WO2017056355A1 - 半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステム - Google Patents

半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステム Download PDF

Info

Publication number
WO2017056355A1
WO2017056355A1 PCT/JP2016/003366 JP2016003366W WO2017056355A1 WO 2017056355 A1 WO2017056355 A1 WO 2017056355A1 JP 2016003366 W JP2016003366 W JP 2016003366W WO 2017056355 A1 WO2017056355 A1 WO 2017056355A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
semiconductor region
silicon substrate
region
silicon
Prior art date
Application number
PCT/JP2016/003366
Other languages
English (en)
French (fr)
Inventor
類 森本
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/760,068 priority Critical patent/US20180263594A1/en
Priority to JP2017542678A priority patent/JPWO2017056355A1/ja
Publication of WO2017056355A1 publication Critical patent/WO2017056355A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present technology relates to a semiconductor device including an integrated circuit including a protection circuit, an ultrasonic imaging device, a semiconductor device manufacturing method, and an ultrasonic imaging system.
  • an ultrasonic image can be generated by irradiating a measurement object from an ultrasonic transducer and detecting the reflected wave generated in the measurement object with the ultrasonic transducer. It is used as an endoscope and an ultrasonic catheter.
  • the drive voltage applied to the ultrasonic transducer to oscillate the ultrasonic wave and the signal voltage generated by the ultrasonic transducer upon detection of the ultrasonic wave are greatly different.
  • the drive voltage is about several hundreds V at the maximum.
  • the signal voltage is about several ⁇ V.
  • an amplifier circuit for amplifying the signal voltage is used.
  • the amplifier circuit fails. Therefore, a protection circuit that prevents the drive voltage from reaching the amplifier circuit is also required. If these circuits can be mounted on one semiconductor substrate, the mounting space can be saved.
  • an SOI (silicon on insulator) substrate is excellent in voltage resistance and is suitable as a semiconductor substrate having both an amplifier circuit and a protection circuit.
  • Patent Document 1 discloses a semiconductor device in which an amplifier circuit and a protection circuit are mounted on one SOI substrate.
  • an amplifier circuit is formed on an SOI substrate, and a protection circuit is formed in a through hole provided in the SOI substrate.
  • the protection circuit is made of polysilicon embedded in the through hole.
  • polysilicon generally has a high resistance, and there is a problem that it is difficult to form a diode having good leakage current characteristics due to defects in the polysilicon.
  • An SOI substrate generally has a thickness of about 0.8 mm, but it is difficult to form a through hole with a width of several tens of ⁇ m in the SOI substrate in terms of the manufacturing process. If the width of the through hole is increased to reduce the aspect ratio (opening / depth), it is difficult to reduce the element area.
  • an object of the present technology is to provide a semiconductor device, an ultrasonic imaging device, a manufacturing method of the semiconductor device, and an ultrasonic imaging system including a protection circuit having a small area and good characteristics. is there.
  • a semiconductor device includes a silicon substrate made of crystalline silicon, a BOX (buried oxide) layer stacked on the silicon substrate, and an SOI (silicon on) stacked on the BOX layer.
  • a semiconductor device including an integrated circuit which is formed on an SOI substrate including an insulator) layer, and includes a protection circuit and an element isolation region.
  • the protection circuit comprises a semiconductor region that constitutes the integrated circuit and has the same crystal orientation as the silicon substrate.
  • the element isolation region penetrates the SOI substrate and isolates the protection circuit.
  • the protection circuit includes a semiconductor region made of crystalline silicon having the same crystal orientation as the silicon substrate. Crystalline silicon has higher mobility than amorphous silicon such as polysilicon, and can reduce the element area of the protection circuit and ensure good leakage current characteristics.
  • the diode may be a protection circuit.
  • a TR (transmit-receive) switch can be formed by a diode, and the diode can be used as a protection circuit.
  • the protective circuit may be a vertical transistor.
  • a TR switch can be formed by a vertical transistor, and the vertical transistor can be used as a protection circuit.
  • the element isolation region may be composed of one or more of silicon oxide, silicon nitride, and polysilicon.
  • An element isolation region can be formed by forming a silicon oxide film or a silicon nitride film in a through hole provided in an SOI substrate and embedding polysilicon therein.
  • the element isolation region may include a gate electrode of the vertical transistor.
  • the polysilicon By connecting a wiring to polysilicon buried in the element isolation region, the polysilicon can be used as a gate electrode of a vertical transistor.
  • the SOI substrate has a first surface and a second surface opposite to the first surface
  • the protection circuit includes a first semiconductor element and a second semiconductor element
  • the first semiconductor element includes a first semiconductor region having a first impurity type on the first surface side and a second semiconductor region having a second impurity type on the second surface side.
  • a semiconductor region is stacked and configured.
  • the second semiconductor element includes a third semiconductor region on the first surface side and having the second impurity type, and a second semiconductor side on the second surface side and having the first impurity type. Four semiconductor regions may be laminated.
  • a back-to-back diode can be formed by the first semiconductor element and the second semiconductor element.
  • a back-to-back diode is a diode in which two diodes are connected to one P-type semiconductor region and the other N-type semiconductor region, and is frequently used as an element having a Zener diode function in a high-voltage element.
  • the semiconductor device may further include a ground contact structure that is provided on the first surface of the semiconductor device and is electrically connected to the first semiconductor region and the third semiconductor region.
  • the ground contact structure may be connected to the first semiconductor region and the third semiconductor region, and may include a ground wiring common to both the first semiconductor region and the third semiconductor region.
  • first semiconductor region and third semiconductor region of the back-to-back diode have the same potential, both regions can be connected by a common ground wiring.
  • the ground contact structure may be connected to the ground wiring and include a ground electrode common to both the first semiconductor region and the third semiconductor region.
  • the semiconductor device may further include a signal wiring connected to the second semiconductor region and the fourth semiconductor region, and common to both the second semiconductor region and the fourth semiconductor region.
  • both regions can be connected by a common signal wiring.
  • an ultrasonic imaging apparatus includes a semiconductor device.
  • the semiconductor device is a semiconductor device including an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer.
  • a protection circuit comprising a semiconductor region that constitutes the integrated circuit and has the same crystal orientation as the silicon substrate, and an element isolation region that penetrates the SOI substrate and isolates the protection circuit.
  • the semiconductor device can be used as an impedance matching circuit of an ultrasonic transducer included in the ultrasonic imaging apparatus.
  • a method for manufacturing a semiconductor device in which an integrated circuit is formed over an SOI substrate includes a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI stacked on the BOX layer.
  • An SOI substrate comprising a layer is prepared.
  • a protective circuit constituting the integrated circuit is formed by providing a semiconductor region having the same crystal orientation as the silicon substrate on the silicon substrate.
  • An element isolation region that penetrates the SOI substrate and isolates the protection circuit is formed.
  • a substrate polishing method may be used in which the silicon substrate is polished from a surface opposite to the surface of the semiconductor region where crystal growth proceeds to expose the semiconductor region.
  • An ultrasound imaging system includes an ultrasound catheter.
  • the ultrasonic catheter is a semiconductor device including an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer. And mounting a semiconductor device that constitutes the integrated circuit and includes a protection circuit including a semiconductor region having the same crystal orientation as the silicon substrate, and an element isolation region that penetrates the SOI substrate and isolates the protection circuit. .
  • An ultrasound imaging system includes an intraoperative ultrasound probe or an ultrasound endoscope.
  • the intraoperative ultrasonic probe or the ultrasonic endoscope is formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer.
  • a semiconductor device comprising:
  • An ultrasound imaging system includes a hand-held instrument with an ultrasound imaging function used in laparoscopic surgery.
  • the hand-held instrument with an ultrasonic imaging function includes an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer.
  • a semiconductor device comprising a protection circuit comprising a semiconductor region that constitutes the integrated circuit and having the same crystal orientation as the silicon substrate, and an element isolation region that penetrates the SOI substrate and isolates the protection circuit Mount the device.
  • An ultrasonic imaging system includes robot forceps with an ultrasonic imaging function used in laparoscopic surgery.
  • the robot forceps with an ultrasonic imaging function includes an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer.
  • a semiconductor device comprising a protection circuit comprising a semiconductor region that constitutes the integrated circuit and having the same crystal orientation as the silicon substrate, and an element isolation region that penetrates the SOI substrate and isolates the protection circuit Mount the device.
  • the present technology it is possible to provide a semiconductor device, an ultrasonic imaging device, a method for manufacturing a semiconductor device, and an ultrasonic imaging system including a protection circuit having a small area and good characteristics.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present technology. It is sectional drawing of the partial structure of the same semiconductor device.
  • 2 is a cross-sectional view of an SOI substrate used for manufacturing the semiconductor device.
  • FIG. 2 is a plan view of an element isolation region of the semiconductor device.
  • FIG. It is a schematic diagram which shows the impedance matching circuit using the semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device. It is a schematic diagram which shows the manufacturing method of the same semiconductor device.
  • IVUS intravascular ultrasound endoscope
  • FIG. 1 is a cross-sectional view showing a configuration of the semiconductor device 100 according to the present embodiment
  • FIG. 2 is a cross-sectional view showing a partial configuration of the semiconductor device 100.
  • the semiconductor device 100 includes an LV (Low Voltage) circuit 110, a first diode 130 and a second diode 150, a silicon substrate 171, a BOX (buried oxide) layer 172, and an element isolation region 173.
  • the semiconductor device 100 is an integrated circuit including an LV circuit 110, a first diode 130, and a second diode 150, and the first diode 130 and the second diode 150 constitute a protection circuit for this integrated circuit.
  • FIG. 3 is a schematic diagram of an SOI substrate 200 constituting the semiconductor device 100.
  • the SOI substrate 200 includes a silicon substrate 201, a BOX layer 202, and an SOI layer 203.
  • the silicon substrate 201 is made of P-type crystalline silicon.
  • BOX layer 202 are stacked on a silicon substrate 201, made of SiO 2.
  • the SOI layer 203 is laminated on the BOX layer 202 and is made of silicon.
  • the SOI substrate 200 can be manufactured by a SIMOX (Separation by IMplantation of OXygen) method or a bonding method.
  • the semiconductor device 100 is manufactured by subjecting the SOI substrate 200 to a processing process described later.
  • the silicon substrate 171 of the semiconductor device 100 is a part of the silicon substrate 201 of the SOI substrate 200, and the BOX layer 172 of the semiconductor device 100 is a part of the BOX layer 202 of the SOI substrate 200.
  • the surface on the LV circuit 110 side is referred to as the upper surface 100a, and the opposite surface is referred to as the lower surface 100b.
  • the LV circuit 110 includes an N-type semiconductor region 111, a P-type semiconductor region 112, an N ++ type semiconductor region 113, a P ++ type semiconductor region 114, a first gate electrode 115, a second gate electrode 116, a gate insulating film 117, element isolation.
  • a layer 118 and a signal wiring 119 are provided.
  • the N-type semiconductor region 111 is laminated on the BOX layer 172 and is made of silicon doped with an N-type dopant.
  • the N-type dopant is typically phosphorus.
  • the P-type semiconductor region 112 is laminated on the BOX layer 172 and is made of silicon doped with a P-type dopant.
  • the P-type dopant is typically boron.
  • the N-type semiconductor region 111 and the P-type semiconductor region 112 face the upper surface 100a and are separated by an element isolation layer 118 made of SiO 2 .
  • the N ++ type semiconductor region 113 is made of silicon doped with a large amount of N type dopant, and is formed at two positions in the P type semiconductor region 112 so as to be separated from each other. Each N ++ type semiconductor region 113 faces the upper surface 100a, and the signal wiring 119 is connected thereto.
  • the P ++ type semiconductor region 114 is made of silicon doped with a large amount of P type dopant, and is formed at two locations in the N type semiconductor region 111 so as to be separated from each other. Each P ++ type semiconductor region 114 faces the upper surface 100a, and the signal wiring 119 is connected thereto.
  • the first gate electrode 115 is made of a metal such as aluminum or a conductive material such as polysilicon, and is formed on the N-type semiconductor region 111 via the gate insulating film 117.
  • the second gate electrode 116 is made of a metal such as aluminum or a conductive material such as polysilicon, and is formed on the P-type semiconductor region 112 via the gate insulating film 117.
  • the N-type semiconductor region 111, the P-type semiconductor region 112, the N ++ type semiconductor region 113, and the P ++ type semiconductor region 114 are regions formed by implanting a P-type or N-type dopant into the SOI layer 203 of the SOI substrate 200. is there.
  • the element isolation layer 118 is a region formed by oxidizing the SOI layer 203 to SiO 2 .
  • the configuration of the LV circuit 110 is not limited to the above, and any configuration that can be manufactured by processing the SOI layer 203 of the SOI substrate 200 may be used.
  • the first diode 130 includes an N-type semiconductor region 131, a P-type semiconductor region 132, a P ++ type semiconductor region 133, a ground wiring 134 and a signal wiring 135.
  • the N-type semiconductor region 131 is made of silicon doped with an N-type dopant
  • the P-type semiconductor region 132 is made of silicon doped with a P-type dopant.
  • the P ++ type semiconductor region 133 is made of silicon doped with a large amount of P type dopant. That is, the N-type semiconductor region 131 is a semiconductor region having a first impurity type (N-type), and the P-type semiconductor region 132 and the P ++ type semiconductor region 133 are semiconductor regions having a second impurity type (P-type). It is.
  • the N-type semiconductor region 131 and the P-type semiconductor region 132 are stacked, the N-type semiconductor region 131 faces the lower surface 100b, and the P-type semiconductor region 132 faces the upper surface 100a.
  • the P ++ type semiconductor region 133 is formed in the P type semiconductor region 132 and faces the upper surface 100a.
  • the N-type semiconductor region 131, the P-type semiconductor region 132, and the P ++ type semiconductor region 133 are made of crystalline silicon and have the same crystal orientation as that of the silicon substrate 171. This is because these semiconductor regions are formed by implanting a dopant into a part of the silicon substrate 201 or are made of crystalline silicon formed on the silicon substrate 201 by an epitaxial crystal growth method.
  • the ground wiring 134 is connected to the N-type semiconductor region 131 on the lower surface 100b, and the signal wiring 135 is connected to the P ++ type semiconductor region 133 on the upper surface 100a.
  • the second diode 150 includes a P-type semiconductor region 151, an N-type semiconductor region 152, an N ++ type semiconductor region 153, a ground wiring 154, and a signal wiring 155.
  • the P-type semiconductor region 151 is made of silicon doped with a P-type dopant
  • the N-type semiconductor region 152 is made of silicon doped with an N-type dopant.
  • the N ++ type semiconductor region 153 is made of silicon that is heavily doped with an N type dopant. That is, the P-type semiconductor region 151 is a semiconductor region having a second impurity type (P-type), and the N-type semiconductor region 152 and the N ++ type semiconductor region 153 are semiconductor regions having a first impurity type (N-type). It is.
  • the P-type semiconductor region 151 and the N-type semiconductor region 152 are stacked, the P-type semiconductor region 151 faces the lower surface 100b, and the N-type semiconductor region 152 faces the upper surface 100a.
  • the N ++ type semiconductor region 153 is formed in the N type semiconductor region 152 and faces the upper surface 100a.
  • the P-type semiconductor region 151, the N-type semiconductor region 152, and the N ++ type semiconductor region 153 are made of crystalline silicon and have the same crystal orientation as that of the silicon substrate 171. This is because these semiconductor regions are formed by implanting a dopant into a part of the silicon substrate 201 or made of single crystal silicon formed on the silicon substrate 201 by an epitaxial crystal growth method.
  • the ground wiring 154 is connected to the P-type semiconductor region 151 on the lower surface 100b, and the signal wiring 155 is connected to the N ++ type semiconductor region 153 on the upper surface 100a.
  • the element isolation region 173 separates the first diode 130 and the second diode 150.
  • the element isolation region 173 penetrates from the upper surface 100a to the lower surface 100b.
  • FIG. 4 is a schematic view of the element isolation region 173 as viewed from the upper surface 100a side. As shown in the figure, the element isolation region 173 is formed around the first diode 130 and the second diode 150.
  • the element isolation region 173 is made of one or more materials of silicon oxide, silicon nitride, and polysilicon.
  • the element isolation region 173 has a structure in which an insulating material such as silicon oxide or silicon nitride is formed in a through hole formed in the SOI substrate 200 and polysilicon is embedded in the hole. Can do.
  • the lower insulating layer 174 is disposed on the lower surface 100b and prevents diffusion of moisture and impurities.
  • the lower insulating layer 174 is made of, for example, p-SiO (silicon oxide formed by plasma vapor deposition).
  • the lower insulating layer 174 is patterned so that the N-type semiconductor region 131 and the P-type semiconductor region 151 are exposed, and a ground wiring 134 and a ground wiring 154 are formed in the opening.
  • the ground electrode 175 is disposed on the lower insulating layer 174 and is connected to the ground wiring 134 and the ground wiring 154. Accordingly, the ground electrode 175 is electrically connected to the N-type semiconductor region 131 and the P-type semiconductor region 151, and forms a ground contact structure of the first diode 130 and the second diode 150 together with the ground wiring 134 and the ground wiring 154.
  • the ground electrode 175 is made of a conductive material such as aluminum.
  • the upper surface insulating layer 176 is disposed on the upper surface 100a and seals each circuit.
  • the upper surface insulating layer 176 is made of an insulating material such as SiO 2 .
  • FIG. 5 is a schematic diagram illustrating a circuit configuration of the impedance matching circuit 301 of the ultrasonic transducer 300 in which the semiconductor device 100 can be used.
  • the impedance matching circuit 301 includes an amplifier 302, a capacitor 303, a first TR (transmit-receive) switch 304, a second TR switch 305, and a third TR switch 306.
  • Each of the first TR switch 304, the second TR switch 305, and the third TR switch 306 is a back-to-back diode.
  • the back-to-back diode is a diode in which two diodes are arranged so that one P-type semiconductor region and the other N-type semiconductor region are connected.
  • the drive signal of the ultrasonic transducer 300 reaches the ultrasonic transducer 300 via the first TR switch 304 and the capacitor 303, and generates ultrasonic waves in the ultrasonic transducer 300.
  • the drive signal is prevented from reaching the amplifier 302 by the second TR switch 305 and the third TR switch 306. Note that the capacitor 303 may be short-circuited according to the required vibrator drive.
  • the ultrasonic transducer 300 When the reflected ultrasonic wave reaches the ultrasonic transducer 300, the ultrasonic transducer 300 generates a detection signal.
  • the detection signal is amplified by the amplifier 302 and output.
  • the impedance matching circuit 301 includes the amplifier 302 that is an amplification circuit, and the first TR switch 304, the second TR switch 305, and the third TR switch 306 that are protection circuits.
  • the LV circuit 110 can be used as the amplifier 302, and the first diode 130 and the second diode 150 can be used as the TR switch, and the impedance matching circuit 301 can be realized by one semiconductor device 100. .
  • the first diode 130 and the second diode 150 constitute one of the three TR switches.
  • the other two TR switches can be formed in the semiconductor device 100 similarly to the first diode 130 and the second diode 150.
  • the first diode 130 and the second diode 150 constitute a back-to-back diode.
  • Back-to-back diodes are frequently used as elements having a Zener diode function in high-voltage elements. If the diode is in only one direction, it is necessary to connect the wiring from the side of the substrate or form a through wiring to the diode, and there is a concern about yield reduction and cost increase due to the number of manufacturing processes, and deterioration of wiring reliability. Is done.
  • the first diode 130 and the second diode 150 form a back-to-back diode on the same SOI substrate, and both diodes are connected to a common ground electrode 175.
  • the wiring is facilitated, so that the yield can be improved, the cost can be reduced, and the wiring reliability can be improved.
  • the impedance matching circuit of the ultrasonic transducer is one of the usage forms of the semiconductor device 100, and the semiconductor device 100 is formed on an SOI substrate and can be used for various circuits including a protection circuit. .
  • the semiconductor device 100 is obtained by forming the LV circuit 110, the first diode 130, and the second diode 150 on a single SOI substrate.
  • a TR switch can be formed by the first diode 130 and the second diode 150. This makes it easier to release surge charges.
  • latch-up free without occurrence of latch-up is realized.
  • the first diode 130 and the second diode 150 are made of single crystal silicon, ensuring good leakage current characteristics and improving the function as a protection circuit.
  • the mobility of polysilicon is 1 to 10 cm 2 / Vs
  • the mobility of crystalline silicon is about 500 to 1000 cm 2 / Vs.
  • crystalline silicon has a higher resistance. As low as 1/100 to 1/500.
  • the resistance in the i layer (a layer having a low dopant concentration located at the boundary between the N-type semiconductor region and the P-type semiconductor region) becomes a problem.
  • the resistance of the i layer (P: 1 ⁇ 10 ⁇ 14 / cm 3 ) having a thickness of 1 ⁇ m and an area of 25 2 ⁇ m 2 is 998 ⁇ for polysilicon, but 2 ⁇ for crystalline silicon. Therefore, the diode area required in the case of manufacturing the diode to flow 2A at 200V as a forward current, whereas in the case of polysilicon is 6242Myuemu 2, is 12.5 .mu.m 2 in the case of crystalline silicon .
  • a diode made from polysilicon and 80 ⁇ m ⁇ is required, a diode made from crystalline silicon may be 4 ⁇ m ⁇ .
  • a diode formed by a plurality of through trenches is required.
  • one 5 ⁇ 5 ⁇ m square diode is sufficient, and the mounting area of the semiconductor device 100 can be reduced.
  • semiconductor Device Manufacturing Method 1 A method for manufacturing the semiconductor device 100 will be described. As described above, the semiconductor device 100 can be manufactured from the SOI substrate 200 (see FIG. 3).
  • FIG. 6 to 10 are schematic views showing a method for manufacturing the semiconductor device 100.
  • FIG. 6A a sacrificial layer 204 is stacked on the SOI layer 203 of the SOI substrate 200.
  • the sacrificial layer 204 is made of, for example, SiO 2 .
  • FIG. 6B the sacrificial layer 204, the SOI layer 203, and the BOX layer 202 are removed by etching or the like, and the silicon substrate 201 is exposed.
  • a crystalline silicon 205 is grown on the silicon substrate 201 by an epitaxial crystal growth method.
  • the silicon substrate 201 and the crystalline silicon 205 have the same crystal orientation.
  • a sacrificial layer 204 is laminated on the crystalline silicon 205 to form a trench T.
  • the trench T is formed from the crystalline silicon 205 to the silicon substrate 201, and the depth can be about several tens of ⁇ m.
  • the trench T separates part of the silicon substrate 201 and the crystalline silicon 205 to form the structure A1 and the structure A2.
  • a diffusion prevention layer 206 is laminated on the sacrificial layer 204 and inside the trench T, and patterned so that the structure A1 is exposed.
  • the diffusion prevention layer 206 is made of, for example, silicon nitride.
  • PSG PhosphorusPSSiliconPGlass
  • BSG Boron Silicon Glass
  • HDP High Density Plasma
  • BSG and PSG may be laminated by CVD.
  • the structure A1 is doped with a dopant as shown in FIG.
  • phosphorus is doped from the PSG 207 to form an N-type semiconductor region 131.
  • boron is doped from the BSG 208, and a P-type semiconductor region 132 is formed.
  • Solid phase diffusion can be performed by heating.
  • a diffusion prevention layer 209 is laminated on the sacrificial layer 204 and inside the element isolation trench T, and patterned so that the structure A2 is exposed.
  • the diffusion prevention layer 209 is made of, for example, silicon nitride.
  • BSG 210 and PSG 211 are buried in the trench T as shown in FIG.
  • HDP, CVD or the like can be used as described above.
  • the structure A2 is doped with a dopant as shown in FIG.
  • boron is doped from the BSG 210, and a P-type semiconductor region 151 is formed.
  • phosphorus is doped from the PSG 211, and an N-type semiconductor region 152 is formed.
  • Solid phase diffusion can be performed by heating.
  • an element isolation region 173 is formed.
  • the element isolation region 173 can be formed by embedding any one or two or more materials of silicon oxide, silicon nitride, or polysilicon in the trench T.
  • the element isolation region 173 can be formed by forming an insulating material such as silicon oxide or silicon nitride in the trench T and filling the trench T with polysilicon.
  • HDP is generally used to form the element isolation region 173, but not only PSG or BPSG (Boron Phosphorus Silicon Glass) or the like, but also an oxide film such as PSG / BPSG with good coverage is formed by CVD. Also good. Further, since the combination of HDP and polysilicon has been widely used in high voltage processes such as IGBT (Insulated Gate Bipolar Transistor), etc., it may be used.
  • Region 153 is formed. These can be formed by doping the SOI layer 203, the P-type semiconductor region 132, and the N-type semiconductor region 152 with N-type and P-type dopants. The doping method is not particularly limited, and ion implantation, solid phase diffusion, or the like can be used. In addition, as shown in the drawing, a part of the SOI layer 203 is oxidized to form an element isolation layer 118.
  • a signal wiring 135, a signal wiring 155, a signal wiring 119, a gate insulating film 117, a first gate electrode 115, and a second gate electrode 116 are formed.
  • the gate insulating film 117 can be formed by oxidizing the SOI layer 203, and the signal wiring 135, the signal wiring 155, the signal wiring 119, the first gate electrode 115, and the second gate electrode 116 are formed by CVD of a conductive material or the like. Can be formed.
  • an upper surface insulating layer 176 is formed.
  • the upper surface insulating layer 176 can be formed by CVD or the like.
  • the back surface of the silicon substrate 201 is polished. Polishing is performed until the N-type semiconductor region 131 and the P-type semiconductor region 151 are exposed.
  • a lower surface insulating layer 174, a ground wiring 134, a ground wiring 154, and a ground electrode 175 are formed (see FIG. 1).
  • the lower insulating layer 174 is formed by depositing TEOS (Tetraethyl orthosilicate) by plasma vapor deposition and patterning it. TEOS becomes SiO 2 by heating.
  • the ground wiring 134, the ground wiring 154, and the ground electrode 175 can be formed by various metallization processes such as CVD.
  • the semiconductor device 100 can be manufactured as described above. As described above, a part of the silicon substrate 201 of the SOI substrate 200 becomes the silicon substrate 171 of the semiconductor device 100, and a part of the BOX layer 202 of the SOI substrate 200 becomes the BOX layer 172 of the semiconductor device 100.
  • the semiconductor device 100 can also be manufactured as follows.
  • FIG. 11 and 12 are schematic views showing another method for manufacturing the semiconductor device 100.
  • a sacrificial layer 204 is stacked on the SOI layer 203 of the SOI substrate 200.
  • the sacrificial layer 204 is made of, for example, SiO 2 .
  • FIG. 11B the sacrificial layer 204, the SOI layer 203, the BOX layer 202, and a part of the silicon substrate 201 are removed by etching or the like, so that the silicon substrate 201 is exposed.
  • an N-type semiconductor region 212 and a P-type semiconductor region 213 are formed. These can be formed by doping the silicon substrate 201 with N-type and P-type dopants by ion implantation or solid phase diffusion.
  • crystal silicon 214 is grown by an epitaxial crystal growth method.
  • dopant is doped by ion implantation or solid phase diffusion to form an N-type semiconductor region 212 and a P-type semiconductor region 213.
  • the growth of the crystalline silicon 214 and the doping of the dopant are performed until the N-type semiconductor region 212 and the P-type semiconductor region 213 have a certain thickness.
  • crystal silicon 214 is grown by an epitaxial crystal growth method, and at the same time, a P-type semiconductor region 215 and an N-type semiconductor region 216 are formed.
  • the P-type semiconductor region 215 is formed on the N-type semiconductor region 212
  • the N-type semiconductor region 216 is formed on the P-type semiconductor region 213.
  • the P-type semiconductor region 215 and the N-type semiconductor region 216 can be formed by doping dopants by ion implantation or solid phase diffusion.
  • the growth of the crystalline silicon 214 and the doping of the dopant are performed until the P-type semiconductor region 215 and the N-type semiconductor region 216 have a certain thickness.
  • FIG. 12C shows a state where the growth of the crystalline silicon 214 and the doping of the dopant are completed.
  • the N-type semiconductor region 212 corresponds to the N-type semiconductor region 131 (see FIG. 2) of the first diode 130
  • the P-type semiconductor region 213 corresponds to the P-type semiconductor region 151 of the second diode 150.
  • the P-type semiconductor region 215 corresponds to the P-type semiconductor region 132 of the first diode 130
  • the N-type semiconductor region 216 corresponds to the N-type semiconductor region 152 of the second diode 150.
  • the silicon substrate 201 around the first diode 130 and the second diode 150 is oxidized to form silicon oxide, and an element isolation region 173 is formed as in FIG. 9B.
  • the LV circuit 110, wiring, and the like can be formed in the same manner as in the above manufacturing method, and the semiconductor device 100 can be manufactured.
  • the manufacturing method of the semiconductor device 100 is not limited to the above-described method, and any manufacturing method capable of manufacturing the semiconductor device 100 from the SOI substrate 200 may be used.
  • FIG. 13 is a cross-sectional view showing a configuration of a semiconductor device 400 according to the first modification of the present technology. As shown in the figure, the semiconductor device 400 includes a ground wiring 401. Other configurations of the semiconductor device 400 are the same as those of the semiconductor device 100.
  • the ground wiring 401 is connected to both the N-type semiconductor region 131 of the first diode 130 and the P-type semiconductor region 151 of the second diode 150 and the ground electrode 175.
  • the ground wiring 401 can be a common ground wiring of the first diode 130 and the second diode 150. It is. Thereby, the width of the element isolation region 173 can be reduced, and the area of the semiconductor device 400 can be reduced.
  • FIG. 14 is a cross-sectional view showing a configuration of a semiconductor device 500 according to a second modification of the present technology.
  • the semiconductor device 500 includes a ground wiring 501 and a signal wiring 502.
  • Other configurations of the semiconductor device 500 are the same as those of the semiconductor device 100.
  • the ground wiring 501 is connected to both the N-type semiconductor region 131 of the first diode 130 and the P-type semiconductor region 151 of the second diode 150 and the ground electrode 175.
  • the signal wiring 502 is connected to both the P ++ type semiconductor region 133 of the first diode 130 and the N ++ type semiconductor region 153 of the second diode 150.
  • the signal wiring 502 can be a common signal wiring of the first diode 130 and the second diode 150. It is. Thereby, the width of the element isolation region 173 can be reduced, and the area of the semiconductor device 500 can be reduced.
  • FIG. 15 is a schematic diagram showing a structure of an IVUS (intravascular ultrasound) 600 that can use the semiconductor device 100 according to the present embodiment.
  • the IVUS 600 includes a catheter 601, an array transducer 602, and a wiring 603.
  • the array transducer 602 is an array composed of a plurality of ultrasonic transducer modules, and each ultrasonic transducer module includes an ultrasonic transducer 300 and an impedance matching circuit 301 as shown in FIG.
  • the impedance matching circuit 301 can be realized by the semiconductor device 100.
  • the drive signal When a drive signal is input to the IVUS 600, the drive signal is transmitted to the ultrasonic transducer 300 via the impedance matching circuit 301, and the ultrasonic transducer 300 generates an ultrasonic wave.
  • the generated ultrasonic wave is irradiated to the blood vessel wall via the catheter 601 inserted into the blood vessel, and the reflected wave enters the ultrasonic transducer 300 via the catheter 601 and is detected.
  • the detection signal is amplified in the impedance matching circuit 301 and transmitted to the IVUS 600 control device via the wiring 603.
  • FIG. 16 is a schematic diagram of IVUS700 having a general structure. As shown in the figure, the IVUS 700 includes a catheter 701, an array transducer 702, a signal processing chip 703, and a wiring 704. The IVUS 700 operates in the same manner as the IVUS 600, but the impedance matching circuit is mounted on the signal processing chip 703.
  • the drive signal is about tens of volts and the detection signal is about tens of microvolts.
  • the size of an ultrasonic transducer is as small as several tens of ⁇ m, and it is difficult to output a signal to the outside of the catheter due to mismatching of electrical impedance. Therefore, signal processing including an impedance matching circuit as shown in FIG. A chip is provided.
  • the impedance matching circuit is made of silicon, this portion lacks flexibility, and the operability of IVUS is difficult.
  • the impedance matching circuit can be integrated with the ultrasonic transducer as shown in FIG. 16, and the number of parts that cannot be bent is reduced, thereby improving the operability of IVUS. be able to.
  • the semiconductor device 100 can be used for all integrated circuits using SOI substrates in addition to IVUS. It is expected that the merit is particularly great in application to ESD (electrostatic discharge) or low voltage circuits that may be exposed to intentionally formed high voltage pulses.
  • ESD electrostatic discharge
  • FIG. 20 is a schematic diagram showing the structure of an intraoperative ultrasonic probe 1000 that can use the semiconductor device 100 according to the present embodiment.
  • the intraoperative ultrasound probe 1000 includes an acoustic lens 1001, an array transducer 1002, and wiring 1003.
  • the array transducer 1002 is an array composed of a plurality of ultrasonic transducer modules, and each ultrasonic transducer module includes the ultrasonic transducer 300 and the semiconductor device 100.
  • the semiconductor device 100 constitutes an impedance matching circuit 301 as shown in FIG.
  • the drive signal When a drive signal is input to the intraoperative ultrasonic probe 1000, the drive signal is transmitted to the ultrasonic transducer 300 via the impedance matching circuit, and the ultrasonic transducer 300 generates an ultrasonic wave.
  • the generated ultrasonic wave is irradiated onto the diagnostic object via the acoustic lens 1001, and the reflected wave is incident on the ultrasonic transducer 300 via the acoustic lens 1001 and detected.
  • the detection signal is amplified in the impedance matching circuit and transmitted to the control device of the intraoperative ultrasonic probe 1000 via the wiring 1003.
  • FIG. 21 is a schematic diagram of an intraoperative ultrasonic probe 1100 having a general structure.
  • the intraoperative ultrasound probe 1100 includes an acoustic lens 1101, an array transducer 1102, and a wiring 1103.
  • the array transducer 1102 is an array composed of a plurality of ultrasonic transducer modules, and each ultrasonic transducer module includes an ultrasonic transducer 300.
  • the intraoperative ultrasound probe 1100 operates in the same manner as the intraoperative ultrasound probe 1000, but the array transducer 1102 does not have a semiconductor device that constitutes an impedance matching circuit.
  • an intra-operative ultrasonic probe generally uses an array transducer, the size of the ultrasonic transducer is as small as several tens of ⁇ m.
  • a drop-in type intraoperative ultrasound probe is required to be further downsized in order to be easily operated with forceps. For this reason, it has become difficult to output a signal outside the ultrasonic probe due to electrical impedance mismatch.
  • FIG. 22 is a schematic diagram showing a structure of a laparoscopic surgical grasping tool 1200 that can use the semiconductor device 100 according to the present embodiment.
  • a laparoscopic surgical grasping tool 1200 includes a grasping part 1201, an acoustic lens 1202, an array transducer 1203, and a wiring 1204.
  • the gripper 1201 is configured to be able to grip an object.
  • the array transducer 1203 is an array composed of a plurality of ultrasonic transducer modules, and is mounted inside the grip portion 1201.
  • Each ultrasonic transducer module includes an ultrasonic transducer 300 and a semiconductor device 100.
  • the semiconductor device 100 constitutes an impedance matching circuit 301 as shown in FIG.
  • the drive signal When a drive signal is input to the laparoscopic grasping tool 1200, the drive signal is transmitted to the ultrasonic transducer 300 via the impedance matching circuit, and the ultrasonic transducer 300 generates an ultrasonic wave.
  • the generated ultrasonic wave is applied to the diagnostic object that the acoustic lens 1202 contacts, and the reflected wave enters the ultrasonic transducer 300 and is detected.
  • the detection signal is amplified in the impedance matching circuit and transmitted to the control device of the grasping tool for laparoscopic surgery 1200 through the wiring 1204.
  • FIG. 23 is a schematic diagram of a grasping tool 1300 for laparoscopic surgery having a general structure.
  • a laparoscopic surgical gripping tool 1300 includes a gripping portion 1301, an acoustic lens 1302, an array transducer 1303, and wiring 1304.
  • the array transducer 1303 is an array composed of a plurality of ultrasonic transducer modules, and each ultrasonic transducer module includes an ultrasonic transducer 300.
  • the laparoscopic surgical gripping tool 1300 operates in the same manner as the laparoscopic surgical gripping tool 1200, but the array transducer 1303 does not have a semiconductor device constituting an impedance matching circuit.
  • FIG. 24 is a schematic diagram showing a structure of a handle portion of a laparoscopic surgical grasping tool 1400 that can use the semiconductor device 100 according to the present embodiment.
  • a laparoscopic surgical gripping tool 1400 includes a handle portion shown in the figure and a gripping portion like the laparoscopic surgical gripping tool 1300 shown in FIG.
  • a semiconductor device 100 constituting an impedance matching circuit of the ultrasonic transducer 300 is mounted on the handle portion. Each semiconductor device 100 is connected to the array transducer via a wiring 1401.
  • Surgical tools incorporating an ultrasonic probe at the tip of a grasping tool for laparoscopic surgery enable fluoroscopy with intraoperative ultrasound without introducing an extra port for intraoperative ultrasound examination.
  • the tip of the grasping tool is as small as about 2 ⁇ 10 mm, and the characteristic impedance is increased, so that the characteristics are deteriorated as compared with the existing intraoperative ultrasound.
  • the semiconductor device 100 is mounted on the tip of the gripper.
  • the handle of the gripper as shown in FIG. It may be mounted on the part.
  • FIG. 25 is a schematic diagram showing the structure of the robot forceps of the surgical robot 1500 for laparoscopic surgery that can use the semiconductor device 100 according to the present embodiment.
  • a surgical robot 1500 for laparoscopic surgery includes a gripping part 1501, an acoustic lens 1502, an array transducer 1503, and a wiring 1504.
  • the array transducer 1503 is an array composed of a plurality of ultrasonic transducer modules, and each ultrasonic transducer module includes the ultrasonic transducer 300 and the semiconductor device 100.
  • the semiconductor device 100 constitutes an impedance matching circuit 301 as shown in FIG.
  • the drive signal When a drive signal is input to the gripper 1501, the drive signal is transmitted to the ultrasonic transducer 300 via the impedance matching circuit, and the ultrasonic transducer 300 generates an ultrasonic wave.
  • the generated ultrasonic wave is applied to the diagnostic object that the acoustic lens 1502 contacts, and the reflected wave is incident on the ultrasonic transducer 300 and detected.
  • the detection signal is amplified in the impedance matching circuit and transmitted to the control device of the surgical robot 1500 for laparoscopic surgery via the wiring 1504.
  • FIG. 26 is a schematic diagram showing the structure of the robot forceps of the surgical robot 1600 for laparoscopic surgery having a general structure.
  • a surgical robot 1600 for laparoscopic surgery includes a gripping portion 1601, an acoustic lens 1602, an array transducer 1603, and wiring 1604.
  • the array transducer 1603 is an array composed of a plurality of ultrasonic transducer modules, and each ultrasonic transducer module includes an ultrasonic transducer 300.
  • the laparoscopic surgical robot 1600 operates in the same manner as the laparoscopic surgical robot 1500, but the array transducer 1603 does not have a semiconductor device constituting an impedance matching circuit.
  • Surgical robots that incorporate an ultrasonic probe at the tip of the robot forceps of a surgical robot for laparoscopic surgery can be viewed with intraoperative ultrasound without introducing an extra port for intraoperative ultrasound inspection.
  • the tip of the grasping tool is as small as about 2 ⁇ 10 mm, and the characteristic impedance is increased, so that the characteristics are deteriorated as compared with the existing intraoperative ultrasound. For this reason, as shown in FIG. 25, when the present technology is applied to such a gripping tool, it helps to maintain the characteristics of the ultrasonic probe.
  • the semiconductor device 100 can be used for small-sized and small-sized medical devices such as intraoperative ultrasonic imaging devices, ultrasonic catheters, and ultrasonic endoscopes.
  • the semiconductor device 100 is small in size, such as a geodesic ultrasonic echo and sensor, a millimeter wave sensor power circuit, an LED (light emitting diode) control circuit for an automobile or a projector, and a 48V / 24V / 12V telecom / modem circuit. It can be used for miniaturization of control circuits for small mechatronics such as miniature robots and endoscopes, reduction of full digital amplifier circuits for audio, miniaturization of control circuits for HEMS (home energy management system), etc. it can.
  • the semiconductor device 100 By using the semiconductor device 100, it is possible to reduce the size of the device by reducing the size of the integrated circuit, improve the SNR (signal-noise ratio) by bundling with the amplifier circuit, and reduce the hard portion caused by the semiconductor chip. It is possible to improve the operability of the endoscope and the like, increase the yield and theoretical yield by reducing the semiconductor chip, and thus reduce the manufacturing cost.
  • SNR signal-noise ratio
  • FIG. 17 is a cross-sectional view showing a configuration of the semiconductor device 800 according to the present embodiment
  • FIG. 18 is a cross-sectional view showing a partial configuration of the semiconductor device 800.
  • the semiconductor device 800 includes an LV (Low Voltage) circuit 810, a first transistor 830 and a second transistor 850, a silicon substrate 871, a BOX layer 872, an element isolation region 873, a lower surface insulating layer 874, a ground electrode. 875 and an upper insulating layer 876.
  • LV Low Voltage
  • the semiconductor device 800 is an integrated circuit including an LV circuit 810, a first transistor 830, and a second transistor 850, and the first transistor 830 and the second transistor 850 constitute a protection circuit for this integrated circuit.
  • the semiconductor device 800 can be manufactured from a single SOI substrate 200 (see FIG. 3), as in the first embodiment.
  • the silicon substrate 871 of the semiconductor device 800 is a part of the silicon substrate 201 of the SOI substrate 200, and the BOX layer 872 of the semiconductor device 800 is a part of the BOX layer 202 of the SOI substrate 200.
  • the surface on the LV circuit 810 side is referred to as an upper surface 800a, and the opposite surface is referred to as a lower surface 800b.
  • the LV circuit 810 includes an N-type semiconductor region 811, a P-type semiconductor region 812, an N ++ type semiconductor region 813, a P ++ type semiconductor region 814, a first gate electrode 815, a second gate electrode 816, a gate insulating film 817, and an element isolation.
  • a layer 818 and a signal wiring 819 are provided.
  • the N-type semiconductor region 811 is stacked on the BOX layer 872 and is made of silicon doped with an N-type dopant.
  • the N-type dopant is typically phosphorus.
  • the P-type semiconductor region 812 is stacked on the BOX layer 872 and is made of silicon doped with a P-type dopant.
  • the P-type dopant is typically boron.
  • the N-type semiconductor region 811 and the P-type semiconductor region 812 face the upper surface 800a and are separated by an element isolation layer 818 made of SiO 2 .
  • the N + + type semiconductor region 813 is made of silicon doped with a large amount of N type dopant, and is formed at two positions in the P type semiconductor region 812 so as to be separated from each other.
  • Each N ++ type semiconductor region 813 faces the upper surface 800a, and a signal wiring 819 is connected thereto.
  • the P ++ type semiconductor region 814 is made of silicon doped with a large amount of P type dopant, and is formed at two positions in the N type semiconductor region 811 so as to be separated from each other. Each P ++ type semiconductor region 814 faces the upper surface 800a and is connected to a signal wiring 819.
  • the first gate electrode 815 is made of a metal such as aluminum or a conductive material such as polysilicon, and is formed on the N-type semiconductor region 811 with a gate insulating film 817 interposed therebetween.
  • the second gate electrode 816 is made of a metal such as aluminum or a conductive material such as polysilicon, and is formed on the P-type semiconductor region 812 with a gate insulating film 817 interposed therebetween.
  • the N-type semiconductor region 811, the P-type semiconductor region 812, the N ++ type semiconductor region 813, and the P ++ type semiconductor region 814 are regions formed by injecting a P-type or N-type dopant into the SOI layer 203 of the SOI substrate 200. is there.
  • the element isolation layer 818 is a region formed by oxidizing the SOI layer 203 into SiO 2 .
  • the configuration of the LV circuit 810 is not limited to the above, and any configuration that can be manufactured by processing the SOI layer 203 of the SOI substrate 200 may be used.
  • the first transistor 830 is a vertical transistor, and includes a first P-type semiconductor region 831, an N ⁇ -type semiconductor region 832, a second P-type semiconductor region 833, a P ++ type semiconductor region 834, a gate electrode 835, a ground wiring 836, and a signal wiring. 837 is provided.
  • the first P-type semiconductor region 831 and the second P-type semiconductor region 833 are made of silicon doped with a P-type dopant
  • the N ⁇ -type semiconductor region 832 is made of silicon doped with a small amount of N-type dopant.
  • the P ++ type semiconductor region 834 is made of silicon that is heavily doped with a P type dopant.
  • the first P-type semiconductor region 831, the N ⁇ -type semiconductor region 832, and the second P-type semiconductor region 833 are stacked in this order, the first P-type semiconductor region 831 faces the lower surface 800b, and the second P-type semiconductor region 833 faces the upper surface 800a. Face.
  • the P ++ type semiconductor region 834 is formed in the second P type semiconductor region 833 and faces the upper surface 800a.
  • the first P-type semiconductor region 831, the N ⁇ -type semiconductor region 832, the second P-type semiconductor region 833 and the P ++ -type semiconductor region 834 are made of crystalline silicon and have the same crystal orientation as the silicon substrate 871. This is because these semiconductor regions are formed by implanting a dopant into a part of the silicon substrate 201 or are made of crystalline silicon formed on the silicon substrate 201 by an epitaxial crystal growth method.
  • the gate electrode 835 is embedded in the element isolation region 873 and functions as the gate electrode of the first transistor 830.
  • the gate electrode 835 is made of polysilicon.
  • the element isolation region 873 can have a structure in which an insulating material such as silicon oxide or silicon nitride is formed in a hole of a through hole formed in the SOI substrate 200 and polysilicon is filled in the hole. This polysilicon can be used as the gate electrode 835.
  • the ground wiring 836 is connected to the first P-type semiconductor region 831 on the lower surface 800b, and the signal wiring 837 is connected to the P ++ type semiconductor region 834 on the upper surface 800a.
  • the second transistor 850 is a vertical transistor and includes a P-type semiconductor region 851, an N-type semiconductor region 852, an N ++ type semiconductor region 853, a gate electrode 854, a ground wiring 855, and a signal wiring 856.
  • the P-type semiconductor region 851 is made of silicon doped with a P-type dopant
  • the N-type semiconductor region 852 is made of silicon doped with an N-type dopant.
  • the N ++ type semiconductor region 853 is made of silicon that is heavily doped with an N type dopant.
  • the P-type semiconductor region 851 and the N-type semiconductor region 852 are stacked, the P-type semiconductor region 851 faces the lower surface 800b, and the N-type semiconductor region 852 faces the upper surface 800a.
  • the N ++ type semiconductor region 853 is formed in the N type semiconductor region 852 and faces the upper surface 800a.
  • the P-type semiconductor region 851, the N-type semiconductor region 852, and the N ++ type semiconductor region 853 are made of crystalline silicon and have the same crystal orientation as that of the silicon substrate 201. This is because these semiconductor regions are formed by implanting a dopant into a part of the silicon substrate 201 or are made of crystalline silicon formed on the silicon substrate 201 by an epitaxial crystal growth method.
  • the gate electrode 854 is embedded in the element isolation region 873 and functions as the gate electrode of the second transistor 850.
  • the gate electrode 854 is made of polysilicon.
  • the element isolation region 873 can have a structure in which an insulating material such as silicon oxide or silicon nitride is formed in a hole of a through hole formed in the SOI substrate 200 and polysilicon is filled in the hole. This polysilicon can be used as the gate electrode 854.
  • the ground wiring 855 is connected to the P-type semiconductor region 851 on the lower surface 800b, and the signal wiring 856 is connected to the N ++ type semiconductor region 853 on the upper surface 800a.
  • the element isolation region 873 isolates the first transistor 830 and the second transistor 850.
  • the element isolation region 873 penetrates from the upper surface 800a to the lower surface 800b.
  • the element isolation region 873 is formed around the first transistor 830 and the second transistor 850 as in the first embodiment (see FIG. 4).
  • the element isolation region 873 is made of one or more materials of silicon oxide, silicon nitride, or polysilicon.
  • the element isolation region 873 has a structure in which an insulating material such as silicon oxide or silicon nitride is formed in a hole of a through hole formed in the SOI substrate 200 and polysilicon is filled in the hole. Can do.
  • polysilicon can be used as the gate electrode 835 and the gate electrode 854.
  • the lower surface insulating layer 874 is disposed on the lower surface 800b and prevents diffusion of moisture and impurities.
  • the lower insulating layer 874 is made of, for example, p-SiO (silicon oxide formed by plasma vapor deposition).
  • the lower insulating layer 874 is patterned so that the first P-type semiconductor region 831 and the P-type semiconductor region 851 are exposed, and a ground wiring 836 and a ground wiring 855 are formed in the opening.
  • the ground electrode 875 is disposed on the lower insulating layer 874 and is connected to the ground wiring 836 and the ground wiring 855. Accordingly, the ground electrode 875 is electrically connected to the first P-type semiconductor region 831 and the P-type semiconductor region 851, and constitutes a ground contact structure of the first transistor 830 and the second transistor 850 together with the ground wiring 836 and the ground wiring 855.
  • the ground electrode 875 is made of a conductive material such as aluminum.
  • the upper surface insulating layer 876 is disposed on the upper surface 800a and seals each circuit.
  • the upper insulating layer 876 is made of an insulating material such as SiO 2 .
  • FIG. 5 is a schematic diagram showing a circuit configuration of the impedance matching circuit 901 of the ultrasonic transducer 900 that can use the semiconductor device 100.
  • the impedance matching circuit 901 includes an amplifier 902, a first TR (transmit-receive) switch 903, and a second TR switch 904.
  • the drive signal of the ultrasonic transducer 900 When the drive signal of the ultrasonic transducer 900 is input when the first TR switch 903 and the second TR switch 904 are OFF, the drive signal reaches the ultrasonic transducer 900 and generates an ultrasonic wave in the ultrasonic transducer 900. Let The drive signal is prevented from reaching the amplifier 902 by the first TR switch 903 and the second TR switch 904.
  • the first TR switch 903 and the second TR switch 904 are switched ON immediately after the drive signal reaches the ultrasonic transducer 900.
  • the ultrasonic transducer 900 When the reflected ultrasonic wave reaches the ultrasonic transducer 900, the ultrasonic transducer 900 generates a detection signal.
  • the detection signal reaches the amplifier 902 via the first TR switch 903, is amplified by the amplifier 902, and is output via the second TR switch 904.
  • the impedance matching circuit 901 includes the amplifier 902 that is an amplifier circuit, and the first TR switch 903 and the second TR switch 904 that are protection circuits.
  • the LV circuit 810 can be used as the amplifier 902, the first transistor 830 can be used as the first TR switch 903, and the second transistor 850 can be used as the second TR switch 904, and the impedance matching circuit 901 can be used as one semiconductor device 800. Can be realized.
  • the impedance matching circuit of the ultrasonic vibrator is one of the usage forms of the semiconductor device 800, and the semiconductor device 800 can be used for various circuits including an amplifier circuit and a protection circuit.
  • the semiconductor device 800 is obtained by forming the LV circuit 810, the first transistor 830, and the second transistor 850 on one SOI substrate.
  • a TR switch can be formed by the first transistor 830 and the second transistor 850. The surge charge can be easily released.
  • latch-up free is realized by adopting a through trench structure that penetrates the element isolation region 873 of the first transistor 830 and the second transistor 850 from the upper surface 800a to the lower surface 800b.
  • first transistor 830 and the second transistor 850 are made of single crystal silicon, and as in the first embodiment, it is possible to ensure good leakage current characteristics, improve the function as a protection circuit, and reduce the mounting area. It is.
  • a method for manufacturing the semiconductor device 800 will be described. As described above, the semiconductor device 800 can be manufactured from the SOI substrate 200 (see FIG. 3), and can be manufactured in the same manner as the semiconductor device 100 according to the first embodiment.
  • an insulating material such as silicon oxide or silicon nitride is formed in the trench T (see FIG. 9A) when the element isolation region 873 is formed. Polysilicon is buried in the trench T. Wiring can be applied to this polysilicon to form the gate electrode 835 and the gate electrode 854.
  • the semiconductor device 800 can be used as an impedance matching circuit of an ultrasonic transducer in IVUS. Since the impedance matching circuit can be integrated with the ultrasonic transducer, the operability of IVUS can be improved. Similarly to the first embodiment, the semiconductor device 800 is impedance-matched in various ultrasonic imaging systems such as an intraoperative ultrasonic probe, an ultrasonic endoscope, a laparoscopic surgical gripper, and a laparoscopic surgical robot. It can be used as a circuit.
  • the semiconductor device 800 can also be used for all integrated circuits using an SOI substrate, as in the first embodiment.
  • the size of the device can be reduced by reducing the size of the integrated circuit, the SNR (signal-noise ratio) can be improved by bundling with the amplifier circuit, and the hard part caused by the semiconductor chip can be reduced. It is possible to improve the operability of the endoscope and the like, increase the yield and theoretical yield by reducing the semiconductor chip, and thus reduce the manufacturing cost.
  • a semiconductor comprising an integrated circuit formed on an SOI substrate comprising a silicon substrate made of crystalline silicon, a BOX (buried oxide) layer laminated on the silicon substrate, and an SOI (silicon on insulator) layer laminated on the BOX layer A device,
  • a protection circuit comprising a semiconductor region constituting the integrated circuit and having the same crystal orientation as the silicon substrate; An element isolation region that penetrates the SOI substrate and isolates the protection circuit.
  • the protection circuit is a diode.
  • the protection circuit is a vertical transistor.
  • the element isolation region is a semiconductor device made of one or more of silicon oxide, silicon nitride, and polysilicon.
  • the element isolation region includes a gate electrode of the vertical transistor.
  • the semiconductor device has a first surface and a second surface opposite to the first surface
  • the protection circuit includes a first semiconductor element and a second semiconductor element
  • the first semiconductor element includes a first semiconductor region having a first impurity type on the first surface side and a second semiconductor region having a second impurity type on the second surface side.
  • a semiconductor region is stacked and configured.
  • the second semiconductor element includes a third semiconductor region on the first surface side and having the second impurity type, and a second semiconductor side on the second surface side and having the first impurity type.
  • a semiconductor device configured by stacking four semiconductor regions.
  • the semiconductor device according to (6) further including a ground contact structure that is provided on the first surface of the semiconductor device and is electrically connected to the first semiconductor region and the third semiconductor region. .
  • ground contact structure is connected to the ground wiring and includes a common ground electrode in both the first semiconductor region and the third semiconductor region.
  • a semiconductor device including an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer, wherein the integrated circuit is
  • An ultrasonic imaging apparatus comprising: a semiconductor device comprising: a protection circuit including a semiconductor region having the same crystal orientation as that of the silicon substrate; and an element isolation region penetrating the SOI substrate and separating the protection circuit.
  • a method for manufacturing a semiconductor device according to (12) above In the step of forming the protection circuit, a substrate polishing method is used in which the silicon substrate is polished from a surface opposite to the surface of the semiconductor region where crystal growth proceeds to expose the semiconductor region. Production method.
  • a semiconductor device including an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer, wherein the integrated circuit is And an ultrasonic catheter including a semiconductor device including a protection circuit including a semiconductor region having the same crystal orientation as the silicon substrate and an element isolation region penetrating the SOI substrate and separating the protection circuit.
  • Acoustic imaging system including a semiconductor device including a protection circuit including a semiconductor region having the same crystal orientation as the silicon substrate and an element isolation region penetrating the SOI substrate and separating the protection circuit.
  • a semiconductor device including an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer, wherein the integrated circuit is An intraoperative ultrasonic probe or a superstructure comprising a semiconductor device comprising a protection circuit comprising a semiconductor region having the same crystal orientation as the silicon substrate and an element isolation region penetrating the SOI substrate and separating the protection circuit; Ultrasound imaging system including sonic endoscope.
  • a semiconductor device including an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer, wherein the integrated circuit is In laparoscopic surgery, comprising a semiconductor device comprising a protection circuit comprising a semiconductor region having the same crystal orientation as the silicon substrate and an element isolation region penetrating the SOI substrate and separating the protection circuit Ultrasound imaging system including handheld instrument with ultrasound imaging function used.
  • a semiconductor device including an integrated circuit formed on an SOI substrate including a silicon substrate made of crystalline silicon, a BOX layer stacked on the silicon substrate, and an SOI layer stacked on the BOX layer, wherein the integrated circuit is In laparoscopic surgery, comprising a semiconductor device comprising a protection circuit comprising a semiconductor region having the same crystal orientation as the silicon substrate and an element isolation region penetrating the SOI substrate and separating the protection circuit Ultrasound imaging system including robotic forceps with ultrasound imaging function used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】小面積ながら良好な特性を有する保護回路を備える半導体装置、超音波撮像装置、半導体装置の製造方法及び及び超音波イメージングシステムを提供すること。 【解決手段】、本技術に係る半導体装置は、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、保護回路と、素子分離領域を具備する。上記保護回路は、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える。上記素子分離領域は、上記SOI基板を貫通し、上記保護回路を分離する。

Description

半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステム
 本技術は、保護回路を含む集積回路を備える半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステムに関する。
 超音波イメージングは、超音波振動子から測定対象物に超音波を照射し、測定対象物において発生した反射波を超音波振動子で検知することによって超音波画像を生成することができ、超音波内視鏡や超音波カテーテルとして利用されている。
 ここで、超音波を発振させるために超音波振動子に印加される駆動電圧と、超音波の検知によって超音波振動子が生じる信号電圧は大きく異なり、例えば駆動電圧は最大数百V程度であるのに対し、信号電圧は数μV程度である。
 このため、信号電圧を増幅するための増幅回路が利用される。一方で、駆動電圧が増幅回路に印加されると増幅回路が故障するため、駆動電圧の増幅回路への到達を防止する保護回路も必要となる。これらの回路を一つの半導体基板に搭載することができれば、実装スペースを節約することが可能となる。
 ここで、SOI(silicon on insulator)基板は耐電圧性に優れ、増幅回路と保護回路を共に備える半導体基板として好適である。例えば、特許文献1には、一つのSOI基板に増幅回路と保護回路を搭載した半導体装置が開示されている。この半導体装置では、SOI基板上に増幅回路が形成され、SOI基板に設けられた貫通孔内に保護回路が形成されている。保護回路は、貫通孔内に埋め込まれたポリシリコンからなる。
特開2010-50156号公報
 しかしながら、ポリシリコンは一般に抵抗が高く、ポリシリコン内の欠陥により良好な漏洩電流特性を持ったダイオードが形成しにくいという問題がある。また、SOI基板は一般に0.8mm程度の厚さを有するが、そのSOI基板に数十μm幅の貫通孔を形成することは製造プロセス上困難である。貫通孔の幅を大きくしてアスペクト比(開口/深さ)を緩和すると、素子面積の低減が困難となる。
 以上のような事情に鑑み、本技術の目的は、小面積ながら良好な特性を有する保護回路を備える半導体装置、超音波撮像装置、半導体装置の製造方法及び及び超音波イメージングシステムを提供することにある。
 上記目的を達成するため、本技術の一形態に係る半導体装置は、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX(buried oxide)層及び上記BOX層に積層されたSOI(silicon on insulator)層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、保護回路と、素子分離領域を具備する。
 上記保護回路は、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える。
 上記素子分離領域は、上記SOI基板を貫通し、上記保護回路を分離する。
 この構成によれば、一つのSOI基板上に保護回路を含む集積回路が形成された半導体装置を実現することが可能である。この保護回路はシリコン基板と同じ結晶配向を有する結晶シリコンからなる半導体領域を備える。結晶シリコンは、ポリシリコン等の非晶質シリコンに比べ移動度が高く、保護回路の素子面積の低減や良好な漏洩電流特性の確保が可能である。
 上記保護回路は、ダイオードであってもよい。
 この構成によれば、ダイオードによってTR(transmit-receive)スイッチを形成することができ、ダイオードを保護回路として利用することが可能となる。
 上記保護回路は、縦型トランジスタであってもよい。
 この構成によれば、縦型トランジスタによってTRスイッチを形成することができ、縦型トランジスタを保護回路として利用することが可能となる。
 上記素子分離領域は、シリコン酸化物、シリコン窒化物及びポリシリコンのうちいずれか1種又は2種以上からなるものであってもよい。
 SOI基板に設けられた貫通孔内にシリコン酸化膜又はシリコン窒化膜を成膜し、その内部にポリシリコンを埋め込むことによって、素子分離領域を形成することができる。
 上記素子分離領域は、上記縦型トランジスタのゲート電極を備えるものであってもよい。
 素子分離領域に埋め込まれたポリシリコンに配線を接続することにより、当該ポリシリコンを縦型トランジスタのゲート電極として利用することが可能である。
 上記SOI基板は、第1の面と、その反対側の第2の面を有し、
 上記保護回路は、第1の半導体素子と第2の半導体素子を含み、
 上記第1の半導体素子は、上記第1の面側であって第1の不純物型を有する第1の半導体領域と、上記第2の面側であって第2の不純物型を有する第2の半導体領域が積層されて構成され、
 上記第2の半導体素子は、上記第1の面側であって上記第2の不純物型を有する第3の半導体領域と、上記第2の面側であって上記第1の不純物型を有する第4の半導体領域が積層されて構成されていてもよい。
 この構成によれば、第1の半導体素子と第2の半導体素子によって、バックツーバックダイオードを形成することが可能である。バックツーバックダイオードは、二つのダイオードを、一方のP型半導体領域と他方のN型半導体領域が接続されるように構成したダイオードであり、高電圧素子においてはツェナーダイオード機能を有する素子として多用される。
 上記半導体装置は、上記半導体装置の上記第1の面に設けられ、上記第1の半導体領域及び上記第3の半導体領域に導通する接地コンタクト構造をさらに具備してもよい。
 これにより、バックツーバックダイオードへの配線の取り回しが容易となり、歩留まり改善や製造コスト削減、配線信頼性の向上が実現可能である。
 上記接地コンタクト構造は、上記第1の半導体領域と上記第3の半導体領域に接続され、上記第1の半導体領域と上記第3の半導体領域の両者に共通の接地配線を含んでもよい。
 バックツーバックダイオードの隣接する半導体領域(第1の半導体領域及び第3の半導体領域)は同電位となるため、共通の接地配線で両領域を接続することが可能である。
 上記接地コンタクト構造は、上記接地配線に接続され、上記第1の半導体領域と上記第3の半導体領域の両者に共通の接地電極を含んでもよい。
 この構成によれば、第1の半導体素子及び第2の半導体素子を共通する接地電極に導通させることが可能である。
 上記半導体装置は、上記第2の半導体領域と上記第4の半導体領域に接続され、上記第2の半導体領域と上記第4の半導体領域の両者に共通の信号配線をさらに具備してもよい。
 バックツーバックダイオードの隣接する半導体領域(第2の半導体領域及び第4の半導体領域)は同電位となるため、共通の信号配線で両領域を接続することが可能である
 上記目的を達成するため、本技術の一形態に係る超音波撮像装置は、半導体装置を備える。
 上記半導体装置は、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える。
 半導体装置は、超音波撮像装置が備える超音波振動子のインピーダンス整合回路として利用することが可能である。
 本技術の一形態に係る、SOI基板上に集積回路が形成された半導体装置の製造方法は、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板を準備する。
 エピタキシャル結晶成長法により、上記シリコン基板上に上記シリコン基板と同じ結晶配向を有する半導体領域を備え、上記集積回路を構成する保護回路を形成する。
 上記SOI基板を貫通し、上記保護回路を分離する素子分離領域を形成する。
 上記保護回路を形成する工程では、上記シリコン基板を、上記半導体領域の結晶成長が進行する側の面とは反対側の面から研磨して上記半導体領域を露出させる基板研磨法を用いてもよい。
 本技術の一形態に係る超音波イメージングシステムは、超音波カテーテルを含む。
 上記超音波カテーテルは、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する。
 本技術の一形態に係る超音波イメージングシステムは、術中超音波プローブ又は超音波内視鏡を含む。
 上記術中超音波プローブ又は上記超音波内視鏡は、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する。
 本技術の一形態に係る超音波イメージングシステムは、腹腔鏡下手術で用いられる超音波イメージング機能付き手持ち器具を含む。
 上記超音波イメージング機能付き手持ち器具は、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する。
 本技術の一形態に係る超音波イメージングシステムは、腹腔鏡下手術で用いられる超音波イメージング機能付きロボット鉗子を含む。
 上記超音波イメージング機能付きロボット鉗子は、結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する。
 以上のように、本技術によれば、小面積ながら良好な特性を有する保護回路を備える半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステムを提供することが可能である。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の第1の実施形態に係る半導体装置の断面図である。 同半導体装置の一部構成の断面図である。 同半導体装置の作製に用いられるSOI基板の断面図である。 同半導体装置の素子分離領域の平面図である。 同半導体装置を利用したインピーダンス整合回路を示す模式図である。 同半導体装置の製造方法を示す模式図である。 同半導体装置の製造方法を示す模式図である。 同半導体装置の製造方法を示す模式図である。 同半導体装置の製造方法を示す模式図である。 同半導体装置の製造方法を示す模式図である。 同半導体装置の製造方法を示す模式図である。 同半導体装置の製造方法を示す模式図である。 第1の実施形態の第1の変形例に係る半導体装置の断面図である。 第1の実施形態の第2の変形例に係る半導体装置の断面図である。 本技術に係る半導体装置を利用したIVUS(血管内超音波内視鏡)の模式図である。 一般的構造を有するIVUSの模式図である。 本技術の第2の実施形態に係る半導体装置の断面図である。 同半導体装置の一部構成の断面図である。 同半導体装置を利用したインピーダンス整合回路を示す模式図である。 本技術に係る半導体装置を利用した術中超音波プローブの模式図である。 一般的構造を有する術中超音波プローブの模式図である。 本技術に係る半導体装置を利用した腹腔鏡手術用把持具の模式図である。 一般的構造を有する腹腔鏡手術用把持具の模式図である。 本技術に係る半導体装置を利用した腹腔鏡手術用把持具のハンドル部の模式図である。 技術に係る半導体装置を利用した腹腔鏡手術用手術ロボットのロボット鉗子の模式図である。 一般的構造を有する腹腔鏡手術用手術ロボットのロボット鉗子の模式図である。
 (第1の実施形態)
 本技術の第1の実施形態に係る半導体装置について説明する。
 [半導体装置の構成]
 図1は、本実施形態に係る半導体装置100の構成を示す断面図であり、図2は、半導体装置100の一部構成を示す断面図である。これらの図に示すように半導体装置100は、LV(Low Voltage)回路110、第1ダイオード130及び第2ダイオード150、シリコン基板171、BOX(buried oxide:埋め込み酸化膜)層172、素子分離領域173、下面絶縁層174、グランド電極175及び上面絶縁層176を備える。
 半導体装置100は、LV回路110、第1ダイオード130及び第2ダイオード150を備える集積回路であり、第1ダイオード130及び第2ダイオード150は、この集積回路の保護回路を構成する。
 半導体装置100は一枚のSOI基板から作製することができる。図3は、半導体装置100を構成するSOI基板200の模式図である。同図に示すように、SOI基板200は、シリコン基板201、BOX層202及びSOI層203を備える。
 シリコン基板201は、P型の結晶シリコンからなる。BOX層202はシリコン基板201に積層され、SiOからなる。SOI層203はBOX層202に積層され、シリコンからなる。SOI基板200は、SIMOX(Separation by IMplantation of OXygen)法や張り合わせ法によって作製されたものとすることができる。
 半導体装置100は、SOI基板200に後述する加工プロセスを施すことによって作製される。半導体装置100のシリコン基板171は、SOI基板200のシリコン基板201の一部であり、半導体装置100のBOX層172は、SOI基板200のBOX層202の一部である。
 以下、半導体装置100のSOI基板200を加工して形成される部分(図2の構造)のうち、LV回路110側の面を上面100aとし、その反対側の面を下面100bとする。
 LV回路110は、N型半導体領域111、P型半導体領域112、N++型半導体領域113、P++型半導体領域114、第1ゲート電極115、第2ゲート電極116、ゲート絶縁膜117、素子分離層118及び信号配線119を備える。
 N型半導体領域111はBOX層172上に積層され、N型ドーパントがドープされたシリコンからなる。N型ドーパントは典型的にはリンである。P型半導体領域112はBOX層172上に積層され、P型ドーパントがドープされたシリコンからなる。P型ドーパントは典型的にはホウ素である。N型半導体領域111及びP型半導体領域112は、上面100aに面し、SiOからなる素子分離層118によって分離されている。
 N++型半導体領域113は、N型ドーパントが多量にドープされたシリコンからなり、P型半導体領域112中の2箇所に離間して形成されている。各N++型半導体領域113は上面100aに面し、信号配線119が接続されている。
 P++型半導体領域114は、P型ドーパントが多量にドープされたシリコンからなり、N型半導体領域111中の2箇所に離間して形成されている。各P++型半導体領域114は上面100aに面し、信号配線119が接続されている。
 第1ゲート電極115は、アルミニウム等の金属又はポリシリコン等の導電性材料からなり、ゲート絶縁膜117を介してN型半導体領域111上に形成されている。第2ゲート電極116は、アルミニウム等の金属又はポリシリコン等の導電性材料からなり、ゲート絶縁膜117を介してP型半導体領域112上に形成されている。
 N型半導体領域111、P型半導体領域112、N++型半導体領域113及びP++型半導体領域114は、SOI基板200のSOI層203にP型又はN型のドーパントを注入して形成した領域である。素子分離層118は、SOI層203をSiOに酸化して形成した領域である。
 なお、LV回路110の構成は上記のものに限られず、SOI基板200のSOI層203を加工して作製可能な構成であればよい。
 第1ダイオード130は、N型半導体領域131、P型半導体領域132、P++型半導体領域133、グランド配線134及び信号配線135を備える。N型半導体領域131はN型ドーパントがドープされたシリコンからなり、P型半導体領域132はP型ドーパントがドープされたシリコンからなる。P++型半導体領域133はP型ドーパントが多量にドープされたシリコンからなる。即ち、N型半導体領域131は第1の不純物型(N型)を有する半導体領域であり、P型半導体領域132及びP++型半導体領域133は第2の不純物型(P型)を有する半導体領域である。
 N型半導体領域131とP型半導体領域132は積層され、N型半導体領域131は下面100bに面し、P型半導体領域132は上面100aに面する。P++型半導体領域133は、P型半導体領域132中に形成され、上面100aに面する。
 N型半導体領域131、P型半導体領域132及びP++型半導体領域133は、結晶シリコンからなり、シリコン基板171と同じ結晶配向を有する。これは、これらの半導体領域がシリコン基板201の一部へのドーパントの注入により形成され、又はシリコン基板201上にエピタキシャル結晶成長法によって形成された結晶シリコンからなるためである。
 グランド配線134は下面100bにおいてN型半導体領域131に接続され、信号配線135は上面100aにおいてP++型半導体領域133に接続されている。
 第2ダイオード150は、P型半導体領域151、N型半導体領域152、N++型半導体領域153、グランド配線154及び信号配線155を備える。P型半導体領域151は、P型ドーパントがドープされたシリコンからなり、N型半導体領域152はN型ドーパントがドープされたシリコンからなる。N++型半導体領域153はN型ドーパントが多量にドープされたシリコンからなる。即ち、P型半導体領域151は第2の不純物型(P型)を有する半導体領域であり、N型半導体領域152及びN++型半導体領域153は第1の不純物型(N型)を有する半導体領域である。
 P型半導体領域151とN型半導体領域152は積層され、P型半導体領域151は下面100bに面し、N型半導体領域152は上面100aに面する。N++型半導体領域153は、N型半導体領域152中に形成され、上面100aに面する。
 P型半導体領域151、N型半導体領域152及びN++型半導体領域153は、結晶シリコンからなり、シリコン基板171と同じ結晶配向を有する。これは、これらの半導体領域がシリコン基板201の一部へのドーパントの注入により形成され、又はシリコン基板201上にエピタキシャル結晶成長法によって形成された単結晶シリコンからなるためである。
 グランド配線154は下面100bにおいてP型半導体領域151に接続され、信号配線155は上面100aにおいてN++型半導体領域153に接続されている。
 素子分離領域173は、第1ダイオード130と第2ダイオード150を分離する。素子分離領域173は、上面100aから下面100bまでを貫通する。図4は、素子分離領域173を上面100a側からみた模式図である。同図に示すように、素子分離領域173は、第1ダイオード130及び第2ダイオード150の周囲に形成されている。
 素子分離領域173は、シリコン酸化物、シリコン窒化物又はポリシリコンのうちいずれか一種又は二種以上の材料からなる。例えば、素子分離領域173は、SOI基板200に形成された貫通孔の孔内にシリコン酸化物又はシリコン窒化物等の絶縁性材料を成膜し、孔内にポリシリコンを埋め込んだ構造とすることができる。
 下面絶縁層174は、下面100bに配設され、水分や不純物の拡散を防止する。下面絶縁層174は、例えばp-SiO(プラズマ気相成長によって形成された酸化シリコン)からなる。下面絶縁層174は、N型半導体領域131及びP型半導体領域151が露出するようにパターニングされ、開口部にはグランド配線134及びグランド配線154が形成されている。
 グランド電極175は、下面絶縁層174上に配設され、グランド配線134及びグランド配線154と接続されている。これにより、グランド電極175は、N型半導体領域131とP型半導体領域151に導通し、グランド配線134及びグランド配線154と共に第1ダイオード130及び第2ダイオード150の接地コンタクト構造を構成する。グランド電極175は、アルミニウム等の導電性材料からなる。
 上面絶縁層176は、上面100aに配設され、各回路を封止する。上面絶縁層176はSiO等の絶縁性材料からなる。
 [半導体装置の利用態様]
 図5は、半導体装置100を利用することが可能な、超音波振動子300のインピーダンス整合回路301の回路構成を示す模式図である。
 同図に示すように、インピーダンス整合回路301は、アンプ302、キャパシタ303、第1TR(transmit-receive)スイッチ304、第2TRスイッチ305及び第3TRスイッチ306を備える。第1TRスイッチ304、第2TRスイッチ305及び第3TRスイッチ306はそれぞれがバックツーバックダイオードである。バックツーバックダイオードは同図に示すように、二つのダイオードを、一方のP型半導体領域と他方のN型半導体領域が接続されるように配置したダイオードである。
 超音波振動子300の駆動信号は、第1TRスイッチ304及びキャパシタ303を経由して超音波振動子300に到達し、超音波振動子300に超音波を生じさせる。駆動信号は第2TRスイッチ305及び第3TRスイッチ306によってアンプ302への到達が防止される。なお、キャパシタ303は求める振動子駆動に応じて短絡させてもよい。
 超音波の反射波が超音波振動子300に到達すると、超音波振動子300は検知信号を発生する。検知信号は、アンプ302によって増幅され、出力される。
 このように、インピーダンス整合回路301は、増幅回路であるアンプ302と、保護回路である第1TRスイッチ304、第2TRスイッチ305及び第3TRスイッチ306によって構成されている。
 半導体装置100では、LV回路110をアンプ302として、第1ダイオード130及び第2ダイオード150をTRスイッチとして利用することができ、インピーダンス整合回路301を一つの半導体装置100によって実現することが可能となる。
 なお、第1ダイオード130及び第2ダイオード150は、3つのTRスイッチの一つを構成する。他の2つのTRスイッチも、第1ダイオード130及び第2ダイオード150と同様に半導体装置100において形成することができる。
 また、上記のように、第1ダイオード130と第2ダイオード150によってバックツーバックダイオードが構成されている。バックツーバックダイオードは高電圧素子においてはツェナーダイオード機能を有する素子として多用されている。ダイオードが一方向のみであれば、ダイオードに基板の側面から配線を接続し、又は貫通配線を形成して接続する必要があり、製造工程数による歩留り低下やコスト増大、配線信頼性の劣化が懸念される。
 これに対し、半導体装置100では同一のSOI基板上において、第1ダイオード130と第2ダイオード150によってバックツーバックダイオードが構成され、両ダイオードが共通のグランド電極175に接続されている。これにより、配線の取り回しが容易化するため、歩留り改善やコスト削減、配線信頼性の向上が可能である。
 なお、超音波振動子のインピーダンス整合回路は、半導体装置100の利用形態の一つであり、半導体装置100はSOI基板上に形成され、保護回路を備える各種の回路に利用することが可能である。
 [半導体装置の効果]
 上記のように半導体装置100は、LV回路110、第1ダイオード130及び第2ダイオード150を一枚のSOI基板上に形成したものである。SOI基板200にBOX層202がないチャネル領域を形成し、そこに第1ダイオード130及び第2ダイオード150を形成することにより、第1ダイオード130及び第2ダイオード150によってTRスイッチを形成することができ、サージ電荷を逃がしやすくなっている。
 また、第1ダイオード130及び第2ダイオード150の素子分離領域173を上面100aから下面100bまで貫通した貫通トレンチ構造とすることにより、ラッチアップ(短絡)が発生しないラッチアップフリーが実現されている。
 さらに、第1ダイオード130及び第2ダイオード150は単結晶シリコンからなり、良好な漏洩電流特性を確保すると共に、保護回路としての機能向上が実現されている。具体的には、ポリシリコンの移動度は1~10cm/Vsであるのに対し、結晶シリコンの移動度は500~1000cm/Vs程度であり、空乏層領域では結晶シリコンの方が抵抗が1/100~1/500程度と低い。
 特にi層(N型半導体領域とP型半導体領域の境界に位置するドーパント濃度が低い層)での抵抗が問題となる。厚さ1μm、面積25μmのi層(P:1×10-14/cm)での抵抗は、ポリシリコンが998Ωであるのに対し、結晶シリコンは2Ωである。このため、順方向電流として200Vで2Aを流すダイオードを作製する場合に必要なダイオード面積は、ポリシリコンの場合には6242μmであるのに対し、結晶シリコンの場合には12.5μmである。
 このため、ポリシリコンからダイオードを作製すると80μm□が必要な場合に、結晶シリコンからダイオードを作成すると4μm□でよい。一般に、ポリシリコンから作製されたダイオードを備える半導体装置では、複数の貫通トレンチにより形成されたダイオードが必要となる。これに対し、本実施形態に係る半導体装置100では、5×5μm□のダイオード一つで十分であり、半導体装置100の実装面積の削減が可能である。
 [半導体装置の製造方法1]
 半導体装置100の製造方法について説明する。上記のように半導体装置100は、SOI基板200(図3参照)から作成することができる。
 図6乃至図10は、半導体装置100の製造方法を示す模式図である。図6(a)に示すように、SOI基板200のSOI層203上に犠牲層204を積層する。犠牲層204は例えば、SiOからなる。続いて、図6(b)に示すように、犠牲層204、SOI層203及びBOX層202をエッチング等によって除去し、シリコン基板201を露出させる。
 続いて、図6(c)に示すように、シリコン基板201上にエピタキシャル結晶成長法によって結晶シリコン205を成長させる。エピタキシャル結晶成長法によって、シリコン基板201と結晶シリコン205は同じ結晶配向を有する。
 続いて、図7(a)に示すように、結晶シリコン205上に犠牲層204を積層し、トレンチTを形成する。トレンチTは結晶シリコン205からシリコン基板201まで形成し、その深さは数十μm程度とすることができる。トレンチTによって、シリコン基板201及び結晶シリコン205の一部が分離され、構造体A1及び構造体A2が形成される。
 続いて、図7(b)に示すように犠牲層204上及びトレンチTの内部に拡散防止層206を積層し、構造体A1が露出するようにパターニングする。拡散防止層206は例えば、シリコン窒化物からなる。
 続いて、図7(c)に示すようにトレンチT内にPSG(Phosphorus Silicon Glass)207及びBSG(Boron Silicon Glass)208を埋め込む。この埋め込みには、HDP(High Density Plasma)を用いることができる。またHDPでトレンチT内にBSG及びPSGの薄膜を成膜した後、CVDによってBSG及びPSGを積層してもよい。
 続いて、固相拡散を行い、図8(a)に示すように構造体A1にドーパントをドープする。構造体A1のうちPSG207に隣接する領域ではPSG207からリンがドープされ、N型半導体領域131が形成される。構造体A1のうちBSG208に隣接する領域ではBSG208からホウ素がドープされ、P型半導体領域132が形成される。固相拡散は加熱によって行うことができる。
 続いて、図8(b)に示すように犠牲層204上及び素子分離トレンチTの内部に拡散防止層209を積層し、構造体A2が露出するようにパターニングする。拡散防止層209は例えば、シリコン窒化物からなる。
 続いて、図8(c)に示すようにトレンチT内にBSG210及びPSG211を埋め込む。この埋め込みには、上述のようにHDPやCVD等を用いることができる。
 続いて、固相拡散を行い、図9(a)に示すように構造体A2にドーパントをドープする。構造体A2のうちBSG210に隣接する領域ではBSG210からホウ素がドープされ、P型半導体領域151が形成される。構造体A2のうちPSG211に隣接する領域ではPSG211からリンがドープされ、N型半導体領域152が形成される。固相拡散は加熱によって行うことができる。
 続いて、図9(b)に示すように、素子分離領域173を形成する。素子分離領域173は、シリコン酸化物、シリコン窒化物又はポリシリコンのうちいずれか一種又は二種以上の材料をトレンチT内に埋め込むことによって形成することができる。例えば、トレンチT内にシリコン酸化物又はシリコン窒化物等の絶縁性材料を成膜し、トレンチT内にポリシリコンを埋め込んで素子分離領域173を形成することができる。
 素子分離領域173の形成には一般にHDPが用いられるが、PSGやBPSG(Boron Phosphorus Silicon Glass)等だけではなく、これと組み合わせてカバレッジの良いPSG/BPSG等の酸化膜をCVDで成膜してもよい。また、HDPとポリシリコンとの組み合わせは従来からIGBT(Insulated Gate Bipolar Transistor)等の高耐圧プロセスでも広く用いられているため、これを用いてもよい。
 続いて、図9(c)に示すように、N型半導体領域111、P型半導体領域112、N++型半導体領域113、P++型半導体領域114、P++型半導体領域133及びN++型半導体領域153を形成する。これらは、SOI層203、P型半導体領域132及びN型半導体領域152にN型及びP型のドーパントをドープして形成することができる。ドーピング方法は特に限定されず、イオン注入や固相拡散等を利用することができる。また、同図に示すように、SOI層203の一部を酸化させて素子分離層118を形成する。
 続いて、図10(a)に示すように、信号配線135、信号配線155、信号配線119、ゲート絶縁膜117、第1ゲート電極115及び第2ゲート電極116を形成する。
ゲート絶縁膜117は、SOI層203の酸化によって形成することができ、信号配線135、信号配線155、信号配線119、第1ゲート電極115及び第2ゲート電極116は導電性材料のCVD成膜等によって形成することができる。
 続いて、図10(b)に示すように、上面絶縁層176を形成する。上面絶縁層176はCVD等によって形成することができる。続いて、図10(c)に示すように、シリコン基板201の裏面を研磨する。研磨は、N型半導体領域131及びP型半導体領域151が露出するまで行う。
 続いて、下面絶縁層174、グランド配線134、グランド配線154及びグランド電極175を形成する(図1参照)。下面絶縁層174は、プラズマ気相成長によってTEOS(Tetraethyl orthosilicate)を成膜し、パターニングすることによって形成される。TEOSは加熱によってSiOとなる。グランド配線134、グランド配線154及びグランド電極175はCVD等の各種メタライゼーションプロセスによって形成することができる。
 半導体装置100は以上のようにして作製することができる。上述のように、SOI基板200のシリコン基板201の一部が半導体装置100のシリコン基板171となり、SOI基板200のBOX層202の一部が半導体装置100のBOX層172となる。
 [半導体装置の製造方法2]
 半導体装置100は、次のようにして作製することも可能である。
 図11及び図12は、半導体装置100の他の製造方法を示す模式図である。図11(a)に示すように、SOI基板200のSOI層203上に犠牲層204を積層する。犠牲層204は例えば、SiOからなる。続いて、図11(b)に示すように、犠牲層204、SOI層203及びBOX層202とシリコン基板201の一部をエッチング等によって除去し、シリコン基板201を露出させる。
 続いて、図11(c)に示すように、N型半導体領域212及びP型半導体領域213を形成する。これらは、イオン注入又は固相拡散によってN型及びP型のドーパントをシリコン基板201にドープすることによって形成することができる。
 続いて、図12(a)に示すように、エピタキシャル結晶成長法によって結晶シリコン214を成長させる。同時にイオン注入又は固相拡散によってドーパントのドープを行い、N型半導体領域212及びP型半導体領域213を形成する。結晶シリコン214の成長とドーパントのドープは、N型半導体領域212及びP型半導体領域213が一定の厚さになるまで行う。
 続いて、図12(b)に示すように、エピタキシャル結晶成長法によって結晶シリコン214を成長させ、同時にP型半導体領域215及びN型半導体領域216を形成する。P型半導体領域215はN型半導体領域212上に形成し、N型半導体領域216はP型半導体領域213上に形成する。P型半導体領域215及びN型半導体領域216はイオン注入又は固相拡散によるドーパントのドープによって形成することができる。結晶シリコン214の成長とドーパントのドープは、P型半導体領域215及びN型半導体領域216が一定の厚さになるまで行う。
 図12(c)は、結晶シリコン214の成長及びドーパントのドープが完了した状態を示す。N型半導体領域212は、第1ダイオード130のN型半導体領域131(図2参照)に、P型半導体領域213は第2ダイオード150のP型半導体領域151にそれぞれ相当する。また、P型半導体領域215は第1ダイオード130のP型半導体領域132に、N型半導体領域216は第2ダイオード150のN型半導体領域152にそれぞれ相当する。
 続いて、第1ダイオード130と第2ダイオード150の周囲のシリコン基板201を酸化させてシリコン酸化物を形成し、図9(b)と同様に素子分離領域173を形成する。以降は上記製造方法と同様にLV回路110や配線等を形成し、半導体装置100を作製することが可能である。
 なお、半導体装置100の製造方法は上述のものに限定されず、SOI基板200から半導体装置100を製造することが可能な製造方法であればよい。
 [変形例]
 図13は本技術の第1の変形例に係る半導体装置400の構成を示す断面図である。同図に示すように半導体装置400は、グランド配線401を備える。半導体装置400のその他の構成は半導体装置100と同一である。
 同図に示すようにグランド配線401は、第1ダイオード130のN型半導体領域131と第2ダイオード150のP型半導体領域151の両方とグランド電極175に接続されている。図5に示すように、バックツーバックダイオードを構成する二つのダイオードのグランド電位は同電位であるため、グランド配線401を第1ダイオード130と第2ダイオード150の共通のグランド配線とすることが可能である。これにより、素子分離領域173の幅を縮小し、半導体装置400の面積を縮小することが可能となる。
 図14は本技術の第2の変形例に係る半導体装置500の構成を示す断面図である。同図に示すように半導体装置500は、グランド配線501と信号配線502を備える。半導体装置500のその他の構成は半導体装置100と同一である。
 同図に示すようにグランド配線501は、第1ダイオード130のN型半導体領域131と第2ダイオード150のP型半導体領域151の両方とグランド電極175に接続されている。また、信号配線502は、第1ダイオード130のP++型半導体領域133と第2ダイオード150のN++型半導体領域153の両方に接続されている。図5に示すように、バックツーバックダイオードを構成する二つのダイオードの信号配線は同電位であるため、信号配線502を第1ダイオード130と第2ダイオード150の共通の信号配線とすることが可能である。これにより、素子分離領域173の幅を縮小し、半導体装置500の面積を縮小することが可能となる。
 [応用例1]
 図15は、本実施形態に係る半導体装置100を利用することが可能なIVUS(intravascular ultrasound:血管内超音波内視鏡)600の構造を示す模式図である。
同図に示すように、IVUS600は、カテーテル601、アレイ振動子602、及び配線603を備える。アレイ振動子602は、複数の超音波振動子モジュールから構成されたアレイであり、各超音波振動子モジュールは図5に示すように超音波振動子300とインピーダンス整合回路301からなる。上記のようにインピーダンス整合回路301は、半導体装置100によって実現することができる。
 IVUS600に駆動信号が入力されると、駆動信号はインピーダンス整合回路301を介して超音波振動子300に伝達され、超音波振動子300は超音波を生成する。生成された超音波は、血管に挿入されるカテーテル601を介して血管壁に照射され、その反射波はカテーテル601を介して超音波振動子300に入射し、検知される。検知信号はインピーダンス整合回路301において増幅され、配線603を介してIVUS600の制御装置に伝達される。
 図16は、一般的構造を有するIVUS700の模式図である。同図に示すようにIVUS700は、カテーテル701、アレイ振動子702、信号処理チップ703及び配線704を備える。IVUS700は、IVUS600と同様に動作するが、インピーダンス整合回路は信号処理チップ703に搭載されている。
 一般に、IVUSでは、駆動信号は数十V、検知信号は数十μV程度である。IVUSは超音波振動子のサイズが数十μm程度と極めて小さく、電気インピーダンスの不整合により信号をカテーテルの外部に出力することが難しいため、通常は図16のようにインピーダンス整合回路を含む信号処理チップが設けられている。
 しかしながら、インピーダンス整合回路はシリコンで構成されているため、この部分の屈曲性に欠け、IVUSの操作性に難点があった。本技術に係る半導体装置100を適用することにより、図16のようにインピーダンス整合回路を超音波振動子に一体化することが可能であり、屈曲できない部位が少なくなり、IVUSの操作性を向上させることができる。
 半導体装置100はIVUSの他にもSOI基板を用いた集積回路全般に採用することが可能である。特にメリットが大きいと期待されるのが、ESD(electrostatic discharge:静電気放電)又は意図的に形成した高電圧パルスに晒される可能性のある低電圧回路への適用である。
 [応用例2]
 図20は、本実施形態に係る半導体装置100を利用することが可能な術中超音波プローブ1000の構造を示す模式図である。術中超音波プローブ1000は、音響レンズ1001、アレイ振動子1002及び配線1003を備える。アレイ振動子1002は、複数の超音波振動子モジュールから構成されたアレイであり、各超音波振動子モジュールは超音波振動子300と半導体装置100からなる。半導体装置100は、図5に示すようにインピーダンス整合回路301を構成している。
 術中超音波プローブ1000に駆動信号が入力されると、駆動信号はインピーダンス整合回路を介して超音波振動子300に伝達され、超音波振動子300は超音波を生成する。生成された超音波は、音響レンズ1001を介して診断対象物に照射され、その反射波は音響レンズ1001を介して超音波振動子300に入射し、検知される。検知信号はインピーダンス整合回路において増幅され、配線1003を介して術中超音波プローブ1000の制御装置に伝達される。
 図21は、一般的構造を有する術中超音波プローブ1100の模式図である。同図に示すように術中超音波プローブ1100は、音響レンズ1101、アレイ振動子1102及び配線1103を備える。アレイ振動子1102は、複数の超音波振動子モジュールから構成されたアレイであり、各超音波振動子モジュールは超音波振動子300を備える。術中超音波プローブ1100は、術中超音波プローブ1000と同様に動作するが、アレイ振動子1102はインピーダンス整合回路を構成する半導体装置を有しない。
 術中超音波でも、送信に数十V、受信に最小数十μVの信号を受信する。術中超音波プローブも一般にアレイ振動子を用いるため、超音波振動子のサイズが数十μm程度と極めて小さい。特にドロップイン型の術中超音波プローブでは、鉗子で操作しやすくするために一層の小型化が求められている。このため、電気インピーダンス不整合により信号を超音波プローブ外に出力することは難しくなってきている。
 本技術を適用することにより、増幅回路自体の面積が小さくなり、超音波振動子のピッチをさらに小型化できることから、図20のようにアレイ振動子1002の大きさを小型化しつつもインピーダンス不整合によるプローブ特性劣化を抑制することができる。なお、同種の適用を超音波内視鏡に行っても同種の効果が期待される。
 [応用例3]
 図22は、本実施形態に係る半導体装置100を利用することが可能な腹腔鏡手術用把持具1200の構造を示す模式図である。腹腔鏡手術用把持具1200は、把持部1201、音響レンズ1202、アレイ振動子1203及び配線1204を備える。把持部1201は、物体を把持可能に構成されている。アレイ振動子1203は、複数の超音波振動子モジュールから構成されたアレイであり、把持部1201の内部に搭載されている。各超音波振動子モジュールは超音波振動子300と半導体装置100からなる。半導体装置100は、図5に示すようにインピーダンス整合回路301を構成している。
 腹腔鏡手術用把持具1200に駆動信号が入力されると、駆動信号はインピーダンス整合回路を介して超音波振動子300に伝達され、超音波振動子300は超音波を生成する。生成された超音波は、音響レンズ1202が接触する診断対象物に照射され、その反射波は超音波振動子300に入射し、検知される。検知信号はインピーダンス整合回路において増幅され、配線1204を介して腹腔鏡手術用把持具1200の制御装置に伝達される。
 図23は、一般的構造を有する腹腔鏡手術用把持具1300の模式図である。同図に示すように腹腔鏡手術用把持具1300は、把持部1301、音響レンズ1302、アレイ振動子1303及び配線1304を備える。アレイ振動子1303は、複数の超音波振動子モジュールから構成されたアレイであり、各超音波振動子モジュールは超音波振動子300を備える。腹腔鏡手術用把持具1300は、腹腔鏡手術用把持具1200と同様に動作するが、アレイ振動子1303はインピーダンス整合回路を構成する半導体装置を有しない。
 図24は、本実施形態に係る半導体装置100を利用することが可能な腹腔鏡手術用把持具1400のハンドル部の構造を示す模式図である。腹腔鏡手術用把持具1400は、同図に示すハンドル部と、図23に示す腹腔鏡手術用把持具1300のような把持部を備える。ハンドル部には、超音波振動子300のインピーダンス整合回路を構成する半導体装置100が搭載されている。各半導体装置100は配線1401を介してアレイ振動子に接続されている。
 腹腔鏡手術用把持具の先端に超音波プローブを組み込んだ術具では、術中超音波検査の為に余分なポートを導入することなしに、術中超音波による透視が可能になる。把持具先端は2×10mm程度と極めて小さく、特性インピーダンスが上昇するために、特性が既存の術中超音波に比べて悪化する。
 このため、図22及び図24に示すように、本技術をこのような把持具に適用すると、超音波プローブの特性を維持するのに役立つ。図22では半導体装置100は把持具先端に搭載されている。半導体装置100は、理想的には超音波振動子に近い所に搭載すると効果が高いが、超音波振動子が本技術に係る半導体装置100よりも小さい場合は図24のように把持具のハンドル部に搭載しても良い。
 [応用例4]
 図25は、本実施形態に係る半導体装置100を利用することが可能な腹腔鏡手術用手術ロボット1500のロボット鉗子の構造を示す模式図である。腹腔鏡手術用手術ロボット1500は、把持部1501、音響レンズ1502、アレイ振動子1503及び配線1504を備える。アレイ振動子1503は、複数の超音波振動子モジュールから構成されたアレイであり、各超音波振動子モジュールは超音波振動子300と半導体装置100からなる。半導体装置100は、図5に示すようにインピーダンス整合回路301を構成している。
 把持部1501に駆動信号が入力されると、駆動信号はインピーダンス整合回路を介して超音波振動子300に伝達され、超音波振動子300は超音波を生成する。生成された超音波は、音響レンズ1502が接触する診断対象物に照射され、その反射波は超音波振動子300に入射し、検知される。検知信号はインピーダンス整合回路において増幅され、配線1504を介して腹腔鏡手術用手術ロボット1500の制御装置に伝達される。
 図26は、一般的構造を有する腹腔鏡手術用手術ロボット1600のロボット鉗子の構造を示す模式図である。同図に示すように腹腔鏡手術用手術ロボット1600は、把持部1601、音響レンズ1602、アレイ振動子1603及び配線1604を備える。アレイ振動子1603は、複数の超音波振動子モジュールから構成されたアレイであり、各超音波振動子モジュールは超音波振動子300を備える。腹腔鏡手術用手術ロボット1600は、腹腔鏡手術用手術ロボット1500と同様に動作するが、アレイ振動子1603はインピーダンス整合回路を構成する半導体装置を有しない。
 腹腔鏡手術用手術ロボットのロボット鉗子先端に超音波プローブを組み込んだ術具では、術中超音波検査の為に余分なポートを導入することなしに、術中超音波による透視が可能になる。把持具先端は2×10mm程度と極めて小さく、特性インピーダンスが上昇するために、特性が既存の術中超音波に比べて悪化する。このため、図25に示すように、本技術をこのような把持具に適用すると、超音波プローブの特性を維持するのに役立つ。
 上記のように半導体装置100は、術中超音波撮像装置、超音波カテーテル、超音波内視鏡など細径・小型な医療機器に利用することができる。また、半導体装置100は他にも、測地向け超音波エコー及びセンサー、ミリ波センサーの電力回路、自動車またはプロジェクタ向けLED(light emitting diode)制御回路、48V/24V/12Vテレコム/モデム向け回路の小型化実装、小型ロボット又は内視鏡等の小型メカトロニクス向け制御回路の小型化、オーディオ向けフルデジタルアンプ゜回路の縮小化、HEMS(home energy management system)の制御回路の小型化等に利用することができる。
 半導体装置100を利用することにより、集積回路小型化による機器の小型化、増幅回路との同梱によるSNR(signal-noise ratio)向上、半導体チップに起因した硬質部の縮小に基づく、カテーテルや内視鏡等の操作性向上、半導体チップ縮小による歩留りと理論収率の増加、ひいては製造コストの低減が実現可能である。
 (第2の実施形態)
 本技術の第2の実施形態に係る半導体装置について説明する。
 [半導体装置の構成]
 図17は、本実施形態に係る半導体装置800の構成を示す断面図であり、図18は、半導体装置800の一部構成を示す断面図である。これらの図に示すように半導体装置800は、LV(Low Voltage)回路810、第1トランジスタ830及び第2トランジスタ850、シリコン基板871、BOX層872、素子分離領域873、下面絶縁層874、グランド電極875、上面絶縁層876を備える。
 半導体装置800は、LV回路810、第1トランジスタ830及び第2トランジスタ850を備える集積回路であり、第1トランジスタ830及び第2トランジスタ850は、この集積回路の保護回路を構成する。
 半導体装置800は第1の実施形態と同様に、一枚のSOI基板200(図3参照)から作製することができる。半導体装置800のシリコン基板871は、SOI基板200のシリコン基板201の一部であり、半導体装置800のBOX層872は、SOI基板200のBOX層202の一部である。
 以下、半導体装置800のうちSOI基板200を加工して形成される部分(図18の構造)のうち、LV回路810側の面を上面800aとし、その反対側の面を下面800bとする。
 LV回路810は、N型半導体領域811、P型半導体領域812、N++型半導体領域813、P++型半導体領域814、第1ゲート電極815、第2ゲート電極816、ゲート絶縁膜817、素子分離層818及び信号配線819を備える。
 N型半導体領域811はBOX層872上に積層され、N型ドーパントがドープされたシリコンからなる。N型ドーパントは典型的にはリンである。P型半導体領域812はBOX層872上に積層され、P型ドーパントがドープされたシリコンからなる。P型ドーパントは典型的にはホウ素である。N型半導体領域811及びP型半導体領域812は、上面800aに面し、SiOからなる素子分離層818によって分離されている。
 N++型半導体領域813は、N型ドーパントが多量にドープされたシリコンからなり、P型半導体領域812中の2箇所に離間して形成されている。各N++型半導体領域813は上面800aに面し、信号配線819が接続されている。
 P++型半導体領域814は、P型ドーパントが多量にドープされたシリコンからなり、N型半導体領域811中の2箇所に離間して形成されている。各P++型半導体領域814は上面800aに面し、信号配線819が接続されている。
 第1ゲート電極815は、アルミニウム等の金属又はポリシリコン等の導電性材料からなり、ゲート絶縁膜817を介してN型半導体領域811上に形成されている。第2ゲート電極816は、アルミニウム等の金属又はポリシリコン等の導電性材料からなり、ゲート絶縁膜817を介してP型半導体領域812上に形成されている。
 N型半導体領域811、P型半導体領域812、N++型半導体領域813及びP++型半導体領域814は、SOI基板200のSOI層203にP型又はN型のドーパントを注入して形成した領域である。素子分離層818は、SOI層203をSiOに酸化して形成した領域である。
 なお、LV回路810の構成は上記のものに限られず、SOI基板200のSOI層203を加工して作製可能な構成であればよい。
 第1トランジスタ830は、縦型トランジスタであり、第1P型半導体領域831、N型半導体領域832、第2P型半導体領域833、P++型半導体領域834、ゲート電極835、グランド配線836及び信号配線837を備える。第1P型半導体領域831及び第2P型半導体領域833は、P型ドーパントがドープされたシリコンからなり、N型半導体領域832は少量のN型ドーパントがドープされたシリコンからなる。P++型半導体領域834はP型ドーパントが多量にドープされたシリコンからなる。
 第1P型半導体領域831、N型半導体領域832及び第2P型半導体領域833はこの順で積層され、第1P型半導体領域831は下面800bに面し、第2P型半導体領域833は上面800aに面する。P++型半導体領域834は、第2P型半導体領域833中に形成され、上面800aに面する。
 第1P型半導体領域831、N型半導体領域832、第2P型半導体領域833及びP++型半導体領域834は、結晶シリコンからなり、シリコン基板871と同じ結晶配向を有する。これは、これらの半導体領域がシリコン基板201の一部へのドーパントの注入により形成され、又はシリコン基板201上にエピタキシャル結晶成長法によって形成された結晶シリコンからなるためである。
 ゲート電極835は、素子分離領域873中に埋め込まれ、第1トランジスタ830のゲート電極として機能する。ゲート電極835は、ポリシリコンからなる。素子分離領域873は、SOI基板200に形成された貫通孔の孔内にシリコン酸化物又はシリコン窒化物等の絶縁性材料を成膜し、孔内にポリシリコンを充填した構造とすることができ、このポリシリコンをゲート電極835として利用することができる。
 グランド配線836は下面800bにおいて第1P型半導体領域831に接続され、信号配線837は上面800aにおいてP++型半導体領域834に接続されている。
 第2トランジスタ850は、縦型トランジスタであり、P型半導体領域851、N型半導体領域852、N++型半導体領域853、ゲート電極854、グランド配線855及び信号配線856を備える。P型半導体領域851は、P型ドーパントがドープされたシリコンからなり、N型半導体領域852はN型ドーパントがドープされたシリコンからなる。N++型半導体領域853はN型ドーパントが多量にドープされたシリコンからなる。
 P型半導体領域851とN型半導体領域852は積層され、P型半導体領域851は下面800bに面し、N型半導体領域852は上面800aに面する。N++型半導体領域853は、N型半導体領域852中に形成され、上面800aに面する。
 P型半導体領域851、N型半導体領域852及びN++型半導体領域853は、結晶シリコンからなり、シリコン基板201と同じ結晶配向を有する。これは、これらの半導体領域がシリコン基板201の一部へのドーパントの注入により形成され、又はシリコン基板201上にエピタキシャル結晶成長法によって形成された結晶シリコンからなるためである。
 ゲート電極854は、素子分離領域873中に埋め込まれ、第2トランジスタ850のゲート電極として機能する。ゲート電極854は、ポリシリコンからなる。素子分離領域873は、SOI基板200に形成された貫通孔の孔内にシリコン酸化物又はシリコン窒化物等の絶縁性材料を成膜し、孔内にポリシリコンを充填した構造とすることができ、このポリシリコンをゲート電極854として利用することができる。
 グランド配線855は下面800bにおいてP型半導体領域851に接続され、信号配線856は上面800aにおいてN++型半導体領域853に接続されている。
 素子分離領域873は、第1トランジスタ830と第2トランジスタ850を分離する。素子分離領域873は、上面800aから下面800bまでを貫通する。素子分離領域873は、第1の実施形態と同様に第1トランジスタ830及び第2トランジスタ850の周囲に形成されている(図4参照)。
 素子分離領域873は、シリコン酸化物、シリコン窒化物又はポリシリコンのうちいずれか一種又は二種以上の材料からなる。例えば、素子分離領域873は、SOI基板200に形成された貫通孔の孔内にシリコン酸化物又はシリコン窒化物等の絶縁性材料を成膜し、孔内にポリシリコンを充填した構造とすることができる。上記のように、ポリシリコンはゲート電極835及びゲート電極854として利用することができる。
 下面絶縁層874は、下面800bに配設され、水分や不純物の拡散を防止する。下面絶縁層874は、例えばp-SiO(プラズマ気相成長によって形成された酸化シリコン)からなる。下面絶縁層874は、第1P型半導体領域831及びP型半導体領域851が露出するようにパターニングされ、開口部にはグランド配線836及びグランド配線855が形成されている。
 グランド電極875は、下面絶縁層874上に配設され、グランド配線836及びグランド配線855と接続されている。これにより、グランド電極875は、第1P型半導体領域831及びP型半導体領域851に導通し、グランド配線836及びグランド配線855と共に第1トランジスタ830及び第2トランジスタ850の接地コンタクト構造を構成する。グランド電極875は、アルミニウム等の導電性材料からなる。
 上面絶縁層876は、上面800aに配設され、各回路を封止する。上面絶縁層876はSiO等の絶縁性材料からなる。
 [半導体装置の利用態様]
 図5は、半導体装置100を利用することが可能な、超音波振動子900のインピーダンス整合回路901の回路構成を示す模式図である。
 同図に示すように、インピーダンス整合回路901は、アンプ902第1TR(transmit-receive)スイッチ903及び第2TRスイッチ904を備える。
 第1TRスイッチ903及び第2TRスイッチ904がOFFの場合に超音波振動子900の駆動信号が入力されると、駆動信号は超音波振動子900に到達し、超音波振動子900に超音波を生じさせる。駆動信号は第1TRスイッチ903及び第2TRスイッチ904によってアンプ902への到達が防止される。
 第1TRスイッチ903及び第2TRスイッチ904は、駆動信号が超音波振動子900に到達した直後にONに切り替えられる。超音波の反射波が超音波振動子900に到達すると、超音波振動子900は検知信号を発生する。検知信号は、第1TRスイッチ903を経由してアンプ902に到達し、アンプ902によって増幅され、第2TRスイッチ904を介して出力される。
 このように、インピーダンス整合回路901は、増幅回路であるアンプ902と、保護回路である第1TRスイッチ903及び第2TRスイッチ904によって構成されている。
 半導体装置800では、LV回路810をアンプ902として、第1トランジスタ830を第1TRスイッチ903として、第2トランジスタ850を第2TRスイッチ904として利用することができ、インピーダンス整合回路901を一つの半導体装置800によって実現することが可能となる。
 なお、超音波振動子のインピーダンス整合回路は、半導体装置800の利用形態の一つであり、半導体装置800は増幅回路と保護回路を備える各種の回路に利用することが可能である。
 [半導体装置の効果]
 上記のように半導体装置800は、LV回路810、第1トランジスタ830及び第2トランジスタ850を一枚のSOI基板上に形成したものである。SOI基板200のうちBOX層202がないチャネル領域を形成し、そこに第1トランジスタ830及び第2トランジスタ850を形成することにより、第1トランジスタ830及び第2トランジスタ850によってTRスイッチを形成することができ、サージ電荷を逃がしやすくなっている。
 また、第1トランジスタ830及び第2トランジスタ850の素子分離領域873を上面800aから下面800bまで貫通した貫通トレンチ構造とすることにより、ラッチアップフリーが実現されている。
 さらに、第1トランジスタ830及び第2トランジスタ850は単結晶シリコンからなり、第1の実施形態と同様に、良好な漏洩電流特性を確保すると共に、保護回路としての機能向上及び実装面積の削減が可能である。
 [半導体装置の製造方法]
 半導体装置800の製造方法について説明する。上記のように半導体装置800は、SOI基板200(図3参照)から作成することができ、第1の実施形態に係る半導体装置100と同様に製造することが可能である。
 ゲート電極835及びゲート電極854の作製については、素子分離領域873を作製する際に、トレンチT(図9(a)参照)にシリコン酸化物又はシリコン窒化物等の絶縁性材料を成膜し、トレンチT内にポリシリコンを埋め込む。このポリシリコンに配線を施し、ゲート電極835及びゲート電極854を形成することができる。
 [応用例]
 本実施形態に係る半導体装置800は第1の実施形態と同様に、IVUSにおいて超音波振動子のインピーダンス整合回路として利用することができる。インピーダンス整合回路を超音波振動子に一体化させることができるため、IVUSの操作性を向上させることが可能である。また、半導体装置800は、第1の実施形態と同様に、術中超音波プローブ、超音波内視鏡、腹腔鏡手術用把持具及び腹腔鏡手術用手術ロボット等の各種超音波イメージングシステムにおいてインピーダンス整合回路として利用することができる。
 半導体装置800は他にも第1の実施形態と同様に、SOI基板を用いた集積回路全般に採用することが可能である。半導体装置800を利用することにより、集積回路小型化による機器の小型化、増幅回路との同梱によるSNR(signal-noise ratio)向上、半導体チップに起因した硬質部の縮小に基づく、カテーテル、内視鏡などの操作性向上、半導体チップ縮小による歩留りと理論収率の増加、ひいては製造コストの低減が実現可能である。
 なお、本技術は以下のような構成もとることができる。
 (1)
 結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX(buried oxide)層及び上記BOX層に積層されたSOI(silicon on insulator)層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、
 上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、
 上記SOI基板を貫通し、上記保護回路を分離する素子分離領域と
 を具備する半導体装置。
 (2)
 上記(1)に記載の半導体装置であって、
 上記保護回路は、ダイオードである
 半導体装置。
 (3)
 上記(1)に記載の半導体装置であって、
 上記保護回路は、縦型トランジスタである
 半導体装置。
 (4)
 上記(1)から(3)のうちいずれか一つに記載の半導体装置であって、
 上記素子分離領域は、シリコン酸化物、シリコン窒化物及びポリシリコンのうちいずれか1種又は2種以上からなる
 半導体装置。
 (5)
 上記(3)に記載の半導体装置であって、
 上記素子分離領域は、上記縦型トランジスタのゲート電極を備える
 半導体装置。
 (6)
 上記(1)から(5)のうちいずれか一つに記載の半導体装置であって、
 上記SOI基板は、第1の面と、その反対側の第2の面を有し、
 上記保護回路は、第1の半導体素子と第2の半導体素子を含み、
 上記第1の半導体素子は、上記第1の面側であって第1の不純物型を有する第1の半導体領域と、上記第2の面側であって第2の不純物型を有する第2の半導体領域が積層されて構成され、
 上記第2の半導体素子は、上記第1の面側であって上記第2の不純物型を有する第3の半導体領域と、上記第2の面側であって上記第1の不純物型を有する第4の半導体領域が積層されて構成されている
 半導体装置。
 (7)
 上記(6)に記載の半導体装置であって
 上記半導体装置の上記第1の面に設けられ、上記第1の半導体領域及び上記第3の半導体領域に導通する接地コンタクト構造
 をさらに具備する半導体装置。
 (8)
 上記(7)に記載の半導体装置であって
 上記接地コンタクト構造は、上記第1の半導体領域と上記第3の半導体領域に接続され、上記第1の半導体領域と上記第3の半導体領域の両者に共通の接地配線を含む
 半導体装置。
 (9)
 上記(8)に記載の半導体装置であって
 上記接地コンタクト構造は、上記接地配線に接続され、上記第1の半導体領域と上記第3の半導体領域の両者に共通の接地電極を含む
 半導体装置。
 (10)
 上記(6)から(9)のうちいずれか一つに記載の半導体装置であって
 上記第2の半導体領域と上記第4の半導体領域に接続され、上記第2の半導体領域と上記第4の半導体領域の両者に共通の信号配線
 をさらに具備する半導体装置。
 (11)
 結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置
 を具備する超音波撮像装置。
 (12)
 SOI基板上に集積回路が形成された半導体装置の製造方法であって、
 結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板を準備し、
 エピタキシャル結晶成長法により、上記シリコン基板上に上記シリコン基板と同じ結晶配向を有する半導体領域を備え、上記集積回路を構成する保護回路を形成し、
 上記SOI基板を貫通し、上記保護回路を分離する素子分離領域を形成する
 半導体装置の製造方法。
 (13)
 上記(12)に記載の半導体装置の製造方法であって、
 上記保護回路を形成する工程では、上記シリコン基板を、上記半導体領域の結晶成長が進行する側の面とは反対側の面から研磨して上記半導体領域を露出させる基板研磨法を用いる
 半導体装置の製造方法。
 (14)
 結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する超音波カテーテルを含む
 超音波イメージングシステム。
 (15)
 結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する術中超音波プローブ又は超音波内視鏡を含む
 超音波イメージングシステム。
 (16)
 結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する、腹腔鏡下手術で用いられる超音波イメージング機能付き手持ち器具を含む
 超音波イメージングシステム。
 (17)
 結晶シリコンからなるシリコン基板、上記シリコン基板に積層されたBOX層及び上記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、上記集積回路を構成し、上記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、上記SOI基板を貫通し、上記保護回路を分離する素子分離領域とを備える半導体装置を搭載する、腹腔鏡下手術で用いられる超音波イメージング機能付きロボット鉗子を含む
 超音波イメージングシステム。
 100…半導体装置
 110…LV回路
 130…第1ダイオード
 150…第2ダイオード
 171…シリコン基板
 172…BOX層
 173…素子分離領域
 175…グランド電極
 200…SOI基板
 201…シリコン基板
 202…BOX層
 203…SOI層
 800…半導体装置
 810…LV回路
 830…第1トランジスタ
 850…第2トランジスタ
 871…シリコン基板
 872…BOX層
 873…素子分離領域
 875…グランド電極

Claims (17)

  1.  結晶シリコンからなるシリコン基板、前記シリコン基板に積層されたBOX(buried oxide)層及び前記BOX層に積層されたSOI(silicon on insulator)層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、
     前記集積回路を構成し、前記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、
     前記SOI基板を貫通し、前記保護回路を分離する素子分離領域と
     を具備する半導体装置。
  2.  請求項1に記載の半導体装置であって、
     前記保護回路は、ダイオードである
     半導体装置。
  3.  請求項1に記載の半導体装置であって、
     前記保護回路は、縦型トランジスタである
     半導体装置。
  4.  請求項1に記載の半導体装置であって、
     前記素子分離領域は、シリコン酸化物、シリコン窒化物及びポリシリコンのうちいずれか1種又は2種以上からなる
     半導体装置。
  5.  請求項3に記載の半導体装置であって、
     前記素子分離領域は、前記縦型トランジスタのゲート電極を備える
     半導体装置。
  6.  請求項1に記載の半導体装置であって、
     前記SOI基板は、第1の面と、その反対側の第2の面を有し、
     前記保護回路は、第1の半導体素子と第2の半導体素子を含み、
     前記第1の半導体素子は、前記第1の面側であって第1の不純物型を有する第1の半導体領域と、前記第2の面側であって第2の不純物型を有する第2の半導体領域が積層されて構成され、
     前記第2の半導体素子は、前記第1の面側であって前記第2の不純物型を有する第3の半導体領域と、前記第2の面側であって前記第1の不純物型を有する第4の半導体領域が積層されて構成されている
     半導体装置。
  7.  請求項6に記載の半導体装置であって、
     前記半導体装置の前記第1の面に設けられ、前記第1の半導体領域及び前記第3の半導体領域に導通する接地コンタクト構造
     をさらに具備する半導体装置。
  8.  請求項7に記載の半導体装置であって、
     前記接地コンタクト構造は、前記第1の半導体領域と前記第3の半導体領域に接続され、前記第1の半導体領域と前記第3の半導体領域の両者に共通の接地配線を含む
     半導体装置。
  9.  請求項8に記載の半導体装置であって、
     前記接地コンタクト構造は、前記接地配線に接続され、前記第1の半導体領域と前記第3の半導体領域の両者に共通の接地電極を含む
     半導体装置。
  10.  請求項6に記載の半導体装置であって、
     前記第2の半導体領域と前記第4の半導体領域に接続され、前記第2の半導体領域と前記第4の半導体領域の両者に共通の信号配線
     をさらに具備する半導体装置。
  11.  結晶シリコンからなるシリコン基板、前記シリコン基板に積層されたBOX層及び前記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、前記集積回路を構成し、前記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、前記SOI基板を貫通し、前記保護回路を分離する素子分離領域とを備える半導体装置
     を具備する超音波撮像装置。
  12.  SOI基板上に集積回路が形成された半導体装置の製造方法であって、
     結晶シリコンからなるシリコン基板、前記シリコン基板に積層されたBOX層及び前記BOX層に積層されたSOI層を備えるSOI基板を準備し、
     エピタキシャル結晶成長法により、前記シリコン基板上に前記シリコン基板と同じ結晶配向を有する半導体領域を備え、前記集積回路を構成する保護回路を形成し、
     前記SOI基板を貫通し、前記保護回路を分離する素子分離領域を形成する
     半導体装置の製造方法。
  13.  請求項12に記載の半導体装置の製造方法であって、
     前記保護回路を形成する工程では、前記シリコン基板を、前記半導体領域の結晶成長が進行する側の面とは反対側の面から研磨して前記半導体領域を露出させる基板研磨法を用いる
     半導体装置の製造方法。
  14.  結晶シリコンからなるシリコン基板、前記シリコン基板に積層されたBOX層及び前記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、前記集積回路を構成し、前記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、前記SOI基板を貫通し、前記保護回路を分離する素子分離領域とを備える半導体装置を搭載する超音波カテーテルを含む
     超音波イメージングシステム。
  15.  結晶シリコンからなるシリコン基板、前記シリコン基板に積層されたBOX層及び前記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、前記集積回路を構成し、前記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、前記SOI基板を貫通し、前記保護回路を分離する素子分離領域とを備える半導体装置を搭載する術中超音波プローブ又は超音波内視鏡を含む
     超音波イメージングシステム。
  16.  結晶シリコンからなるシリコン基板、前記シリコン基板に積層されたBOX層及び前記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、前記集積回路を構成し、前記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、前記SOI基板を貫通し、前記保護回路を分離する素子分離領域とを備える半導体装置を搭載する、腹腔鏡下手術で用いられる超音波イメージング機能付き手持ち器具を含む
     超音波イメージングシステム。
  17.  結晶シリコンからなるシリコン基板、前記シリコン基板に積層されたBOX層及び前記BOX層に積層されたSOI層を備えるSOI基板上に形成された、集積回路を備える半導体装置であって、前記集積回路を構成し、前記シリコン基板と同じ結晶配向を有する半導体領域を備える保護回路と、前記SOI基板を貫通し、前記保護回路を分離する素子分離領域とを備える半導体装置を搭載する、腹腔鏡下手術で用いられる超音波イメージング機能付きロボット鉗子を含む
     超音波イメージングシステム。
PCT/JP2016/003366 2015-09-29 2016-07-15 半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステム WO2017056355A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/760,068 US20180263594A1 (en) 2015-09-29 2016-07-15 Semiconductor device, ultrasonic image pickup device, semiconductor device manufacturing method, and ultrasonic imaging system
JP2017542678A JPWO2017056355A1 (ja) 2015-09-29 2016-07-15 半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190920 2015-09-29
JP2015-190920 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017056355A1 true WO2017056355A1 (ja) 2017-04-06

Family

ID=58422945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003366 WO2017056355A1 (ja) 2015-09-29 2016-07-15 半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステム

Country Status (3)

Country Link
US (1) US20180263594A1 (ja)
JP (1) JPWO2017056355A1 (ja)
WO (1) WO2017056355A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017382A1 (ja) * 2018-07-18 2020-01-23 株式会社東海理化電機製作所 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426293B2 (ja) * 2020-06-16 2024-02-01 富士フイルムヘルスケア株式会社 2次元アレイ超音波探触子および加算回路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817694A (ja) * 1994-06-27 1996-01-19 Motorola Inc 集積回路に適用するための薄膜およびバルク混合半導体基板ならびにその形成方法
JP2008166705A (ja) * 2006-12-06 2008-07-17 Denso Corp 半導体装置およびその製造方法
JP2009136700A (ja) * 2001-10-11 2009-06-25 Tyco Healthcare Group Lp 積層された小さい刃から形成された、長い超音波切断刃
JP2010147239A (ja) * 2008-12-18 2010-07-01 Toshiba Corp 半導体装置及びその製造方法
JP2012176235A (ja) * 2011-02-25 2012-09-13 General Electric Co <Ge> 送信回路、超音波プローブ、及び超音波画像表示装置
JP2013102136A (ja) * 2011-10-14 2013-05-23 Elpida Memory Inc 半導体装置およびその製造方法
JP2015515917A (ja) * 2012-05-11 2015-06-04 ヴォルカノ コーポレイションVolcano Corporation 回転式血管内超音波(ivus)装置のための回路アーキテクチャー及び電気インターフェイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102498A (ja) * 1994-09-30 1996-04-16 Hitachi Ltd 半導体装置
FR2729008B1 (fr) * 1994-12-30 1997-03-21 Sgs Thomson Microelectronics Circuit integre de puissance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817694A (ja) * 1994-06-27 1996-01-19 Motorola Inc 集積回路に適用するための薄膜およびバルク混合半導体基板ならびにその形成方法
JP2009136700A (ja) * 2001-10-11 2009-06-25 Tyco Healthcare Group Lp 積層された小さい刃から形成された、長い超音波切断刃
JP2008166705A (ja) * 2006-12-06 2008-07-17 Denso Corp 半導体装置およびその製造方法
JP2010147239A (ja) * 2008-12-18 2010-07-01 Toshiba Corp 半導体装置及びその製造方法
JP2012176235A (ja) * 2011-02-25 2012-09-13 General Electric Co <Ge> 送信回路、超音波プローブ、及び超音波画像表示装置
JP2013102136A (ja) * 2011-10-14 2013-05-23 Elpida Memory Inc 半導体装置およびその製造方法
JP2015515917A (ja) * 2012-05-11 2015-06-04 ヴォルカノ コーポレイションVolcano Corporation 回転式血管内超音波(ivus)装置のための回路アーキテクチャー及び電気インターフェイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017382A1 (ja) * 2018-07-18 2020-01-23 株式会社東海理化電機製作所 半導体装置
JP2020013900A (ja) * 2018-07-18 2020-01-23 株式会社東海理化電機製作所 半導体装置
JP7074392B2 (ja) 2018-07-18 2022-05-24 株式会社東海理化電機製作所 半導体装置

Also Published As

Publication number Publication date
JPWO2017056355A1 (ja) 2018-08-02
US20180263594A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US10335827B2 (en) Ultrasonic transducer device with through-substrate via
US9937528B2 (en) Capacitive micromachined ultrasonic transducer (CMUT) forming
US20210291228A1 (en) Microfabricated ultrasonic transducer having individual cells with electrically isolated electrode sections
TWI596657B (zh) 用於半導體裝置的富阱層
US9910017B2 (en) Microfabricated ultrasonic transducers and related apparatus and methods
EP2946416B1 (en) Micromachined ultrasonic transducer devices with metal-semiconductor contact for reduced capacitive cross-talk
US7940603B2 (en) Ultrasonic transducer cell
JP5876500B2 (ja) 超音波振動子の形成方法、ならびに関連する装置
US11688757B2 (en) Semiconductor device, manufacturing method, imaging element, and electronic device
TW201106457A (en) Semiconductor device
CN103776526A (zh) 超声波测量装置、探头单元、探测器及诊断装置
US20190371727A1 (en) Semiconductor device and method of manufacturing the same
CN102446938A (zh) 半导体装置
WO2017056355A1 (ja) 半導体装置、超音波撮像装置、半導体装置の製造方法及び超音波イメージングシステム
US20150164470A1 (en) Ultrasound unit and ultrasound endoscope
US9257525B2 (en) Systems and methods for forming isolated devices in a handle wafer
US20210233841A1 (en) Semiconductor device
KR20230160716A (ko) 적층형 cmos 이미지 센서 및 그 제조 방법
CN114947946A (zh) 柔性超声换能器及其制造方法、超声检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542678

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760068

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850542

Country of ref document: EP

Kind code of ref document: A1