WO2017056135A1 - 非炭化水素ガス分離装置及び非炭化水素ガス分離方法 - Google Patents

非炭化水素ガス分離装置及び非炭化水素ガス分離方法 Download PDF

Info

Publication number
WO2017056135A1
WO2017056135A1 PCT/JP2015/005020 JP2015005020W WO2017056135A1 WO 2017056135 A1 WO2017056135 A1 WO 2017056135A1 JP 2015005020 W JP2015005020 W JP 2015005020W WO 2017056135 A1 WO2017056135 A1 WO 2017056135A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation module
separation
pressure
hydrocarbon gas
Prior art date
Application number
PCT/JP2015/005020
Other languages
English (en)
French (fr)
Inventor
裕晃 長谷川
海野 洋
藤村 靖
愛子 松山
小黒 秀一
恵一 西田
高橋 真二
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to US15/763,460 priority Critical patent/US10744455B2/en
Priority to PCT/JP2015/005020 priority patent/WO2017056135A1/ja
Priority to CA2999003A priority patent/CA2999003C/en
Priority to AU2015410455A priority patent/AU2015410455B2/en
Publication of WO2017056135A1 publication Critical patent/WO2017056135A1/ja
Priority to SA518391229A priority patent/SA518391229B1/ar

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/225Multiple stage diffusion
    • B01D53/226Multiple stage diffusion in serial connexion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/105Removal of contaminants of nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a technique for separating non-hydrocarbon gas from natural gas.
  • the natural gas produced from the well is subjected to a pre-liquefaction treatment for separating impurities, and then cooled and liquefied and shipped as liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • Some natural gases contain a relatively large amount of non-hydrocarbon gases such as carbon dioxide gas (CO 2 gas) and nitrogen gas (N 2 gas) as impurities.
  • CO 2 gas carbon dioxide gas
  • N 2 gas nitrogen gas
  • Non-hydrocarbon gas discharged from natural gas liquefaction pretreatment and methods to reduce the amount released to the atmosphere are enhanced oil recovery (EOR) or enhanced gas recovery (enhanced gas recovery).
  • EGR enhanced oil recovery
  • non-hydrocarbon gas is used as the injection gas, and it is injected into oil wells and gas wells.
  • the non-hydrocarbon gas is CO 2 gas
  • examples of carbon dioxide capture and storage (CCS) in the ground and examples of utilization as a raw material for a urea production plant are also conceivable.
  • non-hydrocarbon gas separation device that separates non-hydrocarbon gas in natural gas in liquefaction pretreatment
  • a separation membrane capable of performing gas separation.
  • This type of non-hydrocarbon gas separation apparatus hardly undergoes a phase change during gas separation, and uses a pressure difference (partial pressure difference) of a gas to be separated before and after permeating the separation membrane as a driving energy. Gas separation is performed using the difference in velocity of the passing gas.
  • a non-hydrocarbon gas separation device using a separation membrane has advantages such as high energy saving performance and easy handling.
  • equipment and piping constituting the non-hydrocarbon gas separation device tend to increase in size, which increases the equipment cost.
  • an increase in power for sending the non-hydrocarbon gas to the recovery facility is also a problem.
  • Patent Document 1 a primary carbon dioxide separator having a zeolite membrane for carbon dioxide separation and a secondary carbon dioxide separator by an amine absorption method or a pressure swing adsorption method (PSA) are connected in series.
  • a carbon separation system is described.
  • Patent Document 2 discloses that separation and recovery of an acidic gas from an absorbent chemical agent that has absorbed an acidic gas such as carbon dioxide is performed under a pressure of 50 to 300 psi, and the acidic gas is contained under the pressure. Techniques have been described for introducing a gas phase stream to the inlet of a compressor. However, none of these patent documents describes a technique for efficiently sending non-hydrocarbon gas while suppressing an increase in the size of a separation membrane type non-hydrocarbon gas separation device.
  • JP 2012-236134 A Claims 1 and 9, paragraphs 0034 to 0039, FIG. JP 2006-528062 A: Claim 1, paragraphs 0027 and 0029
  • the present invention has been made under such a background, and the object thereof is a non-hydrocarbon capable of increasing the discharge pressure of the non-hydrocarbon gas to the downstream side while suppressing an increase in the size of the equipment.
  • the object is to apply a gas separation device and a non-hydrocarbon gas separation method.
  • the non-hydrocarbon gas separation device of the present invention is a non-hydrocarbon gas separation device for separating the non-hydrocarbon gas from natural gas containing non-hydrocarbon gas,
  • a supply line to which the natural gas is supplied, an outflow line from which the natural gas separated from the non-hydrocarbon gas flows out, and an exhaust line from which the non-hydrocarbon gas separated from the natural gas is discharged A connected first separation module and a second separation module; Respective non-hydrocarbon gases contained in the first separation module and the second separation module and contained in the natural gas supplied from the supply line are allowed to permeate to the discharge line side.
  • the outflow line of the first separation module and the supply line of the second separation module are shared, and the first and second separation modules are connected in series;
  • the pressure on the discharge line side in the first separation module is higher than the pressure on the discharge line side in the second separation module.
  • the non-hydrocarbon gas separator may have the following characteristics.
  • the non-hydrocarbon gas is at least one of carbon dioxide gas and nitrogen gas.
  • the discharge lines of the first separation module and the second separation module are provided with a compressor, and the non-hydrocarbon gas boosted by these compressors is enhanced oil recovery (EOR). Supplied to non-hydrocarbon gas supply lines of equipment or Enhanced Gas Recovery (EGR) equipment.
  • the non-hydrocarbon gas is carbon dioxide gas, and a compressor is provided in the discharge line of the first separation module and the second separation module, and the non-hydrocarbon gas pressurized by these compressors.
  • CCS carbon dioxide capture and storage
  • non-hydrocarbon gas is carbon dioxide gas
  • a compressor is provided in the discharge line of only the second separation module, or the discharge line of the first separation module and the second separation module, Non-hydrocarbon gas discharged from these discharge lines shall be sent to the pipeline for transporting carbon dioxide gas.
  • a compressor is provided in the discharge line of the first separation module and the second separation module, and the discharge line of the second separation module is a compression provided in the first separation module discharge line.
  • the compressor connected to the suction side of the compressor and provided in the discharge line of the second separation module has a non-hydrocarbon gas higher than the suction pressure of the compressor provided in the discharge line of the first separation module. Boosting.
  • a pressure control valve that adjusts the amount of non-hydrocarbon gas discharged to the discharge line so that the pressure detection value becomes a preset target pressure based on the pressure detection value detected by the unit;
  • These target pressures are set so that the target pressures of the pressure adjusting unit and the pressure adjusting unit on the first separation module side are higher than the target pressure of the pressure adjusting unit on the second separation module side.
  • a control unit a control unit.
  • a non-hydrocarbon gas separation method is a non-hydrocarbon gas separation method for separating the non-hydrocarbon gas from a natural gas containing a non-hydrocarbon gas.
  • a non-hydrocarbon gas contained in the natural gas supplied from the first supply line is permeated through the separation membrane in the first separation module to be separated, and the first membrane connected to the first separation module.
  • a non-hydrocarbon gas contained in the natural gas supplied from the second supply line is allowed to pass through the separation membrane in the second separation module to be separated, and the second separation module is connected to the second separation module.
  • the pressure on the first discharge line side in the first separation module is higher than the pressure on the second discharge line side in the second separation module.
  • first and second separation modules each containing a separation membrane for separating non-hydrocarbon gas from natural gas are connected in series, and the first separation module is more effective than the second separation module.
  • This is configured so that the pressure on the discharge line side of the non-hydrocarbon gas in each separation module is higher. As a result, it is possible to suppress the increase in size of the device and increase the discharge pressure of the non-hydrocarbon gas to the downstream side.
  • Natural gas to be handled by shipping terminal of this embodiment carbon dioxide (CO 2) gas or nitrogen (N 2) contains non-hydrocarbon gases, such as gases.
  • CO 2 gas is separated as non-hydrocarbon gas removed from natural gas.
  • the natural gas is separated in the gas-liquid separation step 11, and then the moisture is removed in the moisture removal step 12. Further, the natural gas is liquefied in the liquefaction step 14 after passing through the CO 2 separation step 13 to become liquefied natural gas (LNG).
  • LNG liquefied natural gas
  • mercury in natural gas is adsorbed. If necessary, a mercury removal step for removing by adsorbing on an agent, an acid gas removal step for absorbing an acid gas such as hydrogen sulfide in an absorbing solution such as amine, and the like may be provided.
  • natural gas is precooled to, for example, around ⁇ 40 ° C. with a precooling refrigerant (mainly propane), and further, for example, ⁇ using a main refrigerant (mixed refrigerant of methane, ethane, propane and nitrogen)
  • a precooling refrigerant mainly propane
  • main refrigerant mixed refrigerant of methane, ethane, propane and nitrogen
  • the CO 2 gas separated from the natural gas is discharged in the CO 2 separation step 13 included in the liquefaction pretreatment.
  • a CO 2 treatment step 17 may be provided in order to use the CO 2 gas and reduce the amount released to the atmosphere.
  • the CO 2 treatment step 17 in order to implement the aforementioned EOR or EGR, the process of press-fitting the oil wells and gas wells the CO 2 gas as a press-gas, the CO 2 gas into the ground in order to implement the CCS
  • a process of injecting, a process of supplying CO 2 gas to a urea production plant as a raw material of urea, and the like are performed.
  • CO 2 treatment step 17 Between the the CO 2 treatment step 17 to implement the equipment (non-hydrocarbon gas separation apparatus in this example) facility for implementing a CO 2 separation process 13, CO 2 gas discharged from the CO 2 separation process 13 A compressor (a first compressor described later) 16 for increasing the pressure up to the receiving pressure on the CO 2 treatment step 17 side is provided.
  • the non-hydrocarbon gas separation device of this example includes two separation modules (a first separation module 2a and a second separation module 2b) that house a separation membrane 20 that separates CO 2 gas from natural gas. .
  • the separation membrane 20 may be an organic membrane made of a polymer material, or may be an inorganic material, for example, an inorganic membrane made of DDR (Deca-Dodecasil 3R) type zeolite.
  • the specific structure of the separation membrane 20 is not limited to a specific type.
  • a hollow fiber membrane can be used, and in the case of an inorganic membrane, the surface of a pipe-shaped substrate made of porous ceramics or the like.
  • an example using a tubular member formed with a DDR type zeolite membrane is given.
  • a large number of hollow fiber membranes and tubular members are housed in a metal body, and a primary side space through which natural gas flows and a secondary side through which CO 2 gas separated from natural gas flows are placed.
  • the separation module 2 is configured by dividing the space.
  • the first and second separation modules 2a and 2b housing the above-described separation membrane 20 are connected in series from the upstream side to the downstream side in the natural gas flow direction.
  • the upstream first separation module 2a includes a supply line (first supply line) 201 to which natural gas is supplied, and a discharge line (first discharge line) from which CO 2 gas separated from natural gas is discharged. ) 202, and the connection line 203 that connects the first separation module 2a and the second separation module 2b on the rear stage side.
  • the connection line 203 corresponds to an outflow line (first outflow line) through which natural gas separated from CO 2 gas flows out.
  • the discharge line 202 of the first separation module 2a is provided with a pressure detection unit 22a for detecting the pressure of the discharge line 202 and a downstream side of the pressure detection unit 22a. Based on the pressure detection value, the pressure detection unit 22a There is provided a first pressure adjusting unit including a pressure adjusting valve 21a that adjusts the flow rate of the CO 2 gas discharged from the first separation module 2a so that the value becomes a preset target pressure. Yes.
  • the receiving line 170 corresponds to a non-hydrocarbon gas supply line.
  • the first compressor (compressor main body) 16 includes a pressure detection unit that detects the pressure of the discharge line 202 on the suction side of the compressor main body, and one of CO 2 gas discharged from the compressor main body.
  • a “compressor system” comprising a spillback line for returning the part to the suction side discharge line 202 and a spillback valve for adjusting the flow rate of CO 2 gas flowing through the spillback line based on the pressure detection result of the pressure detection unit Is configured.
  • the compressor system is simplified and displayed with square symbols. However, a specific configuration of the compressor system may be appropriately selected as appropriate. For convenience of explanation, the compressor system is also referred to as the first compressor 16 in the following description (FIG. 3). The same).
  • a discharge line 202 for CO 2 gas separated from the natural gas is discharged, outflow natural gas that has been separated from the CO 2 gas to flow out It is connected to a line (second outflow line) 205.
  • An intermediate line 204 is interposed between the main body of the second separation module 2b and the discharge line 202.
  • connection line 203 corresponds to a supply line (second supply line) to which natural gas is supplied after part of the CO 2 gas is separated in the first separation module 2a.
  • the intermediate line 204 and the discharge line 202 downstream of the junction with the intermediate line 204 are a discharge line (second discharge line) from which the CO 2 gas separated by the second separation module 2b is discharged. ).
  • the intermediate line 204 of the second separation module 2b is provided with a pressure detection unit 22b that detects the pressure of the intermediate line 204 and a downstream side of the pressure detection unit 22b, and based on the pressure detection value,
  • a second pressure adjusting unit including a pressure adjusting valve 21b for adjusting the flow rate of the CO 2 gas discharged from the second separation module 2b so that the pressure detection value becomes a preset target pressure. It has been.
  • a second compressor 23 that boosts the CO 2 gas flowing through the intermediate line 204 is provided on the rear side of the second pressure adjusting unit. Further, the intermediate line 204 on the discharge side of the second compressor 23 joins the suction side of the first compressor 16 provided in the discharge line 202 of the first separation module 2a.
  • the second compressor (compressor main body) 23 described above also actually constitutes a compressor system similar to the first compressor 16, but in the following description, the compressor system will be described. Is also referred to as a second compressor 23.
  • the setting of the target pressure in the first and second pressure adjusting units is performed by the control unit 3 which is a control computer provided in the control room of the shipping base. Further, as can be seen from the fact that the second compressor 23 is provided in the intermediate line 204 provided between the main body of the second separation module 2b and the discharge line 202, the pressure of the discharge line 202 is The target pressure is set so as to be higher than the pressure in the intermediate line 204.
  • the non-hydrocarbon gas separation device according to the comparative example is not provided with the second compressor 23 in the intermediate line 204. Further, the end of the intermediate line 204 is joined to the front side of the pressure adjusting unit (the pressure adjusting valve 21a and the pressure detecting unit 22a) provided in the discharge line 202. That is, in the non-hydrocarbon gas separation device according to the comparative example, the pressure of the discharge line 202 connected to the first separation module 2a is the same as the pressure of the intermediate line 204 connected to the second separation module 2b. It turns out that it is.
  • the non-hydrocarbon gas separation device using the separation membrane 20 uses natural gas as a driving energy by the pressure difference (partial pressure difference) of the CO 2 gas before and after permeating the separation membrane 20. Separate the CO 2 gas. Therefore, when the pressure of the natural gas flowing through the primary side in each separation module 2a, 2b and the concentration of CO 2 gas in the natural gas are constant, the secondary side of the CO 2 gas separated from the natural gas flows. The lower the pressure in the space (the larger the partial pressure difference of the CO 2 gas between the primary side and the secondary side), the higher the rate at which the CO 2 gas permeates the separation membrane 20.
  • the pressure in the secondary space of each separation module 2a, 2b is determined by the pressure on the discharge line 202 and intermediate line 204 connected to these separation modules 2a, 2b.
  • the pressure in the space on the secondary side of the first separation module 2a is equal to “the pressure on the discharge line (first discharge line) 202 side in the first separation module 2a” in the present embodiment.
  • the pressure in the space on the secondary side of the second separation module 2b corresponds to “the pressure on the side of the intermediate line (second discharge line) 204 in the second separation module 2a” in the present embodiment. It corresponds.
  • the membrane area of the separation membrane 20 is reduced and the separation modules 2a and 2b are made smaller as the pressure in the discharge line 202 and the intermediate line 204 is reduced. It can be said that this is possible.
  • a decrease in pressure in the discharge line 202 and the intermediate line 204 leads to an increase in the volume of CO 2 gas flowing through the inside, and an increase in the diameter of the pipes constituting the discharge line 202 and the intermediate line 204.
  • unconventional natural gas which has been developed in recent years, contains non-hydrocarbon gases such as CO 2 gas at a relatively high concentration. There is also. Due to such a background, an increase in the diameter of the pipe used for the discharge line 202 and the intermediate line 204 has a great impact on an increase in equipment cost.
  • the compressor 16 that can obtain a high compression ratio is required, which leads to an increase in equipment cost and energy consumption.
  • the supply line is more than the partial pressure of the CO 2 gas supplied from the connection line 203 to the second separation module 2b.
  • the partial pressure of the CO 2 gas supplied from 201 to the first separation module 2a is higher.
  • the first separation module 2a It can be said that the permeation rate of the separation membrane 20 is higher than that of the second separation module 2b, and more CO 2 gas is separated (the load on the first separation module 2a side is higher).
  • the liquefaction step 14 The decrease in the permeation rate in the first separation module 2a can be suppressed to the extent that the target value of the CO 2 concentration in the natural gas sent to can be maintained. And it becomes possible to reduce the pipe diameter of the piping which comprises the discharge line 202 by raising the pressure of the space of the secondary side of the 1st separation module 2a.
  • the non-hydrocarbon gas separation device is configured based on the above-described concept.
  • the CO 2 gas separation ability is equivalent between the embodiment and the comparative example (under the same conditions, CO 2 In order to make the CO 2 gas concentration in the natural gas flowing out from the outflow line 205 the same when supplying natural gas containing two gases, the membrane area of the separation membrane 20 of the first separation module 2a Need to be larger.
  • non-hydrocarbon gas separation is achieved when only the pressure of the discharge line 202 is increased as compared with the case where the pressures of both the discharge line 202 and the intermediate line 204 are increased. It has been confirmed that the increase in the film area seen in the entire apparatus can be kept low.
  • the second compressor 23 is provided in the intermediate line 204 in the non-hydrocarbon gas separation device according to the embodiment. Also in this regard, as shown in [Example] described later, even when the pressure of only the discharge line 202 is increased as compared with a predetermined base case, the entire non-hydrocarbon gas separation device is viewed, It has been confirmed that the power consumed by the first and second compressors 16 and 23 can be reduced.
  • the supply pressure of the natural gas from the supply line 201 and the target pressure of the discharge line 202 and the intermediate line 204 are the CO 2 gas concentration in the natural gas supplied from the supply line 201 and the natural gas flowing out from the outflow line 205. It varies depending on the preconditions such as the target value of the CO 2 gas concentration in the gas. For this reason, it is difficult to specify a specific operating range without any particular premise. Therefore, the pressure range under the general preconditions is given.
  • the CO 2 gas concentration in the natural gas supplied from the supply line 201 is 5 to 70 mol%
  • the CO 2 gas concentration in the natural gas flowing out from the outflow line 205 is the concentration measurement limit to 1 mol%. To do.
  • the supply pressure of the natural gas from the supply line 201 is in the range of 1200 to 8000 kPa
  • the target pressure of the discharge line 202 is in the range of 100 to 1200 kPa
  • the target pressure of the intermediate line 204 is in the range of 1 to 1200 kPa (intermediate with the discharge line 202).
  • the pressure difference with the line 204 is in the range of 100 to 1200 kPa.
  • the operation of the non-hydrocarbon gas separator having the above-described configuration will be described.
  • the natural gas that has been subjected to the separation and removal of the liquid and moisture in the upstream steps 11 and 12 flows into the upstream first separation module 2a via the supply line 201.
  • the CO 2 gas is separated from the natural gas at a permeation speed corresponding to the partial pressure difference of the CO 2 gas between the primary side and the secondary side through the separation membrane 20.
  • the secondary pressure space of the first separation module within 2a which permeated the CO 2 gas flows, a first pressure regulating portion (pressure regulating valve 21a provided in the discharge line 202, the pressure detection unit 22a). That is, the pressure control valve 21 a changes the valve opening degree so that the pressure of the discharge line 202 detected by the pressure detection unit 22 a approaches the target pressure set by the control unit 3.
  • the pressure detection value of the pressure detection unit 22a is 2a in the first separation module. It can be regarded as the pressure of the secondary side of the.
  • the pressure detection part 22a is provided in the secondary side space of 2a in the first separation module, and the pressure in the secondary side space is directly adjusted by the pressure control valve 21a provided in the discharge line 202. Of course, it is also good.
  • the natural gas that has flowed through the first separation module 2a for the residence time determined according to the volume of the primary space and the flow rate of the natural gas is subjected to separation of the CO 2 gas by the separation membrane 20 during this period.
  • the natural gas flows out toward the connection line 203 in a state where the CO 2 gas concentration is reduced as compared with the inflow from the supply line 201.
  • the CO 2 gas that has permeated the separation membrane 20 is discharged from the first separation module 2a toward the discharge line 202.
  • the natural gas flowing out to the connection line 203 flows into the second separation module 2b connected to the downstream side of the connection line 203. Also in the second separation module 2b, the CO 2 gas is separated from the natural gas at a permeation rate corresponding to the difference in partial pressure of the CO 2 gas between the primary side and the secondary side via the separation membrane 20.
  • the pressure in the secondary space in the second separation module 2b flows through the second separation module in which the permeated CO 2 gas flows, and the second pressure adjusting unit (pressure adjusting valve 21b, pressure detecting unit 22b provided in the intermediate line 204). ) Is the same as that of the first separation module 2a.
  • the target pressure set by the control unit 3 is set so that the target pressure set for the second pressure adjusting unit is lower than the target pressure set for the first pressure adjusting unit. Settings have been made.
  • the pressure detection value of the pressure detection unit 22b is the second separation module.
  • 2b can be regarded as the pressure in the space on the secondary side.
  • the second separation module is provided with a pressure detector 22b in the secondary space of 2b, and the pressure control valve 21b provided in the intermediate line 204 directly controls the pressure in the secondary space. The points that may be adjusted are the same as those of the first separation module 2a.
  • Natural gas that has flowed through the second separation module 2b for a residence time determined according to the volume of the primary side space and the flow rate of the natural gas is subjected to separation of the CO 2 gas by the separation membrane 20 during this period.
  • the natural gas flows out toward the outflow line 205 in a state where the CO 2 gas concentration is reduced to the target concentration, and is sent to the liquefaction step 14 at the subsequent stage.
  • the CO 2 gas that has passed through the separation membrane 20 is discharged from the second separation module 2b toward the intermediate line 204.
  • the CO 2 gas discharged to the intermediate line 204 is pressurized by the second compressor 23 and then merged with the CO 2 gas flowing through the discharge line 202.
  • Second compressor 23 boosts the CO 2 gas into the first suction pressure above the pressure of the compressor 16 provided in the discharge line 202 side.
  • the CO 2 gas concentration in the natural gas supplied from the supply line 201 is increased, and the CO 2 gas concentration in the natural gas flowing out from the outflow line 205 is the target.
  • the concentration may be exceeded.
  • the pressure in the primary space of each separation module 2a, 2b is increased and the pressure in the secondary space is decreased.
  • the opening of a pressure control valve (not shown) that is provided upstream of the supply line 201 and adjusts the supply pressure of natural gas to the non-hydrocarbon gas separator is adjusted.
  • the outlet pressure of the pressure regulating valve may be increased by increasing the pressure.
  • a compressor (not shown) is provided on the upstream side of the supply line 201, an operation for increasing the discharge pressure of the compressor may be performed.
  • the controller 3 changes the setting to lower the target pressure of the first and second pressure regulators. At this time, the target pressure is set so that the target pressure set for the first pressure adjustment unit is higher than the target pressure set for the second pressure adjustment unit. Change the settings.
  • the non-hydrocarbon gas separation device has the following effects.
  • the first and second separation modules 2a and 2b each containing a separation membrane 20 for separating CO 2 gas (non-hydrocarbon gas) from natural gas are connected in series, and the inside of the second separation module 2b
  • the non-hydrocarbon gas separation device is configured such that the pressure on the discharge line 202 side in the first separation module 2a is higher than the pressure on the intermediate line 204 side.
  • the intermediate line 204 from which the CO 2 gas is discharged from the second separation module 2b is configured to merge with the discharge line 202 on the first separation module 2a side. It is not essential to join these lines 202,204.
  • a discharge line (second discharge line) 204 independent of the discharge line 202 on the first module 2a side may be connected to the second separation module 2b.
  • the second compressor provided in the discharge line 204 on the second separation module 2b side boosts the CO 2 gas above the acceptance pressure of the equipment on the CO 2 treatment step 17 side
  • the first compressor the discharge line 202 of the isolation module 2a side may be adopted a structure for supplying the CO 2 gas independently.
  • first and second compressors 16 and 23 in the discharge line 202 and the intermediate line 204 to increase the pressure to the acceptance pressure on the CO 2 treatment step 17 side.
  • a compressor may be provided in the equipment on the CO 2 treatment step 17 side to increase the pressure up to the pressure required for the CO 2 gas treatment. Good.
  • the non-hydrocarbon gas separation device may include three or more separation modules connected in series. Paying attention to two separation modules connected adjacent to each other in the front-rear direction, the pressure on the discharge line 202 side in the first separation module 2a on the upstream side becomes the side of the discharge line 204 in the second separation module 2b on the downstream side.
  • This non-hydrocarbon gas separation device is included in the technical scope of the present invention as long as there is a relationship higher than the above pressure.
  • the non-hydrocarbon gas separated from the natural gas using the separation membrane 20 is not limited to CO 2 gas.
  • the non-hydrocarbon gas may be N 2 gas, and the N 2 gas can also be subjected to a process of injecting into an oil well or a gas well as an injecting gas for EOR or EGR.
  • the CO 2 gas treatment is performed at a remote location away from the LNG shipping base, and the CO 2 gas is transported to the place where the treatment is performed. to pipelines for transport, the first and second separation modules 2a, it may send the CO 2 gas from 2b.
  • the compressor 23 may be provided only in the intermediate line 204 on the second separation module 2b side where the discharge pressure is low.
  • Calculation conditions show the supply conditions (temperature, pressure, flow rate) and composition of natural gas supplied to the non-hydrocarbon gas separator.
  • the natural gas is processed by the non-hydrocarbon gas separation device according to the embodiment and the comparative example, and the pressure in the space on the secondary side of the first and second separation modules 2a and 2b is increased to 15000 kPa.
  • the compressor power required to do this was calculated.
  • the membrane area of the separation membrane 20 (the total value of the membrane areas of the first and second separation modules 2a and 2b) necessary for reducing the CO 2 gas in the natural gas to 5 mol% was calculated.
  • a process simulator PRO / II (US registered trademark) was used for these calculations.
  • the pressure of the secondary side space of the first separation module 2a is 200 kPa
  • the secondary side space of the second separation module 2b is The required power and membrane area were calculated for a pressure of 200 kPa.
  • Example 1 The calculation was performed under the same conditions as in the reference example except that the pressure in the space on the secondary side of the first separation module 2a was 600 kPa.
  • Example 2 Calculation was performed under the same conditions as in the reference example, except that the pressure in the space on the secondary side of the first separation module 2a was 1800 kPa.
  • FIG. 4 shows the result of plotting the membrane area ratio against the compressor power ratio.
  • the horizontal axis indicates the compressor power ratio
  • the vertical axis indicates the membrane area ratio (both are expressed in percentage).
  • the reference example is plotted with a white circle mark, the example with a black triangle mark, and the comparative example with a white square mark.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】機器の大型化を抑えつつ、非炭化水素ガスの下流側への排出圧力を上昇させることが可能な非炭化水素ガス分離装置などを提供する。 【解決手段】非炭化水素ガス分離装置において、直列に接続された第1、第2の分離モジュール2a、2bは、分離膜20により天然ガスからの非炭化水素の分離を行う。天然ガスから分離された非炭化水素ガスは、各々、排出ライン202、204へと排出される。このとき、第1の分離モジュール2a内の排出ライン202側の圧力が、第2の分離モジュール2b内の排出ライン204、202側の圧力よりも高くなっている。

Description

非炭化水素ガス分離装置及び非炭化水素ガス分離方法
 本発明は、天然ガスから非炭化水素ガスを分離する技術に関する。
 井戸元より産出された天然ガスは、不純物を分離する液化前処理が行われた後、冷却・液化されて液化天然ガス(Liquidized Natural Gas;LNG)として出荷される。 
 天然ガスのなかには、二酸化炭素ガス(COガス)や窒素ガス(Nガス)などの非炭化水素ガスを不純物として比較的多く含むものがあり、この種の天然ガスを処理する場合には、液化前処理にて多くの非炭化水素ガスが排出される。
 天然ガスの液化前処理にて排出された非炭化水素ガスを活用し、また大気への放出量を低減する手法として、石油増進回収(Enhanced Oil Recovery, EOR)または天然ガス増進回収(Enhanced Gas Recovery, EGR)における圧入ガスとして非炭化水素ガスを利用し、油井やガス井に圧入する例がある。また、非炭化水素ガスがCOガスである場合には、地中へ二酸化炭素貯留(Carbon dioxide Capture and Storage, CCS)する例や尿素製造プラントの原料として活用する例も考えられる。
 一方、液化前処理において、天然ガス中の非炭化水素ガスを分離する非炭化水素ガス分離装置として、ガス分離を行うことが可能な分離膜を利用したものがある。この種の非炭化水素ガス分離装置は、気体分離の際に相変化を殆ど伴わず、分離膜を透過する前後での分離対象の気体の圧力差(分圧差)を駆動エネルギーとし、分離膜を通過するガスの速度差を利用してガス分離を行う。
 分離膜を利用した非炭化水素ガス分離装置は、省エネルギー性能が高く、取り扱いも容易であるといった利点を有する。一方で、非炭化水素ガスを多く含む天然ガスの処理を行う場合には、非炭化水素ガス分離装置を構成する機器や配管が大型化する傾向にあり、設備コストの増大が課題となる。 
 また、先に説明したEORやCCSなどの非炭化水素ガス回収を行う際に、回収を行う設備にて受け入れ可能な圧力まで昇圧された非炭化水素ガスを送り出さなければならない場合もある。非炭化水素ガスを多く含む天然ガスにおいては、回収設備へ非炭化水素ガスを送り出す動力の増大も問題となる。
 ここで特許文献1には、二酸化炭素分離用ゼオライト膜を備えた一次二酸化炭素分離器と、アミン吸収法または圧力スイング吸着法(PSA)による二次二酸化炭素分離器とが直列に連結された二酸化炭素分離システムが記載されている。また、特許文献2には、二酸化炭素などの酸性ガスを吸収した吸収性化学薬剤からの酸性ガスの分離及び回収を、50~300psiの圧力下で行うと共に、当該圧力下にて酸性ガスを含む気相流を圧縮装置の入口に導入する技術が記載されている。 
 しかしながらこれらの特許文献のいずれにも、分離膜方式の非炭化水素ガス分離装置の大型化を抑えつつ、効率的に非炭化水素ガスを送り出す技術は記載されていない。
特開2012-236134号公報:請求項1、9、段落0034~0039、図1 特開2006-528062号公報:請求項1、段落0027、0029
 本発明は、このような背景の下になされたものであり、その目的は、機器の大型化を抑えつつ、下流側への非炭化水素ガスの排出圧力を上昇させることが可能な非炭化水素ガス分離装置、及び非炭化水素ガス分離方法を適用することにある。
 本発明の非炭化水素ガス分離装置は、非炭化水素ガスを含む天然ガスから、前記非炭化水素ガスを分離する非炭化水素ガス分離装置において、
 各々、前記天然ガスが供給される供給ラインと、前記非炭化水素ガスと分離された天然ガスが流出する流出ラインと、前記天然ガスから分離された非炭化水素ガスが排出される排出ラインとに接続された第1の分離モジュール、及び第2の分離モジュールと、
 各々、前記第1の分離モジュール、及び第2の分離モジュール内に収納され、前記供給ラインから供給された天然ガスに含まれる非炭化水素ガスを前記排出ライン側へ透過させ、当該非炭化水素ガスが分離された天然ガスを前記流出ライン側へ通流させるための分離膜と、を備え、
 前記第1の分離モジュールの流出ラインと、前記第2の分離モジュールの供給ラインとが共通化され、これら第1、第2の分離モジュールが直列に接続されていることと、
 前記第1の分離モジュール内の排出ライン側の圧力が、第2の分離モジュール内の排出ライン側の圧力よりも高いことと、を特徴とする。
 前記非炭化水素ガス分離装置は以下の特徴を備えていてもよい。
(a)前記非炭化水素ガスは、二酸化炭素ガスまたは窒素ガスの少なくとも一方であること。
(b)第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、これらの圧縮機により昇圧された非炭化水素ガスは、石油増進回収(Enhanced Oil Recovery, EOR)設備または天然ガス増進回収(Enhanced Gas Recovery, EGR)設備の非炭化水素ガス供給ラインへ供給されること。また、前記非炭化水素ガスは、二酸化炭素ガスであり、第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、これらの圧縮機により昇圧された非炭化水素ガスは、二酸化炭素貯留(Carbon dioxide Capture and Storage, CCS)設備または尿素製造プラントの非炭化水素ガス供給ラインへ供給されること。さらには、前記非炭化水素ガスは、二酸化炭素ガスであり、第2の分離モジュールのみの排出ライン、または第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、これらの排出ラインから排出された非炭化水素ガスは、二酸化炭素ガス輸送用のパイプラインへ送出されること。
(c)第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、前記第2の分離モジュールの排出ラインは、前記第1の分離モジュール排出ラインに設けられた圧縮機の吸込側に接続され、前記第2の分離モジュールの排出ラインに設けられた圧縮機は、前記第1の分離モジュールの排出ラインに設けられた圧縮機の吸込圧以上に非炭化水素ガスを昇圧すること。
(d)前記第1の分離モジュール及び第2の分離モジュールの排出ラインに各々設けられ、これら排出ラインの圧力を検出する圧力検出部と、前記圧力検出部より下流側に設けられ、当該圧力検出部にて検出された圧力検出値に基づき、前記圧力検出値が予め設定された目標圧力となるように、前記排出ラインに排出される非炭化水素ガスの量を調節する圧力調節弁と、を有する圧力調節部と、前記第1の分離モジュール側の圧力調節部の目標圧力が、前記第2の分離モジュール側の圧力調節部の目標圧力よりも高くなるように、これら目標圧力の設定を行う制御部と、を備えたことを特徴とする。
 また、他の発明に係る非炭化水素ガス分離方法は、非炭化水素ガスを含む天然ガスから、前記非炭化水素ガスを分離する非炭化水素ガス分離方法において、
 分離膜を収納した第1の分離モジュールに対し、当該分離モジュールに接続された第1の供給ラインから、前記天然ガスを供給する工程と、
 前記第1の分離モジュール内の分離膜に、前記第1の供給ラインから供給された天然ガスに含まれる非炭化水素ガスを透過させて分離し、前記第1の分離モジュールに接続された第1の排出ラインより、前記天然ガスから分離された非炭化水素ガスを排出する工程と、
 前記第1の分離モジュール内に、前記非炭化水素ガスが分離された天然ガスを通流させ、当該第1の分離モジュールに接続された第1の流出ラインから流出させる工程と、
 分離膜を収納し、前記第1の流出ラインと共通化された第2の供給ラインを介して前記第1の分離モジュールに直列に接続された第2の分離モジュールに対し、前記第2の供給ラインから、前記第1の分離モジュールより流出した天然ガスを供給する工程と、
 前記第2の分離モジュール内の分離膜に、前記第2の供給ラインから供給された天然ガスに含まれる非炭化水素ガスを透過させて分離し、前記第2の分離モジュールに接続された第2の排出ラインより、前記天然ガスから分離された非炭化水素ガスを排出する工程と、
 前記第2の分離モジュール内に、前記非炭化水素ガスが分離された天然ガスを通流させ、当該第2の分離モジュールに接続された第2の流出ラインから流出させる工程と、を含み、
 前記第1の分離モジュール内の第1の排出ライン側の圧力が、前記第2の分離モジュール内の第2の排出ライン側の圧力よりも高いことを特徴とする。
 本発明は、各々、天然ガスから非炭化水素ガスを分離するための分離膜を収納した第1、第2の分離モジュールを直列に接続し、第2の分離モジュールよりも、第1の分離モジュールの方が、各分離モジュール内の非炭化水素ガスの排出ライン側の圧力が高くなるように構成されている。この結果、機器の大型化を抑えると共に、下流側への非炭化水素ガスの排出圧力を上昇させることができる。
天然ガスの出荷基地にて実施される各種処理工程を示す工程図である。 前記出荷基地の液化前処理であるCO分離工程を実施する非炭化水素ガス分離装置の構成図である。 比較例に係る非炭化水素ガス分離装置の構成図である。 排出ライン側の圧力を変化させたとき、COガスを昇圧するのに必要な圧縮動力や分離膜の膜面の変化を示す説明図である。
 初めに、図1を参照しながら液化天然ガス(LNG)の出荷基地にて実施される天然ガスの処理の概要について説明する。 
 本例の出荷基地にて取り扱われる天然ガスには、二酸化炭素(CO)ガスや窒素(N)ガスなどの非炭化水素ガスが含まれている。本例では天然ガスから除去される非炭化水素ガスとしてCOガスの分離を行う場合について説明する。
 図1に示すように、天然ガスは、気液分離工程11にて液体が分離された後、水分除去工程12にて水分が除去される。さらに天然ガスは、CO分離工程13を経た後、液化工程14にて液化されて液化天然ガス(LNG)となる。 
 なお、天然ガスを液化する前の液化前処理においては、図1に例示した各工程(気液分離工程11、水分除去工程12、CO分離工程13)の他、天然ガス中の水銀を吸着剤に吸着させて除去する水銀除去工程や、硫化水素などの酸性ガスをアミンなどの吸収液に吸収させて除去する酸性ガス除去工程などを必要に応じて設けてもよい。
 液化工程14では、予冷用冷媒(プロパンを主成分とする)により天然ガスが例えば-40℃付近まで予備冷却され、さらに主冷媒(メタン、エタン、プロパン及び窒素の混合冷媒)を用いて例えば-155℃から-158℃に冷却されることにより天然ガスが液化してLNGとなる。 
 液化されたLNGは、不図示のLNGタンク内における貯蔵工程15を経てLNGタンカーやパイプラインへと出荷される。
 以上に概要を説明した天然ガスの処理において、液化前処理に含まれるCO分離工程13では、天然ガスから分離されたCOガスが排出される。当該COガスの活用を図り、また大気への放出量を低減するため、CO処理工程17が設けられる場合がある。 
 CO処理工程17においては、既述のEORやEGRを実施するために、当該COガスを圧入ガスとして油井やガス井に圧入する処理、CCSを実施するために地中にCOガスを注入する処理、尿素の原料として尿素製造プラントにCOガスを送気する処理などが行われる。また、CO分離工程13を実施する設備(本例では非炭化水素ガス分離装置)とCO処理工程17を実施する設備との間には、CO分離工程13から排出されたCOガスをCO処理工程17側の受入圧力まで昇圧する圧縮機(後述の第1の圧縮機)16が設けられている。
 次に、図2を参照しながら、CO分離工程13を実施するための本実施の形態に係る非炭化水素ガス分離装置の構成について説明する。 
 本例の非炭化水素ガス分離装置は、天然ガスからCOガスを分離する分離膜20を収納する2基の分離モジュール(第1の分離モジュール2a、第2の分離モジュール2b)を備えている。
 分離膜20は、高分子材料製の有機膜であってもよいし、無機材料、例えばDDR(Deca-Dodecasil 3R)型のゼオライト製の無機膜であってもよい。
 分離膜20の具体的な構造は特定のタイプのものに限定されないが、例えば有機膜の場合は、中空糸膜が挙げられ、無機膜の場合は多孔質セラミックなどからなる配管状の基体の表面に、DDR型のゼオライト膜を成膜した管状部材を用いる例が挙げられる。そして、多数本の中空糸膜や管状部材を金属製の本体内に収納し、天然ガスが通流する一次側の空間と、天然ガスから分離されたCOガスが通流する二次側の空間とを区画することにより、分離モジュール2が構成される。
 上述の分離膜20を収納した第1、第2の分離モジュール2a、2bは、天然ガスの流れ方向の上流側から下流側へ向けて直列に接続されている。
 上流側の第1の分離モジュール2aは、天然ガスが供給される供給ライン(第1の供給ライン)201と、天然ガスから分離されたCOガスが排出される排出ライン(第1の排出ライン)202と、当該第1の分離モジュール2aと、後段側の第2の分離モジュール2bとを接続する接続ライン203とに接続されている。第1の分離モジュール2aにおいて、接続ライン203は、COガスと分離された天然ガスが流出する流出ライン(第1の流出ライン)に相当する。
 第1の分離モジュール2aの排出ライン202には、当該排出ライン202の圧力を検出する圧力検出部22aと、当該圧力検出部22aの下流側に設けられ、その圧力検出値に基づき、当該圧力検出値が予め設定された目標圧力となるように、第1の分離モジュール2aから排出されるCOガスの流量を調節する圧力調節弁21aと、を備えた第1の圧力調節部が設けられている。
 この第1の圧力調節部の後段側には、排出ライン202を流れるCOガスの圧力をCO処理工程17側の受入ライン170の受入圧力まで昇圧する既述の第1の圧縮機16が設けられている。ここで受入ライン170は、非炭化水素ガス供給ラインに相当している。 
 なお実際には、第1の圧縮機(圧縮機本体)16は、圧縮機本体の吸込側における排出ライン202の圧力を検出する圧力検出部と、圧縮機本体から吐出されたCOガスの一部を吸込側の排出ライン202に戻すスピルバックラインと、前記圧力検出部の圧力検出結果に基づき、スピルバックライン流れるCOガスの流量を調節するスピルバック弁とを備えた「圧縮機システム」を構成している。図2においては、当該圧縮機システムを四角の記号で簡略化して表示してある。但し、圧縮機システムの具体的な構成は、適宜、好適なものを採用すればよいので、説明の便宜上、以下の説明においては当該圧縮機システムについても第1の圧縮機16と呼ぶ(図3において同じ)。
 次いで、下流側の第2の分離モジュール2bは、前記接続ライン203と、天然ガスから分離されたCOガスが排出される排出ライン202と、COガスと分離された天然ガスが流出する流出ライン(第2の流出ライン)205とに接続されている。なお、第2の分離モジュール2bの本体と前記排出ライン202との間には、中間ライン204が介設されている。
 第2の分離モジュール2bにおいて、接続ライン203は、第1の分離モジュール2aにて一部のCOガスが分離された後の天然ガスが供給される供給ライン(第2の供給ライン)に相当する。また、中間ライン204、及び中間ライン204との合流部よりも下流側の排出ライン202は、第2の分離モジュール2bにて分離されたCOガスが排出される排出ライン(第2の排出ライン)にも相当している。
 さらに、第2の分離モジュール2bの中間ライン204には、当該中間ライン204の圧力を検出する圧力検出部22bと、当該圧力検出部22bの下流側に設けられ、その圧力検出値に基づき、当該圧力検出値が予め設定された目標圧力となるように、第2の分離モジュール2bから排出されるCOガスの流量を調節する圧力調節弁21bと、を備えた第2の圧力調節部が設けられている。
 この第2の圧力調節部の後段側には、中間ライン204を流れるCOガスを昇圧する第2の圧縮機23が設けられている。さらに、第2の圧縮機23の吐出側の中間ライン204は、第1の分離モジュール2aの排出ライン202に設けられた第1の圧縮機16の吸込側に合流している。 
 ここで上述の第2の圧縮機(圧縮機本体)23についても、実際には第1の圧縮機16と同様の圧縮機システムを構成しているが、以下の説明においては当該圧縮機システムについても第2の圧縮機23と呼ぶ。
 ここで第1、第2の圧力調節部における目標圧力の設定は、出荷基地の制御室などに設けられた制御コンピュータである制御部3により行われる。 
 また、第2の分離モジュール2bの本体と前記排出ライン202との間に設けられた中間ライン204に第2の圧縮機23が設けられていることからも分かるように、排出ライン202の圧力は、中間ライン204の圧力よりも高くなるように目標圧力が設定される。
 ここで実施の形態に係る非炭化水素ガス分離装置の特徴をより明確にするため、図3に示した比較例に係る非炭化水素ガス分離装置と比較しながら説明を行う。 
 比較例において、図2に示した非炭化水素ガス分離装置と共通の構成要素には、図2にて用いたものと共通の符号を付してある。
 実施の形態に係る非炭化水素ガス分離装置(図2)と比較して、比較例に係る非炭化水素ガス分離装置は、中間ライン204に第2の圧縮機23が設けられていない。また、この中間ライン204の末端は、排出ライン202に設けられた圧力調節部(圧力調節弁21a及び圧力検出部22a)の手前側に合流している。 
 即ち、比較例に係る非炭化水素ガス分離装置においては、第1の分離モジュール2aに接続された排出ライン202の圧力と、第2の分離モジュール2bに接続された中間ライン204の圧力とが同じであることが分かる。
 ここで背景技術にて言及したように、分離膜20を用いる非炭化水素ガス分離装置は、分離膜20を透過する前後でのCOガスの圧力差(分圧差)を駆動エネルギーとして天然ガスからCOガスを分離する。 
 従って、各分離モジュール2a、2b内の一次側を流れる天然ガスの圧力、及び天然ガス中のCOガスの濃度が一定であるとき、天然ガスから分離されたCOガスが流れる二次側の空間の圧力が低くなる程(一次側-二次側間のCOガスの分圧差が大きくなる程)、COガスが分離膜20を透過する速度も大きくなる。
 そして、COガスの透過速度が大きくなる程、天然ガスが一次側の空間を通過する期間中に所定量のCOガスを透過させるために必要となる分離膜20の面積は小さくなる。また、各分離モジュール2a、2bの二次側の空間の圧力は、これら分離モジュール2a、2bに接続された排出ライン202、中間ライン204側の圧力によって決まる。 
 ここで、「第1の分離モジュール2aの二次側の空間の圧力」は、本実施の形態の「第1の分離モジュール2a内の排出ライン(第1の排出ライン)202側の圧力」に相当し、「第2の分離モジュール2bの二次側の空間の圧力」は、本実施の形態の「第2の分離モジュール2a内の中間ライン(第2の排出ライン)204側の圧力」に相当している。
 以上に説明した関係から、比較例に係る非炭化水素ガス分離装置では、排出ライン202、中間ライン204の圧力を低下させる程、分離膜20の膜面積を小さくして分離モジュール2a、2bを小型化することが可能であると言える。
 一方で、排出ライン202、中間ライン204の圧力低下は、その内部を流れるCOガスの体積増加につながり、排出ライン202や中間ライン204を構成する配管径の増大を招く。 
 特にLNGの出荷基地では大量の天然ガスを処理することに加え、近年、開発が進んでいる非在来型の天然ガスにはCOガスなどの非炭化水素ガスを比較的高濃度で含むものもある。このような背景により、排出ライン202、中間ライン204に用いられる配管径の増大は設備コストの上昇に与えるインパクトが大きい。
 また、排出ライン202を流れるCOガスの圧力が低下すると、高い圧縮比が得られる圧縮機16が必要となり、機器コストやエネルギー消費量の増大にもつながる。
 以上に説明した課題は、排出ライン202、中間ライン204の圧力を上昇させることによって解決できる。しかしながらこの場合には、各分離モジュール2a、2b内の一次側-二次側間の圧力差(COガスの分圧差)が小さくなるので、COガスの透過速度が低下し、分離膜20の面積の増大、分離モジュール2a、2bの大型化を招く。後述の[実施例]にて計算結果を示すように、比較例に係る非炭化水素ガス分離装置においては、排出ライン202、中間ライン204の圧力を上昇させるに連れて、必要な膜面積が急激に増大してしまうことが分かった。
 以上に説明したように、分離膜20を用いた非炭化水素ガス分離措置においては、排出ライン202、中間ライン204の圧力を下げる場合と、上げる場合とで相反する課題が生じる。これらの課題を解決するため、発明者らは各分離モジュール2a、2bに供給される天然ガス中のCOガスの分圧の違いに着目した。
 即ち、2基の分離モジュール2a、2bが直列に接続された非炭化水素ガス分離装置においては、接続ライン203から第2の分離モジュール2bに供給されるCOガスの分圧よりも、供給ライン201から第1の分離モジュール2aに供給されるCOガスの分圧の方が高い。
 従って、比較例に示すように両分離モジュール2a、2bの二次側の空間の圧力が同じ(排出ライン202と中間ライン204との圧力が同じ)であるならば、第1の分離モジュール2aの方が、第2の分離モジュール2bよりも分離膜20の透過速度が大きく、より多くのCOガスを分離している(第1の分離モジュール2a側の負荷が高い)と言える。
 このように、第1の分離モジュール2aに供給される天然ガス中のCOガスの分圧が高いことを利用すれば、二次側の空間の圧力をある程度上昇させたとしても、液化工程14へ送られる天然ガス中のCO濃度の目標値を維持できる程度に第1の分離モジュール2aにおける透過速度の低下を抑えることができる。そして、第1の分離モジュール2aの二次側の空間の圧力を上げることにより、排出ライン202を構成する配管の配管径を低減することが可能となる。
 一方、第1の分離モジュール2aと比較して、供給される天然ガス中のCOガスの分圧が低い第2の分離モジュール2bについては、当該第2の分離モジュール2bに接続された中間ライン204の圧力を、第1の分離モジュール2a側の排出ライン202より低い状態に維持する。これにより、中間ライン204の圧力までも上昇させてしまうことに伴い、第2の分離モジュール2b内の一次側-二次側間のCOガスの分圧差が小さくなりすぎて、必要な膜面積が過剰に増加することを防止する。
 図2に示す実施の形態に係る非炭化水素ガス分離装置は、上述の考え方に基づいて構成されている。 
 但しここで、比較例と比べて第1の分離モジュール2a側の排出ライン202の圧力を高くしたとき、実施の形態と比較例とでCOガスの分離能力が同等となる(同じ条件でCOガスを含む天然ガスを供給したとき、流出ライン205から流出する天然ガス中のCOガス濃度が同じになる)ようにするためには、第1の分離モジュール2aの分離膜20の膜面積を大きくする必要がある。この点、後述の[実施例]に示すように、排出ライン202、中間ライン204の双方の圧力を高くする場合と比べて、排出ライン202の圧力のみを高くした方が、非炭化水素ガス分離装置全体で見た膜面積の増大を低く抑えることが可能であることを確認している。
 また、中間ライン204の圧力が排出ライン202の圧力よりも低くなることに伴い、実施の形態に係る非炭化水素ガス分離装置においては、中間ライン204に第2の圧縮機23を設けている。この点についても、後述の[実施例]に示すように、所定のベースケースと比較して、排出ライン202のみの圧力を上昇させた場合でも、非炭化水素ガス分離装置の全体で見て、第1、第2の圧縮機16、23にて消費する動力を低減できることを確認している。
 ここで、供給ライン201から天然ガスの供給圧力や、排出ライン202、中間ライン204の目標圧力などは、供給ライン201から供給される天然ガス中のCOガス濃度、流出ライン205から流出する天然ガス中のCOガス濃度の目標値などの前提条件によって変化する。このため、特段の前提もなしに具体的な運転範囲を規定することは困難である。 
 そこで、概略の前提条件下での圧力範囲を挙げておく。例えば供給ライン201から供給される天然ガス中のCOガス濃度が5~70モル%であり、流出ライン205から流出する天然ガス中のCOガス濃度が濃度測定限界~1モル%であるとする。このとき、供給ライン201から天然ガスの供給圧力は1200~8000kPaの範囲、排出ライン202の目標圧力は100~1200kPaの範囲、中間ライン204の目標圧力は1~1200kPaの範囲(排出ライン202と中間ライン204との圧力差が100~1200kPaの範囲)を例示することができる。
 以上に説明した構成を備える非炭化水素ガス分離装置の作用について説明する。 
 上流側の工程11、12にて液体や水分の分離・除去が行われた天然ガスは、供給ライン201を介して上流側の第1の分離モジュールに2aに流入する。第1の分離モジュールに2a内では、分離膜20を介した一次側-二次側間のCOガスの分圧差に応じた透過速度にて、天然ガスからCOガスが分離される。
 このとき、透過したCOガスが流れる第1の分離モジュールに2a内の二次側の空間の圧力は、排出ライン202に設けられた第1の圧力調節部(圧力調節弁21a、圧力検出部22a)によって調節される。即ち、圧力調節弁21aは、圧力検出部22aにて検出される排出ライン202の圧力が、制御部3によって設定された目標圧力に近づくように弁開度を変化させる。
 第1の分離モジュールに2aの二次側の空間、及び圧力検出部22aまでの排出ライン202の圧力損失が十分に小さい場合、圧力検出部22aの圧力検出値は、第1の分離モジュールに2aの二次側の空間の圧力とみることができる。なお、第1の分離モジュールに2aの二次側の空間に圧力検出部22aを設けて、排出ライン202に設けた圧力調節弁21aにより、直接、当該二次側の空間の圧力調節を行ってもよいことは勿論である。
 一次側の空間の容積や天然ガスの流量に応じて決まる滞留時間だけ第1の分離モジュール2a内を通流した天然ガスは、この期間中に分離膜20によるCOガスの分離が行われる。そして天然ガスは、供給ライン201からの流入時よりもCOガス濃度が低減された状態で、接続ライン203へ向けて流出する。一方、分離膜20を透過したCOガスは、第1の分離モジュール2aより、排出ライン202へ向けて排出される。
 次いで、接続ライン203へ流出した天然ガスは、当該接続ライン203の下流側に接続された第2の分離モジュール2bに流入する。第2の分離モジュールに2b内においても、分離膜20を介した一次側-二次側間のCOガスの分圧差に応じた透過速度にて、天然ガスからCOガスが分離される。
 そして、透過したCOガスが流れる第2の分離モジュールに2b内の二次側の空間の圧力が、中間ライン204に設けられた第2の圧力調節部(圧力調節弁21b、圧力検出部22b)によって調節される点については、第1の分離モジュール2aと同様である。このとき、第2の圧力調節部に対して設定されている目標圧力は、第1の圧力調節部に設定されている目標圧力よりも低い値となるように、制御部3による各目標圧力の設定が行われている。
 また第2の分離モジュールに2bにおいても、二次側の空間や圧力検出部22bまでの中間ライン204の圧力損失が十分に小さい場合、圧力検出部22bの圧力検出値は、第2の分離モジュールに2bの二次側の空間の圧力とみることができる。この例に替えて、第2の分離モジュールに2bの二次側の空間に圧力検出部22bを設け、中間ライン204に設けた圧力調節弁21bにより、直接、当該二次側の空間の圧力の調節を行ってもよい点についても第1の分離モジュール2aと同様である。
 一次側の空間の容積や天然ガスの流量に応じて決まる滞留時間だけ第2の分離モジュール2b内を通流した天然ガスは、この期間中に分離膜20によるCOガスの分離が行われる。そして天然ガスは、目標とする濃度までCOガス濃度が低減された状態で、流出ライン205へ向けて流出し、後段の液化工程14へと送られる。一方、分離膜20を透過したCOガスは、第2の分離モジュール2bより、中間ライン204へ向けて排出される。
 中間ライン204へ排出されたCOガスは、第2の圧縮機23によって昇圧された後、排出ライン202を流れるCOガスと合流する。第2の圧縮機23は、排出ライン202側に設けられた第1の圧縮機16の吸込圧力以上の圧力にCOガスを昇圧する。
 第1の分離モジュール2aから排出ライン202へ排出されたCOガス、及び第2の分離モジュール2bから排出され、中間ライン204を介して排出ライン202へ合流したCOガスは、第1の圧縮機16によってCO処理工程17の受入圧力以上に昇圧される。昇圧されたCOガスは、受入ライン170を介してCO処理工程17側の設備へ供給される。
 以上に説明した非炭化水素ガス分離装置の作用に関し、例えば供給ライン201から供給される天然ガス中のCOガス濃度が上昇し、流出ライン205から流出する天然ガス中のCOガス濃度が目標濃度を超えるおそれがある場合を考える。この場合は、各分離モジュール2a、2b内の一次側-二次側間のCOガスの分圧差をより大きくして、COガスが分離膜20を透過する速度を大きくする必要がある。
 このときの対応として、各分離モジュール2a、2bの一次側の空間の圧力を高くする場合と、二次側の空間の圧力を低くする場合とが考えられる。一次側の空間の圧力を高くする場合には、例えば供給ライン201の上流側に設けられ、非炭化水素ガス分離装置への天然ガスの供給圧力を調節する不図示の圧力調節弁の開度を大きくして当該圧力調節弁の出口圧力を上げてもよい。また、供給ライン201の上流側に圧縮機(不図示)が設けられている場合には、当該圧縮機の吐出圧を上昇させる操作を行ってもよい。一方、二次側の空間の圧力を低くする場合には、制御部3により第1、第2の圧力調節部の目標圧力を下げる設定変更を行う。このときにも、第1の圧力調節部に対して設定されている目標圧力が、第2の圧力調節部に設定されている目標圧力よりも高くなる関係が維持されるように、目標圧力の設定変更を行う。
 本実施の形態に係る非炭化水素ガス分離装置によれば以下の効果がある。各々、天然ガスからCOガス(非炭化水素ガス)を分離するための分離膜20を収納した第1、第2の分離モジュール2a、2bを直列に接続し、第2の分離モジュール2b内の中間ライン204側の圧力よりも、第1の分離モジュール2a内の排出ライン202側の圧力の方が高くなるように非炭化水素ガス分離装置が構成されている。この結果、第1の分離モジュール2aの排出ラインの配管径の増大や第2の分離モジュール2bの大型化を抑えると共に、下流側へのCOガスの排出圧力を上昇させることができる。
 ここで図2に示した例において、第2の分離モジュール2bからCOガスが排出される中間ライン204は、第1の分離モジュール2a側の排出ライン202に合流する構成となっているが、これらのライン202、204を合流させることは必須ではない。例えば第2の分離モジュール2bに対し、第1のモジュール2a側の排出ライン202とは独立した排出ライン(第2の排出ライン)204を接続してもよい。この場合には、第2の分離モジュール2b側の排出ライン204に設けられた第2の圧縮機は、CO処理工程17側の設備の受入圧力以上にCOガスを昇圧し、第1の分離モジュール2a側の排出ライン202とは独立してCOガスを供給する構成を採用すればよい。
 さらには、排出ライン202や中間ライン204に第1、第2の圧縮機16、23を設け、CO処理工程17側の受入圧力まで昇圧を行うことも必須ではない。例えば非炭化水素ガス分離装置に圧縮機16、23を設ける方式に替えて、CO処理工程17側の設備に圧縮機を設けてCOガスの処理に必要な圧力までの昇圧を行ってもよい。
 この他、非炭化水素ガス分離装置は直列に接続された3基以上の分離モジュールを備えていてもよい。前後に隣り合って接続された2つの分離モジュールに着目し、上流側の第1の分離モジュール2a内の排出ライン202側の圧力が、下流側の第2の分離モジュール2b内の排出ライン204側の圧力よりも高い関係があれば、この非炭化水素ガス分離装置は本発明の技術的範囲に含まれる。
 以上、図2などを用いて説明した非炭化水素ガス分離装置の実施の形態において、分離膜20を用いて天然ガスから分離される非炭化水素ガスは、COガスに限定されない。例えば非炭化水素ガスは、Nガスであってもよく、Nガスについても、EORやEGRのための圧入ガスとして油井やガス井に圧入する処理を行うことができる。
 さらに、非炭化水素ガスがCOガスである場合には、COガス処理は、LNGの出荷基地から離れた遠隔地にて行い、当該処理が行われる場所に向けてCOガスを輸送する輸送用のパイプラインに対し、第1、第2の分離モジュール2a、2bからCOガスを送出してもよい。この場合には、第1の分離モジュール2a側の排出ライン202、及び第2の分離モジュール2b側の中間ライン204の双方に圧縮機16、23を設けることは必須ではない。例えば、排出圧力の低い第2の分離モジュール2b側の中間ライン204のみに圧縮機23を設けてもよい。
(圧縮機動力比、分離膜面積計算) 
 図2、図3に示した、実施の形態、及び比較例に係る非炭化水素ガス分離装置について、第1、第2の分離モジュール2a、2bの一次側、二次側の空間の圧力を変化させた。これらの条件下にて、排出された非炭化水素ガスを所定の圧力まで昇圧するのに必要な動力、及び天然ガス中の非炭化水素ガスを目標濃度まで低減するのに必要な分離膜20の膜面積の変化を計算した。
A.計算条件
 (表1)に非炭化水素ガス分離装置に供給される天然ガスの供給条件(温度、圧力、流量)、及び組成を示す。この天然ガスを実施の形態、及び比較例に係る非炭化水素ガス分離装置にて処理し、第1、第2の分離モジュール2a、2bの二次側の空間の圧力の圧力を、15000kPaまで昇圧するのに必要な圧縮機の動力を計算した。また、天然ガス中のCOガスを5モル%まで低減するのに必要な分離膜20の膜面積(第1、第2の分離モジュール2a、2bの膜面積の合計値)を計算した。これらの計算には、プロセスシミュレータPRO/II(米国登録商標)を用いた。 
 (表1)
Figure JPOXMLDOC01-appb-I000001
 (参照例)ベースケースとして、比較例に係る非炭化水素ガス分離装置につき、第1の分離モジュール2aの二次側の空間の圧力が200kPa、第2の分離モジュール2bの二次側の空間の圧力が200kPaの場合について、前記必要動力、膜面積を計算した。 
 (実施例1)第1の分離モジュール2aの二次側の空間の圧力を600kPaとした点を除いて、参照例と同じ条件で計算を行った。 
 (実施例2)第1の分離モジュール2aの二次側の空間の圧力を1800kPaとした点を除いて、参照例と同じ条件で計算を行った。 
 (比較例1)第1、第2の分離モジュール2a、2bの二次側の空間の圧力を400kPaとした点を除いて、参照例と同じ条件で計算を行った。 
 (比較例2)第1、第2の分離モジュール2a、2bの二次側の空間の圧力を600kPaとした点を除いて、参照例と同じ条件で計算を行った。 
 (比較例3)第1、第2の分離モジュール2a、2bの二次側の空間の圧力を1800kPaとした点を除いて、参照例と同じ条件で計算を行った。
B.計算結果 
 実施例1、2、比較例1~3における必要動力、及び膜面積の計算結果について、参照例(ベースケース)におけるこれらの値の計算結果に対する比率(以下、必要動力の比率を「圧縮機動力比」、膜面積の比率を「膜面積比」と言う)を算出した結果を(表2)に示す。また圧縮機動力比に対して膜面積比をプロットした結果を図4に示す。図4において、横軸が圧縮機動力比、縦軸が膜面積比を示している(いずれもパーセント表示)。図4中、参照例を白抜きの丸印、実施例を黒塗りの三角印、比較例を白抜きの四角印にて各々プロットした。 
 (表2)
Figure JPOXMLDOC01-appb-I000002
 表2に示す結果によれば、第1の分離モジュール2aの二次側の空間の圧力のみを高くすることにより、ベースケースである参照例と比較して、実施例1、2のいずれについても圧縮機動力比の低減が可能であることを確認できた。また、第1、第2の分離モジュール2a、2bの双方の二次側の空間の圧力を高くするに連れて、膜面積比が急激に上昇する比較例1~3の結果と比べて、実施例1、2のいずれも膜面積比の増加幅を低く抑えることができている。
16    第1の圧縮機
2a    第1の分離モジュール
2b    第2の分離モジュール
20    分離膜
201   供給ライン
202   排出ライン
203   接続ライン
204   中間ライン
205   流出ライン
21a、21b
      圧力調節弁
22a、22b
      圧力検出部
23    第2の圧縮機
 
 

Claims (8)

  1.  非炭化水素ガスを含む天然ガスから、前記非炭化水素ガスを分離する非炭化水素ガス分離装置において、
     各々、前記天然ガスが供給される供給ラインと、前記非炭化水素ガスと分離された天然ガスが流出する流出ラインと、前記天然ガスから分離された非炭化水素ガスが排出される排出ラインとに接続された第1の分離モジュール、及び第2の分離モジュールと、
     各々、前記第1の分離モジュール、及び第2の分離モジュール内に収納され、前記供給ラインから供給された天然ガスに含まれる非炭化水素ガスを前記排出ライン側へ透過させ、当該非炭化水素ガスが分離された天然ガスを前記流出ライン側へ通流させるための分離膜と、を備え、
     前記第1の分離モジュールの流出ラインと、前記第2の分離モジュールの供給ラインとが共通化され、これら第1、第2の分離モジュールが直列に接続されていることと、
     前記第1の分離モジュール内の排出ライン側の圧力が、第2の分離モジュール内の排出ライン側の圧力よりも高いことと、を特徴とする非炭化水素ガス分離装置。
  2.  前記非炭化水素ガスは、二酸化炭素ガスまたは窒素ガスの少なくとも一方であることを特徴とする請求項1に記載の非炭化水素ガス分離装置。
  3.  第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、これらの圧縮機により昇圧された非炭化水素ガスは、石油増進回収(Enhanced Oil Recovery, EOR)設備または天然ガス増進回収(Enhanced Gas Recovery, EGR)設備の非炭化水素ガス供給ラインへ供給されることを特徴とする請求項1に記載の非炭化水素ガス分離装置。
  4.  前記非炭化水素ガスは、二酸化炭素ガスであり、
     第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、これらの圧縮機により昇圧された非炭化水素ガスは、二酸化炭素貯留(Carbon dioxide Capture and Storage, CCS)設備または尿素製造プラントの非炭化水素ガス供給ラインへ供給されることを特徴とする請求項1に記載の非炭化水素ガス分離装置。
  5.  前記非炭化水素ガスは、二酸化炭素ガスであり、
     第2の分離モジュールのみの排出ライン、または第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、これらの排出ラインから排出された非炭化水素ガスは、二酸化炭素ガス輸送用のパイプラインへ送出されることを特徴とする請求項1に記載の非炭化水素ガス分離装置。
  6.  第1の分離モジュール及び第2の分離モジュールの排出ラインには、圧縮機が設けられ、
     前記第2の分離モジュールの排出ラインは、前記第1の分離モジュール排出ラインに設けられた圧縮機の吸込側に接続され、前記第2の分離モジュールの排出ラインに設けられた圧縮機は、前記第1の分離モジュールの排出ラインに設けられた圧縮機の吸込圧以上に非炭化水素ガスを昇圧することを特徴とする請求項1に記載の非炭化水素ガス分離装置。
  7.  前記第1の分離モジュール及び第2の分離モジュールの排出ラインに各々設けられ、これら排出ラインの圧力を検出する圧力検出部と、前記圧力検出部より下流側に設けられ、当該圧力検出部にて検出された圧力検出値に基づき、前記圧力検出値が予め設定された目標圧力となるように、前記排出ラインに排出される非炭化水素ガスの量を調節する圧力調節弁と、を有する圧力調節部と、
     前記第1の分離モジュール側の圧力調節部の目標圧力が、前記第2の分離モジュール側の圧力調節部の目標圧力よりも高くなるように、これら目標圧力の設定を行う制御部と、を備えたことを特徴とする請求項1に記載の非炭化水素ガス分離装置。
  8.  非炭化水素ガスを含む天然ガスから、前記非炭化水素ガスを分離する非炭化水素ガス分離方法において、
     分離膜を収納した第1の分離モジュールに対し、当該分離モジュールに接続された第1の供給ラインから、前記天然ガスを供給する工程と、
     前記第1の分離モジュール内の分離膜に、前記第1の供給ラインから供給された天然ガスに含まれる非炭化水素ガスを透過させて分離し、前記第1の分離モジュールに接続された第1の排出ラインより、前記天然ガスから分離された非炭化水素ガスを排出する工程と、
     前記第1の分離モジュール内に、前記非炭化水素ガスが分離された天然ガスを通流させ、当該第1の分離モジュールに接続された第1の流出ラインから流出させる工程と、
     分離膜を収納し、前記第1の流出ラインと共通化された第2の供給ラインを介して前記第1の分離モジュールに直列に接続された第2の分離モジュールに対し、前記第2の供給ラインから、前記第1の分離モジュールより流出した天然ガスを供給する工程と、
     前記第2の分離モジュール内の分離膜に、前記第2の供給ラインから供給された天然ガスに含まれる非炭化水素ガスを透過させて分離し、前記第2の分離モジュールに接続された第2の排出ラインより、前記天然ガスから分離された非炭化水素ガスを排出する工程と、
     前記第2の分離モジュール内に、前記非炭化水素ガスが分離された天然ガスを通流させ、当該第2の分離モジュールに接続された第2の流出ラインから流出させる工程と、を含み、
     前記第1の分離モジュール内の第1の排出ライン側の圧力が、前記第2の分離モジュール内の第2の排出ライン側の圧力よりも高いことを特徴とする非炭化水素ガス分離方法。

     
PCT/JP2015/005020 2015-10-01 2015-10-01 非炭化水素ガス分離装置及び非炭化水素ガス分離方法 WO2017056135A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/763,460 US10744455B2 (en) 2015-10-01 2015-10-01 Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
PCT/JP2015/005020 WO2017056135A1 (ja) 2015-10-01 2015-10-01 非炭化水素ガス分離装置及び非炭化水素ガス分離方法
CA2999003A CA2999003C (en) 2015-10-01 2015-10-01 Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
AU2015410455A AU2015410455B2 (en) 2015-10-01 2015-10-01 Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
SA518391229A SA518391229B1 (ar) 2015-10-01 2018-03-29 جهاز وطريقة لفصل غاز غير هيدروكربوني

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/005020 WO2017056135A1 (ja) 2015-10-01 2015-10-01 非炭化水素ガス分離装置及び非炭化水素ガス分離方法

Publications (1)

Publication Number Publication Date
WO2017056135A1 true WO2017056135A1 (ja) 2017-04-06

Family

ID=58422855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005020 WO2017056135A1 (ja) 2015-10-01 2015-10-01 非炭化水素ガス分離装置及び非炭化水素ガス分離方法

Country Status (5)

Country Link
US (1) US10744455B2 (ja)
AU (1) AU2015410455B2 (ja)
CA (1) CA2999003C (ja)
SA (1) SA518391229B1 (ja)
WO (1) WO2017056135A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244211A1 (ja) * 2018-06-18 2019-12-26 独立行政法人石油天然ガス・金属鉱物資源機構 酸性ガス分離装置及び酸性ガスの分離方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963101B1 (ko) * 2017-07-28 2019-07-31 한국전력공사 이산화탄소 분리막 모듈 성능 평가 시스템 및 이를 위한 장치
CN114437845B (zh) * 2020-11-03 2023-01-10 中国石油化工股份有限公司 一种天然气溶剂吸收脱氮工艺的计算机控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191404A (ja) * 1986-02-19 1987-08-21 Hitachi Ltd 空気分離装置
JPS6443329A (en) * 1987-08-11 1989-02-15 Nippon Kokan Kk Gas separation method employing two kinds of membranes
US6221131B1 (en) * 1997-10-09 2001-04-24 Petroleo Brasiletro S.A.-Petrobras Multi-stage process for the separation/recovery of gases
WO2004026441A1 (en) * 2002-09-17 2004-04-01 Fluor Corporation Configurations and methods of acid gas removal
JP2010137221A (ja) * 2008-12-11 2010-06-24 General Electric Co <Ge> 高エネルギー効率のco2捕捉プロセス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2802114B1 (fr) * 1999-12-09 2002-06-28 Air Liquide Installation et procede de separation de gaz par permeation selective
WO2001091888A1 (en) * 2000-06-01 2001-12-06 Enerfex, Inc. Membrane technology to reduce nitrogen in natural gas
MY128178A (en) * 2001-09-07 2007-01-31 Exxonmobil Upstream Res Co High-pressure separation of a multi-components gas
EP1648590A1 (en) 2003-07-22 2006-04-26 Dow Global Technologies Inc. Regeneration of acid gas-containing treatment fluids
JP2012236134A (ja) 2011-05-11 2012-12-06 Hitachi Zosen Corp 二酸化炭素分離システム
JP6462323B2 (ja) * 2014-11-12 2019-01-30 三菱重工業株式会社 ガス中のco2分離装置及びその膜分離方法
JP6231975B2 (ja) * 2014-12-04 2017-11-15 三菱重工業株式会社 天然ガス精製システム
EP3141295A1 (de) * 2015-09-10 2017-03-15 Axiom Angewandte Prozeßtechnik Ges. m.b.H. Vorrichtung und verfahren zur auftrennung eines gasgemisches mittels einer membraneinheit
CN108463280A (zh) * 2015-12-03 2018-08-28 液体空气先进技术美国有限责任公司 用于使用膜净化天然气的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191404A (ja) * 1986-02-19 1987-08-21 Hitachi Ltd 空気分離装置
JPS6443329A (en) * 1987-08-11 1989-02-15 Nippon Kokan Kk Gas separation method employing two kinds of membranes
US6221131B1 (en) * 1997-10-09 2001-04-24 Petroleo Brasiletro S.A.-Petrobras Multi-stage process for the separation/recovery of gases
WO2004026441A1 (en) * 2002-09-17 2004-04-01 Fluor Corporation Configurations and methods of acid gas removal
JP2010137221A (ja) * 2008-12-11 2010-06-24 General Electric Co <Ge> 高エネルギー効率のco2捕捉プロセス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244211A1 (ja) * 2018-06-18 2019-12-26 独立行政法人石油天然ガス・金属鉱物資源機構 酸性ガス分離装置及び酸性ガスの分離方法
JPWO2019244211A1 (ja) * 2018-06-18 2021-03-25 独立行政法人石油天然ガス・金属鉱物資源機構 酸性ガス分離装置
US11458435B2 (en) 2018-06-18 2022-10-04 Japan Oil, Gas And Metals National Corporation Acidic gas separation device and acidic gas separation method

Also Published As

Publication number Publication date
US10744455B2 (en) 2020-08-18
CA2999003A1 (en) 2017-04-06
AU2015410455B2 (en) 2022-03-03
SA518391229B1 (ar) 2022-01-13
AU2015410455A1 (en) 2018-04-12
CA2999003C (en) 2023-01-24
US20180272272A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US8454727B2 (en) Treatment of natural gas feeds
US8454724B2 (en) Flexible system to remove carbon dioxide from a feed natural gas
AU2015372685B2 (en) Subsea fluid processing system
WO2016076091A1 (ja) ガス中のco2分離装置及びその膜分離方法、ガス中のco2分離装置の膜分離管理方法
US10400187B2 (en) Natural gas refining apparatus and system
WO2017056135A1 (ja) 非炭化水素ガス分離装置及び非炭化水素ガス分離方法
AU2016362424A1 (en) Method and system for purification of natural gas using membranes
CA2872873C (en) Plant and process for treating methane-containing gas from natural sources
KR101658448B1 (ko) 천연가스에 포함된 산성가스 및 수분 제거를 위한 다단계 혼성 장치 및 방법
US10737214B2 (en) Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
KR20130121088A (ko) 가스 스트림 정제 방법 및 장치
WO2023130844A1 (zh) 膜制氮设备及其控制方法
US11998872B2 (en) Biogas upgrading apparatus and process
KR101351440B1 (ko) 부유식 해양 lng 액화 플랜트용 막분리―흡수 하이브리드 전처리 장치
CN212246824U (zh) 一种深水油气田开发中乙二醇浓缩回收装置
CN111573643A (zh) 一种氦气回收提纯装置和方法
CN220257606U (zh) 一种天然气psa脱碳装置
EP4108315A1 (en) Reducing energy consumption for marine and offshore membrane applications
KR101338270B1 (ko) Cbm으로부터 멤브레인에 의한 메탄 분리방법
WO2013172416A1 (ja) 天然ガスの生産方法及び生産システム
GB2505444A (en) High pressure swing absorption natural gas purification in a liquid natural gas (LNG) plant
CN105402751B (zh) 燃气锅炉和燃气轮机烟气用于气调仓储的系统及该系统的调配方法
RU2021122290A (ru) Устройство и мембранный способ для выделения компонентов газа из потока газа, характеризующегося переменными составом или скоростью потока
CN115228248A (zh) 一种含氢天然气的分离系统及方法
WO2017146585A1 (en) Method for production of injection water and/or process water from seawater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2999003

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15763460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015410455

Country of ref document: AU

Date of ref document: 20151001

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15905290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP