WO2017056233A1 - 永久磁石モータ - Google Patents

永久磁石モータ Download PDF

Info

Publication number
WO2017056233A1
WO2017056233A1 PCT/JP2015/077739 JP2015077739W WO2017056233A1 WO 2017056233 A1 WO2017056233 A1 WO 2017056233A1 JP 2015077739 W JP2015077739 W JP 2015077739W WO 2017056233 A1 WO2017056233 A1 WO 2017056233A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
stator
motor
core
Prior art date
Application number
PCT/JP2015/077739
Other languages
English (en)
French (fr)
Inventor
勇二 滝澤
阿久津 悟
岡崎 正文
宙司 会田
迪 廣谷
一将 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58422824&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017056233(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/575,422 priority Critical patent/US10374474B2/en
Priority to PCT/JP2015/077739 priority patent/WO2017056233A1/ja
Priority to CN201580083193.4A priority patent/CN108028563B/zh
Priority to EP15905387.5A priority patent/EP3358716B1/en
Priority to JP2017542594A priority patent/JP6509355B2/ja
Publication of WO2017056233A1 publication Critical patent/WO2017056233A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet motor, and more particularly to a permanent magnet embedded motor in which a permanent magnet is embedded in a rotor.
  • a plurality of permanent magnets are embedded in the rotor so as to be adjacent to each other in the circumferential direction of the rotor, and the magnetic poles of a pair of permanent magnets adjacent to each other in the circumferential direction of the rotor. They are different from each other.
  • a sudden fluctuation in magnetic flux density occurs, resulting in torque ripple, which causes vibration and noise.
  • torque ripple There are various methods for reducing the torque ripple. For example, as shown in Patent Document 1, an uneven portion or the like is provided at a predetermined position on the outer circumferential surface of the rotor where the magnetic pole is switched between the permanent magnets. Was forming.
  • the torque ripple is reduced with the above-described configuration. Therefore, when the outer diameter of the rotor core facing the air gap changes due to die wear, the rotor surface directly facing the stator inner diameter changes. Therefore, there is a problem that the torque ripple changes greatly. For this reason, in order to suppress the variation in the manufacturing process from affecting the torque ripple, it is necessary to reduce the torque ripple at a magnet position inside the rotor that is not directly opposed to the stator inner diameter.
  • a permanent magnet motor includes a stator iron core in which an annular core piece having a plurality of teeth is laminated, a stator including an armature having a winding housed in a slot formed between the plurality of teeth, and The rotor is disposed in the stator via a magnetic gap, rotates around the rotation axis, and has a rotor with a flat-shaped cross-sectional permanent magnet embedded therein.
  • Each of the flange portion and the flange portion has a connection portion connected in the circumferential direction of the stator, the width of the connection portion is equal to or less than the thickness of the core piece, and the long side of the embedded permanent magnet
  • the length is Wm
  • the length of the short side is Tm
  • the maximum distance from the outer periphery of the rotor to the permanent magnet is Gm, 0.7 ⁇ Wm / (Tm ⁇ Gm) ⁇ 3.3 It is characterized by being.
  • torque ripple can be reduced by adjusting the width of the connecting portion and the size of the permanent magnet.
  • 5B is a distribution diagram of the shoe connection width 18 of 0.326 mm.
  • 5C is a distribution diagram of values of Wm / (Tm ⁇ Gm) for each motor specification, and FIG. 5C shows the values of Wm / (Tm ⁇ Gm) for each motor specification when the shoe connection width 18 is 0.350 mm.
  • It is a distribution map.
  • 6 is a graph showing the relationship between the shoe connection width 18 and the value of Wm / (Tm ⁇ Gm) in the first embodiment of the present invention in the motor specifications of FIG. 5.
  • FIG. 6A shows the relationship between the shoe connection width 18 of the motor specification in which the value of Wm / (Tm ⁇ Gm) becomes the minimum value among the motor specifications of FIG.
  • FIG. 6B is a graph showing a relationship between the shoe connection width 18 of the motor specification in which the value of Wm / (Tm ⁇ Gm) in the motor specification of FIG. 5 is an average value and the value of Wm / (Tm ⁇ Gm).
  • FIG. 6C is a graph showing the relationship, and FIG. 6C shows the shoe connection width 18 and the value of Wm / (Tm ⁇ Gm) of the motor specification in which the value of Wm / (Tm ⁇ Gm) becomes the maximum value among the motor specifications of FIG. It is a graph which shows the relationship.
  • FIG. 1 is a cross-sectional view of a stator 10 of a permanent magnet motor according to Embodiment 1 of the present invention.
  • the stator 10 includes an armature winding 11, an armature winding 12, and a stator core 13.
  • the stator core 13 is formed by laminating core pieces of magnetic materials such as electromagnetic steel plates produced by punching in the axial direction, and includes an annular core back 14 and teeth 15 extending inward in the circumferential direction from the core back 14. Is done. Armature windings 11 and 12 are placed in slots 16 formed between adjacent teeth 15. Insulating paper or the like (not shown) is inserted between the armature windings 11 and 12 and the stator core 13 forming the slot 16 to ensure electrical insulation.
  • each of the slots 16 48 teeth are formed in total, and therefore 48 slots 16 are also formed.
  • each of the slots 16 four coils of the armature windings 11 and 12 are accommodated.
  • the tips of the teeth 15 are connected to each other on the inner diameter side from the slot 16 by a connecting portion 17.
  • the armature winding 11 is composed of three phases U1, V1 and W1
  • the armature winding 12 is composed of three phases U2, V2 and W2.
  • the armature windings 11 and 12 are arranged in the slot 16 from the first slot to the sixth slot in the order of U1, U2, W1, W2, V1, and V2.
  • the U1 phase, U2 phase, W1 phase, W2 phase, V1 phase, V2 phase are arranged in this order, and the 48th slot is arranged in the same order.
  • they are connected such that the direction of the current flowing through the U1-phase coil arranged in the first slot and the direction of the current flowing through the U1-phase coil arranged in the seventh slot are opposite to each other. That is, the distributed winding is wound from the first slot to the seventh slot, and the armature windings 11 and 12 straddle a total of six teeth 15. This corresponds to an electrical angle of 180 degrees, and the short-pitch winding coefficient is 1.
  • the armature windings 11 and 12 have a phase difference of 30 ° in electrical angle and have a distributed winding coefficient of 1, the entire winding coefficient is also 1 and constitutes a small high torque motor. Therefore, the electromotive force can be increased and the cost can be reduced as compared with a motor having a small winding coefficient.
  • the stator core 13 a is laminated with the stator core 13 a having a shape in which the tip shape of the tooth 15 is symmetrical with respect to the central axis of the tooth 15 from half of the lamination in the axial direction. That is, the stator core 13 is skewed in two steps. For example, when a two-step skew in the vicinity of a mechanical angle of 1.875 degrees is applied, the mechanical angle 96th-order component of torque ripple can be reduced.
  • the shoe connection width 18 of the connecting portion at the tip of the tooth 15 increases, the leakage flux increases and the torque decreases. Therefore, the smaller the shoe connection width 18, the smaller the motor. It is effective.
  • FIG. 3 is a cross-sectional view of rotor 20 of the permanent magnet motor according to Embodiment 1 of the present invention.
  • the rotor 20 includes a rotor iron core 21 and a permanent magnet 22 embedded in the rotor iron core 21, and is disposed inside the stator 10 with a magnetic gap between the stator 10.
  • the permanent magnet 22 is a neodymium rare earth magnet composed of neodymium, iron, and boron, and is formed in a rectangular parallelepiped shape having a rectangular cross-section with the long side (Wm) in the circumferential direction and the short side (Tm) in the radial direction.
  • the configuration of the permanent magnet buried type motor using the neodymium rare earth magnet can provide a small and lightweight motor having a large magnet torque, utilizing the reluctance torque, and having a large torque per unit length.
  • torque ripple can be reduced by making the rotor core 21 into a flower-circle shape having a radius smaller than the radius of the perfect circle with respect to the rotating shaft 23.
  • the rotor core 21 is subjected to two-stage skew similarly to the stator core 13, but the rotor cores having the same shape are stacked in two stages. For example, when a two-stage skew near a mechanical angle of 3.75 degrees is applied, the 48th-order component of the mechanical angle of torque ripple can be reduced. As described above, the two specified torque ripple orders can be reduced by applying a two-stage skew to each of the stator 10 and the rotor 20, but 2 of the rotor 20 is larger than the stator 10 having a large number of slots. Increasing the step skew angle can avoid reducing the tip width and slot area of the teeth 15 of the stator core 13.
  • FIG. 4 is a graph showing the demagnetization rate of a neodymium rare earth magnet to which a heavy rare earth element having a coercive force at room temperature of 21 kOe or more is not added.
  • the horizontal axis is the short side Tm (mm) and represents the thickness of the magnet.
  • Tm the demagnetization rate deteriorates rapidly.
  • it may be applied in the range of Tm ⁇ 2 mm.
  • assist torque at a high rotational speed is required for emergency avoidance steering, and thus Tm is large. Since (the magnet thickness is thick) and the motor rotation speed is lowered, it is desirable that Tm be close to 2.1 mm.
  • FIG. 5 shows the condition that the torque ripple fluctuation with respect to the average torque satisfies 0.5% or less, as described above, the long side of the magnet is Wm (mm), the short side is Tm (mm), and the rotor core 3 is a distribution diagram in which a magnetic field analysis is performed with three parameters where the maximum depth of embedding depth to the long side is Gm (mm), and a value of Wm / (Tm ⁇ Gm) is plotted for each motor specification. .
  • the horizontal axis represents each motor specification that satisfies the above conditions, and the value of Wm / (Tm ⁇ Gm) shown on the vertical axis is plotted for each motor specification.
  • 5A shows a case where the shoe connection width 18 is 0.125 mm
  • FIG. 5B shows a case where the shoe connection width 18 is 0.326 mm
  • FIG. 5C shows a case where the shoe connection width 18 is 0.350 mm.
  • the value of Wm / (Tm ⁇ Gm) is distributed in the vicinity of 1.0 to 3.0.
  • FIG. 6 is a graph showing the relationship between the shoe connection width 18 of FIG. 5 and the value of Wm / (Tm ⁇ Gm) in one specification of the motor.
  • FIG. 6A is a graph showing Wm / (Tm ⁇
  • FIG. 6B shows one specification of the motor in which the value of Wm / (Tm ⁇ Gm) with respect to the shoe connection width 18 is an average value
  • FIG. 6C shows the shoe connection width 18.
  • Each specification of the motor having the maximum value of Wm / (Tm ⁇ Gm) with respect to is plotted. If the shoe connection width 18 is large, the leakage magnetic flux between the teeth increases. Therefore, it is desirable to reduce the shoe connection width in order to reduce the size of the motor. However, as shown in FIG.
  • the embodiment can be appropriately modified or omitted within the scope of the invention.
  • stator 11 stator winding, 13 stator core, 14 core back, 15 teeth, 16 slots, 17 connection part, 18 shoe connection width, 20 rotor, 21 rotor core, 22 permanent magnet, 23 Axis of rotation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

永久磁石モータの固定子に形成されたシュー接続幅が固定子鉄心を構成するコア片の厚み以下であり、回転子に埋設された平板形状の永久磁石の長辺の長さWm、短辺の長さTm、前記回転子外周から前記永久磁石までの最大距離Gmとした時に、0.7≦Wm/(Tm×Gm)≦3.3なる関係を満たす形状とすることで、トルクリップルを低減できることを見出した。

Description

永久磁石モータ
 この発明は、永久磁石モータに関し、特に、回転子に永久磁石を埋設した、永久磁石埋設型モータに関するものである。
 この種の永久磁石埋設型モータでは、回転子の内部に複数の永久磁石が回転子の周方向に隣り合うように埋設されており、回転子の周方向に隣り合う一対の永久磁石の磁極が互いに異なるようにしてある。隣り合う一対の永久磁石の間の磁極の切替わり部付近には急激な磁束密度変動が発生するため、トルクリップルが生じ、これが振動、騒音をもたらす。
 このトルクリップルを軽減するためには様々な方法があるが、例えば特許文献1に示されるように、永久磁石間の磁極の切替わる部分の回転子外周面の所定の位置に凹凸状部などを形成していた。
特許第5434415号公報
 従来の永久磁石モータでは、例えば上述したような構成でトルクリップルを軽減していたため、エアギャップに面するロータコア外径が金型摩耗などで変化した場合、ステータ内径に直接対向するロータ表面が変化するのでトルクリップルが大きく変化する課題がある。このため、製造工程でのばらつきがトルクリップルに影響することを抑制するには、ステータ内径に直接対向していない、ロータ内部の磁石位置などでトルクリップルを低減する必要がある。
 この発明に係わる永久磁石モータは、複数のティースを有する環状のコア片を積層した固定子鉄心、複数のティース間に形成されたスロットに収められた巻線を有する電機子を備えた固定子と、この固定子内に磁気的空隙を介して配置され、回転軸を中心に回転し、断面が平板形状の永久磁石が埋設された回転子とを備え、ティースの回転子側先端部に設けられた鍔部と前記鍔部のそれぞれが前記固定子の周方向に接続される接続部を有し、この接続部の幅がコア片の厚み以下であると共に、埋設された永久磁石の長辺の長さをWm、短辺の長さをTm、回転子外周から永久磁石までの最大距離がGmである場合に、
0.7≦Wm/(Tm×Gm)≦3.3
であることを特徴とする。
 この発明の永久磁石モータによれば、接続部の幅と永久磁石の大きさを調整することにより、トルクリップルを軽減できる。
この発明の実施の形態1による永久磁石モータの固定子10の断面図である。 この発明の実施の形態1による永久磁石モータの固定子10の2段スキューを施した側の断面図である。 この発明の実施の形態1による永久磁石モータの回転子の断面図である。 この発明の実施の形態1の永久磁石の減磁率を表したグラフである。 この発明の実施の形態1においてWm/(Tm×Gm)の値をモータの仕様ごとにプロットした分布図である。このうち、図5Aは、シュー接続幅18が0.125mmの際の各モータ仕様のWm/(Tm×Gm)の値の分布図であり、図5Bは、シュー接続幅18が0.326mmの際の各モータ仕様のWm/(Tm×Gm)の値の分布図であり、図5Cは、シュー接続幅18が0.350mmの際の各モータ仕様のWm/(Tm×Gm)の値の分布図である。 この発明の実施の形態1のシュー接続幅18とWm/(Tm×Gm)の値との関係を、図5のモータ仕様において示したグラフである。このうち、図6Aは、図5のモータ仕様のうち、Wm/(Tm×Gm)の値が最小値となるモータ仕様のシュー接続幅18とWm/(Tm×Gm)の値との関係を示すグラフであり、図6Bは、図5のモータ仕様のうち、Wm/(Tm×Gm)の値が平均値となるモータ仕様のシュー接続幅18とWm/(Tm×Gm)の値との関係を示すグラフであり、図6Cは、図5のモータ仕様のうち、Wm/(Tm×Gm)の値が最大値となるモータ仕様のシュー接続幅18とWm/(Tm×Gm)の値との関係を示すグラフである。
実施の形態1.
 図1はこの発明の実施の形態1による永久磁石モータの固定子10の断面図である。固定子10は電機子巻線11、電機子巻線12、及び固定子鉄心13から構成されている。
 固定子鉄心13は、打ち抜いて作成された電磁鋼板などの磁性体のコア片を軸方向に積層して形成され、環状のコアバック14と、コアバック14から周方向内側に延びるティース15から構成される。隣り合うティース15の間に形成されたスロット16に電機子巻線11、12が納められる。電機子巻線11、12とスロット16を形成する固定子鉄心13との間には、絶縁紙等(図示せず)が挿入され、電気的絶縁を確保している。
 ティース15は、全部で48個形成されており、従ってスロット16も48個形成されている。スロット16のそれぞれには、電機子巻線11、12のコイルが4本ずつ納められている。ティース15の先端は、接続部17によりスロット16より内径側で互いに接続されている。
 電機子巻線11は、U1相、V1相、W1相の3相から構成され、電機子巻線12は、U2相、V2相、W2相の3相から構成されている。電機子巻線11,12のスロット16への配置は、1番目のスロットから6番目のスロットまで、U1相、U2相、W1相、W2相、V1相、V2相の順に配置される。7番目のスロット以降も、U1相、U2相、W1相、W2相、V1相、V2相の順に配置され、48番目まで同様の順に配置されている。但し、1番目のスロットに配置されたU1相のコイルに流れる電流の向きと、7番目のスロットに配置されたU1相のコイルに流れる電流の向きが互いに逆になるように接続されている。即ち、1番目のスロットから7番目のスロットに巻かれた分布巻の構成となり、電機子巻線11、12は計6個のティース15を跨いでいる。これは電気角180度に相当し、短節巻係数が1となる。
 さらに、電機子巻線11、12は互いに電気角30°の位相差があり、分布巻係数が1となるため、全体の巻線係数も1となり、小型高トルクのモータを構成する。従って、巻線係数が小さいモータに比べ、起電力を大きくでき、低コスト化が実現できる。
 また、図2のように、固定子鉄心13aは、軸方向の積層の半分から、ティース15の先端形状がティース15の中心軸に対称となる形状を有する固定子鉄心13aが積層されている。すなわち、固定子鉄心13は2段スキューを施されており、例えば機械角1.875度付近の2段スキューを施した場合、トルクリップルの機械角96次成分を小さくすることができる。
 ティース15の先端の接続部の径方向の幅(以下、シュー接続幅と称す)18が広くなると、漏れ磁束が増加してトルクが低下するので、シュー接続幅18は狭い方がモータの小型化には効果的である。
 図3はこの発明の実施の形態1における永久磁石モータの回転子20の断面図である。
回転子20は、回転子鉄心21と回転子鉄心21の内部に埋設された永久磁石22とからなり、固定子10の内側で、固定子10との間に磁気的空隙を介して配置される。永久磁石22は、ネオジウム、鉄、ボロンから構成されるネオジウム希土類磁石であり、周方向を長辺(Wm)、径方向の厚みを短辺(Tm)とした長方形の断面を有する直方体形状に形成され、回転子20の回転軸23を中心とし、回転対称になるように、周方向に等間隔に8個並べられ、8極の構成となっている。ディスプロシウム(Dy)やテルビウム(Tb)のような、保磁力を改善する高価な重希土類元素を添加していないので、磁石の低コスト化が実現できる。さらに、ネオジウム希土類磁石を使用した永久磁石埋設型モータの構成により、マグネットトルクが大きく、リラクタンストルクを活用でき、単位長さあたりのトルクの大きな小型かつ軽量なモータを提供できる。また、回転子鉄心21を、回転軸23に対し、真円の半径よりも小さな半径を有する花丸形状とすることによってトルクリップルを低減できる。
 回転子鉄心21は、固定子鉄心13と同様、2段スキューを施されているが、形状の同じ回転子鉄心を2段に積層している。例えば機械角3.75度付近の2段スキューを施した場合、トルクリップルの機械角48次成分を小さくすることができる。このように、固定子10と回転子20のそれぞれに2段スキューを施すことで、2つの特定されるトルクリップル次数を低減できるが、スロット数の大きな固定子10よりも、回転子20の2段スキューの角度を大きくした方が、固定子鉄心13のティース15の先端幅やスロット面積を小さくすることを回避できる。
 図4は、常温での保磁力が21kOe以上の重希土類元素を添加していないネオジウム希土類磁石の減磁率を表したグラフである。横軸は短辺Tm(mm)であり、磁石の厚みを表す。グラフからわかるように、Tmが2.1mmを超えると、急激に減磁率が悪化する。減磁によるトルク低下を抑えるには、Tm≧2mmの範囲で適用すればよいが、電動パワーステアリング用モータでは、緊急回避操舵などでは高回転数でのアシストトルクが要求されるため、Tmが大きい(磁石厚みが厚い)とモータ回転数が低下することから、Tmは2.1mmに近い大きさとすることが望ましい。
 上述したように、固定子鉄心13または回転子鉄心21にスキューを施すことにより、48次、96次の2つの特定されるリップル次数を低減できるが、さらにトルクリップルを低減するための構造を以下に詳述する。
 図5は、平均トルクに対するトルクリップル変動が0.5%以下を満たす条件で、前述したように、磁石の長辺の長さをWm(mm)、短辺をTm(mm)、回転子鉄心と長辺までの埋込深さの最大深さをGm(mm)とした3つのパラメータで磁界解析を行い、Wm/(Tm×Gm)の値をモータの仕様ごとにプロットした分布図である。横軸は前記条件を満たすモータ仕様1つ1つであり、個々のモータ仕様に対して、縦軸に示したWm/(Tm×Gm)の値をプロットしている。図5Aはシュー接続幅18が0.125mmの場合、図5Bはシュー接続幅18が0.326mmの場合、図5Cはシュー接続幅18が0.350mmの場合を示す。図5Aから図5Cのそれぞれで、Wm/(Tm×Gm)の値が1.0から3.0の付近に分布していることがわかる。
 図6は図5のシュー接続幅18とWm/(Tm×Gm)の値との関係を、モータの1仕様において示したグラフであり、図6Aは、シュー接続幅18に対するWm/(Tm×Gm)の値が最小値となるモータの1仕様、図6Bは、シュー接続幅18に対するWm/(Tm×Gm)の値が平均値となるモータの1仕様、図6Cは、シュー接続幅18に対するWm/(Tm×Gm)の値が最大値となるモータの1仕様をそれぞれプロットしている。シュー接続幅18が大きいとティース間の漏れ磁束が大きくなるため、シュー接続幅は小さくすることがモータ小型化には望ましいが、図6に示す通り、電動パワーステアリング用モータで、積層されるコア片の板厚0.5mmに対し、シュー接続幅18が小さいほど、Wm/(Tm×Gm)の値が大きくなる相間関係が見られ、シュー接続幅18が0.5mm以下の場合は、Wm/(Tm×Gm)が0.7以上3.3以下とすることで、トルクリップルの主成分である48次、96次のトルクリップル成分を0.5%以下とすることができ、トルクリップルの小さなモータを実現することができる。
 なお、この発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
 10 固定子、11、12 電機子巻線、13 固定子鉄心、14 コアバック、15 ティース、16 スロット、17 接続部、18 シュー接続幅、20 回転子、21 回転子鉄心、22 永久磁石、23 回転軸

Claims (3)

  1.  複数のティースを有する環状のコア片を積層した固定子鉄心、前記複数のティース間に形成されたスロットに収められた巻線を有する電機子を備えた固定子と、前記固定子内に磁気的空隙を介して配置され、回転軸を中心に回転し、断面が平板形状の永久磁石が埋設された回転子とを備えた永久磁石モータであって、前記ティースの前記回転子側先端部に設けられた鍔部と前記鍔部のそれぞれが前記固定子の周方向に接続される接続部を有し、前記接続部の幅が、前記コア片の厚み以下であると共に、前記永久磁石の長辺の長さをWm、短辺の長さをTm、前記回転子外周から前記永久磁石までの最大距離がGmである場合に、1.7≦Wm/(Tm×Gm)≦3.3
    であることを特徴とする永久磁石モータ。
  2.  前記回転子は2段スキューが施された回転子鉄心で構成されることを特徴とする請求項1記載の永久磁石モータ。
  3.  前記永久磁石は、短辺の長さTmが2mm以上であり、重希土類元素が添加されていないことを特徴とする請求項1または2記載の永久磁石モータ。
PCT/JP2015/077739 2015-09-30 2015-09-30 永久磁石モータ WO2017056233A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/575,422 US10374474B2 (en) 2015-09-30 2015-09-30 Permanent magnet motor
PCT/JP2015/077739 WO2017056233A1 (ja) 2015-09-30 2015-09-30 永久磁石モータ
CN201580083193.4A CN108028563B (zh) 2015-09-30 2015-09-30 电动助力转向用永磁体电动机
EP15905387.5A EP3358716B1 (en) 2015-09-30 2015-09-30 Permanent magnet motor for electric power steering
JP2017542594A JP6509355B2 (ja) 2015-09-30 2015-09-30 電動パワーステアリング用永久磁石モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077739 WO2017056233A1 (ja) 2015-09-30 2015-09-30 永久磁石モータ

Publications (1)

Publication Number Publication Date
WO2017056233A1 true WO2017056233A1 (ja) 2017-04-06

Family

ID=58422824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077739 WO2017056233A1 (ja) 2015-09-30 2015-09-30 永久磁石モータ

Country Status (5)

Country Link
US (1) US10374474B2 (ja)
EP (1) EP3358716B1 (ja)
JP (1) JP6509355B2 (ja)
CN (1) CN108028563B (ja)
WO (1) WO2017056233A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030074A (ja) * 2017-07-27 2019-02-21 株式会社デンソー 回転電機
JP2022009802A (ja) * 2017-07-27 2022-01-14 株式会社デンソー 回転電機
US11404925B2 (en) 2017-04-26 2022-08-02 Mitsubishi Electric Corporation Permanent magnet motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106370A (ja) * 2011-11-10 2013-05-30 Shin Etsu Chem Co Ltd モータおよび圧縮機
JP2014093914A (ja) * 2012-11-06 2014-05-19 Mitsuba Corp ブラシレスモータ
JP2014150626A (ja) * 2013-01-31 2014-08-21 Sanyo Denki Co Ltd 永久磁石型モータ用ロータ、永久磁石型モータ用ロータの製造方法及び永久磁石型モータ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811904A (en) 1996-03-21 1998-09-22 Hitachi, Ltd. Permanent magnet dynamo electric machine
DE10394041T5 (de) * 2003-01-15 2005-12-22 Mitsubishi Denki K.K. Permanentmagnetmotor
JP3722822B1 (ja) * 2004-05-18 2005-11-30 山洋電気株式会社 永久磁石回転モータ
JP2006288042A (ja) * 2005-03-31 2006-10-19 Toshiba Corp 永久磁石形モータ
JP4836555B2 (ja) * 2005-11-24 2011-12-14 株式会社東芝 永久磁石型モータ
US7821217B2 (en) 2006-05-22 2010-10-26 Black & Decker Inc. Electronically commutated motor and control system employing phase angle control of phase current
CN101669266B (zh) * 2007-05-07 2013-08-28 松下电器产业株式会社 永久磁铁埋设型电动机
US8344570B2 (en) * 2008-03-27 2013-01-01 Panasonic Corporation Interior permanent magnet rotor, electric motor using the same and electric device
JP5434415B2 (ja) 2009-09-14 2014-03-05 株式会社豊田自動織機 永久磁石埋設型回転電機
CN102754308B (zh) * 2010-02-08 2015-04-22 三菱电机株式会社 永久磁铁埋入型马达的转子及鼓风机和压缩机
JP5806073B2 (ja) * 2010-10-19 2015-11-10 アスモ株式会社 ブラシレスモータ
JP5186036B2 (ja) * 2011-03-31 2013-04-17 日新製鋼株式会社 Ipmモータの回転子及びそれを用いたipmモータ
JP6226867B2 (ja) * 2012-08-16 2017-11-08 株式会社ミツバ ブラシレスモータ及びブラシレスモータ用ロータ
BR112015003256B1 (pt) 2012-08-16 2021-03-30 Mitsuba Corporation Motor sem escova
CN203278445U (zh) * 2013-05-24 2013-11-06 西安庆安制冷设备股份有限公司 一种小型转子式制冷压缩机用无刷直流电动机
US10418866B2 (en) * 2013-05-31 2019-09-17 Mitsubishi Electric Corporation Multiple-polyphase AC dynamo-electric machine and electric power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106370A (ja) * 2011-11-10 2013-05-30 Shin Etsu Chem Co Ltd モータおよび圧縮機
JP2014093914A (ja) * 2012-11-06 2014-05-19 Mitsuba Corp ブラシレスモータ
JP2014150626A (ja) * 2013-01-31 2014-08-21 Sanyo Denki Co Ltd 永久磁石型モータ用ロータ、永久磁石型モータ用ロータの製造方法及び永久磁石型モータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11404925B2 (en) 2017-04-26 2022-08-02 Mitsubishi Electric Corporation Permanent magnet motor
JP2019030074A (ja) * 2017-07-27 2019-02-21 株式会社デンソー 回転電機
JP2022009802A (ja) * 2017-07-27 2022-01-14 株式会社デンソー 回転電機
JP7205600B2 (ja) 2017-07-27 2023-01-17 株式会社デンソー 回転電機

Also Published As

Publication number Publication date
JP6509355B2 (ja) 2019-05-08
EP3358716A1 (en) 2018-08-08
CN108028563B (zh) 2020-02-21
JPWO2017056233A1 (ja) 2018-03-08
US20180198330A1 (en) 2018-07-12
CN108028563A (zh) 2018-05-11
US10374474B2 (en) 2019-08-06
EP3358716B1 (en) 2020-10-28
EP3358716A4 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5889340B2 (ja) 永久磁石埋込型電動機の回転子、及びこの回転子を備えた電動機、及びこの電動機を備えた圧縮機、及びこの圧縮機を備えた空気調和機
WO2017085814A1 (ja) 電動機および空気調和機
JP2008193778A (ja) 固定子及び密閉型圧縮機及び回転機
WO2014102950A1 (ja) 回転電機
JP2009171790A (ja) 永久磁石形同期モータ
US9484776B2 (en) Motor
JP2014045634A (ja) ロータ及びこのロータを備える回転電機
JP2011019398A (ja) 固定子及び密閉型圧縮機及び回転機
WO2018037529A1 (ja) 回転電機
JP6509355B2 (ja) 電動パワーステアリング用永久磁石モータ
US20140084735A1 (en) Permanent magnet-embedded motor and rotor thereof
WO2013147157A1 (ja) 回転電機
JP2010183692A (ja) モータ用磁石とipmモータ用ロータ、およびipmモータ
JP6057777B2 (ja) 固定子、その固定子を備えた密閉型圧縮機及び回転機並びに金型
CN107046352B (zh) 内部永磁电机
KR101961142B1 (ko) 전동기 및 그의 로터의 제조방법
US11710994B2 (en) Rotating electrical machine
CN107534335B (zh) 转子、永久磁铁埋入型电动机、压缩机以及空气调节机
JP2019097258A (ja) 回転電機用磁性くさび、回転電機用磁性くさびの製造方法、および、回転電機
US20170104403A1 (en) Step Motor
JP6330425B2 (ja) 回転電気機械
JP6900790B2 (ja) 回転電機
JP6607150B2 (ja) 回転電機のロータ
TW202406270A (zh) 轉子及具備該轉子的ipm馬達
JP2022002421A (ja) 回転子及びそれを用いた電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015905387

Country of ref document: EP