内ユニット(10)の運転中には、室内ファン(31)が回転する。室内ファン(31)が回転すると、室内空間(500)の室内空気が、吸込口(23)を通ってケーシング(20)内の一次空間(21c)へ流入する。一次空間(21c)へ流入した空気は、室内ファン(31)に吸い込まれ、二次空間(21d)へ吹き出される。
二次空間(21d)へ流入した空気は、室内熱交換器(32)を通過する間に冷却され又は加熱され、その後に四つの主吹出し通路(34a~34d)と四つの副吹出し通路(35a~35d)へ分かれて流入する。主吹出し通路(34a~34d)へ流入した空気は、主吹出し開口(24a~24d)を通って室内空間(500)へ吹き出される。副吹出し通路(35a~35d)へ流入した空気は、副吹出し開口(25a~25d)を通って室内空間(500)へ吹き出される。
-風向調節羽根の動作-
上述したように、風向調節羽根(51)は、中心軸(53)まわりに回転移動することによって、吹出し気流の方向を変更する。風向調節羽根(51)は、図6に示す水平吹き位置と、図7に示す下吹き位置との間を移動可能となっている。また、風向調節羽根(51)は、図7に示す下吹き位置から更に回転移動することによって、図8に示す気流ブロック位置にも移動可能となっている。
上述したように、風向調節羽根(51)は、中心軸(53)まわりに回転移動することによって、吹出し気流の方向を変更する。風向調節羽根(51)は、図6に示す水平吹き位置と、図7に示す下吹き位置との間を移動可能となっている。また、風向調節羽根(51)は、図7に示す下吹き位置から更に回転移動することによって、図8に示す気流ブロック位置にも移動可能となっている。
風向調節羽根(51)の位置が図6に示す水平吹き位置になっている場合は、主吹出し通路(34a~34d)を下向きに流れてきた空気の流れの方向が横方向に変更され、主吹出し開口(24a~24d)の吹出し気流が水平吹き状態となる。この場合、主吹出し開口(24a~24d)の吹出し気流の方向(即ち、主吹出し開口(24a~24d)から吹き出される調和空気の流れの方向)は、水平方向に対して例えば20°程度に設定される。この場合、厳密に言えば吹出し気流の方向は水平方向よりも僅かに下向きとなるが、気流の方向は実質的に水平方向であると言って差し支えない。
風向調節羽根(51)の位置が図7に示す下吹き位置になっている場合は、主吹出し通路(34a~34d)を下向きに流れてきた空気の流れの方向が概ねそのまま維持され、主吹出し開口(24a~24d)の吹出し気流が下吹き状態となる。この場合、吹出し気流の方向は、厳密に言えば、真下よりも吸込口(23)から離れる方向に若干傾いた斜め下方向となる。
風向調節羽根(51)の位置が図8に示す気流ブロック位置になっている場合は、主吹出し開口(24a~24d)の大半が風向調節羽根(51)によって塞がれた状態になると共に、主吹出し通路(34a~34d)を下向きに流れてきた空気の流れの方向が吸込口(23)側に変更される。この場合、主吹出し開口(24a~24d)を通過する際の空気の圧力損失が大きくなるため、主吹出し開口(24a~24d)を通過する調和空気の流量が少なくなる。また、調和空気は、主吹出し開口(24a~24d)から吸込口(23)側へ向かって吹き出される。このため、主吹出し開口(24a~24d)から吹き出された調和空気は、すぐに吸込口(23)へ吸い込まれることとなる。つまり、風向調節羽根(51)が気流ブロック位置となっている主吹出し開口(24a~24d)からは、調和空気が室内空間(500)へ実質的に供給されない。
-風向制御部の動作-
風向制御部(91)は、室内ユニット(10)が気流ローテーションを行うように、各主吹出し開口(24a~24d)に設けられた風向調節羽根(51)の位置を変更する。なお、この気流ローテーション中において、制御器(90)は、室内ファン(31)の回転速度を実質的に最大値に保つ。
風向制御部(91)は、室内ユニット(10)が気流ローテーションを行うように、各主吹出し開口(24a~24d)に設けられた風向調節羽根(51)の位置を変更する。なお、この気流ローテーション中において、制御器(90)は、室内ファン(31)の回転速度を実質的に最大値に保つ。
ここでは、先ず、室内ユニット(10)が気流ローテーションとして第1吹出しモードを行う場合の風向制御部(91)の動作について詳しく説明し、その後に、室内ユニット(10)が気流ローテーションとして第2及び第3の各吹出しモードを行う場合の風向制御部(91)の動作について説明する。
〈第1吹出しモード〉
図9に示すように、気流ローテーションとして行われる第1吹出しモードの一つのサイクルでは、一回目の全部吹出し動作と、第1一部吹出し動作と、二回目の全部吹出し動作と、第2一部吹出し動作とが順に行われる。つまり、第1吹出しモードの一つのサイクルでは、二回の全部吹出し動作と、一回の第1一部吹出し動作と、一回の第2一部吹出し動作とが行われる。
図9に示すように、気流ローテーションとして行われる第1吹出しモードの一つのサイクルでは、一回目の全部吹出し動作と、第1一部吹出し動作と、二回目の全部吹出し動作と、第2一部吹出し動作とが順に行われる。つまり、第1吹出しモードの一つのサイクルでは、二回の全部吹出し動作と、一回の第1一部吹出し動作と、一回の第2一部吹出し動作とが行われる。
〈暖房運転時の第1吹出しモード(気流ローテーション)〉
暖房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、下吹き位置に設定する。このため、暖房運転時の全部吹出し動作では、四つの主吹出し開口(24a~24d)から調和空気が下向きに吹き出される。
暖房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、下吹き位置に設定する。このため、暖房運転時の全部吹出し動作では、四つの主吹出し開口(24a~24d)から調和空気が下向きに吹き出される。
暖房運転時の第1一部吹出し動作において、風向制御部(91)は、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を水平吹き位置に設定し、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を気流ブロック位置に設定する。このため、調和空気は、第2主吹出し開口(24b)及び第4主吹出し開口(24d)から室内空間(500)へ吹き出され、第1主吹出し開口(24a)及び第3主吹出し開口(24c)からは室内空間(500)へ実質的に吹き出されない。また、第2主吹出し開口(24b)及び第4主吹出し開口(24d)の吹出し風速は、全部吹出し動作における吹出し風速よりも高くなる。つまり、この第1一部吹出し動作では、第2主吹出し開口(24b)及び第4主吹出し開口(24d)から、調和空気が、全部吹出し動作中よりも高い流速で、実質的に水平方向へ向かって吹き出される。
暖房運転時の第2一部吹出し動作において、風向制御部(91)は、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を水平吹き位置に設定し、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を気流ブロック位置に設定する。このため、調和空気は、第1主吹出し開口(24a)及び第3主吹出し開口(24c)から室内空間(500)へ吹き出され、第2主吹出し開口(24b)及び第4主吹出し開口(24d)からは室内空間(500)へ実質的に吹き出されない。また、第1主吹出し開口(24a)及び第3主吹出し開口(24c)の吹出し風速は、全部吹出し動作における吹出し風速よりも高くなる。つまり、この第2一部吹出し動作では、二つの第1主吹出し開口(24a)及び第3主吹出し開口(24c)から、調和空気が、全部吹出し動作中よりも高い流速で、実質的に水平方向へ向かって吹き出される。
なお、全部吹出し動作、第1一部吹出し動作、及び第2一部吹出し動作の何れにおいても、副吹出し開口(25a~25d)からは調和空気が吹き出される。
図9に示すように、暖房運転時の第1吹出しモードの一つのサイクルでは、一回目の全部吹出し動作と、第1一部吹出し動作と、二回目の全部吹出し動作と、第2一部吹出し動作とが順に行われる。暖房運転時の第1吹出しモードの一つのサイクルでは、一回目の全部吹出し動作の継続時間、第1一部吹出し動作の継続時間、二回目の全部吹出し動作の継続時間、及び第2一部吹出し動作の継続時間のそれぞれが、互いに同じ時間(例えば、120秒)に設定される。
なお、暖房運転時の第1吹出しモードの一つのサイクルでは、一回目と二回目の全部吹出し動作のそれぞれの継続時間が、第1一部吹出し動作の継続時間と第2一部吹出し動作の継続時間のそれぞれよりも長い時間に設定されてもよい。
〈暖房運転時の室内空間の温度分布〉
暖房運転時の室内空間(500)の温度分布について、図10A及び図10Bを参照しながら説明する。
暖房運転時の室内空間(500)の温度分布について、図10A及び図10Bを参照しながら説明する。
図10A及び図10Bは、室内ユニット(10)の暖房運転中における室内空間(500)の温度分布のシミュレーション結果を示している。図10A及び図10Bは、室内ユニット(10)が暖房運転を開始してから20分後の、室内空間(500)の床面から60cmの位置における気温を示している。また、図10A及び図10Bでは、ハッチングの密度が高い領域ほど気温が高い。
なお、シミュレーションの対象となる部屋は、床面が概ね正方形状であり、中央にパーティション(510)が設けられた細長い二つのデスク(511)が平行に配置されている。また、室内ユニット(10)は、室内空間(500)の天井の概ね中央に配置されている。
まず、室内空間(500)に従来の室内ユニット(610)が設置されている場合の、室内空間(500)の温度分布について、図10Aを参照しながら説明する。
暖房運転時において、従来の室内ユニット(610)では、全ての主吹出し開口(24a~24d)の風向調節羽根(51)が下吹き位置に設定される。そして、従来の室内ユニット(610)は、室内熱交換器(32)を通過する際に加熱された空気を、全ての主吹出し開口(24a~24d)から実質的に床面に向かって吹き出す。
図10Aに示すように、室内空間(500)では、室内ユニット(610)の下方に位置する中央部の領域において、気温が非常に高くなっている。これは、室内ユニット(610)から下向きに吹き出された暖かい調和空気が、二つのパーティション(510)に挟まれた室内空間(500)の中央部の領域に滞留するからだと推定される。
一方、室内空間(500)では、室内ユニット(610)から離れた周辺部の領域において、気温が充分に上昇していない。これは、室内ユニット(610)から下向きに吹き出された暖かい調和空気が、パーティション(510)よりも壁(502)側の領域に到達できないからだと推定される。
次に、室内空間(500)に本実施形態の室内ユニット(10)が設置されている場合の、室内空間(500)の温度分布について、図10Bを参照しながら説明する。
暖房運転時において、第1吹出しモードを行う本実施形態の室内ユニット(10)は、一回目の全部吹出し動作と、第1一部吹出し動作と、二回目の全部吹出し動作と、第2一部吹出し動作と順に繰り返し行う。
全部吹出し動作では、室内ユニット(10)から下向きに吹き出された暖かい調和空気が、二つのパーティション(510)に挟まれた室内空間(500)の中央部の領域に供給される。このため、室内空間(500)では、室内ユニット(10)の下方に位置する中央部の領域において、気温が上昇する。ただし、全部吹出し動作が間欠的に行われるため、室内空間(500)の中央部の領域における気温が過度に上昇することは無い。
一方、第1一部吹出し動作および第2一部吹出し動作では、室内ユニット(10)から吹き出された暖かい調和空気が、概ね水平方向へ、全部吹出し動作中よりも高い流速で吹き出される。従って、第1一部吹出し動作および第2一部吹出し動作では、室内ユニット(10)から吹き出された暖かい調和空気が、パーティション(510)の上方を流れて室内空間(500)の壁(502)にまで到達する。このため、室内空間(500)では、室内ユニット(10)から離れた周辺部の領域においても、気温が上昇する。
また、第1一部吹出し動作および第2一部吹出し動作では、室内ユニット(10)から吹き出された暖かい調和空気が、室内空間(500)の壁(502)にまで到達し、壁(502)に沿って下方へと流れる。このため、室内空間(500)の壁(502)が調和空気によって暖められ、その結果、室内空間(500)の壁(502)の温度が上昇する。従って、室内空間(500)の周辺部の領域では、壁(502)が調和空気によって暖められることによっても、気温の低下が抑えられる。
また、室内ユニット(10)から吹き出されて室内空間(500)の壁(502)に到達した暖かい調和空気が、壁(502)から床に沿って流れることによって、室内空間(500)の全体を包み込むような気流が形成される。そして、このような気流を形成することによっても、室内空間(500)の全体に暖かい調和空気が行き渡り、室内空間(500)の中央部と周辺部の気温差が小さく抑えられる。
このように、暖房運転時に本実施形態の室内ユニット(10)が第1吹出しモード(即ち、気流ローテーション)を行う場合は、従来の室内ユニット(610)が暖房運転を行う場合に比べて、室内空間(500)の中央部と周辺部における気温の差が大幅に縮小する。
〈冷房運転時の第1吹出しモード(気流ローテーション)〉
冷房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、水平吹き位置と下吹き位置の間で往復移動させる。このため、冷房運転時の全部吹出し動作では、四つの主吹出し開口(24a~24d)から調和空気が吹き出されると共に、主吹出し開口(24a~24d)の吹出し気流の方向が変動する。なお、冷房運転時の全部吹出し動作では、風向調節羽根(51)の移動範囲の下限を、下吹き位置よりも高い位置(即ち、水平吹き位置寄りの位置)に設定してもよい。
冷房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、水平吹き位置と下吹き位置の間で往復移動させる。このため、冷房運転時の全部吹出し動作では、四つの主吹出し開口(24a~24d)から調和空気が吹き出されると共に、主吹出し開口(24a~24d)の吹出し気流の方向が変動する。なお、冷房運転時の全部吹出し動作では、風向調節羽根(51)の移動範囲の下限を、下吹き位置よりも高い位置(即ち、水平吹き位置寄りの位置)に設定してもよい。
冷房運転時の第1一部吹出し動作において、風向制御部(91)は、暖房運転時の第1一部吹出し動作と同様に、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を水平吹き位置に設定し、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を気流ブロック位置に設定する。従って、冷房運転時の第1一部吹出し動作では、暖房運転時の第1一部吹出し動作と同様に、第2主吹出し開口(24b)及び第4主吹出し開口(24d)から、調和空気が、全部吹出し動作中よりも高い流速で、実質的に水平方向へ向かって吹き出される。
冷房運転時の第2一部吹出し動作において、風向制御部(91)は、暖房運転時の第2一部吹出し動作と同様に、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を水平吹き位置に設定し、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を気流ブロック位置に設定する。従って、冷房運転時の第2一部吹出し動作では、暖房運転時の第2一部吹出し動作と同様に、第1主吹出し開口(24a)及び第3主吹出し開口(24c)から、調和空気が、全部吹出し動作中よりも高い流速で、実質的に水平方向へ向かって吹き出される。
なお、全部吹出し動作、第1一部吹出し動作、及び第2一部吹出し動作の何れにおいても、副吹出し開口(25a~25d)からは調和空気が吹き出される。
図9に示すように、冷房運転時の第1吹出しモードの一つのサイクルでは、一回目の全部吹出し動作と、第1一部吹出し動作と、二回目の全部吹出し動作と、第2一部吹出し動作とが順に行われる。冷房運転時の第1吹出しモードの一つのサイクルでは、一回目と二回目の全部吹出し動作のそれぞれの継続時間が、第1一部吹出し動作の継続時間と第2一部吹出し動作の継続時間のそれぞれよりも長い時間に設定される。例えば、一回目と二回目の全部吹出し動作のそれぞれの継続時間が600秒に設定され、第1一部吹出し動作の継続時間と第2一部吹出し動作の継続時間のそれぞれが120秒に設定される。
なお、冷房暖房運転時の第1吹出しモードの一つのサイクルでは、一回目の全部吹出し動作の継続時間、第1一部吹出し動作の継続時間、二回目の全部吹出し動作の継続時間、及び第2一部吹出し動作の継続時間のそれぞれが、互いに同じ時間に設定されてもよい。
〈冷房運転時の室内空間の温度分布〉
冷房運転時の室内空間(500)の温度分布について、図11A及び図11Bを参照しながら説明する。
冷房運転時の室内空間(500)の温度分布について、図11A及び図11Bを参照しながら説明する。
図11A及び図11Bは、室内ユニット(10)の冷房運転中における室内空間(500)の温度分布のシミュレーション結果を示している。図11A及び図11Bは、室内ユニット(10)が冷房運転を開始してから20分後の、室内空間(500)の床面から60cmの位置における気温を示している。また、図11A及び図11Bでは、ハッチングの密度が高い領域ほど気温が低い。
なお、シミュレーションの対象となる部屋は、床面が概ね正方形状であり、中央にパーティション(510)が設けられた細長い二つのデスク(511)が平行に配置されている。また、室内ユニット(10)は、室内空間(500)の天井の概ね中央に配置されている。
まず、室内空間(500)に従来の室内ユニット(610)が設置されている場合の、室内空間(500)の温度分布について、図11Aを参照しながら説明する。
冷房運転時において、従来の室内ユニット(610)では、全ての主吹出し開口(24a~24d)の風向調節羽根(51)が水平吹き位置と下吹き位置の間を周期的に往復する。そして、従来の室内ユニット(610)は、室内熱交換器(32)を通過する際に冷却された空気を、全ての主吹出し開口(24a~24d)から室内空間(500)へ供給する。
図11Aに示すように、室内空間(500)では、室内ユニット(610)の下方に位置する中央部の領域において、気温が非常に低くなっている。室内ユニット(610)から吹き出された冷たい調和空気は、室内空間(500)に存在する空気よりも温度が低く、比重が大きい。従って、風向調節羽根(51)が移動することによって主吹出し開口(24a~24d)の吹出し気流の方向が変動していても、温度の低い調和空気は、床面に向かって降下してゆく。このため、室内ユニット(610)から吹き出された冷たい調和空気は、二つのパーティション(510)に挟まれた室内空間(500)の中央部の領域に滞留し、その結果、室内空間(500)の中央部の領域の温度が非常に低くなると推定される。
一方、室内空間(500)では、室内ユニット(610)から離れた周辺部の領域において、気温が充分に低下していない。これは、室内ユニット(610)から吹き出された冷たい調和空気が、パーティション(510)よりも壁(502)側の領域に到達できないからだと推定される。
次に、室内空間(500)に本実施形態の室内ユニット(10)が設置されている場合の、室内空間(500)の温度分布について、図11Bを参照しながら説明する。
冷房運転時において、第1吹出しモードを行う本実施形態の室内ユニット(10)は、一回目の全部吹出し動作と、第1一部吹出し動作と、二回目の全部吹出し動作と、第2一部吹出し動作と順に行う。
全部吹出し動作では、室内ユニット(10)から吹き出された冷たい調和空気が、主に二つのパーティション(510)に挟まれた室内空間(500)の中央部の領域に供給される。このため、室内空間(500)では、室内ユニット(10)の下方に位置する中央部の領域において、気温が低下する。ただし、全部吹出し動作が間欠的に行われるため、室内空間(500)の中央部の領域における気温が過度に低下することは無い。
一方、第1一部吹出し動作および第2一部吹出し動作では、室内ユニット(10)から吹き出された冷たい調和空気が、概ね水平方向へ、全部吹出し動作中よりも高い流速で吹き出される。従って、第1一部吹出し動作および第2一部吹出し動作では、室内ユニット(10)から吹き出された冷たい調和空気が、パーティション(510)の上方を流れて室内空間(500)の壁(502)にまで到達する。このため、室内空間(500)では、室内ユニット(10)から離れた周辺部の領域においても、気温が低下する。
また、室内ユニット(10)から吹き出されて室内空間(500)の壁(502)に到達した冷たい調和空気が、壁(502)から床に沿って流れることによって、室内空間(500)の全体を包み込むような気流が形成される。そして、このような気流を形成することによっても、室内空間(500)の全体に冷たい調和空気が行き渡り、室内空間(500)の中央部と周辺部の気温差が小さく抑えられる。
このように、冷房運転時に本実施形態の室内ユニット(10)が第1吹出しモード(即ち、気流ローテーション)を行う場合は、従来の室内ユニット(610)が冷房運転を行う場合に比べて、室内空間(500)の中央部と周辺部における気温の差が大幅に縮小する。
〈第2吹出しモード〉
図12に示すように、気流ローテーションとして行われる第2吹出しモードの一つのサイクルでは、全部吹出し動作と、第1一部吹出し動作とが順に行われる。つまり、第2吹出しモードの一つのサイクルでは、全部吹出し動作と第1一部吹出し動作とが一回ずつ行われる。
図12に示すように、気流ローテーションとして行われる第2吹出しモードの一つのサイクルでは、全部吹出し動作と、第1一部吹出し動作とが順に行われる。つまり、第2吹出しモードの一つのサイクルでは、全部吹出し動作と第1一部吹出し動作とが一回ずつ行われる。
〈暖房運転時の第2吹出しモード〉
第1吹出しモードと同様に、暖房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、下吹き位置に設定する。また、第1吹出しモードと同様に、暖房運転時の第1一部吹出し動作において、風向制御部(91)は、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を水平吹き位置に設定し、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を気流ブロック位置に設定する。
第1吹出しモードと同様に、暖房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、下吹き位置に設定する。また、第1吹出しモードと同様に、暖房運転時の第1一部吹出し動作において、風向制御部(91)は、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を水平吹き位置に設定し、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を気流ブロック位置に設定する。
このため、暖房運転中において、第2吹出しモードの全部吹出し動作では、第1吹出しモードの全部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出され、第2吹出しモードの第1一部吹出し動作では、第1吹出しモードの第1一部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出される。
暖房運転時の第2吹出しモードの一つのサイクルでは、全部吹出し動作の継続時間と、第1一部吹出し動作の継続時間とのそれぞれが、互いに同じ時間(例えば、120秒)に設定される。
〈冷房運転時の第2吹出しモード〉
第1吹出しモードと同様に、冷房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、水平吹き位置と下吹き位置の間で往復移動させる。また、第1吹出しモードと同様に、冷房運転時の第1一部吹出し動作において、風向制御部(91)は、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を水平吹き位置に設定し、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を気流ブロック位置に設定する。
第1吹出しモードと同様に、冷房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、水平吹き位置と下吹き位置の間で往復移動させる。また、第1吹出しモードと同様に、冷房運転時の第1一部吹出し動作において、風向制御部(91)は、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を水平吹き位置に設定し、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を気流ブロック位置に設定する。
このため、冷房運転中において、第2吹出しモードの全部吹出し動作では、第1吹出しモードの全部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出され、第2吹出しモードの第1一部吹出し動作では、第1吹出しモードの第1一部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出される。
冷房運転時の第2吹出しモードの一つのサイクルでは、全部吹出し動作の継続時間が、第1一部吹出し動作の継続時間よりも長い時間に設定される。例えば、全部吹出し動作の継続時間が600秒に設定され、第1一部吹出し動作の継続時間が120秒に設定される。
〈第3吹出しモード〉
図13に示すように、気流ローテーションとして行われる第3吹出しモードの一つのサイクルでは、全部吹出し動作と、第2一部吹出し動作とが順に行われる。つまり、第3吹出しモードの一つのサイクルでは、全部吹出し動作と第2一部吹出し動作とが一回ずつ行われる。
図13に示すように、気流ローテーションとして行われる第3吹出しモードの一つのサイクルでは、全部吹出し動作と、第2一部吹出し動作とが順に行われる。つまり、第3吹出しモードの一つのサイクルでは、全部吹出し動作と第2一部吹出し動作とが一回ずつ行われる。
〈暖房運転時の第3吹出しモード〉
第1吹出しモードと同様に、暖房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、下吹き位置に設定する。また、第1吹出しモードと同様に、暖房運転時の第2一部吹出し動作において、風向制御部(91)は、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を水平吹き位置に設定し、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を気流ブロック位置に設定する。
第1吹出しモードと同様に、暖房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、下吹き位置に設定する。また、第1吹出しモードと同様に、暖房運転時の第2一部吹出し動作において、風向制御部(91)は、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を水平吹き位置に設定し、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を気流ブロック位置に設定する。
このため、暖房運転中において、第3吹出しモードの全部吹出し動作では、第1吹出しモードの全部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出され、第3吹出しモードの第2一部吹出し動作では、第1吹出しモードの第2一部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出される。
暖房運転時の第3吹出しモードの一つのサイクルでは、全部吹出し動作の継続時間と、第2一部吹出し動作の継続時間とのそれぞれが、互いに同じ時間(例えば、120秒)に設定される。
〈冷房運転時の第3吹出しモード〉
第1吹出しモードと同様に、冷房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、水平吹き位置と下吹き位置の間で往復移動させる。また、第1吹出しモードと同様に、冷房運転時の第2一部吹出し動作において、風向制御部(91)は、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を水平吹き位置に設定し、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を気流ブロック位置に設定する。
第1吹出しモードと同様に、冷房運転時の全部吹出し動作において、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、水平吹き位置と下吹き位置の間で往復移動させる。また、第1吹出しモードと同様に、冷房運転時の第2一部吹出し動作において、風向制御部(91)は、第2開口(24Y)を構成する二つの主吹出し開口(24a,24c)の風向調節羽根(51)を水平吹き位置に設定し、第1開口(24X)を構成する二つの主吹出し開口(24b,24d)の風向調節羽根(51)を気流ブロック位置に設定する。
このため、冷房運転中において、第3吹出しモードの全部吹出し動作では、第1吹出しモードの全部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出され、第3吹出しモードの第2一部吹出し動作では、第1吹出しモードの第2一部吹出し動作と同様に室内ユニット(10)から調和空気が吹き出される。
冷房運転時の第3吹出しモードの一つのサイクルでは、全部吹出し動作の継続時間が、第2一部吹出し動作の継続時間よりも長い時間に設定される。例えば、全部吹出し動作の継続時間が600秒に設定され、第2一部吹出し動作の継続時間が120秒に設定される。
-室内気温制御部の動作-
制御器(90)の室内気温制御部(92)は、温度制御動作を行う。温度制御動作において、室内気温制御部(92)は、吸込温度センサ(61)の計測値を指標温度Tiとして用いると共に、制御器(90)のメモリが記憶する設定温度Tsを用いる。設定温度Tsは、空気調和装置のユーザーがリモコン等を操作することによって、制御器(90)のメモリに入力される。
制御器(90)の室内気温制御部(92)は、温度制御動作を行う。温度制御動作において、室内気温制御部(92)は、吸込温度センサ(61)の計測値を指標温度Tiとして用いると共に、制御器(90)のメモリが記憶する設定温度Tsを用いる。設定温度Tsは、空気調和装置のユーザーがリモコン等を操作することによって、制御器(90)のメモリに入力される。
室内気温制御部(92)は、指標温度Tiが設定温度Tsとなるように、室内ユニット(10)の運転状態を、温度調節状態と休止状態に切り換える。具体的に、室内気温制御部(92)は、設定温度Tsを中心とする目標温度範囲(例えば、(Ts-1)℃以上(Ts+1)℃以下の範囲)に指標温度Tiが入るように、室内ユニット(10)の運転状態を、温度調節状態と休止状態に切り換える。
室内ユニット(10)の冷房運転中において、室内ユニット(10)の運転状態が温度調節状態であるときに指標温度Tiが(Ts-1)℃を下回ると(Ti<Ts-1)、室内気温制御部(92)は、室内空間(500)の気温が下がり過ぎないように、室内ユニット(10)の運転状態を温度調節状態から休止状態に切り換える。また、室内ユニット(10)の冷房運転中において、室内ユニット(10)の運転状態が休止状態であるときに指標温度Tiが(Ts+1)℃を上回ると(Ts+1<Ti)、室内空間(500)の気温を引き下げるため、室内気温制御部(92)は、室内ユニット(10)の運転状態を休止状態から温度調節状態に切り換える。
室内ユニット(10)の暖房運転中において、室内ユニット(10)の運転状態が温度調節状態であるときに指標温度Tiが(Ts+1)℃を上回ると(Ts+1<Ti)、室内気温制御部(92)は、室内空間(500)の気温が上がり過ぎないように、室内ユニット(10)の運転状態を温度調節状態から休止状態に切り換える。また、室内ユニット(10)の暖房運転中において、室内ユニット(10)の運転状態が休止状態であるときに指標温度Tiが(Ts-1)℃を下回ると(Ti<Ts-1)、室内空間(500)の気温を引き上げるため、室内気温制御部(92)は、室内ユニット(10)の運転状態を休止状態から温度調節状態に切り換える。
なお、室内気温制御部(92)は、室内ユニット(10)の運転状態が温度調節状態から休止状態に切り換わってから所定時間(例えば、5分間)が経過するまでは、休止状態から温度調節状態への切り換えを禁止する。これは、室外ユニットに設けられた圧縮機の頻繁な起動と停止を回避し、圧縮機の故障を未然に防ぐためである。
-吹出しモード決定部の動作-
制御器(90)の吹出しモード決定部(93)は、モード決定動作を行う。このモード決定動作は、室内気温制御部(92)が室内ユニット(10)の運転状態を休止状態から温度調節状態に切り換える際に行われる。
制御器(90)の吹出しモード決定部(93)は、モード決定動作を行う。このモード決定動作は、室内気温制御部(92)が室内ユニット(10)の運転状態を休止状態から温度調節状態に切り換える際に行われる。
モード決定動作において、吹出しモード決定部(93)は、吸込温度センサ(61)の計測値Trと、制御器(90)のメモリが記憶する設定温度Tsを用いる。
また、吹出しモード決定部(93)は、制御器(90)のメモリが記憶する基準温度差ΔT0(例えば、3℃)を、判定基準値として用いる。基準温度差ΔT0は、目標温度範囲の上限値または下限値と設定温度の差(本実施形態では1℃)よりも大きな値に設定される。
更に、吹出しモード決定部(93)は、室内空間(500)の空調負荷を示す空調負荷指標として、冷房運転時には吸込温度センサ(61)の計測値Trから設定温度Tsを減じて得られる冷房時温度差ΔTc(=Tr-Ts)を用い、暖房運転時には設定温度Tsから吸込温度センサ(61)の計測値Trを減じて得られる暖房時温度差ΔTh(=Ts-Tr)を用いる。冷房時温度差ΔTcは、室内の冷房負荷が大きいほど大きくなり、暖房時温度差ΔThは、室内の暖房負荷が大きいほど大きくなる。
室内気温制御部(92)が室内ユニット(10)の運転状態を休止状態から温度調節状態に切り換えることを決定すると、吹出しモード決定部(93)は、空調負荷指標を判定基準値と比較する。具体的に、吹出しモード決定部(93)は、冷房運転中であれば冷房時温度差ΔTcを基準温度差ΔT0と比較し、暖房運転中であれば暖房時温度差ΔThを基準温度差ΔT0と比較する。
〈空調負荷指標≦判定基準値〉
空調負荷指標が判定基準値以下である場合(即ち、冷房運転中にΔTc≦ΔT0となっている場合と、暖房運転中にΔTh≦ΔT0となっている場合)は、室内空間(500)の空調負荷が比較的小さいと判断できる。そこで、この場合、吹出しモード決定部(93)は、運転状態が休止状態から温度調節状態に切り換わる室内ユニット(10)に実行させる吹出しモードを、標準吹出しモードに決定する。
空調負荷指標が判定基準値以下である場合(即ち、冷房運転中にΔTc≦ΔT0となっている場合と、暖房運転中にΔTh≦ΔT0となっている場合)は、室内空間(500)の空調負荷が比較的小さいと判断できる。そこで、この場合、吹出しモード決定部(93)は、運転状態が休止状態から温度調節状態に切り換わる室内ユニット(10)に実行させる吹出しモードを、標準吹出しモードに決定する。
続いて、吹出しモード決定部(93)は、室内ユニット(10)に標準吹出しモードを実行させる旨の指令信号を、風向制御部(91)へ出力する。吹出しモード決定部(93)からの指令信号を受信した風向制御部(91)は、室内ユニット(10)が標準吹出しモードを実行するように、各主吹出し開口(24a~24d)の風向調節羽根(51)を制御する。その結果、運転状態が休止状態から温度調節状態に切り換わった室内ユニット(10)は、標準吹出しモードを実行する。
標準吹出しモードは、室内ユニット(10)が全部吹出し動作を常時行う運転モードである。このため、室内ユニット(10)では、全ての主吹出し開口(24a~24d)から温度調節された調和空気が吹き出される。暖房運転中であれば、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、下吹き位置に設定する。冷房運転中であれば、風向制御部(91)は、全ての主吹出し開口(24a~24d)の風向調節羽根(51)を、水平吹き位置と下吹き位置の間で往復移動させる。
〈判定基準値<空調負荷指標〉
空調負荷指標が判定基準値を上回る場合(即ち、冷房運転中にΔT0<ΔTcとなっている場合と、暖房運転中にΔT0<ΔThとなっている場合)は、室内空間(500)の空調負荷が比較的大きいと判断できる。そこで、この場合、吹出しモード決定部(93)は、運転状態が休止状態から温度調節状態に切り換わる室内ユニット(10)に実行させる吹出しモードを、気流ローテーションに決定する。
空調負荷指標が判定基準値を上回る場合(即ち、冷房運転中にΔT0<ΔTcとなっている場合と、暖房運転中にΔT0<ΔThとなっている場合)は、室内空間(500)の空調負荷が比較的大きいと判断できる。そこで、この場合、吹出しモード決定部(93)は、運転状態が休止状態から温度調節状態に切り換わる室内ユニット(10)に実行させる吹出しモードを、気流ローテーションに決定する。
上述したように、第1吹出しモードと第2吹出しモードと第3吹出しモードのうち室内ユニット(10)が気流ローテーションとして実行する吹出しモードは、室内ユニット(10)の設置作業者や保守作業者が制御器(90)のディップスイッチを操作することによって予め設定されている。吹出しモード決定部(93)は、気流ローテーションとして予め設定された第1吹出しモードと第2吹出しモードと第3吹出しモードの何れか一つを室内ユニット(10)に実行させる旨の指令信号を、風向制御部(91)へ出力する。
吹出しモード決定部(93)からの指令信号を受信した風向制御部(91)は、室内ユニット(10)が第1吹出しモードと第2吹出しモードと第3吹出しモードの何れか一つを実行するように、各主吹出し開口(24a~24d)の風向調節羽根(51)を制御する。その結果、運転状態が休止状態から温度調節状態に切り換わった室内ユニット(10)は、気流ローテーションを実行する。
室内ユニット(10)が気流ローテーションとして行う第1吹出しモードと第2吹出しモードと第3吹出しモードの何れにおいても、一部吹出し動作が行われる。つまり、第1吹出しモードでは第1一部吹出し動作と第2一部吹出し動作とが行われ、第2吹出しモードでは第1一部吹出し動作が行われ、第3吹出しモードでは第2一部吹出し動作が行われる。これらの一部吹出し動作では、全部吹出し動作に比べて、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気を供給することができる。
そこで、空調負荷指標が判定基準値を上回っており、室内の空調負荷が比較的大きいと判断できる場合は、室内ユニット(10)に気流ローテーションを実行させ、気流ローテーションにおいて行われる一部吹出し動作によって、室内空間(500)のうち室内ユニット(10)から比較的遠い領域へ調和空気を供給する。その結果、室内空間(500)の全体の気温を、速やかに設定温度に近づけることが可能となる。
-実施形態の効果-
本実施形態の室内ユニット(10)が行う気流ローテーションでは、室内空間(500)のうち室内ユニット(10)に比較的近い領域に調和空気が供給される全部吹出し動作と、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気が供給される第1一部吹出し動作または第2一部吹出し動作とが行われる。このため、室内空間(500)のうち室内ユニット(10)に比較的近い領域と、室内ユニット(10)から比較的遠い領域とに調和空気を供給することができ、室内空間(500)の各部分における気温の差を縮小することが可能となる。
本実施形態の室内ユニット(10)が行う気流ローテーションでは、室内空間(500)のうち室内ユニット(10)に比較的近い領域に調和空気が供給される全部吹出し動作と、室内空間(500)のうち室内ユニット(10)から比較的遠い領域に調和空気が供給される第1一部吹出し動作または第2一部吹出し動作とが行われる。このため、室内空間(500)のうち室内ユニット(10)に比較的近い領域と、室内ユニット(10)から比較的遠い領域とに調和空気を供給することができ、室内空間(500)の各部分における気温の差を縮小することが可能となる。
ここで、第1一部吹出し動作および第2一部吹出し動作では、吹出し風速が全部吹出し動作中に比べて高くなるため、吹出し気流が在室者の体に直接当たる可能性がある。しかし、室内ユニット(10)は、気流ローテーションにおいて、第1一部吹出し動作または第2一部吹出し動作を実行し続けるのでは無く、第1一部吹出し動作と第2一部吹出し動作の一方または両方と、全部吹出し動作とを切り換えて行う。このため、吹出し気流が長時間に亘って在室者の体に直接当たり続ける場合に比べ、在室者の不快感が抑えられる。従って、本実施形態によれば、吹出し気流が在室者の体に直接当たることによる不快感を抑えつつ、室内空間(500)の各部分における気温の差を縮小して快適性を向上させることができる。
また、本実施形態の室内ユニット(10)が気流ローテーションとして行う第1吹出しモードでは、第1一部吹出し動作と第2一部吹出し動作の間に、全部吹出し動作が行われる。つまり、第1吹出しモードにおいて、第1開口(24X)と第2開口(24Y)の一方から調和空気を室内空間(500)へ供給する動作(即ち、第1一部吹出し動作または第2一部吹出し動作)の次に、第1開口(24X)と第2開口(24Y)の両方から調和空気を室内空間(500)へ供給する全部吹出し動作が行われる。
このように、本実施形態では、第1吹出しモードの1サイクルにおいて、全部吹出し動作が二回行われる。また、本実施形態の第1吹出しモードでは、ある全部吹出し動作と次の全部吹出し動作の間に第1一部吹出し動作と第2一部吹出し動作の一方だけが行われる。このため、室内空間(500)の床面近傍への暖かい調和空気の供給量を充分に確保できる。従って、本実施形態によれば、外気温が比較的低い場合であっても、室内空間(500)の床面付近の気温(即ち、在室者の足下付近の気温)を確実に上昇させることができ、その結果、室内空間(500)の快適性を充分に確保することができる。
また、暖房運転中の本実施形態の室内ユニット(10)は、吹出し風速が比較的低い全部吹出し動作中に、第1開口(24X)および第2開口(24Y)から調和空気を下向きに吹き出す一方、吹出し風速が比較的高い第1一部吹出し動作中および第2一部吹出し動作中に、第1開口(24X)または第2開口(24Y)から調和空気を概ね水平方向に吹き出す。このため、暖房運転中において、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内空間(500)の各部分における気温の差を縮小して室内空間(500)の快適性を向上させることができる。
また、冷房運転中の本実施形態の室内ユニット(10)は、吹出し風速が比較的低い全部吹出し動作中に、第1開口(24X)および第2開口(24Y)の吹出し気流の方向を変動させる一方、吹出し風速が比較的高い第1一部吹出し動作中および第2一部吹出し動作中に、第1開口(24X)または第2開口(24Y)から調和空気を概ね水平方向に吹き出す。このため、冷房運転中において、吹出し気流が在室者の体に直接当たって不快感を与えることなく、室内空間(500)の各部分における気温の差を縮小して室内空間(500)の快適性を向上させることができる。
また、本実施形態の室内ユニット(10)では、各吹出し開口(24a~24d)の吹出し気流の方向が互いに異なる。また、本実施形態の室内ユニット(10)は、化粧パネル(22)の各辺と直交する方向(即ち、四つの方向)へ調和空気を吹き出すことが可能である。従って、本実施形態によれば、室内空間(500)のうち室内ユニット(10)の周囲の領域へ調和空気を確実に供給することが可能となる。
ところで、冷房運転中に主吹出し開口(24a~24d)の風向調節羽根(51)を長時間に亘って気流ブロック位置に設定すると、風向調節羽根(51)の表面において結露が生じ、風向調節羽根(51)から水滴が落下するおそれがある。この問題について、図8を参照しながら説明する。
風向調節羽根(51)が図8に示す気流ブロック位置に設定されている場合、主吹出し開口(24a~24d)から流出する調和空気の流れは、風向調節羽根(51)の表面(図8における右側の凸面)の全体に沿う。このため、風向調節羽根(51)の温度は、低温の調和空気と同程度となる。一方、主吹出し開口(24a~24d)から流出する調和空気の流れは、風向調節羽根(51)の裏面(図8における左側の凹面)の途中で、風向調節羽根(51)から剥離してしまう。このため、風向調節羽根(51)は、その裏面のうち先端(図8における下端)寄りの領域が比較的湿度の高い室内空気と接触し、この領域において空気中の水蒸気が凝縮する。そして、この状態が長時間(例えば、5分間以上)に亘って継続し、風向調節羽根(51)の裏面において生じた凝縮水の量がある程度以上に達すると、凝縮水が水滴となって落下するおそれがある。
これに対し、本実施形態の室内ユニット(10)では、気流ローテーションとして行われる第1~第3吹出しモードの全てにおいて、何れかの主吹出し開口(24a~24d)の風向調節羽根(51)が気流ブロック位置に設定される一部吹出し動作の継続時間が、比較的短い時間(本実施形態では、120秒)に設定されている。従って、本実施形態によれば、気流ブロック位置に設定された風向調節羽根(51)からの水滴の落下を、未然に防ぐことができる。
-実施形態の変形例1-
本実施形態の室内ユニット(10)は、全部吹出し動作と、第1一部吹出し動作と、第2一部吹出し動作とを一回ずつ繰り返し行う第4吹出しモードを、第1吹出しモードに代えて、または第1~第3吹出しモードに加えて実行可能に構成されていてもよい。この第4吹出しモードは、気流ローテーションとして実行される。
本実施形態の室内ユニット(10)は、全部吹出し動作と、第1一部吹出し動作と、第2一部吹出し動作とを一回ずつ繰り返し行う第4吹出しモードを、第1吹出しモードに代えて、または第1~第3吹出しモードに加えて実行可能に構成されていてもよい。この第4吹出しモードは、気流ローテーションとして実行される。
図14に示すように、本変形例の第4吹出しモードを行う室内ユニット(10)は、全部吹出し動作と、第1一部吹出し動作と、第2一部吹出し動作とを順に繰り返し行う。第4吹出しモードの一つのサイクルでは、全部吹出し動作と、第1一部吹出し動作と、第2一部吹出し動作とが一回ずつ行われる。なお、本変形例の室内ユニット(10)は、全部吹出し動作と、第2一部吹出し動作と、第1一部吹出し動作とを順に繰り返し行う動作を、第4吹出しモードとして実行してもよい。
暖房運転時の第4吹出しモードの一つのサイクルでは、全部吹出し動作の継続時間と、第1一部吹出し動作の継続時間と、第2一部吹出し動作の継続時間とのそれぞれが、互いに同じ時間(例えば、120秒)に設定される。また、冷房運転時の第4吹出しモードの一つのサイクルでは、全部吹出し動作の継続時間が、第1一部吹出し動作の継続時間と第2一部吹出し動作の継続時間のそれぞれよりも長い時間に設定される。例えば、全部吹出し動作の継続時間が600秒に設定され、第1一部吹出し動作の継続時間と第2一部吹出し動作の継続時間のそれぞれが120秒に設定される。
例えば、外気温がそれほど高くない状況で冷房運転を行う場合は、第1一部吹出し動作と第2一部吹出し動作を続けて行っても、室内空間(500)のうち室内ユニット(10)に比較的近い領域の気温はそれ程上昇しない。また、外気温がそれ程低くない状況で暖房運転を行う場合は、第1一部吹出し動作と第2一部吹出し動作を続けて行っても、室内空間(500)のうち室内ユニット(10)に比較的近い領域の気温はそれ程低下しない。従って、空調負荷が比較的低い場合は、本変形例のように、気流ローテーションの一つのサイクルにおいて、全部吹出し動作と、第1一部吹出し動作と、第2一部吹出し動作とを一回ずつ行ってもよい。
-実施形態の変形例2-
本実施形態の室内ユニット(10)は、第1一部吹出し動作および第2一部吹出し動作として、隣り合う二つの主吹出し開口(24a~24d)から調和空気を室内空間(500)へ供給する動作を行ってもよい。本変形例では、第1主吹出し開口(24a)及び第2主吹出し開口(24b)が第1開口(24X)を構成し、残りの第3主吹出し開口(24c)及び第4主吹出し開口(24d)が第2開口(24Y)を構成する。
本実施形態の室内ユニット(10)は、第1一部吹出し動作および第2一部吹出し動作として、隣り合う二つの主吹出し開口(24a~24d)から調和空気を室内空間(500)へ供給する動作を行ってもよい。本変形例では、第1主吹出し開口(24a)及び第2主吹出し開口(24b)が第1開口(24X)を構成し、残りの第3主吹出し開口(24c)及び第4主吹出し開口(24d)が第2開口(24Y)を構成する。
本変形例の第1一部吹出し動作において、風向制御部(91)は、第1主吹出し開口(24a)の風向調節羽根(51)と第2主吹出し開口(24b)の風向調節羽根(51)とを水平吹き位置に設定し、第3主吹出し開口(24c)の風向調節羽根(51)と第4主吹出し開口(24d)の風向調節羽根(51)とを気流ブロック位置に設定する。このため、調和空気は、第1主吹出し開口(24a)及び第2主吹出し開口(24b)から室内空間(500)へ吹き出され、第3主吹出し開口(24c)及び第4主吹出し開口(24d)からは室内空間(500)へ実質的に吹き出されない。
本変形例の第2一部吹出し動作において、風向制御部(91)は、第3主吹出し開口(24c)の風向調節羽根(51)と第4主吹出し開口(24d)の風向調節羽根(51)とを水平吹き位置に設定し、第1主吹出し開口(24a)の風向調節羽根(51)と第2主吹出し開口(24b)の風向調節羽根(51)とを気流ブロック位置に設定する。このため、調和空気は、第3主吹出し開口(24c)及び第4主吹出し開口(24d)から室内空間(500)へ吹き出され、第1主吹出し開口(24a)及び第2主吹出し開口(24b)からは室内空間(500)へ実質的に吹き出されない。
-実施形態の変形例3-
本実施形態の室内ユニット(10)は、第1一部吹出し動作と、第2一部吹出し動作とを交互に繰り返し行う第5吹出しモードを、第1~第3吹出しモードに加えて実行可能に構成されていてもよい。この第5吹出しモードは、気流ローテーションとして実行される。
本実施形態の室内ユニット(10)は、第1一部吹出し動作と、第2一部吹出し動作とを交互に繰り返し行う第5吹出しモードを、第1~第3吹出しモードに加えて実行可能に構成されていてもよい。この第5吹出しモードは、気流ローテーションとして実行される。
図15に示すように、第5吹出しモードの一つのサイクルでは、第1一部吹出し動作と第2一部吹出し動作が一回ずつ行われる。暖房運転時と冷房運転時の何れにおいても、第5吹出しモードの一つのサイクルでは、第1一部吹出し動作の継続時間と、第2一部吹出し動作の継続時間とが互いに同じ時間に設定される。
-実施形態の変形例4-
本実施形態の室内ユニット(10)は、暖房運転中に、主吹出し開口(24a~24d)の風向調節羽根(51)の位置が、水平吹き位置よりも下向きの位置に設定される場合がある。例えば、暖房運転時の全部吹出し動作では、全ての主吹出し開口(24a~24d)の風向調節羽根(51)が下吹き位置に設定される。この状態において室内ユニット(10)から吹き出される調和空気の温度が低くなると、あまり暖かくない調和空気が在室者に直接に当たり、在室者に不快感を与えるおそれがある。
本実施形態の室内ユニット(10)は、暖房運転中に、主吹出し開口(24a~24d)の風向調節羽根(51)の位置が、水平吹き位置よりも下向きの位置に設定される場合がある。例えば、暖房運転時の全部吹出し動作では、全ての主吹出し開口(24a~24d)の風向調節羽根(51)が下吹き位置に設定される。この状態において室内ユニット(10)から吹き出される調和空気の温度が低くなると、あまり暖かくない調和空気が在室者に直接に当たり、在室者に不快感を与えるおそれがある。
そこで、本変形例の室内ユニット(10)の制御器(90)は、暖房運転中に判定用温度が基準値を下回ると、風向調節羽根(51)の位置を水平吹き位置へ強制的に変更する強制変更動作を行うように構成される。本変形例の制御器(90)は、吸込温度センサ(61)の計測値を判定用温度として用いて強制変更動作を行う。
暖房運転中に風向調節羽根(51)の位置が水平吹き位置よりも下向きの位置に設定されている状態において、本変形例の制御器(90)は、熱交換器温度センサ(62)の計測値を所定の基準値(例えば、30℃)と比較する。そして、本変形例の制御器(90)は、熱交換器温度センサ(62)の計測値が基準値以上であれば、風向調節羽根(51)の位置をそのままにする一方、熱交換器温度センサ(62)の計測値が基準値未満であれば、風向調節羽根(51)の位置を水平吹き位置へ強制的に変更する。
なお、本変形例の制御器(90)は、吹出口(26)から室内空間(500)へ吹き出される調和空気の温度の実測値を判定用温度として用いて強制変更動作を行うように構成されていてもよい。この場合、本変形例の制御器(90)は、吹出口(26)から室内空間(500)へ吹き出される調和空気の温度の実測値を所定の基準値と比較し、その結果に応じて上述した動作を行う。
-実施形態の変形例5-
本実施形態の室内ユニット(10)は、気流ローテーションとして行う吹出しモードを自動的に選択するように構成されていてもよい。
本実施形態の室内ユニット(10)は、気流ローテーションとして行う吹出しモードを自動的に選択するように構成されていてもよい。
図16に示すように、本変形例の室内ユニット(10)は、室内ユニット(10)から部屋の壁面までの距離を計測する距離センサ(63)を備えている。この距離センサ(63)としては、例えば、照射した超音波が壁面で反射して戻ってくるまでの時間に基づいて距離を計測するセンサを用いることができる。
本変形例の室内ユニット(10)に設けられた距離センサ(63)は、図示しないが四つのセンサユニットを備えており、四つの方向の距離を計測する。具体的に、この距離センサ(63)は、第1主吹出し開口(24a)の吹出し方向(図16における上方向)に位置する壁面までの距離と、第2主吹出し開口(24b)の吹出し方向(図16における右方向)に位置する壁面までの距離と、第3主吹出し開口(24c)の吹出し方向(図16における下方向)に位置する壁面までの距離と、第4主吹出し開口(24d)の吹出し方向(図16における左方向)に位置する壁面までの距離とを個別に計測する。
第3主吹出し開口(24c)の吹出し方向に位置する壁面から室内ユニット(10)までの距離と、第4主吹出し開口(24d)の吹出し方向に位置する壁面から室内ユニット(10)までの距離とは、距離センサ(63)の計測値と実質的に等しい。一方、第1主吹出し開口(24a)の吹出し方向に位置する壁面から室内ユニット(10)までの距離と、第2主吹出し開口(24b)の吹出し方向に位置する壁面から室内ユニット(10)までの距離とは、距離センサ(63)の計測値から化粧パネル(22)の一辺の長さを減じた値と実質的に等しい。
ここで、例えば大きな部屋に複数台の室内ユニット(10)が設置される場合、各主吹出し開口(24a~24d)からの調和空気の吹出し方向に位置する壁面のそれぞれから室内ユニット(10)までの距離は、必ずしも一致しない。そして、部屋の壁面へ向けて主吹出し開口(24a~24d)から調和空気を高い流速で吹き出しても、室内ユニット(10)からその壁面までの距離が長いと、その壁面まで調和空気が到達せず、室内空間を包み込むような気流を形成することができないおそれがある。
そこで、本変形例の室内ユニット(10)の制御器(90)は、距離センサ(63)の計測値に基づいて、気流ローテーションとして行う吹出しモードを選択する自動選択動作を行う。
例えば、第2主吹出し開口(24b)の吹出し方向に位置する壁面と、第4主吹出し開口(24d)の吹出し方向に位置する壁面とは室内ユニット(10)から比較的近いが、第1主吹出し開口(24a)の吹出し方向に位置する壁面と、第3主吹出し開口(24c)の吹出し方向に位置する壁面とは室内ユニット(10)から離れているとする。
この場合において、第2主吹出し開口(24b)及び第4主吹出し開口(24d)の吹出し風速を高める第1一部吹出し動作では、調和空気が壁面に到達し、室内空間を包み込むような気流が形成される。一方、第1主吹出し開口(24a)及び第3主吹出し開口(24c)の吹出し風速を高める第2一部吹出し動作では、調和空気が壁面に到達できないため、室内空間を包み込むような気流が形成されない。
そこで、このような場合、本変形例の制御器(90)は、室内ユニット(10)が行う気流ローテーションとして、図12に示す第2吹出しモードを選択する。つまり、この場合、本変形例の制御器(90)は、気流ローテーションにおいて実行される一部吹出し動作として、第1一部吹出し動作を選択する。この第2吹出しモードでは、全部吹出し動作と第1一部吹出し動作とが交互に行われ、調和空気を壁面に到達させることができない第2一部吹出し動作は行われない。
また、各主吹出し開口(24a~24d)からの調和空気の吹出し方向に位置する壁面のそれぞれから室内ユニット(10)までの距離が所定の基準距離以下である場合、本変形例の制御器(90)は、室内ユニット(10)が行う気流ローテーションとして、図9に示す第1吹出しモードを選択する。つまり、この場合、本変形例の制御器(90)は、気流ローテーションにおいて実行される一部吹出し動作として、第1一部吹出し動作と第2一部吹出し動作の両方を選択する。
なお、壁面から室内ユニット(10)までの距離が所定の基準距離を上回る場合は、気流ローテーションを実行しても室内空間(500)の快適性が充分に向上しない可能性がある旨や、室内ユニット(10)が実行可能な複数種類の一部吹出し動作のうちの何れかを禁止する旨を、リモコンの表示画面などに表示してもよい。
-実施形態の変形例6-
本実施形態の室内ユニット(10)には、床温度センサが設けられていてもよい。この床温度センサとしては、例えば、対象物が放射する赤外線の量に基づいて温度を計測する非接触型の温度センサを用いることができる。
本実施形態の室内ユニット(10)には、床温度センサが設けられていてもよい。この床温度センサとしては、例えば、対象物が放射する赤外線の量に基づいて温度を計測する非接触型の温度センサを用いることができる。
本変形例の室内ユニット(10)において、制御器(90)の室内気温制御部(92)は、床温度センサの計測値を用いて温度制御動作を行ってもよい。
この場合、室内気温制御部(92)は、吸込温度センサ(61)の計測値Taと床温度センサの計測値Tfの平均値((Ta+Tf)/2)を指標温度Tiとして用いて温度制御動作を行う。つまり、室内気温制御部(92)は、指標温度Ti(=(Ta+Tf)/2)が設定温度Tsとなるように、室内ユニット(10)の運転状態を、温度調節状態と休止状態に切り換える。
また、本変形例の室内ユニット(10)において、制御器(90)の吹出しモード決定部(93)は、床温度センサの計測値を用いてモード決定動作を行ってもよい。
この場合、吹出しモード決定部(93)は、室内空間(500)の空調負荷を示す空調負荷指標として、冷房運転時には床温度センサの計測値Tfから吸込温度センサ(61)の計測値Trを減じて得られる値(Tf-Tr)を用い、暖房運転時には吸込温度センサ(61)の計測値Trから床温度センサの計測値Tfを減じて得られる値(Tr-Tf)を用いる。冷房運転時の空調負荷指標(Tf-Tr)は、室内の冷房負荷が大きいほど大きくなる。また、暖房運転時の空調負荷指標(Tr-Tf)は、室内の暖房負荷が大きいほど大きくなる。
室内気温制御部(92)が室内ユニット(10)の運転状態を休止状態から温度調節状態に切り換えることを決定すると、吹出しモード決定部(93)は、空調負荷指標を判定基準値と比較し、その結果に基づいて、室内ユニット(10)に標準吹出しモードと気流ローテーションのどちらを実行させるかを決定する。
-実施形態の変形例7-
本実施形態の室内ユニット(10)には、図17~図19に示すような幅の広い風向調節羽根(51)が設けられていてもよい。図17~図19に示す風向調節羽根(51)は、その長手方向の中央部における幅(即ち、中心軸(53)と直交する方向の長さ)が、図6~8に示す風向調節羽根(51)よりも広くなっている。図17~図19に示す幅の広い風向調節羽根(51)を用いると、主吹出し開口(24a~24d)から吹き出される調和空気の流れを、意図した方向へ確実に案内することが可能となる。
本実施形態の室内ユニット(10)には、図17~図19に示すような幅の広い風向調節羽根(51)が設けられていてもよい。図17~図19に示す風向調節羽根(51)は、その長手方向の中央部における幅(即ち、中心軸(53)と直交する方向の長さ)が、図6~8に示す風向調節羽根(51)よりも広くなっている。図17~図19に示す幅の広い風向調節羽根(51)を用いると、主吹出し開口(24a~24d)から吹き出される調和空気の流れを、意図した方向へ確実に案内することが可能となる。
-実施形態の変形例8-
本実施形態の室内ユニット(10)は、風向調節羽根(51)が設けられた主吹出し開口(24a~24d)を複数備えていればよく、この主吹出し開口(24a~24d)の数は四つに限定されない。例えば、室内ユニット(10)に二つの主吹出し開口が形成されている場合、室内ユニット(10)は、第1の主吹出し開口の吹出し気流を風向調節羽根(51)で阻害することによって第2の主吹出し開口の吹出し風速を高める動作を第1一部吹出し動作として行い、第2の主吹出し開口の吹出し気流を風向調節羽根(51)で阻害することによって第1の主吹出し開口の吹出し風速を高める動作を第2一部吹出し動作として行う。
本実施形態の室内ユニット(10)は、風向調節羽根(51)が設けられた主吹出し開口(24a~24d)を複数備えていればよく、この主吹出し開口(24a~24d)の数は四つに限定されない。例えば、室内ユニット(10)に二つの主吹出し開口が形成されている場合、室内ユニット(10)は、第1の主吹出し開口の吹出し気流を風向調節羽根(51)で阻害することによって第2の主吹出し開口の吹出し風速を高める動作を第1一部吹出し動作として行い、第2の主吹出し開口の吹出し気流を風向調節羽根(51)で阻害することによって第1の主吹出し開口の吹出し風速を高める動作を第2一部吹出し動作として行う。
-実施形態の変形例9-
本実施形態の室内ユニット(10)は、主吹出し開口(24a~24d)を塞ぐためのシャッタを、気流阻害機構として備えていてもよい。本変形例の室内ユニット(10)では、四つの主吹出し開口(24a~24d)のそれぞれに、開閉式のシャッタが設けられる。
本実施形態の室内ユニット(10)は、主吹出し開口(24a~24d)を塞ぐためのシャッタを、気流阻害機構として備えていてもよい。本変形例の室内ユニット(10)では、四つの主吹出し開口(24a~24d)のそれぞれに、開閉式のシャッタが設けられる。
-実施形態の変形例10-
本実施形態の室内ユニット(10)は、天井(501)の開口部に嵌め込まれる天井埋込型ではなく、ケーシング(20)が天井(501)に吊り下げられた状態で設置される天井吊下型であってもよい。
本実施形態の室内ユニット(10)は、天井(501)の開口部に嵌め込まれる天井埋込型ではなく、ケーシング(20)が天井(501)に吊り下げられた状態で設置される天井吊下型であってもよい。
以上説明したように、本発明は、天井に設置される空気調和装置の室内ユニットについて有用である。
10 室内ユニット
20 ケーシング
24a 第1主吹出し開口
24b 第2主吹出し開口
24c 第3主吹出し開口
24d 第4主吹出し開口
24X 第1開口
24Y 第2開口
50 気流阻害機構
51 風向調節羽根
90 制御器
500 室内空間
501 天井
20 ケーシング
24a 第1主吹出し開口
24b 第2主吹出し開口
24c 第3主吹出し開口
24d 第4主吹出し開口
24X 第1開口
24Y 第2開口
50 気流阻害機構
51 風向調節羽根
90 制御器
500 室内空間
501 天井
Claims (15)
- 天井(501)に設置されて室内空間(500)へ調和空気を吹き出す空気調和装置の室内ユニットであって、
調和空気の流れを阻害するための気流阻害機構(50)がそれぞれに設けられた複数の吹出し開口(24a~24d)が形成され、
全ての上記吹出し開口(24a~24d)から上記室内空間(500)へ調和空気を供給する全部吹出し動作と、一部の上記吹出し開口(24a~24d)の吹出し気流を上記気流阻害機構(50)で阻害することによって残りの上記吹出し開口(24a~24d)の吹出し風速を高める一部吹出し動作とを切り換えながら行う気流ローテーションが実行されるように上記気流阻害機構(50)を制御する制御器(90)を備えている
ことを特徴とする空気調和装置の室内ユニット。 - 請求項1において、
複数の上記吹出し開口(24a~24d)は、一部の上記吹出し開口(24b,24d)が第1開口(24X)を、残りの上記吹出し開口(24a,24c)が第2開口(24Y)をそれぞれ構成し、
上記制御器(90)は、上記第2開口(24Y)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第1開口(24X)の吹出し風速を高める第1一部吹出し動作と、上記第1開口(24X)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第2開口(24Y)の吹出し風速を高める第2一部吹出し動作との少なくとも一方が、上記気流ローテーションにおいて行われるように上記気流阻害機構(50)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項1において、
複数の上記吹出し開口(24a~24d)は、一部の上記吹出し開口(24b,24d)が第1開口(24X)を、残りの上記吹出し開口(24a,24c)が第2開口(24Y)をそれぞれ構成し、
上記制御器(90)は、上記第2開口(24Y)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第1開口(24X)の吹出し風速を高める第1一部吹出し動作と、上記第1開口(24X)の吹出し気流を上記気流阻害機構(50)で阻害することによって上記第2開口(24Y)の吹出し風速を高める第2一部吹出し動作とが、上記気流ローテーションにおいて行われるように上記気流阻害機構(50)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項3において、
上記制御器(90)は、上記気流ローテーションにおいて、上記全部吹出し動作と、上記第1一部吹出し動作と、上記全部吹出し動作と、上記第2一部吹出し動作とが順に繰り返されるように上記気流阻害機構(50)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項1において、
複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、
上記制御器(90)は、加熱された調和空気が上記室内空間(500)へ供給される暖房運転において、上記全部吹出し動作中に全ての上記吹出し開口(24a~24d)の吹出し気流が下吹き状態となり、上記一部吹出し動作中に吹出し風速が高くなる上記吹出し開口(24a~24d)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項3又は4において、
複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、
上記制御器(90)は、加熱された調和空気が上記室内空間(500)へ供給される暖房運転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流が下吹き状態となり、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項4において、
複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、
上記制御器(90)は、加熱された調和空気が上記室内空間(500)へ供給される暖房運転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流が下吹き状態となり、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御し、
更に、上記制御器(90)は、上記気流ローテーションにおいて、上記各全部吹出し動作の継続時間と、上記第1一部吹出し動作の継続時間と、上記第2一部吹出し動作の継続時間とが互いに等しくなるように、上記風向調節羽根(51)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項1において、
複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、
上記制御器(90)は、冷却された調和空気が上記室内空間(500)へ供給される冷房運転において、上記全部吹出し動作中に全ての上記吹出し開口(24a~24d)の吹出し気流の方向が変動し、上記一部吹出し動作中に吹出し風速が高くなる上記吹出し開口(24a~24d)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項3又は4において、
複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、
上記制御器(90)は、冷却された調和空気が上記室内空間(500)へ供給される冷房運転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流の方向が変動し、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項4において、
複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、
上記制御器(90)は、冷却された調和空気が上記室内空間(500)へ供給される冷房運転において、上記全部吹出し動作中は上記第1開口(24X)及び上記第2開口(24Y)の吹出し気流の方向が変動し、上記第1一部吹出し動作中は上記第1開口(24X)の吹出し気流が水平吹き状態となり、上記第2一部吹出し動作中は上記第2開口(24Y)の吹出し気流が水平吹き状態となるように、上記風向調節羽根(51)を制御し、
更に、上記制御器(90)は、上記気流ローテーションにおいて、上記各全部吹出し動作の継続時間が、上記第1一部吹出し動作の継続時間と上記第2一部吹出し動作の継続時間のそれぞれよりも長くなるように、上記風向調節羽根(51)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項1乃至4のいずれか一つにおいて、
複数の上記吹出し開口(24a~24d)のそれぞれには、吹出し気流の方向を上下方向に変更するための風向調節羽根(51)が設けられ、
上記風向調節羽根(51)は、上記吹出し開口(24a~24d)の吹出し気流を阻害する姿勢に変位可能に構成され、上記気流阻害機構(50)を兼ねている
ことを特徴とする空気調和装置の室内ユニット。 - 請求項2,3,4,6,7,9又は10において、
上記第1開口(24X)及び上記第2開口(24Y)のそれぞれは、複数且つ同数の上記吹出し開口(24a~24d)によって構成されている
ことを特徴とする空気調和装置の室内ユニット。 - 請求項12において、
下面が矩形状のケーシング(20)を備え、
上記吹出し開口(24a~24d)は、上記ケーシング(20)の下面の四辺のそれぞれに沿って一つずつ配置され、
上記ケーシング(20)の下面の四辺のうち対向する二辺の一方に沿った上記吹出し開口(24b)と他方に沿った上記吹出し開口(24d)とが上記第1開口(24X)を、残りの二つの上記吹出し開口(24a,24c)が上記第2開口(24Y)を、それぞれ構成している
ことを特徴とする空気調和装置の室内ユニット。 - 請求項1において、
上記制御器(90)は、
上記室内空間(500)の気温の指標となる指標温度が設定温度となるように、上記室内ユニットの運転状態を、空気の温度調節が行われる温度調節状態と、空気の温度調節が休止する休止状態とに切り換え、
更に、上記制御器(90)は、
上記室内空間(500)の空調負荷を示す空調負荷指標が所定の判定基準値以下の場合は、上記休止状態から上記温度調節状態に切り換わった上記室内ユニットが上記全部吹出し動作を常に行い、上記空調負荷指標が上記判定基準値を超える場合は、上記休止状態から上記温度調節状態に切り換わった上記室内ユニットが上記気流ローテーションを実行するように、上記気流阻害機構(50)を制御する
ことを特徴とする空気調和装置の室内ユニット。 - 請求項1において、
各上記吹出し開口(24a~24d)からの調和空気の吹出し方向に位置する壁面のそれぞれまでの距離を計測する距離センサ(63)を備える一方、
上記制御器(90)は、上記気流阻害機構(50)によって吹出し気流が阻害される上記吹出し開口(24a~24d)が互いに異なる複数種類の上記一部吹出し動作を実行できるように上記気流阻害機構(50)を制御し、
更に、上記制御器(90)は、上記気流ローテーションにおいて実行される一種類または複数種類の上記一部吹出し動作を、実行可能な複数種類の上記一部吹出し動作の中から上記距離センサ(63)の計測値に基づいて選択する
ことを特徴とする空気調和装置の室内ユニット。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES16850548T ES2820310T3 (es) | 2015-09-29 | 2016-08-09 | Unidad interior de acondicionador de aire |
CN201680056729.8A CN108139105A (zh) | 2015-09-29 | 2016-08-09 | 空调装置的室内机组 |
US15/759,136 US10900688B2 (en) | 2015-09-29 | 2016-08-09 | Indoor unit of air conditioner |
EP16850548.5A EP3358265B1 (en) | 2015-09-29 | 2016-08-09 | Indoor unit of air conditioner |
US17/126,964 US11473805B2 (en) | 2015-09-29 | 2020-12-18 | Indoor unit of air conditioner |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-191915 | 2015-09-29 | ||
JP2015191915 | 2015-09-29 | ||
JP2016-015305 | 2016-01-29 | ||
JP2016015305A JP6229741B2 (ja) | 2015-09-29 | 2016-01-29 | 空気調和装置の室内ユニット |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/759,136 A-371-Of-International US10900688B2 (en) | 2015-09-29 | 2016-08-09 | Indoor unit of air conditioner |
US17/126,964 Division US11473805B2 (en) | 2015-09-29 | 2020-12-18 | Indoor unit of air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056365A1 true WO2017056365A1 (ja) | 2017-04-06 |
Family
ID=58423196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/003678 WO2017056365A1 (ja) | 2015-09-29 | 2016-08-09 | 空気調和装置の室内ユニット |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017056365A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001133019A (ja) * | 1999-11-01 | 2001-05-18 | Matsushita Refrig Co Ltd | 空気調和機 |
JP2001304666A (ja) * | 2000-04-19 | 2001-10-31 | Daikin Ind Ltd | 空気調和装置 |
JP2002277034A (ja) * | 2001-03-16 | 2002-09-25 | Mitsubishi Electric Corp | 空気調和装置 |
JP2005016863A (ja) * | 2003-06-27 | 2005-01-20 | Daikin Ind Ltd | 空気調和装置 |
JP2007024453A (ja) * | 2005-07-21 | 2007-02-01 | Mitsubishi Electric Corp | 空気調和機 |
JP2011052932A (ja) * | 2009-09-04 | 2011-03-17 | Hitachi Appliances Inc | 空気調和機及びその吹出気流制御方法 |
JP2015052431A (ja) * | 2013-09-09 | 2015-03-19 | 日立アプライアンス株式会社 | 空気調和機の室内機および空気調和機 |
-
2016
- 2016-08-09 WO PCT/JP2016/003678 patent/WO2017056365A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001133019A (ja) * | 1999-11-01 | 2001-05-18 | Matsushita Refrig Co Ltd | 空気調和機 |
JP2001304666A (ja) * | 2000-04-19 | 2001-10-31 | Daikin Ind Ltd | 空気調和装置 |
JP2002277034A (ja) * | 2001-03-16 | 2002-09-25 | Mitsubishi Electric Corp | 空気調和装置 |
JP2005016863A (ja) * | 2003-06-27 | 2005-01-20 | Daikin Ind Ltd | 空気調和装置 |
JP2007024453A (ja) * | 2005-07-21 | 2007-02-01 | Mitsubishi Electric Corp | 空気調和機 |
JP2011052932A (ja) * | 2009-09-04 | 2011-03-17 | Hitachi Appliances Inc | 空気調和機及びその吹出気流制御方法 |
JP2015052431A (ja) * | 2013-09-09 | 2015-03-19 | 日立アプライアンス株式会社 | 空気調和機の室内機および空気調和機 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6229741B2 (ja) | 空気調和装置の室内ユニット | |
JP6222211B2 (ja) | 空気調和装置 | |
JP6213539B2 (ja) | 空気調和装置の室内ユニット | |
JP6135734B2 (ja) | 空気調和装置の室内ユニット | |
JP5987882B2 (ja) | 空気調和装置の室内ユニット | |
JP6376189B2 (ja) | 室内ユニット | |
WO2017149895A1 (ja) | 空調システム | |
WO2017056365A1 (ja) | 空気調和装置の室内ユニット | |
WO2017149894A1 (ja) | 空調システム | |
JP6728814B2 (ja) | 空気調和装置の室内ユニット | |
JP6323469B2 (ja) | 空気調和装置の室内ユニット | |
KR20190027272A (ko) | 공기조화기의 제어방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850548 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016850548 Country of ref document: EP |