WO2023130844A1 - 膜制氮设备及其控制方法 - Google Patents

膜制氮设备及其控制方法 Download PDF

Info

Publication number
WO2023130844A1
WO2023130844A1 PCT/CN2022/132967 CN2022132967W WO2023130844A1 WO 2023130844 A1 WO2023130844 A1 WO 2023130844A1 CN 2022132967 W CN2022132967 W CN 2022132967W WO 2023130844 A1 WO2023130844 A1 WO 2023130844A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
outlet
gas
inlet
detection instrument
Prior art date
Application number
PCT/CN2022/132967
Other languages
English (en)
French (fr)
Inventor
刘元良
刘有仓
袁圣杰
李平
王振猛
姜崇刚
邵明琦
刘均
张文明
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2023130844A1 publication Critical patent/WO2023130844A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen

Definitions

  • the disclosure relates to the technical field of nitrogen production, in particular to a membrane nitrogen production equipment and a control method thereof.
  • the preparation methods of nitrogen mainly include: cryogenic separation method, pressure swing adsorption method and membrane separation method.
  • Membrane separation method is to use nitrogen separation membrane to have the characteristics of selective permeation and diffusion of gas components, so as to achieve the purpose of gas separation and purification, so as to obtain nitrogen.
  • a membrane nitrogen production device including a gas supply device, a pretreatment device, a nitrogen gas separation device, a first pipeline, a first valve assembly, a detection device and a control device.
  • the gas supply device is configured to compress nitrogen-containing gas, and the gas supply device includes a first gas outlet.
  • the pretreatment device includes a first air inlet and a second air outlet, the first air inlet communicates with the first air outlet; the pretreatment device is configured to compress the air from the air supply device
  • the final nitrogen-containing gas is pretreated, and the pretreatment includes at least one of water removal treatment, oil removal treatment or dust removal treatment.
  • the nitrogen separation device comprises a nitrogen separation component, an inlet pipeline and an outlet pipeline, the nitrogen separation component comprises a nitrogen separation membrane, the inlet of the inlet pipeline communicates with the second gas outlet; the outlet of the inlet pipeline It communicates with the inlet of the nitrogen separation component, and the inlet of the gas outlet pipeline communicates with the outlet of the nitrogen separation component.
  • the first pipeline includes a second air inlet and a third air outlet, the second air inlet communicates with the second air outlet, and the third air outlet communicates with the atmosphere.
  • the first valve assembly is located between the second air outlet, the inlet of the air intake pipe and the second air intake; the first valve assembly is between the first state and the second state It can be switched.
  • the second air outlet communicates with the intake pipe and is disconnected from the first pipe; in the second state, the second air outlet communicates with the The first pipe communicates with and is disconnected from the intake pipe.
  • the detection device is configured to detect parameter information of the compressed nitrogen-containing gas processed by the pretreatment device, and the parameter information includes at least one of water content parameters, oil content parameters or solid particle size parameters By.
  • the control device is respectively coupled to the detection device and the first valve assembly, and the control device is configured to: receive the parameter information, if any of the parameter information is determined to be greater than the corresponding setting value, then control the first valve assembly to be in the second state.
  • a method for controlling membrane nitrogen production equipment includes a gas supply device, a pretreatment device, a nitrogen gas separation device, a first pipeline, a first valve assembly, a detection device and a control device.
  • the gas supply device is configured to compress nitrogen-containing gas, and the gas supply device includes a first gas outlet.
  • the pretreatment device includes a first air inlet and a second air outlet, the first air inlet communicates with the first air outlet; the pretreatment device is configured to compress the air from the air supply device
  • the final nitrogen-containing gas is pretreated, and the pretreatment includes at least one of water removal treatment, oil removal treatment or dust removal treatment.
  • the nitrogen separation device comprises a nitrogen separation component, an inlet pipeline and an outlet pipeline, the nitrogen separation component comprises a nitrogen separation membrane, the inlet of the inlet pipeline communicates with the second gas outlet; the outlet of the inlet pipeline It communicates with the inlet of the nitrogen separation component, and the inlet of the gas outlet pipeline communicates with the outlet of the nitrogen separation component.
  • the first pipeline includes a second air inlet and a third air outlet, the second air inlet communicates with the second air outlet, and the third air outlet communicates with the atmosphere.
  • the first valve assembly is located between the second air outlet, the inlet of the air intake pipe and the second air intake; the first valve assembly is between the first state and the second state It can be switched.
  • the second air outlet communicates with the intake pipe and is disconnected from the first pipe; in the second state, the second air outlet communicates with the The first pipe communicates with and is disconnected from the intake pipe.
  • the detection device is configured to detect parameter information of the compressed nitrogen-containing gas processed by the pretreatment device, and the parameter information includes at least one of water content parameters, oil content parameters or solid particle size parameters By.
  • the control method includes: receiving the parameter information detected by the detection device; the parameter information includes at least one of a water content parameter, an oil content parameter or a solid particle size parameter; and if it is determined that in the parameter information Any one of them is greater than the corresponding set value, then the first valve assembly is controlled to be in the second state.
  • Fig. 1 is a structural diagram of a membrane nitrogen production device according to some embodiments
  • Fig. 2 is a structural diagram of a preprocessing device according to some embodiments.
  • FIG. 3 is a schematic diagram of a sewage device according to some embodiments.
  • Fig. 4 is a block diagram of a nitrogen generating truck or nitrogen generating skid according to some embodiments
  • Fig. 5 is a flow chart of a control method of a membrane nitrogen production device according to some embodiments.
  • 3-nitrogen separation device 301-nitrogen separation component; 302-inlet pipe; 303-outlet pipe; 3031-nitrogen output end; 4-first pipe; 401-second air inlet; 402-third air outlet; 5-first valve component; 6-detection device; 601-dew point detection component; 602-oil mist detection component; 603-particle size detection component; 7-control device; 8-first differential pressure detection instrument; 9-second Differential pressure detection instrument; 10-the third differential pressure detection instrument; 11-nitrogen purity detector;
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • coupled indicates that two or more elements are in direct physical or electrical contact.
  • coupled or communicatively coupled may also mean that two or more components are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • membrane nitrogen production equipment 100 includes a gas supply device 1 , a pretreatment device 2 , a nitrogen gas separation device 3 , a first pipeline 4 , a first valve assembly 5 , a detection device 6 and a control device 7 .
  • the gas supply device 1 is connected with the pretreatment device 2 , and the gas supply device 1 is coupled with the control device 7 .
  • the gas supply device 1 is configured to compress nitrogen-containing gas, and the gas supply device 1 includes a first gas outlet 101 .
  • the air supply device 1 is an air compressor to compress the air; or, the air supply device 1 includes an air compressor and a storage device for nitrogen-containing gas connected to the air compressor, and the storage device can be used to collect other
  • the nitrogen-containing gas generated by the equipment or device is used as the raw material gas of the membrane nitrogen production equipment 100, and the air compressor compresses the nitrogen-containing gas in the storage device.
  • the pretreatment device 2 includes a first air inlet 201 and a second air outlet 202 , the first air inlet 201 communicates with the first air outlet 101 , so that the first air inlet 201 communicates with the air supply device 1 .
  • the pretreatment device 2 is configured to pretreat the compressed nitrogen-containing gas from the gas supply device 1, and the pretreatment includes at least one of water removal treatment, oil removal treatment or dust removal treatment, so as to clean the nitrogen gas in the nitrogen gas separation device 3
  • the nitrogen separation membrane is used for protection. It should be noted that the nitrogen separation membrane may be one of the above polymer membranes.
  • the pretreatment device 2 can perform one, two or three of water removal treatment, oil removal treatment and dust removal treatment on the compressed nitrogen-containing gas from the gas supply device 1, according to the parameter requirements of the nitrogen separation membrane Select the preprocessing method. In this way, it is possible to prevent irreversible damage to the nitrogen separation membrane caused by water, oil or oversized solid particles in the gas, thereby affecting the performance of the nitrogen separation membrane.
  • the nitrogen separation device 3 is configured to separate nitrogen from the compressed nitrogen-containing gas.
  • Nitrogen separation device 3 comprises nitrogen separation unit 301, inlet pipeline 302 and outlet pipeline 303, and nitrogen separation unit 301 comprises above-mentioned nitrogen separation film, and the outlet of inlet pipeline 302 is communicated with the inlet of nitrogen separation unit 301, and the inlet of outlet pipeline 303 is connected with The outlet of the nitrogen gas separation unit 301 is connected; the inlet of the gas inlet pipe 302 is connected with the second gas outlet 202 .
  • the compressed nitrogen-containing gas pretreated by the pretreatment device 2 can enter the nitrogen separation unit 301 through the inlet pipe 302, due to the relative permeation of nitrogen and other components in the compressed nitrogen-containing gas in the nitrogen separation membrane The rates are different, so that high-purity nitrogen is obtained after passing through the nitrogen separation membrane, and is output from the gas outlet pipeline 303.
  • the above-mentioned nitrogen separation membrane includes a single nitrogen separation membrane, and may also include a composite membrane composed of a plurality of nitrogen separation membranes.
  • the above-mentioned high-purity nitrogen gas is not limited to nitrogen gas with a purity of 100%, but also includes gases with a nitrogen purity greater than 90%.
  • the first pipeline 4 includes a second air inlet 401 and a third air outlet 402, the second air inlet 401 communicates with the second air outlet 202, and the third air outlet 402 communicates with the atmosphere.
  • the first valve assembly 5 is located between the second air outlet 202 , the inlet of the air inlet pipe 302 and the second air inlet 401 .
  • the first valve assembly 5 is switchable between a first state and a second state. In the first state, the second air outlet 202 communicates with the intake pipe 302 and is disconnected from the first pipe 4; In the second state, the second air outlet 202 communicates with the first pipeline 4 and is disconnected from the intake pipeline 302 . In this way, the compressed nitrogen-containing gas can enter the nitrogen gas separation unit 301 for nitrogen separation, or the compressed nitrogen-containing gas can be discharged from the first pipeline 4 as required.
  • the first valve assembly 5 includes two valves, one valve connects or disconnects the second air outlet 202 with the intake pipe 302 , and the other valve connects or disconnects the second air outlet 202 with the first pipe 4 .
  • the first valve assembly 5 includes a three-way valve, and the three ports of the three-way valve communicate with the second air outlet 202 , the inlet of the air inlet pipe 302 and the second air inlet 401 respectively.
  • the detection device 6 is configured to detect parameter information of the compressed nitrogen-containing gas processed by the pretreatment device 2, and output the parameter information, and the parameter information includes water content parameters, oil content parameters or solid particles At least one of the degree parameters.
  • the detection device 6 is connected to the pretreatment device 2 ; or, the detection device 6 is connected between the pretreatment device 2 and the first valve assembly 5 .
  • the parameter information includes one, two or three of the water content parameter, the oil content parameter or the solid particle size parameter, and the parameter information can be selected according to the parameter requirements of the nitrogen separation membrane.
  • the control device 7 is coupled with the detection device 6 and the first valve assembly 5 .
  • the control device is configured to receive parameter information, and if any one of the parameter information is determined to be greater than a corresponding set value, control the first valve assembly 5 to be in the second state.
  • the compressed nitrogen-containing gas that does not meet the requirements of entering the nitrogen gas separation unit 301 can be directly discharged from the first pipeline 4 without passing through the nitrogen gas separation unit 301.
  • the nitrogen separation membrane in the process causes irreversible pollution or damage, thereby reducing the impact on the performance of the nitrogen separation membrane and prolonging the service life of the nitrogen separation membrane.
  • the compressed nitrogen-containing gas whose parameter information is all less than the corresponding set value enters the nitrogen separation part 301 to separate and prepare nitrogen, effectively ensuring the service life of the nitrogen separation membrane, and then It is beneficial to reduce the cost of nitrogen production.
  • the pretreatment device 2 includes a water removal assembly 203, the water removal assembly 203 communicates with the first air inlet 201, and the water removal assembly 203 is configured to flow from the first air inlet 201 to the second air inlet.
  • the compressed nitrogen-containing gas at the second gas outlet 202 is subjected to water removal treatment.
  • the detection device 6 also includes a dew point detection component 601, the dew point detection component 601 is connected to the outlet side of the dewatering component 203, and the dew point detection component 601 is configured to detect the compressed air that flows from the first air inlet 201 to the second air outlet 202.
  • the dew point of nitrogen gas and output the dew point value.
  • the parameter information also includes the dew point value.
  • the dew point detection component 601 is coupled to the control device 7, and the control device 7 is further configured to: receive the dew point value; if it is determined that the dew point value is greater than the corresponding set value, control the first valve component 5 to be in the second state.
  • the water content of the compressed nitrogen-containing gas can be judged by detecting the dew point value of the compressed nitrogen-containing gas. If the dew point value is greater than the corresponding set value, the control device 7 controls the first valve assembly 5 to make the second gas outlet 202 communicate with the second air inlet 401, so that the compressed nitrogen-containing gas that does not meet the water content parameter requirements It is directly discharged from the first pipeline 4 without passing through the nitrogen separation unit 301. Therefore, it can prevent the compressed nitrogen-containing gas with high water content from causing irreversible damage to the nitrogen separation membrane in the nitrogen separation unit 301, thereby reducing the impact on nitrogen separation.
  • the performance of the membrane is beneficial to prolong the service life of the nitrogen separation membrane.
  • the characteristics of the nitrogen separation membranes in the nitrogen separation unit 301 are different, and the set value of the above-mentioned dew point value is different.
  • the set value of the above-mentioned dew point value may be 2°C to 10°C, and the set value of the dew point value may be 2°C, 4°C, 6°C, 8°C or 10°C.
  • the dew point detection component 601 is a dew point detector; or, the dew point detection component 601 is a dew point sensor.
  • the dew point detection component 601 is connected between the dewatering component 203 and the first valve component 5 .
  • control device 7 is further configured to, if it is determined that the dew point value is greater than the corresponding set value, then output a prompt message for checking the water removal component 203 . In this way, the user can be notified in time to troubleshoot the water removal component 203 , thereby reducing the stoppage of the nitrogen production process caused by the failure of the water removal component 203 , thereby ensuring the performance and efficiency of the membrane nitrogen production equipment 100 .
  • the water removal component 203 includes a cold dryer 2031 and a first filter 2032 .
  • the inlet of the cold dryer 2031 communicates with the first air inlet 201, and the cold dryer 2031 is configured to freeze-dry the compressed nitrogen-containing gas. In this way, the dehydration treatment of the compressed nitrogen-containing gas through the cold dryer 2031 can ensure the dehydration effect.
  • the first filter 2032 is in communication with the outlet of the cold dryer 2031, and the first filter 2032 can preliminarily filter solid particles in the compressed nitrogen-containing gas.
  • the membrane nitrogen generator 100 also includes a first differential pressure detection instrument 8 configured to detect the differential pressure between the inlet and the outlet of the first filter 2032 .
  • the first differential pressure detection instrument 8 is coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the pressure difference detected by the first differential pressure detection instrument 8 is greater than the corresponding set value, output to the first filter 2032 Prompt information for troubleshooting. In this way, the user can be notified in time to troubleshoot the first filter 2032, thereby reducing the stoppage of the nitrogen production process caused by the failure of the first filter 2032, thereby ensuring the performance and efficiency of the membrane nitrogen production equipment 100.
  • the filter element in the first filter 2032 is a filter element capable of filtering particulate matter (PM1) with a kinetic diameter less than or equal to 1 micron in the atmosphere.
  • the first differential pressure detection instrument 8 is a differential pressure sensor, and the set value of the differential pressure may be 0.4MPa or 0.5MPa.
  • the pretreatment device 2 further includes an oil removal assembly 204, the oil removal assembly 204 is connected with the water removal assembly 203, and the oil removal assembly 204 is configured to control the flow from the first air inlet 201 to the second The compressed nitrogen-containing gas at the gas outlet 202 is subjected to oil removal treatment.
  • the detection device 6 includes an oil mist detection component 602 connected to the outlet side of the oil removal component 204.
  • the oil mist detection component 602 is configured to detect the oil content of the compressed nitrogen-containing gas and output the oil content value.
  • the parameter information also includes the oil content value.
  • the oil mist detection component 602 is coupled with the control device 7, and the control device 7 is configured to: receive the oil content value; if it is determined that the oil content value exceeds the corresponding set value, control the first valve assembly 5 to be in the second state.
  • the first valve assembly 5 is controlled so that the second gas outlet 202 communicates with the second air inlet 401, so that the oil content value that does not meet the requirements
  • the compressed nitrogen-containing gas is directly discharged from the first pipeline 4 without passing through the nitrogen separation unit 301, so that the compressed nitrogen-containing gas with high oil content can be prevented from causing irreversible damage to the nitrogen separation membrane in the nitrogen separation unit 301 , thereby reducing the impact on the performance of the nitrogen separation membrane and prolonging the service life of the nitrogen separation membrane.
  • the characteristics of the nitrogen separation membrane in the nitrogen separation unit 301 are different, and the set value of the above-mentioned oil content value is different.
  • the set value of the above oil content value may be 0.003 parts per million (ppm).
  • the oil mist detection component 602 is an oil vapor sensor.
  • the oil mist detection component 602 is connected between the oil removal component 204 and the first valve component 5 .
  • the oil removal assembly 204 includes an activated carbon filter 2041 and a second filter 2042 .
  • the inlet of the activated carbon filter 2041 communicates with the outlet of the first filter 2032
  • the inlet of the second filter 2042 communicates with the outlet of the activated carbon filter 2041 .
  • the membrane nitrogen generating equipment 100 also includes a second pressure difference detection instrument 9 configured to detect the pressure difference between the inlet and the outlet of the second filter 2042 .
  • the second differential pressure detection instrument 9 is coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the pressure difference detected by the second differential pressure detection instrument 9 is greater than the corresponding set value, output to the second filter 2042 Prompt information for troubleshooting. In this way, the user can be notified in time to troubleshoot the second filter 2042 , thereby reducing the stoppage of the nitrogen production process caused by the failure of the second filter 2042 , thereby ensuring the performance and efficiency of the membrane nitrogen generating equipment 100 .
  • the outlet of the second filter 2042 may be the second air outlet 202 of the pretreatment device 2 .
  • the filter element in the second filter 2042 is a filter element capable of filtering particulate matter (PM0.01) whose kinetic diameter is less than or equal to 0.01 micron in the atmosphere.
  • the pretreatment device 2 further includes a dust removal component 205 , the inlet of the dust removal component 205 communicates with the outlet of the oil removal component 204 .
  • the dedusting assembly 205 is configured to dedust the compressed nitrogen-containing gas flowing from the first gas inlet 201 to the second gas outlet 202 .
  • the detection device 6 also includes a particle size detection component 603, the particle size detection component 603 is connected to the outlet side of the dust removal component 205, the particle size detection component 603 is configured to detect the solid particle size of the compressed nitrogen-containing gas, and output the solid particle size value.
  • the parameter information also includes solid particle size values.
  • the particle size detection component 603 is coupled with the control device 7, and the control device 7 is configured to: receive the solid particle size value; if it is determined that the solid particle size value exceeds the corresponding set value, then control the first valve assembly 5 to be in the second state.
  • the first valve assembly 5 is controlled to make the second gas outlet 202 communicate with the second gas inlet 401, so that the gas containing too large solid particles
  • the compressed nitrogen-containing gas is directly discharged from the first pipeline 4 without passing through the nitrogen separation unit 301, so that the excessive solid particles in the compressed nitrogen-containing gas can be prevented from damaging the nitrogen separation membrane in the nitrogen separation unit 301 , thereby reducing the impact on the performance of the nitrogen separation membrane and prolonging the service life of the nitrogen separation membrane.
  • the characteristics of the nitrogen separation membrane in the nitrogen separation unit 301 are different, and the set value of the solid particle size value is different, for example, the set value of the solid particle size value is 0.01 ⁇ m.
  • the particle size detection component 603 may be a particle detector, and the above-mentioned solid particle size value is the solid particle size of the largest solid particle detected by the particle detector.
  • the particle size detection component 603 is connected between the dust removal component 205 and the first valve component 5 .
  • the dust removal assembly 205 includes a third filter 2051 .
  • the inlet of the third filter 2051 communicates with the outlet of the activated carbon filter 2041 .
  • the membrane nitrogen generator 100 further includes a third differential pressure detection instrument 10 configured to detect the pressure differential between the inlet and the outlet of the third filter 2051 .
  • the third differential pressure detection instrument 10 is coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the pressure difference detected by the third differential pressure detection instrument 10 is greater than the corresponding set value, output to the third filter 2051 Prompt information for troubleshooting. In this way, the user can be notified in time to troubleshoot the third filter 2051 , thereby reducing the stoppage of the nitrogen production process caused by the failure of the third filter 2051 , thereby ensuring the performance and efficiency of the membrane nitrogen generating equipment 100 .
  • the filter element in the second filter 2042 is similar to the filter element in the third filter 2051; the second differential pressure detection instrument 9 or the third differential pressure detection instrument 10 is similar to the first differential pressure detection instrument 8, I won't repeat them here.
  • the membrane nitrogen production equipment 100 further includes a nitrogen purity detector 11 , a second pipeline 12 and a second valve assembly 13 .
  • the nitrogen purity detector 11 is connected to the gas outlet pipeline 303 , and the nitrogen purity detector 11 is configured to detect the nitrogen purity in the gas pipeline 303 and output the nitrogen purity.
  • the second pipe 12 includes a third air inlet 121 and a fourth air outlet 122 , the third air inlet 121 communicates with the air outlet pipe 303 , and the fourth air outlet 122 communicates with the atmosphere.
  • the second valve assembly 13 is located between the outlet of the nitrogen separation component 301 , the third air inlet 121 and the nitrogen output end 3031 of the outlet pipe 303 .
  • the second valve assembly 13 is switchable between the third state and the fourth state. In the third state, the outlet of the nitrogen separation component 301 communicates with the third air inlet 121 and is disconnected from the nitrogen output port 3031; In the fourth state, the outlet of the nitrogen gas separation component 301 communicates with the nitrogen gas output port 3031 and is disconnected from the third gas inlet 121 .
  • Both the nitrogen purity detector 11 and the second valve assembly 13 are coupled to the control device 7, and the control device 7 is also configured to: receive the nitrogen purity; if it is determined that the nitrogen purity is less than the purity threshold, then control the second valve assembly 13 to be at the first Three states.
  • the nitrogen separation unit 301 when the compressed nitrogen-containing gas enters the nitrogen separation unit 301 to separate and prepare nitrogen, the nitrogen whose purity does not meet the requirements of use can be discharged from the second pipeline 12 according to the detection result of the nitrogen purity detector 11, thereby ensuring the nitrogen
  • the nitrogen gas received by the output end 3031 meets the use requirements of the oil and gas well, ensuring the operation effect of the oil and gas well.
  • the purity threshold can be set according to the production requirements of oil and gas wells.
  • the nitrogen purity detector 11 includes an oxygen concentration sensor.
  • the nitrogen purity detector 11 includes an oxygen concentration sensor.
  • the second valve assembly 13 is similar to the first valve assembly 5 , which will not be repeated here.
  • the membrane nitrogen generating equipment 100 further includes a buffer 14 located on the second pipeline 12, and the buffer 14 is configured to buffer and reduce the pressure of the high-pressure exhaust gas.
  • the third gas outlet 402 of the first pipeline 4 communicates with the gas outlet pipeline 303 , and the third gas outlet 402 is located between the nitrogen separation component 301 and the third gas inlet 121 of the second pipeline 12 .
  • the membrane nitrogen production equipment 100 also includes a first one-way valve 15, the first one-way valve 15 is arranged on the gas outlet pipeline 303, and the first one-way valve 15 is located between the nitrogen separation part 301 and the third gas outlet 402 of the first pipeline 4 During this period, the outlet of the first one-way valve 15 communicates with the third air outlet 402 .
  • the setting of the first one-way valve 15 can also prevent the nitrogen separation membrane from being damaged due to the compressed nitrogen-containing gas entering the nitrogen separation component 301 that does not conform to the entry into the nitrogen separation component 301 .
  • the membrane nitrogen production equipment 100 further includes a second pressure detection instrument 16 and a purity regulating valve 17 .
  • the second pressure detection instrument 16 is connected between the second gas outlet 202 and the nitrogen separation component 301 , and the second pressure detection instrument 16 is configured to detect the pressure of the compressed nitrogen-containing gas from the pretreatment device 2 .
  • the purity regulating valve 17 is connected to the gas outlet pipeline 303 , and the purity regulating valve 17 is configured to regulate the flow rate of the gas in the gas outlet pipeline 303 .
  • the nitrogen purity detector 11 is connected to the outlet pipeline 303 and located between the purity regulating valve 17 and the nitrogen separation unit 301 .
  • Both the second pressure detection instrument 16 and the purity regulating valve 17 are coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the pressure detected by the second pressure detection instrument 16 is greater than the maximum value of the second pressure threshold range, then increase The opening degree of the purity regulating valve 17; if it is determined that the pressure detected by the second pressure detection instrument 16 is lower than the minimum value of the second pressure threshold range, the opening degree of the purity regulating valve 17 is decreased.
  • controlling the opening of the purity regulating valve 17 can adjust the pressure on the outlet side of the nitrogen gas separation unit 301 , thereby adjusting the pressure on the inlet side of the nitrogen gas separation unit 301 , that is, the pressure of the compressed nitrogen-containing gas.
  • control device 7 can adjust the opening of the purity regulating valve 17 so that the pressure of the compressed nitrogen-containing gas is within the range of the second pressure threshold, thereby ensuring that the compressed nitrogen-containing gas entering the nitrogen separation unit 301 Maintaining an appropriate pressure can ensure or improve the purity of the nitrogen produced by the membrane nitrogen production equipment 100 .
  • the above-mentioned second pressure threshold range is determined according to the required nitrogen purity and the characteristics of the nitrogen separation membrane in the nitrogen separation unit 301 .
  • the second pressure threshold ranges from 1.6MPa to 1.8MPa.
  • the second pressure detection instrument 16 is connected to the intake pipe 302 ; or, as shown in FIG. 1 , the second pressure detection instrument 16 is connected between the second air outlet 202 and the first valve assembly 5 .
  • the membrane nitrogen production equipment 100 further includes a second pressure detection instrument 16, the second pressure detection instrument 16 is connected between the second gas outlet 202 and the nitrogen separation component 301, and is configured to detect The pressure of compressed nitrogen-containing gas.
  • the gas supply device 1 and the second pressure detection instrument 16 are both coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the pressure detected by the second pressure detection instrument 16 is greater than the maximum value of the second pressure threshold range, then control The gas supply device 1 reduces the output pressure; if it is determined that the pressure detected by the second pressure detection instrument 16 is lower than the minimum value of the second pressure threshold range, the gas supply device is controlled to increase the output pressure.
  • control device 7 can adjust the output pressure of the gas supply device 1 so that the pressure of the compressed nitrogen-containing gas is within the range of the second pressure threshold, thereby ensuring that the compressed nitrogen-containing gas entering the nitrogen separation unit 301 Maintaining an appropriate pressure can ensure or improve the purity of the nitrogen produced by the membrane nitrogen production equipment 100 .
  • the membrane nitrogen production equipment 100 further includes a third pressure detection instrument 18 connected to the gas outlet pipeline 303 and configured to detect the pressure of the gas in the gas pipeline 303 .
  • the third pressure detection instrument 18 is coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the difference between the pressure detected by the second pressure detection instrument 16 and the pressure detected by the third pressure detection instrument 18 is greater than the corresponding setting value, output a prompt message to check the nitrogen separation component 301.
  • the set value of the difference between the pressure detected by the second pressure detector 16 and the pressure detected by the third pressure detector 18 is set according to the characteristics of the nitrogen separation membrane in the nitrogen separation unit 301 .
  • the pressure detected by the third pressure detection instrument 18 is also the pressure of the nitrogen output from the nitrogen output port 3031, which can be used as a reference parameter for the equipment using the nitrogen produced by the membrane nitrogen production equipment 100, so as to facilitate the application of the membrane nitrogen production equipment 100. Nitrogen for oil recovery operations.
  • the membrane nitrogen production equipment 100 further includes a first pressure detection instrument 19, and the first pressure detection instrument 19 is connected to the first gas outlet 101 of the gas supply device 1 and the first gas outlet 101 of the pretreatment device 2. Between the gas inlets 201 , the first pressure detection instrument 19 is configured to detect the gas pressure at the first gas inlet 201 .
  • the first pressure detection instrument 19 is coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the pressure detected by the first pressure detection instrument 19 is less than the minimum value of the first pressure threshold range, then control the gas supply device 1 to increase Output pressure; if it is determined that the pressure detected by the first pressure detection instrument 19 is greater than the maximum value of the first pressure threshold range, the gas supply device 1 is controlled to shut down.
  • the control device 7 increases the output pressure of the gas supply device 1, so that the pressure of the compressed nitrogen-containing gas is at a certain purity level.
  • the pressure threshold required by the nitrogen gas is within the range, so as to ensure that the compressed nitrogen-containing gas entering the nitrogen gas separation unit 301 maintains an appropriate pressure, thereby ensuring or improving the purity of the nitrogen gas produced by the membrane nitrogen production equipment 100 .
  • the control device 7 controls the gas supply device 1 to shut down, so as to protect the equipment from overpressure, thereby ensuring that the membrane nitrogen production equipment 100% reliability.
  • the minimum value of the first pressure threshold range may be the sum of the minimum value of the suitable pressure range of the nitrogen gas separation unit 301 and the pressure drop before and after the compressed nitrogen-containing gas passes through the pretreatment device 2, the first pressure threshold
  • the maximum value of the range may be the maximum output pressure parameter of the gas supply device 1 .
  • the suitable pressure range of the nitrogen separation unit 301 is a pressure range that has little influence on the performance of the nitrogen separation membrane.
  • the first pressure detection instrument 19 , the second pressure detection instrument 16 and the third pressure detection instrument 18 can all be pressure sensors.
  • the membrane nitrogen generating equipment further includes a radiator 21 , a first temperature detection instrument 20 and a third valve assembly 22 .
  • the radiator 21 includes a fourth air inlet 211 and a fifth air outlet 212.
  • the fourth air inlet 211 communicates with the first air outlet 101 of the air supply device 1, and the fifth air outlet 212 communicates with the first air inlet 212 of the pretreatment device 2.
  • the gas port 201 is connected.
  • the first temperature detection instrument 20 is connected to the first gas outlet 101 .
  • the first temperature detection instrument 20 is configured to detect the temperature of the gas at the first gas outlet 101 .
  • the third valve assembly 22 is located between the first air outlet 101 , the fourth air inlet 211 and the first air inlet 201 .
  • the third valve assembly 22 is switchable between a fifth state and a sixth state. In the fifth state, the first air outlet 101 communicates with the first air inlet 201 and is disconnected from the fourth air inlet 211; In the sixth state, the first air outlet 101 communicates with the fourth air inlet 211 and is disconnected from the first air inlet 201 .
  • Both the first temperature detection instrument 20 and the third valve assembly 22 are coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the temperature detected by the first temperature detection instrument 20 is greater than the first temperature threshold, then control the third valve assembly 22 is in said sixth state.
  • the compressed nitrogen-containing gas before the compressed nitrogen-containing gas enters the pretreatment device 2, if the temperature of the compressed nitrogen-containing gas is too high, the compressed nitrogen-containing gas enters the radiator 21 for cooling, so as to ensure that the pretreatment device 2 can work normally, thereby ensuring the reliability of the membrane nitrogen generating equipment 100 .
  • the first temperature threshold can be set according to the requirements of the pretreatment device 2 for the compressed nitrogen-containing gas.
  • the first temperature threshold is set according to the air intake temperature requirements of the cold dryer, and the first temperature threshold can be 60°C to 65°C, for example, the first temperature threshold is 60°C, 61°C, 62°C, 63°C, 64°C or 65°C, etc.
  • the temperature of the cooling liquid in the radiator 21 is set to ensure that the compressed nitrogen-containing gas cooled by the radiator 21 meets the temperature requirement for entering the pretreatment device 2 .
  • the third valve assembly 22 is similar to the first valve assembly 5 , which will not be repeated here.
  • the membrane nitrogen production equipment further includes a heating device 23 and a second temperature detection instrument 24 .
  • the heating device 23 is connected between the second gas outlet 202 of the pretreatment device 2 and the first valve assembly 5 .
  • the heating device 23 is configured to heat the compressed nitrogen-containing gas.
  • the second temperature detection instrument 24 is connected between the heating device 23 and the nitrogen gas separation component 301 , and the second temperature detection instrument 24 is configured to detect the temperature of the compressed nitrogen-containing gas.
  • Both the heating device 23 and the second temperature detection instrument 24 are coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the temperature detected by the second temperature detection instrument 24 is less than the second temperature threshold, then start the heating device 23 to compress The subsequent nitrogen-containing gas is heated.
  • control device 7 activates the heating device 23 to make the temperature of the compressed nitrogen-containing gas greater than or equal to the second temperature threshold, thereby ensuring that the compressed nitrogen-containing gas entering the nitrogen separation unit 301 maintains an appropriate temperature, thereby ensuring Or improve the purity of the nitrogen produced by the membrane nitrogen production equipment 100 .
  • the above-mentioned second temperature threshold is determined according to the required nitrogen purity and the characteristics of the nitrogen separation membrane in the nitrogen separation unit 301 .
  • the second temperature threshold is 30°C or 35°C.
  • the heating temperature of the heating device 23 is set to ensure that the compressed nitrogen-containing gas heated by the heating device 23 meets the temperature requirements for entering the nitrogen gas separation unit 301, so as to prevent the temperature of the compressed nitrogen-containing gas from being too high , damage the nitrogen separation membrane.
  • the second temperature detection instrument 24 is connected between the heating device 23 and the first valve assembly 5 ; or, the second temperature detection instrument 24 is connected to the intake pipe 302 .
  • the pretreatment device 2 further includes at least one sewage outlet 206 .
  • the membrane nitrogen production equipment 100 also includes at least one blowdown device 25 .
  • At least one sewage discharge device 25 communicates with at least one sewage discharge port 206 .
  • the sewage discharge device 25 includes a liquid storage tank 251 , a liquid level detection instrument 252 and a fourth valve assembly 253 , and the liquid storage tank 251 includes a liquid inlet 2511 and a liquid outlet 2512 .
  • the liquid inlet 2511 of a sewage discharge device 25 communicates with a sewage discharge port 206
  • the liquid outlet 2512 communicates with the fourth valve assembly 253
  • the detection end of the liquid level detection instrument 252 is located in the liquid storage tank 251, and is configured to detect the liquid storage The level of liquid in tank 251.
  • the liquid level detection instrument 252 and the fourth valve assembly 253 are coupled to the control device 7, and the control device 7 is also configured to: if it is determined that the liquid level detected by the liquid level detection instrument reaches the first height threshold, then control the fourth valve assembly 253 Open; if it is determined that the liquid level detected by the liquid level detection instrument 252 reaches the second height threshold, a prompt message for checking the sewage device 25 is output; the second height threshold is greater than the first height threshold.
  • the automatic discharge of liquid can be realized through the sewage discharge device 25, and when the sewage discharge device 25 does not drain normally, the user is notified in time to check the sewage discharge device 25, thereby reducing the failure of the pretreatment device 2 due to the failure of the sewage discharge device 25.
  • the nitrogen production process is stopped, which affects the performance and efficiency of the membrane nitrogen production equipment 100 .
  • the pretreatment device 2 includes three sewage outlets 206, which are respectively located on the water removal assembly 203, the oil removal assembly 204, and the dust removal assembly 205. Port 206 connected to the sewage pipeline.
  • the membrane nitrogen generating equipment 100 also includes at least one fifth valve assembly 26, and at least one fifth valve assembly 26 is located on the pipeline parallel to the pipeline where the sewage discharge device 25 is located.
  • the sewage discharge device 25 fails to work normally, By manually controlling the fifth valve assembly 26 to discharge liquid, the normal operation of the membrane nitrogen generator 100 can be ensured.
  • the control device 7 controls the valve on the sewage pipeline to open and close at least once within a set period of time, if After confirming that the pressure detected by the pressure sensor does not change within the set period of time, that is, the liquid in the sewage pipeline is not discharged, the control device 7 outputs a prompt message for checking the sewage pipeline and valves.
  • the membrane nitrogen production equipment 100 further includes a gas storage device 27 connected between the gas supply device 1 and the pretreatment device 2 .
  • the gas storage device 27 can be used as a buffer for the compressed nitrogen-containing gas to stabilize and store it.
  • the gas storage device 27 can also collect and discharge condensate in the compressed nitrogen-containing gas.
  • some embodiments of the present disclosure also provide a nitrogen production truck 200 or a nitrogen production skid 300 .
  • the nitrogen production vehicle 200 or the nitrogen production skid 300 includes the above-mentioned membrane nitrogen production equipment 100 .
  • some embodiments of the present disclosure also provide a method for controlling membrane nitrogen generating equipment, which is used to control the above-mentioned membrane nitrogen generating equipment 100 .
  • the control method includes step S100 and step S200 .
  • Step S100 receiving parameter information detected by the detection device 6; the parameter information includes at least one of water content parameters, oil content parameters or solid particle size parameters.
  • Step S200 if any one of the parameter information is determined to be greater than the corresponding set value, then control the first valve assembly 5 to be in the second state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种膜制氮设备及其制备方法,所述膜制氮设备包括供气装置、预处理装置、氮气分离装置、第一管道、第一阀门组件、检测装置以及控制装置。所述控制装置分别与所述检测装置、所述第一阀门组件耦接,所述控制装置被配置为:接收参数信息,若确定所述参数信息中的任一者大于相应的设定值,则控制所述第一阀门组件处于第二状态。

Description

膜制氮设备及其控制方法
本申请要求于2022年01月06日提交的、申请号为202210011178.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及氮气制备技术领域,尤其涉及一种膜制氮设备及其控制方法。
背景技术
在石油和天然气开采领域,向油层注入高压氮气增加地层压力以提高原油采收率是一种重要的新技术。与其他方法相比,由于氮气具有无腐蚀、适应性和经济性好的优点,因此,利用氮气对油井、油层进行处理,安全、省时且高效。另外,由于空气中氮气的体积分数为78%,相对于其他气体,制备氮气原材料丰富、成本低且安全性高。
氮气的制备方法主要包括:深冷分离法、变压吸附法和膜分离法。膜分离法是利用氮气分离膜对气体组分具有选择性渗透和扩散的特性,以达到气体分离和纯化的目的,从而获得氮气。
发明内容
一方面,提供了一种膜制氮设备,包括供气装置、预处理装置、氮气分离装置、第一管道、第一阀门组件、检测装置以及控制装置。所述供气装置被配置为对含氮气体进行压缩,所述供气装置包括第一出气口。所述预处理装置包括第一进气口和第二出气口,所述第一进气口与所述第一出气口连通;所述预处理装置被配置为对来自所述供气装置的压缩后的含氮气体进行预处理,所述预处理包括除水处理、除油处理或除尘处理中的至少一种。所述氮气分离装置包括氮气分离部件、进气管道和出气管道,所述氮气分离部件包括氮气分离膜,所述进气管道的入口与所述第二出气口连通;所述进气管道的出口与所述氮气分离部件的入口连通,所述出气管道的入口与所述氮气分离部件的出口连通。所述第一管道包括第二进气口和第三出气口,所述第二进气口与所述第二出气口连通,所述第三出气口与大气连通。所述第一阀门组件位于所述第二出气口、所述进气管道的入口和所述第二进气口三者之间;所述第一阀门组件在第一状态和第二状态之间可转换,在所述第一状态,所述第二出气口与所述进气管道连通,且与所述第一管道断开;在所述第二状态,所述第二出气口与所述第一管道连通,且与所述进气管道断开。所述检测装置被配置为检测经所述预处理装置处理后的所述压缩后的含氮气体的参数信息,所述参数信息包括含水量参数、含油量参数或固体颗粒度参数中的 至少一者。所述控制装置分别与所述检测装置、所述第一阀门组件耦接,所述控制装置被配置为:接收所述参数信息,若确定所述参数信息中的任一者大于相应的设定值,则控制所述第一阀门组件处于所述第二状态。
另一方面,提供了一种膜制氮设备的控制方法,所述膜制氮设备包括供气装置、预处理装置、氮气分离装置、第一管道、第一阀门组件、检测装置以及控制装置。所述供气装置被配置为对含氮气体进行压缩,所述供气装置包括第一出气口。所述预处理装置包括第一进气口和第二出气口,所述第一进气口与所述第一出气口连通;所述预处理装置被配置为对来自所述供气装置的压缩后的含氮气体进行预处理,所述预处理包括除水处理、除油处理或除尘处理中的至少一种。所述氮气分离装置包括氮气分离部件、进气管道和出气管道,所述氮气分离部件包括氮气分离膜,所述进气管道的入口与所述第二出气口连通;所述进气管道的出口与所述氮气分离部件的入口连通,所述出气管道的入口与所述氮气分离部件的出口连通。所述第一管道包括第二进气口和第三出气口,所述第二进气口与所述第二出气口连通,所述第三出气口与大气连通。所述第一阀门组件位于所述第二出气口、所述进气管道的入口和所述第二进气口三者之间;所述第一阀门组件在第一状态和第二状态之间可转换,在所述第一状态,所述第二出气口与所述进气管道连通,且与所述第一管道断开;在所述第二状态,所述第二出气口与所述第一管道连通,且与所述进气管道断开。所述检测装置被配置为检测经所述预处理装置处理后的所述压缩后的含氮气体的参数信息,所述参数信息包括含水量参数、含油量参数或固体颗粒度参数中的至少一者。所述控制方法包括:接收来自所述检测装置检测的所述参数信息;所述参数信息包括含水量参数、含油量参数或固体颗粒度参数中的至少一者;以及若确定所述参数信息中的任一者大于相应的设定值,则控制所述第一阀门组件处于所述第二状态。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种膜制氮设备的结构图;
图2为根据一些实施例的一种预处理装置的结构图;
图3为根据一些实施例的一种排污装置的原理图;
图4为根据一些实施例的一种制氮车或制氮撬的框图;
图5为根据一些实施例的一种膜制氮设备的控制方法的流程图。
附图标记:
100-膜制氮设备;1-供气装置;101-第一出气口;2-预处理装置;201-第一进气口;202-第二出气口;203-除水组件;2031-冷干机;2032-第一过滤器;204-除油组件;2041-活性炭过滤器;2042-第二过滤器;205-除尘组件;2051-第三过滤器;206-排污口;
3-氮气分离装置;301-氮气分离部件;302-进气管道;303-出气管道;3031-氮气输出端;4-第一管道;401-第二进气口;402-第三出气口;5-第一阀门组件;6-检测装置;601-露点检测组件;602-油雾检测组件;603-颗粒度检测组件;7-控制装置;8-第一压差检测仪器;9-第二压差检测仪器;10-第三压差检测仪器;11-氮气纯度检测仪;
12-第二管道;121-第三进气口;122-第四出气口;13-第二阀门组件;14-缓冲器;15-第一单向阀;16-第二压力检测仪器;17-纯度调节阀;18-第三压力检测仪器;19-第一压力检测仪器;20-第一温度检测仪器;21-散热器;211-第四进气口;212-第五出气口;22-第三阀门组件;23-加热装置;24-第二温度检测仪器;25-排污装置;251-储液箱;2511-进液口;2512-出液口;252-液位检测仪器;253-第四阀门组件;26-第五阀门组件;27-储气装置;200-制氮车;300-制氮橇。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术 语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
一般情况下,含两种或两种以上的气体的混合气体(例如空气)通过高分子膜时,由于各种气体在高分子膜中溶解度和扩散系数的差异而导致不同种的气体在高分子膜(例如,中空纤维膜)中相对渗透速率不同。当混合气体在高分子膜两侧压力差作用下相对渗透速率快的气体如水、氧气等迅速透过中空纤维膜壁而被放掉,而渗透速率较慢的气体如氮气、氩气等被滞留在中空纤维内而被富集,从而可得到较高纯度的氮气。在膜制氮设备中,若不符合参数要求的气体进入高分子膜中,将导致高分子膜被污染或损坏,进而影响高分子膜的使用寿命。
为了解决上述技术问题,本公开的一些实施例提供了一种膜制氮设备100。参见图1,膜制氮设备100包括供气装置1、预处理装置2、氮气分离装置3、第一管道4、第一阀门组件5、检测装置6以及控制装置7。
供气装置1与预处理装置2相连,供气装置1与控制装置7耦接。供气装置1被配置为对含氮气体进行压缩,供气装置1包括第一出气口101。例如,供气装置1为空压机,以对空气进行压缩;或者,供气装置1包括空压机和与空压机相连接的含氮气体的储存装置,该储存装置可以用于收集其他设备或装置产生的含氮气体,作为膜制氮设备100的原料气体,空压机对该储存装置中的含氮气体进行压缩。
预处理装置2包括第一进气口201和第二出气口202,第一进气口201与第一出气口101连通,以使第一进气口201与供气装置1连通。预处理装置2被配置为对来自供气装置1的压缩后的含氮气体进行预处理,预处理包括除水处理、除油处理或除尘处理中的至少一种,以对氮气分离装置3内的氮气分离膜进行保护。需要说明的是,氮气分离膜可以为上述高分子膜中的一种。
例如,预处理装置2可以对来自供气装置1的压缩后的含氮气体进行除水处理、除油处理和除尘处理中的一种、两种或三种,可根据氮气分离膜的参数要求选择预处理的方式。如此,可以防止因气体中的水分、油分或过大的固体颗粒对氮气分离膜造成不可逆的损伤,而影响氮气分离膜的性能。
氮气分离装置3被配置为将氮气从压缩后的含氮气体中分离出来。氮气分离装置3包括氮气分离部件301、进气管道302和出气管道303,氮气分离部件301包括上述氮气分离膜,进气管道302的出口与氮气分 离部件301的入口连通,出气管道303的入口与氮气分离部件301的出口连通;进气管道302的入口与第二出气口202连通。如此,经过预处理装置2预处理后的压缩后的含氮气体可以通过进气管道302进入氮气分离部件301,由于压缩后的含氮气体中的氮气和其他组分在氮气分离膜的相对渗透率不同,从而在通过氮气分离膜之后得到高纯度的氮气,并从出气管道303输出。
例如,上述的氮气分离膜包括单个氮气分离膜,也可以包括多个氮气分离膜组成的复合膜。需要说明的是,上述的高纯度的氮气不限定为100%纯度的氮气,还包括氮气纯度大于90%的气体。
第一管道4包括第二进气口401和第三出气口402,第二进气口401与第二出气口202连通,第三出气口402与大气连通。
第一阀门组件5位于第二出气口202、进气管道302的入口和第二进气口401三者之间。第一阀门组件5在第一状态和第二状态之间可转换,在所述第一状态,第二出气口202与进气管道302连通,且与第一管道4断开;在所述第二状态,第二出气口202与第一管道4连通,且与进气管道302断开。如此,可根据需要使压缩后的含氮气体进入氮气分离部件301进行氮气分离,或者使压缩后的含氮气体从第一管道4排出。
例如,第一阀门组件5包括两个阀门,一个阀门使第二出气口202与进气管道302连通或断开,另一个阀门使第二出气口202与第一管道4连通或断开。或者,如图1所示,第一阀门组件5包括三通阀,三通阀的三个端口分别与第二出气口202、进气管道302的入口和第二进气口401连通。
在一些实施例中,检测装置6被配置为检测经预处理装置2处理后的压缩后的含氮气体的参数信息,并输出该参数信息,参数信息包括含水量参数、含油量参数或固体颗粒度参数中的至少一者。例如,检测装置6与预处理装置2连接;或者,检测装置6连接于预处理装置2与第一阀门组件5之间。在一些实施例中,参数信息包括含水量参数、含油量参数或固体颗粒度参数中的一者、两者或三者,可根据氮气分离膜的参数要求进行选择参数信息。
控制装置7与检测装置6、第一阀门组件5耦接。控制装置被配置为接收参数信息,若确定参数信息中的任一者大于相应的设定值,则控制第一阀门组件5处于所述第二状态。这样,可以使不符合进入氮气分 离部件301要求的压缩后的含氮气体从第一管道4直接排出,而不经过氮气分离部件301,如此,可防止压缩后的含氮气体对氮气分离部件301中的氮气分离膜造成不可逆的污染或损伤,从而降低对氮气分离膜的性能的影响,延长氮气分离膜的使用寿命。
这样,使得参数信息全部小于相应的设定值(符合进入氮气分离部件301要求)的压缩后的含氮气体进入氮气分离部件301进行分离制备氮气,有效地保证了氮气分离膜的使用寿命,进而有利于降低制氮的成本。
参见图1,在一些实施例中,预处理装置2包括除水组件203,除水组件203与第一进气口201连通,除水组件203被配置为对由第一进气口201流向第二出气口202的压缩后的含氮气体进行除水处理。检测装置6还包括露点检测组件601,露点检测组件601连接于除水组件203的出口侧,露点检测组件601被配置为检测由第一进气口201流向第二出气口202的压缩后的含氮气体的露点,并输出露点值。参数信息还包括露点值。
露点检测组件601与控制装置7耦接,控制装置7还被配置为:接收露点值;若确定露点值大于对应的设定值,则控制第一阀门组件5处于所述第二状态。
这样,可以通过检测压缩后的含氮气体的露点值判断压缩后的含氮气体的含水量。若露点值大于对应的设定值,则控制装置7控制第一阀门组件5使第二出气口202与第二进气口401连通,从而使不符合含水量参数要求的压缩后的含氮气体从第一管道4直接排出,而不经过氮气分离部件301,因此,可防止含水量高的压缩后的含氮气体对氮气分离部件301中的氮气分离膜造成不可逆的损伤,从而降低对氮气分离膜的性能的影响,有利于延长氮气分离膜的使用寿命。
需要说明的是,氮气分离部件301内的氮气分离膜的特性不同,上述露点值的设定值不同。例如上述露点值的设定值可以为2℃至10℃,露点值的设定值可以为2℃、4℃、6℃、8℃或10℃等。
在一些实施例中,露点检测组件601为露点检测仪;或者,露点检测组件601为露点传感器。
在一些实施例中,露点检测组件601连接于除水组件203与第一阀门组件5之间。
在一些实施例中,控制装置7还被配置为若确定露点值大于相应的设定值,则输出对除水组件203进行排查的提示信息。这样,可以及时通知用户排查除水组件203,从而减少因除水组件203故障而导致的氮气制备进程停止,进而保证膜制氮设备100的性能和效率。
参见图2,在一些实施例中,除水组件203包括冷干机2031和第一过滤器2032。冷干机2031的进口与第一进气口201连通,冷干机2031被配置为对压缩后的含氮气体进行冷冻干燥。这样,通过冷干机2031对压缩后的含氮气体进行除水处理,可以保证除水效果。第一过滤器2032与冷干机2031的出口连通,第一过滤器2032能够对压缩后的含氮气体中的固体颗粒进行初步过滤。
膜制氮设备100还包括第一压差检测仪器8被配置为检测第一过滤器2032的入口处和出口处之间的压力差。第一压差检测仪器8与控制装置7耦接,控制装置7还被配置为:若确定第一压差检测仪器8检测的压力差大于相应的设定值,则输出对第一过滤器2032进行排查的提示信息。这样,可以及时通知用户排查第一过滤器2032,从而减少因第一过滤器2032故障而导致的氮气制备进程停止,进而保证膜制氮设备100的性能和效率。
在一些实施例中,第一过滤器2032内的滤芯为能够过滤大气中动力学直径小于或等于1微米的颗粒物(PM1)滤芯。
在一些实施例中,第一压差检测仪器8为压差传感器,上述压力差的设定值可以为0.4MPa或0.5MPa。
参见图1,在一些实施例中,预处理装置2还包括除油组件204,除油组件204与除水组件203相连,除油组件204被配置为对由第一进气口201流向第二出气口202的压缩后的含氮气体进行除油处理。
检测装置6包括油雾检测组件602,油雾检测组件602连接于除油组件204的出口侧,油雾检测组件602被配置为检测压缩后的含氮气体的含油量,并输出含油量值。参数信息还包括含油量值。
油雾检测组件602与控制装置7耦接,控制装置7被配置为:接收含油量值;若确定含油量值超过相应的设定值,则控制第一阀门组件5处于所述第二状态。
这样,若压缩后的含氮气体的含油量值大于相应的设定值,则控制第一阀门组件5使第二出气口202与第二进气口401连通,从而使不符 合含油量值要求的压缩后含氮气体从第一管道4直接排出,而不经过氮气分离部件301,因此,可防止含油量高的压缩后的含氮气体对氮气分离部件301中的氮气分离膜造成不可逆的损伤,从而降低对氮气分离膜的性能的影响,延长氮气分离膜的使用寿命。
需要说明的是,氮气分离部件301内的氮气分离膜的特性不同,上述含油量值的设定值不同。例如,上述含油量值的设定值可以为0.003百万分比浓度(parts per million,ppm)。
在一些实施例中,油雾检测组件602为油蒸气传感器。
在一些实施例中,油雾检测组件602连接于除油组件204与第一阀门组件5之间。
参见图2,在一些实施例中,除油组件204包括活性炭过滤器2041和第二过滤器2042。活性炭过滤器2041的入口与第一过滤器2032的出口连通,第二过滤器2042的入口与活性炭过滤器2041的出口连通。
膜制氮设备100还包括第二压差检测仪器9,第二压差检测仪器9被配置为检测第二过滤器2042的入口处和出口处之间的压力差。第二压差检测仪器9与控制装置7耦接,控制装置7还被配置为:若确定第二压差检测仪器9检测的压力差大于相应的设定值,则输出对第二过滤器2042进行排查的提示信息。这样,可以及时通知用户排查第二过滤器2042,从而减少因第二过滤器2042故障而导致的氮气制备进程停止,进而保证膜制氮设备100的性能和效率。
在一些实施例中,第二过滤器2042的出口可以为预处理装置2的第二出气口202。
例如,第二过滤器2042内的滤芯为能够过滤大气中动力学直径小于或等于0.01微米的颗粒物(PM0.01)滤芯。
参见图1,在一些实施例中,预处理装置2还包括除尘组件205,除尘组件205的入口与除油组件204的出口连通。除尘组件205被配置为对由第一进气口201流向第二出气口202的压缩后的含氮气体进行除尘处理。
检测装置6还包括颗粒度检测组件603,颗粒度检测组件603连接于除尘组件205的出口侧,颗粒度检测组件603被配置为检测压缩后的含氮气体的固体颗粒度,并输出固体颗粒度值。参数信息还包括固体颗 粒度值。
颗粒度检测组件603与控制装置7耦接,控制装置7被配置为:接收固体颗粒度值;若确定固体颗粒度值超过相应的设定值,则控制第一阀门组件5处于所述第二状态。
这样,若压缩后的含氮气体的固体颗粒度值大于相应的设定值,则控制第一阀门组件5使第二出气口202与第二进气口401连通,从而使包含过大固体颗粒的压缩后的含氮气体从第一管道4直接排出,而不经过氮气分离部件301,因此,可防止压缩后的含氮气体中的过大固体颗粒划损氮气分离部件301中的氮气分离膜,从而降低对氮气分离膜的性能的影响,延长氮气分离膜的使用寿命。
需要说明的是,氮气分离部件301内的氮气分离膜的特性不同,上述固体颗粒度值的设定值不同,例如,上述固体颗粒度值的设定值为0.01μm。
在一些实施例中,颗粒度检测组件603可以为颗粒物检测仪,上述固体颗粒度值为颗粒物检测仪检测到的最大固体颗粒物的固体颗粒度。
在一些实施例中,颗粒度检测组件603连接于除尘组件205与第一阀门组件5之间。
参见图2,在一些实施例中,除尘组件205包括第三过滤器2051。第三过滤器2051的入口与活性炭过滤器2041的出口连通。膜制氮设备100还包括第三压差检测仪器10,第三压差检测仪器10被配置为检测第三过滤器2051的入口处和出口处之间的压力差。
第三压差检测仪器10与控制装置7耦接,控制装置7还被配置为:若确定第三压差检测仪器10检测的压力差大于相应的设定值,则输出对第三过滤器2051进行排查的提示信息。这样,可以及时通知用户排查第三过滤器2051,从而减少因第三过滤器2051故障而导致的氮气制备进程停止,进而保证膜制氮设备100的性能和效率。
在一些实施例中,第二过滤器2042内的滤芯与第三过滤器2051内的滤芯类似;第二压差检测仪器9或第三压差检测仪器10与第一压差检测仪器8类似,在此不再赘述。
参见图1,在一些实施例中,膜制氮设备100还包括氮气纯度检测仪11、第二管道12以及第二阀门组件13。
氮气纯度检测仪11连接于出气管道303上,氮气纯度检测仪11被配置为检测出气管道303内的氮气纯度,并输出该氮气纯度。
第二管道12包括第三进气口121和第四出气口122,第三进气口121与出气管道303连通,第四出气口122与大气连通。
第二阀门组件13位于氮气分离部件301的出口、第三进气口121与出气管道303的氮气输出端3031之间。第二阀门组件13在第三状态和第四状态可转换,在所述第三状态,氮气分离部件301的出口与第三进气口121连通,且与氮气输出端3031断开;在所述第四状态,氮气分离部件301的出口与氮气输出端3031连通,且与第三进气口121断开。
氮气纯度检测仪11和第二阀门组件13均与控制装置7耦接,控制装置7还被配置为:接收氮气纯度;若确定氮气纯度小于纯度阈值,则控制第二阀门组件13处于所述第三状态。
这样,当压缩后的含氮气体进入氮气分离部件301进行分离制备氮气时,可根据氮气纯度检测仪11检测的结果,使氮气纯度不符合使用要求的氮气从第二管道12排出,从而保证氮气输出端3031接收到的氮气符合油气井的使用要求,保证油气井的作业效果。
需要说明的是,纯度阈值可以根据油气井的开采要求进行设定。
在一些实施例中,氮气纯度检测仪11包括氧浓度传感器。当上述的压缩后的含氮气体为压缩空气时,由于压缩空气中主要的组分是氮气和氧气,因此可通过氧气浓度传感器检测氮气纯度。
在一些实施例中,第二阀门组件13与第一阀门组件5类似,在此不再赘述。在一些实施例中,膜制氮设备100还包括缓冲器14,缓冲器14位于第二管道12上,缓冲器14被配置为对高压的排出气体进行缓冲降压。
参见图1,在一些实施例中,第一管道4的第三出气口402与出气管道303连通,第三出气口402位于氮气分离部件301和第二管道12的第三进气口121之间。
膜制氮设备100还包括第一单向阀15,第一单向阀15设置于出气管道303上,第一单向阀15位于氮气分离部件301与第一管道4的第三出气口402之间,第一单向阀15的出口与第三出气口402连通。
这样,可将不符合进入氮气分离部件301的压缩后的含氮气体和纯度不符合要求的氮气向同一处排出,简化了设备的管路连接设计。此外,第一单向阀15的设置还可以防止因不符合进入氮气分离部件301的压缩后的含氮气体进入氮气分离部件301而损坏氮气分离膜。
可以理解的是,在膜制氮过程中,对分离出的氮气的纯度的影响因素有很多,影响较大的因素包括压缩后的含氮气体进膜前的压力和温度;由此,通过对压缩后的含氮气体进膜前的压力和温度进行控制可提高氮气的产量和纯度。
参见图1,在一些实施例中,膜制氮设备100还包括第二压力检测仪器16以及纯度调节阀17。第二压力检测仪器16连接于第二出气口202与氮气分离部件301之间,第二压力检测仪器16被配置为检测来自预处理装置2的压缩后的含氮气体的压力。纯度调节阀17连接于出气管道303上,纯度调节阀17被配置为调节出气管道303内气体的流量。氮气纯度检测仪11连接于出气管道303上,且位于纯度调节阀17和氮气分离部件301之间。
第二压力检测仪器16和纯度调节阀17均与控制装置7耦接,控制装置7还被配置为:若确定第二压力检测仪器16检测的压力大于第二压力阈值范围的最大值,则增加纯度调节阀17的开度;若确定第二压力检测仪器16检测的压力小于第二压力阈值范围的最小值,则减小纯度调节阀17的开度。
需要说明的是,控制纯度调节阀17的开度可调节氮气分离部件301的出口侧的压力,从而可调节氮气分离部件301入口侧的压力,即压缩后的含氮气体的压力。
这样,控制装置7可通过调节纯度调节阀17的开度,使压缩后的含氮气体的压力位于第二压力阈值的范围之内,从而保证进入氮气分离部件301中的压缩后的含氮气体保持适宜的压力,进而可保证或提高该膜制氮设备100产出的氮气的纯度。
需要说明的是,上述的第二压力阈值范围根据所需要的氮气纯度和氮气分离部件301内的氮气分离膜的特性进行确定。例如,第二压力阈值范围为1.6MPa至1.8MPa。
在一些实施例中,第二压力检测仪器16连接于进气管道302上;或者,如图1所示,第二压力检测仪器16连接于第二出气口202与第 一阀门组件5之间。
参见图1,在一些实施例中,膜制氮设备100还包括第二压力检测仪器16,第二压力检测仪器16连接于第二出气口202与氮气分离部件301之间,且被配置为检测压缩后的含氮气体的压力。
供气装置1、第二压力检测仪器16均与控制装置7耦接,控制装置7还被配置为:若确定第二压力检测仪器16检测的压力大于第二压力阈值范围的最大值,则控制供气装置1减小输出压力;若确定第二压力检测仪器16检测的压力小于第二压力阈值范围的最小值,则控制供气装置增大输出压力。
这样,控制装置7可通过调节供气装置1的输出压力,使压缩后的含氮气体的压力位于第二压力阈值的范围之内,从而保证进入氮气分离部件301中的压缩后的含氮气体保持适宜的压力,进而可保证或提高该膜制氮设备100产出的氮气的纯度。
参见图1,在一些实施例中,膜制氮设备100还包括第三压力检测仪器18,第三压力检测仪器18连接于出气管道303上,且被配置为检测出气管道303内气体的压力。
第三压力检测仪器18与控制装置7耦接,控制装置7还被配置为:若确定第二压力检测仪器16检测的压力与第三压力检测仪器18检测的压力的差值大于相应的设定值,则输出对氮气分离部件301进行排查的提示信息。
这样,可以通过检测氮气分离部件301入口侧和出口侧的压力降判断氮气分离部件301是否处于性能正常的状态,从而及时排查维修氮气分离部件301,以保证膜制氮设备100的性能和效率,进而保证油气田作业现场的作业效率。
需要说明的是,第二压力检测仪器16检测的压力与第三压力检测仪器18检测的压力的差值的设定值,根据氮气分离部件301内的氮气分离膜的特性设定。
需要说明的是,第三压力检测仪器18检测的压力也是氮气输出端3031输出氮气的压力,可以作为应用膜制氮设备100制备的氮气的设备的参考参数,以便于应用膜制氮设备100制备的氮气进行采油作业。
参见图1,在一些实施例中,膜制氮设备100还包括第一压力检测 仪器19,第一压力检测仪器19连接于供气装置1的第一出气口101与预处理装置2的第一进气口201之间,第一压力检测仪器19被配置为检测第一进气口201处的气体压力。
第一压力检测仪器19与控制装置7耦接,控制装置7还被配置为:若确定第一压力检测仪器19检测的压力小于第一压力阈值范围的最小值,则控制供气装置1增大输出压力;若确定第一压力检测仪器19检测到的压力大于第一压力阈值范围的最大值,则控制供气装置1停机。
这样,控制装置7在第一进气口201处的气体压力小于第一压力阈值范围的最小值时,增大供气装置1的输出压力,使压缩后的含氮气体的压力位于制备一定纯度氮气所需的压力阈值的范围之内,从而保证进入氮气分离部件301中的压缩后的含氮气体保持适宜的压力,进而可保证或提高该膜制氮设备100产出的氮气的纯度。此外,通过使控制装置7在第一进气口201处的气体压力大于第一压力阈值范围的最大值时,控制供气装置1停机,从而对设备进行超压保护,进而保证膜制氮设备100的可靠性。
在一些实施例中,第一压力阈值范围的最小值可以是氮气分离部件301的适宜压力范围的最小值与压缩后的含氮气体经过预处理装置2前后的压力降之和,第一压力阈值范围的最大值可以为供气装置1的最大输出压力参数。需要说明的是,氮气分离部件301的适宜压力范围为对氮气分离膜的性能影响较小的压力范围。
在一些实施例中,第一压力检测仪器19、第二压力检测仪器16和第三压力检测仪器18均可为压力传感器。
参见图1,在一些实施例中,膜制氮设备还包括散热器21、第一温度检测仪器20以及第三阀门组件22。
散热器21包括第四进气口211和第五出气口212,第四进气口211与供气装置1的第一出气口101连通,第五出气口212与预处理装置2的第一进气口201连通。
第一温度检测仪器20连接于第一出气口101处。第一温度检测仪器20被配置为检测第一出气口101处气体的温度。
第三阀门组件22位于第一出气口101、第四进气口211与第一进气口201之间。第三阀门组件22在第五状态和第六状态之间可转换,在所述第五状态,第一出气口101与第一进气口201连通,且与第四进气口 211断开;在所述第六状态,第一出气口101与第四进气口211连通,且与第一进气口201断开。
第一温度检测仪器20和第三阀门组件22均与控制装置7耦接,控制装置7还被:若确定第一温度检测仪器20检测到的温度大于第一温度阈值,则控制第三阀门组件22处于所述第六状态。
这样,当压缩后的含氮气体进入预处理装置2之前,若压缩后的含氮气体的温度过高,则使压缩后的含氮气体进入散热器21进行冷却,以保证预处理装置2能够正常工作,从而保证膜制氮设备100的可靠性。
在一些实施例中,第一温度阈值可以根据预处理装置2对压缩后的含氮气体的要求进行设定。例如,第一温度阈值根据冷干机的进气温度要求进行设定,第一温度阈值可以为60℃至65℃,例如,第一温度阈值为60℃、61℃、62℃、63℃、64℃或65℃等。
在一些实施例中,通过设置散热器21的冷却液温度保证经过散热器21冷却的压缩后的含氮气体符合进入预处理装置2中的温度要求。
在一些实施例中,第三阀门组件22与第一阀门组件5类似,在此不再赘述。
参见图1,在一些实施例中,膜制氮设备还包括加热装置23以及第二温度检测仪器24。
加热装置23连接于预处理装置2的第二出气口202与第一阀门组件5之间。加热装置23被配置为对压缩后的含氮气体进行加热。
第二温度检测仪器24连接于加热装置23与氮气分离部件301之间,第二温度检测仪器24被配置为检测压缩后的含氮气体的温度。
加热装置23和第二温度检测仪器24均与控制装置7耦接,控制装置7还被配置为:若确定第二温度检测仪器24检测的温度小于第二温度阈值,则启动加热装置23对压缩后的含氮气体进行加热。
这样,控制装置7通过启动加热装置23,使压缩后的含氮气体的温度大于或等于第二温度阈值,从而保证进入氮气分离部件301中的压缩后的含氮气体保持适宜温度,进而可保证或提高该膜制氮设备100产出的氮气的纯度。
需要说明的是,上述的第二温度阈值根据所需要的氮气纯度和该氮气分离部件301内的氮气分离膜的特性进行确定。例如,第二温度阈值 为30℃或35℃。
在一些实施例中,通过设置加热装置23的加热温度保证经过加热装置23加热后的压缩后的含氮气体符合进入氮气分离部件301中的温度要求,防止压缩后的含氮气体的温度过高,损坏氮气分离膜。
在一些实施例中,第二温度检测仪器24连接于加热装置23与第一阀门组件5之间;或者,第二温度检测仪器24连接于进气管道302上。
参见图1,在一些实施例中,预处理装置2还包括至少一个排污口206。膜制氮设备100还包括至少一个排污装置25。至少一个排污装置25与至少一个排污口206连通。
如图3所示,排污装置25包括储液箱251、液位检测仪器252和第四阀门组件253,储液箱251包括进液口2511和出液口2512。一个排污装置25的进液口2511与一个排污口206连通,出液口2512与第四阀门组件253连通,液位检测仪器252的检测端位于储液箱251内,且被配置为检测储液箱251内液体的液位。
液位检测仪器252和第四阀门组件253与控制装置7耦接,控制装置7还被配置为:若确定液位检测仪器检测的液位高度达到第一高度阈值,则控制第四阀门组件253开启;若确定液位检测仪器252检测的液位高度达到第二高度阈值,则输出对排污装置25进行排查的提示信息;第二高度阈值大于第一高度阈值。
这样,可通过排污装置25实现自动排液,且在排污装置25未正常排液时,及时通知用户排查排污装置25,从而减少因排污装置25故障而导致预处理装置2无法正常工作,进而导致氮气制备进程停止,影响膜制氮设备100的性能和效率的问题。
在一些实施例中,如图1所示,预处理装置2包括三个排污口206,分别位于除水组件203、除油组件204和除尘组件205上,一个排污装置25位于一个与三个排污口206连通的排污管路上。
在一些实施例中,膜制氮设备100还包括至少一个第五阀门组件26,至少一个第五阀门组件26位于与排污装置25所在管路并联的管路上,在排污装置25无法正常工作时,通过手动控制第五阀门组件26进行排液,可保证膜制氮设备100正常运行。
在一些实施例中,通过在排污管路上靠近排污口206处设置压力传 感器,检测排污管路内的压力,控制装置7控制排污管路上的阀门在设定时间段内开启和关闭至少一次,若确定在设定时间段内,压力传感器检测的压力无变化,即排污管路内的液体未排出,则控制装置7输出对排污管路及阀门进行排查的提示信息。
参见图1,在一些实施例中,膜制氮设备100还包括储气装置27,储气装置27连接于供气装置1与预处理装置2之间。如此,储气装置27可作为压缩后的含氮气体的缓冲器,起到稳定和贮存作用,除此之外,储气装置27还可以收集和排出压缩后的含氮气体中的冷凝液。
参见图4,本公开的一些实施例还提供了一种制氮车200或制氮橇300。该制氮车200或制氮橇300包括上述膜制氮设备100。
参见图5,本公开的一些实施例还提供了一种膜制氮设备的控制方法,用于控制上述膜制氮设备100,控制方法包括步骤S100和步骤S200。
步骤S100,接收来自检测装置6检测的参数信息;该参数信息包括含水量参数、含油量参数或固体颗粒度参数中的至少一者。
步骤S200,若确定参数信息中的任一者大于相应的设定值,则控制第一阀门组件5处于所述第二状态。
需要说明的是,制氮车200、制氮橇300以及膜制氮设备的控制方法的有益技术效果与膜制氮设备100的有益技术效果相同,在此不再赘述。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种膜制氮设备,包括:
    供气装置,被配置为对含氮气体进行压缩,所述供气装置包括第一出气口;
    预处理装置,包括第一进气口和第二出气口,所述第一进气口与所述第一出气口连通;所述预处理装置被配置为对来自所述供气装置的压缩后的含氮气体进行预处理,所述预处理包括除水处理、除油处理或除尘处理中的至少一种;
    氮气分离装置,包括氮气分离部件、进气管道和出气管道,所述氮气分离部件包括氮气分离膜,所述进气管道的入口与所述第二出气口连通;所述进气管道的出口与所述氮气分离部件的入口连通,所述出气管道的入口与所述氮气分离部件的出口连通;
    第一管道,包括第二进气口和第三出气口,所述第二进气口与所述第二出气口连通,所述第三出气口与大气连通;
    第一阀门组件,位于所述第二出气口、所述进气管道的入口和所述第二进气口三者之间;所述第一阀门组件在第一状态和第二状态之间可转换,在所述第一状态,所述第二出气口与所述进气管道连通,且与所述第一管道断开;在所述第二状态,所述第二出气口与所述第一管道连通,且与所述进气管道断开;
    检测装置,被配置为检测经所述预处理装置处理后的所述压缩后的含氮气体的参数信息,所述参数信息包括含水量参数、含油量参数或固体颗粒度参数中的至少一者;以及
    控制装置,分别与所述检测装置、所述第一阀门组件耦接,所述控制装置被配置为:接收所述参数信息,若确定所述参数信息中的任一者大于相应的设定值,则控制所述第一阀门组件处于所述第二状态。
  2. 根据权利要求1所述的膜制氮设备,其中,
    所述预处理装置包括除水组件,所述除水组件与所述第一进气口连通,且被配置为对由所述第一进气口流向所述第二出气口的所述压缩后的含氮气体进行除水处理;
    所述检测装置包括露点检测组件,所述露点检测组件连接于所述除水组件的出口侧,且被配置为检测由所述第一进气口流向所述第二出气口的所述压缩后的含氮气体的露点,并输出露点值,所述参数信息包括所述露点值;
    其中,所述露点检测组件与所述控制装置耦接,所述控制装置被配置为: 接收所述露点值;若确定所述露点值大于相应的设定值,则控制所述第一阀门组件处于所述第二状态。
  3. 根据权利要求2所述的膜制氮设备,其中,
    所述控制装置还被配置为:若确定所述露点值大于相应的设定值,则输出对所述除水组件进行排查的提示信息。
  4. 根据权利要求2所述的膜制氮设备,其中,
    所述除水组件包括:
    冷干机,所述冷干机的入口与所述第一进气口连通;和
    第一过滤器,与所述冷干机的出口连通;
    所述膜制氮设备还包括第一压差检测仪器,所述第一压差检测仪器被配置为检测所述第一过滤器的入口处和出口处之间的压力差;
    其中,所述第一压差检测仪器与所述控制装置耦接,所述控制装置还被配置为:若确定所述第一压差检测仪器检测的压力差大于相应的设定值,则输出对所述第一过滤器进行排查的提示信息。
  5. 根据权利要求1至4中任一项所述的膜制氮设备,其中,
    所述预处理装置还包括除油组件,所述除油组件被配置为对由所述第一进气口流向所述第二出气口的所述压缩后的含氮气体进行除油处理;
    所述检测装置还包括油雾检测组件,所述油雾检测组件连接于所述除油组件的出口侧,且被配置为检测所述压缩后的含氮气体的含油量,并输出含油量值,所述参数信息包括所述含油量值;
    其中,所述油雾检测组件与所述控制装置耦接,所述控制装置被配置为:接收所述含油量值;若确定所述含油量值超过相应的设定值,则控制所述第一阀门组件处于所述第二状态。
  6. 根据权利要求5所述的膜制氮设备,其中,
    所述除油组件包括:
    活性炭过滤器,所述活性炭过滤器的入口与所述第一过滤器的出口连通;和
    第二过滤器,所述第二过滤器的入口与所述活性炭过滤器的出口连通;
    所述膜制氮设备还包括:
    第二压差检测仪器,被配置为检测所述第二过滤器的入口处和出口处之间的压力差;
    其中,所述第二压差检测仪器与所述控制装置耦接,所述控制装置还被 配置为:若确定所述第二压差检测仪器检测的压力差大于相应的设定值,则输出对所述第二过滤器进行排查的提示信息。
  7. 根据权利要求1至6中任一项所述的膜制氮设备,其中,
    所述预处理装置还包括除尘组件,所述除尘组件被配置为对由所述第一进气口流向所述第二出气口的所述压缩后的含氮气体进行除尘处理;
    所述检测装置还包括颗粒度检测组件,所述颗粒度检测组件连接于所述除尘组件的出口侧,所述颗粒度检测组件被配置为检测所述压缩后的含氮气体的固体颗粒度,并输出固体颗粒度值,所述参数信息包括所述固体颗粒度值;
    其中,所述颗粒度检测组件与所述控制装置耦接,所述控制装置被配置为:接收所述固体颗粒度值;若确定所述固体颗粒度值超过相应的设定值,则控制所述第一阀门组件处于所述第二状态。
  8. 根据权利要求7所述的膜制氮设备,其中,
    所述除尘组件包括第三过滤器,所述第三过滤器的入口与所述活性炭过滤器的出口连通;
    所述膜制氮设备还包括第三压差检测仪器,所述第三压差检测仪器被配置为检测所述第三过滤器的入口处和出口处之间的压力差;
    其中,所述第三压差检测仪器与所述控制装置耦接,所述控制装置还被配置为:若确定所述第三压差检测仪器检测的压力差大于相应的设定值,则输出对所述第三过滤器进行排查的提示信息。
  9. 根据权利要求1至8中任一项所述的膜制氮设备,其中,
    所述膜制氮设备还包括:
    氮气纯度检测仪,连接于所述出气管道上,所述氮气纯度检测仪被配置为检测所述出气管道内的氮气纯度;
    第二管道,包括第三进气口和第四出气口,所述第三进气口与所述出气管道连通,所述第四出气口与大气连通;以及
    第二阀门组件,位于所述氮气分离部件的出口、所述第三进气口与所述出气管道的氮气输出端之间;所述第二阀门组件在第三状态和第四状态可转换,在所述第三状态,所述氮气分离部件的出口与所述第三进气口连通,且与所述氮气输出端断开,在所述第四状态,所述氮气分离部件的出口与所述氮气输出端连通,且与所述第三进气口断开;
    其中,所述氮气纯度检测仪和所述第二阀门组件与所述控制装置耦接,所述控制装置还被配置为:接收所述氮气纯度;若确定所述氮气纯度小于纯 度阈值,则控制所述第二阀门组件处于所述第三状态。
  10. 根据权利要求9所述的膜制氮设备,其中,
    所述第一管道的所述第三出气口与所述出气管道连通,所述第三出气口位于所述氮气分离部件和所述第二管道的所述第三进气口之间;
    所述膜制氮设备还包括:
    第一单向阀,设置于所述出气管道上,所述第一单向阀位于所述氮气分离部件与所述第一管道的所述第三出气口之间,所述第一单向阀的出口与所述第三出气口连通。
  11. 根据权利要求9所述的膜制氮设备,其中,所述膜制氮设备还包括:
    第二压力检测仪器,连接于所述第二出气口与所述氮气分离部件之间,第二压力检测仪器被配置为检测所述压缩后的含氮气体的压力;以及
    纯度调节阀,连接于所述出气管道上,所述纯度调节阀被配置为调节所述出气管道内的流量;所述氮气纯度检测仪位于所述纯度调节阀和所述氮气分离部件之间;
    其中,所述第二压力检测仪器和所述纯度调节阀与所述控制装置耦接,所述控制装置还被配置为:若确定所述第二压力检测仪器检测的压力大于第二压力阈值范围的最大值,则增加所述纯度调节阀的开度;若确定所述第二压力检测仪器检测的压力小于第二压力阈值范围的最小值,则减小所述纯度调节阀的开度。
  12. 根据权利要求9所述的膜制氮设备,其中,所述膜制氮设备还包括:
    第二压力检测仪器,连接于所述第二出气口与所述氮气分离部件之间,所述第二压力检测仪器被配置为检测所述压缩后的含氮气体的压力;
    其中,所述供气装置、所述第二压力检测仪器与所述控制装置耦接,所述控制装置还被配置为:若确定所述第二压力检测仪器检测的压力大于第二压力阈值范围的最大值,则控制所述供气装置减小输出压力;若确定所述第二压力检测仪器检测的压力小于第二压力阈值范围的最小值,则控制所述供气装置增大输出压力。
  13. 根据权利要求11或12所述的膜制氮设备,其中,所述膜制氮设备还包括:
    第三压力检测仪器,连接于所述出气管道上,所述第三压力检测仪器被配置为检测所述出气管道内的压力;
    所述第三压力检测仪器与所述控制装置耦接,所述控制装置还被配为:若确定所述第二压力检测仪器检测的压力与所述第三压力检测仪器检测的压 力的差值大于相应的设定值,则输出对所述氮气分离部件进行排查的提示信息。
  14. 根据权利要求1至8中任一项所述的膜制氮设备,其中,所述膜制氮设备还包括:
    第一压力检测仪器,连接于所述供气装置的所述第一出气口与所述预处理装置的所述第一进气口之间,所述第一压力检测仪器被配置为检测所述第一进气口处的气体压力;其中,
    所述第一压力检测仪器与所述控制装置耦接,所述控制装置还被配置为:若确定所述第一压力检测仪器检测的压力小于第一压力阈值范围的最小值,则控制所述供气装置增大输出压力;若确定所述第一压力检测仪器检测到的压力大于第一压力阈值范围的最大值,则控制所述供气装置停机。
  15. 根据权利要求1至8中任一项所述的膜制氮设备,还包括:
    散热器,包括第四进气口和第五出气口,所述第四进气口与所述供气装置的所述第一出气口连通,所述第五出气口与所述预处理装置的所述第一进气口连通;
    第一温度检测仪器,连接于所述第一出气口处,以检测所述第一出气口处的温度;以及
    第三阀门组件,位于所述第一出气口、所述第四进气口与所述第一进气口之间;所述第三阀门组件在第五状态和第六状态之间可转换,在所述第五状态,所述第一出气口与所述第一进气口连通,且与所述第四进气口断开;在所述第六状态,所述第一出气口与所述第四进气口连通,且与所述第一进气口断开;
    其中,所述第一温度检测仪器和所述第三阀门组件与所述控制装置耦接,所述控制装置还被配置为:若确定所述第一温度检测仪器检测到的温度大于第一温度阈值,则控制所述第三阀门组件处于所述第六状态。
  16. 根据权利要求1至8中任一项所述的膜制氮设备,其中,所述膜制氮设备还包括:
    加热装置,连通于所述预处理装置的所述第二出气口与所述第一阀门组件之间,加热装置被配置为对所述压缩后的含氮气体进行加热;以及
    第二温度检测仪器,连接于所述加热装置与所述氮气分离部件之间,以检测所述压缩后的含氮气体的温度;
    其中,所述加热装置和所述第二温度检测仪器与所述控制装置耦接,所述控制装置还被配置为:若确定所述第二温度检测仪器检测的温度小于第二 温度阈值,则启动所述加热装置对所述压缩后的含氮气体进行加热。
  17. 根据权利要求1至8中任一项所述的膜制氮设备,其中,
    所述预处理装置还包括排污口;
    所述膜制氮设备还包括排污装置,所述排污装置包括储液箱、液位检测仪器和第四阀门组件,所述储液箱包括进液口和出液口;所述排污装置的所述进液口与所述排污口连通,所述出液口与所述第四阀门组件连通,所述液位检测仪器的检测端位于所述储液箱内;
    所述液位检测仪器和所述第四阀门组件与所述控制装置耦接,所述控制装置还被配置为:若确定所述液位检测仪器检测的液位高度达到第一高度阈值,则控制所述第四阀门组件开启;若确定所述液位检测仪器检测的液位高度达到第二高度阈值,则输出对所述排污装置进行排查的提示信息;所述第二高度阈值大于所述第一高度阈值。
  18. 根据权利要求1至8中任一项所述的膜制氮设备,其中,所述膜制氮设备还包括:
    储气装置,连通于所述供气装置的所述第一出气口与所述预处理装置的所述第一进气口之间。
  19. 根据权利要求9所述的膜制氮设备,其中,所述检测装置与所述预处理装置连接;或者,所述检测装置连接于所述预处理装置与所述第一阀门组件之间。
  20. 一种膜制氮设备的控制方法,其中,所述膜制氮设备包括:
    供气装置,被配置为对含氮气体进行压缩,所述供气装置包括第一出气口;
    预处理装置,包括第一进气口和第二出气口,所述第一进气口与所述第一出气口连通;所述预处理装置被配置为对来自所述供气装置的压缩后的含氮气体进行预处理,所述预处理包括除水处理、除油处理或除尘处理中的至少一种;
    氮气分离装置,包括氮气分离部件、进气管道和出气管道,所述氮气分离部件包括氮气分离膜,所述进气管道的入口与所述第二出气口连通;所述进气管道的出口与所述氮气分离部件的入口连通,所述出气管道的入口与所述氮气分离部件的出口连通;
    第一管道,包括第二进气口和第三出气口,所述第二进气口与所述第二出气口连通,所述第三出气口与大气连通;
    第一阀门组件,位于所述第二出气口、所述进气管道的入口和所述第二 进气口三者之间;所述第一阀门组件在第一状态和第二状态之间可转换,在所述第一状态,所述第二出气口与所述进气管道连通,且与所述第一管道断开;在所述第二状态,所述第二出气口与所述第一管道连通,且与所述进气管道断开;
    检测装置,被配置为检测经所述预处理装置处理后的所述压缩后的含氮气体的参数信息,所述参数信息包括含水量参数、含油量参数或固体颗粒度参数中的至少一者;
    所述控制方法包括:
    接收来自所述检测装置检测的所述参数信息;所述参数信息包括含水量参数、含油量参数或固体颗粒度参数中的至少一者;以及
    若确定所述参数信息中的任一者大于相应的设定值,则控制所述第一阀门组件处于所述第二状态。
PCT/CN2022/132967 2022-01-06 2022-11-18 膜制氮设备及其控制方法 WO2023130844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210011178.0A CN114314530B (zh) 2022-01-06 2022-01-06 膜制氮系统及其控制方法
CN202210011178.0 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023130844A1 true WO2023130844A1 (zh) 2023-07-13

Family

ID=81024141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132967 WO2023130844A1 (zh) 2022-01-06 2022-11-18 膜制氮设备及其控制方法

Country Status (2)

Country Link
CN (1) CN114314530B (zh)
WO (1) WO2023130844A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314530B (zh) * 2022-01-06 2023-04-18 烟台杰瑞石油装备技术有限公司 膜制氮系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574342B1 (en) * 2010-12-27 2013-11-05 Charles M. Flowe Method and apparatus for membrane separation
CN208762140U (zh) * 2018-09-11 2019-04-19 内蒙古伊泰化工有限责任公司 尾气制氢系统
CN209210396U (zh) * 2018-09-06 2019-08-06 西安恒力流体机械有限公司 一种余热回收式膜分离制氮系统
CN112755734A (zh) * 2020-12-28 2021-05-07 海德威科技集团(青岛)有限公司 一种船用氮气信息化制备装置及其控制方法
CN113336200A (zh) * 2021-05-25 2021-09-03 烟台杰瑞石油装备技术有限公司 膜制氮装置及其自动控制方法和制氮车
CN214287463U (zh) * 2020-12-28 2021-09-28 海德威科技集团(青岛)有限公司 一种船用氮气信息化制备装置
CN114314530A (zh) * 2022-01-06 2022-04-12 烟台杰瑞石油装备技术有限公司 膜制氮系统及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100569634C (zh) * 2007-06-20 2009-12-16 张星 用于钻井工艺的复合膜分离制氮系统及膜分离制氮方法
CN201842645U (zh) * 2010-10-26 2011-05-25 天津市纽森科技有限公司 集成有膜分离和变压吸附装置的高纯制氮系统
CN107399723B (zh) * 2016-05-19 2023-06-13 拜默实验设备(上海)股份有限公司 一种连续制备高纯度氮气的装置
CN209651902U (zh) * 2019-01-28 2019-11-19 北京长顺安达测控技术有限公司 一种充环气调膜分离制氮控制装置
CN214880228U (zh) * 2021-05-25 2021-11-26 烟台杰瑞石油装备技术有限公司 膜制氮装置和制氮车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574342B1 (en) * 2010-12-27 2013-11-05 Charles M. Flowe Method and apparatus for membrane separation
CN209210396U (zh) * 2018-09-06 2019-08-06 西安恒力流体机械有限公司 一种余热回收式膜分离制氮系统
CN208762140U (zh) * 2018-09-11 2019-04-19 内蒙古伊泰化工有限责任公司 尾气制氢系统
CN112755734A (zh) * 2020-12-28 2021-05-07 海德威科技集团(青岛)有限公司 一种船用氮气信息化制备装置及其控制方法
CN214287463U (zh) * 2020-12-28 2021-09-28 海德威科技集团(青岛)有限公司 一种船用氮气信息化制备装置
CN113336200A (zh) * 2021-05-25 2021-09-03 烟台杰瑞石油装备技术有限公司 膜制氮装置及其自动控制方法和制氮车
CN114314530A (zh) * 2022-01-06 2022-04-12 烟台杰瑞石油装备技术有限公司 膜制氮系统及其控制方法

Also Published As

Publication number Publication date
CN114314530A (zh) 2022-04-12
CN114314530B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
JP2789548B2 (ja) 多段膜制御装置及び方法
WO2023130844A1 (zh) 膜制氮设备及其控制方法
CN110697655B (zh) 一种膜分离浓缩回收氢气的方法及系统装置
KR20180007519A (ko) 바이오 가스로부터 메탄 회수율을 향상시킬 수 있는 다단 분리막 시스템
CN106348261A (zh) 制氮装置
CN111467913A (zh) 一种炼厂尾气综合回收利用工艺及其设备
CN214611527U (zh) 一种可回收不合格氧气的制氧设备
CN112938903B (zh) 一种用于手术室、icu的制氧供气装置及方法
CN100569634C (zh) 用于钻井工艺的复合膜分离制氮系统及膜分离制氮方法
CN207865034U (zh) 一种燃气调压系统
WO2023066105A1 (zh) 一种锅炉烟道气同步回收氮气和二氧化碳的系统和方法
CN112498712A (zh) 一种联合中空纤维膜和分子筛机载油箱惰化装置
CN108786323B (zh) 一种气体组分的分离装置
CN206616012U (zh) 医用制氧提纯装置
CN105126533A (zh) 天然气吸附塔控制方法、装置、系统及净化系统
KR102247315B1 (ko) 고압 이산화탄소 가스 정제장치
CN205556097U (zh) 高效分子筛制氧机
CN214693322U (zh) 一种用于手术室、icu的制氧供气装置
JP3951569B2 (ja) ガス分離膜の運転方法
CN204865444U (zh) 一种油气回收后端精细处理系统
CN212403472U (zh) 一种氦气回收提纯装置
CN212687562U (zh) 一种医用一体制氧设备
CN210825426U (zh) 氮气发生器
CN111573643A (zh) 一种氦气回收提纯装置和方法
CN219586050U (zh) 一种天然气膜法脱碳系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE