WO2017054342A1 - 一种全息投影方法、装置及计算机存储介质 - Google Patents

一种全息投影方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2017054342A1
WO2017054342A1 PCT/CN2015/098785 CN2015098785W WO2017054342A1 WO 2017054342 A1 WO2017054342 A1 WO 2017054342A1 CN 2015098785 W CN2015098785 W CN 2015098785W WO 2017054342 A1 WO2017054342 A1 WO 2017054342A1
Authority
WO
WIPO (PCT)
Prior art keywords
subgraph
sub
amplitude distribution
complex amplitude
hologram
Prior art date
Application number
PCT/CN2015/098785
Other languages
English (en)
French (fr)
Inventor
夏心怡
夏军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017054342A1 publication Critical patent/WO2017054342A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms

Definitions

  • the present invention relates to projection technology in the field of display, and in particular to a holographic projection method, apparatus and computer storage medium.
  • the computer when performing three-dimensional display, the computer may first describe a three-dimensional scene to be displayed by using a stereo holographic algorithm, and then obtain a computer-generated hologram (CGH) by mathematical description of the stereo holographic algorithm, and then The 3D scene is reconstructed by the CGH.
  • the traditional stereo holography algorithm is similar to integrated imaging, that is, firstly generate multi-angle two-dimensional disparity map by digital or optical, then apply Fourier transform to each disparity map, and splicing into a final complete hologram according to the shooting sequence. That is, the hologram is spatially divided into a plurality of solid elements, each of which corresponds to a Fourier spectrum of the disparity map taken at the corresponding angle.
  • phase-type devices which can only reflect phase information
  • 3D display only 3D images can be reconstructed based on phase holograms.
  • the phase hologram is a hologram obtained by directly taking the phase of each disparity map after performing Fourier transform on each disparity map, and the three-dimensional image reconstructed only by the phase information is lost due to the depth information, resulting in the finally obtained three-dimensional image.
  • the error with the original 3D scene is large, and the 3D display is not good.
  • Embodiments of the present invention are directed to provide a holographic projection method, apparatus, and computer storage medium, which can reduce errors in reconstructing a three-dimensional image from an original three-dimensional scene, and improve the effect of three-dimensional display.
  • an embodiment of the present invention provides a holographic projection method, including:
  • the holographic projection is performed in accordance with the phase hologram to reconstruct the three-dimensional scene.
  • the sub-hologram obtained by using the GS to iteratively acquire each sub-picture includes:
  • the original gray scale corresponding to each subgraph is used to replace the amplitude factor of the complex amplitude distribution of the light field of each subgraph on the imaging surface, and the new optical field complex amplitude distribution of each subgraph on the imaging surface is obtained;
  • each subgraph has a phase factor difference of a complex amplitude distribution of the optical field of the holographic surface that is less than a preset threshold;
  • Obtaining a phase factor of a complex amplitude distribution of the light field of each subgraph obtained at the Nth time on the holographic surface, and a phase factor of the complex amplitude distribution of each of the subgraphs on the holographic surface is a sub-hologram corresponding to each subgraph.
  • the obtaining a phase hologram of the three-dimensional scene according to the sub-hologram of each sub-picture includes:
  • Sub-holograms of each sub-picture are encoded using equation (1);
  • the formula (1) is:
  • the angle value representing the sub-hologram of each subgraph Representing a coded angle value corresponding to each subgraph obtained after phase encoding
  • the phase sub-hologram of each sub-picture is arranged according to the order of view of each sub-picture to obtain a phase hologram of the three-dimensional scene.
  • the acquiring at least one sub-picture of the three-dimensional scene includes:
  • At least one camera is provided, the camera sensor of each camera being located at an imaging position of the lens lens of the camera;
  • Each camera separately captures an image of the three-dimensional scene corresponding to a perspective, the image being a sub-picture of the three-dimensional scene on a corresponding perspective.
  • the acquiring at least one sub-picture of the three-dimensional scene includes:
  • At least one camera is provided, the camera sensor of each camera being located at a focus position of the lens lens of the camera;
  • Each camera separately captures an image of the three-dimensional scene corresponding to a viewing angle
  • a set of pixel points at the same position of each image is formed into an orthogonal projection image, which is a sub-picture of the three-dimensional scene on a corresponding viewing angle.
  • an embodiment of the present invention further provides a holographic projection apparatus, including:
  • An acquisition unit configured to acquire at least one sub-picture of the three-dimensional scene
  • An acquiring unit configured to acquire a sub-hologram of each sub-picture by using a Gauss-Seidel (GS) iteration; and acquiring a phase hologram of the three-dimensional scene according to the sub-hologram of each sub-picture;
  • GS Gauss-Seidel
  • a reconstruction unit configured to perform holographic projection according to the phase hologram to reconstruct the three-dimensional scene.
  • the acquiring unit is configured to:
  • the original gray scale corresponding to each subgraph is used to replace the amplitude factor of the complex amplitude distribution of the light field of each subgraph on the imaging surface, and the new optical field complex amplitude distribution of each subgraph on the imaging surface is obtained;
  • each subgraph has a phase factor difference of a complex amplitude distribution of the optical field of the holographic surface that is less than a preset threshold;
  • Obtaining a phase factor of a complex amplitude distribution of the light field of each subgraph obtained at the Nth time on the holographic surface, and a phase factor of the complex amplitude distribution of each of the subgraphs on the holographic surface is a sub-hologram corresponding to each subgraph.
  • the acquiring unit is configured to:
  • Sub-holograms of each sub-picture are encoded using equation (1);
  • the formula (1) is:
  • the angle value representing the sub-hologram of each subgraph Representing a coded angle value corresponding to each subgraph obtained after phase encoding
  • the phase sub-hologram of each sub-picture is arranged according to the order of view of each sub-picture to obtain a phase hologram of the three-dimensional scene.
  • the collecting unit is configured to:
  • At least one camera is provided, the camera sensor of each camera being located at an imaging position of the lens lens of the camera;
  • Each camera separately captures an image of the three-dimensional scene corresponding to a perspective, the image being a sub-picture of the three-dimensional scene on a corresponding perspective.
  • the collecting unit is configured to:
  • At least one camera is provided, the camera sensor of each camera being located at a focus position of the lens lens of the camera;
  • Each camera separately captures an image of the three-dimensional scene corresponding to a viewing angle
  • a set of pixel points at the same position of each image is formed into an orthogonal projection image, which is a sub-picture of the three-dimensional scene on a corresponding viewing angle.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are configured to perform the holographic projection method according to the embodiment of the present invention.
  • Embodiments of the present invention provide a holographic projection method, apparatus, and computer storage medium, the method comprising: acquiring at least one sub-picture of a three-dimensional scene; and acquiring a sub-hologram of each sub-picture by using a Gauss-Seidel (GS) iteration; a sub-hologram of the Zhangzi map to obtain the three-dimensional scene Phase hologram; holographic projection according to the phase hologram to reconstruct the three-dimensional scene.
  • GS Gauss-Seidel
  • the sub-hologram of each subgraph is obtained by GS iteration, so that the complex amplitude distribution of the light field of the sub-hologram of each subgraph converges to the complex amplitude distribution of the original light field of each subgraph, and the depth information of the 3D scene is retained to the utmost extent.
  • the error of reconstructing the three-dimensional image and the original three-dimensional scene is reduced, and the effect of the three-dimensional display is improved.
  • FIG. 1 is a flowchart of a holographic projection method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a projection device according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of another holographic projection method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a holographic projection apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a holographic projection method according to an embodiment of the present invention
  • Step 101 Acquire at least one subgraph of the three-dimensional scene.
  • the camera sensor may be located at the imaging position of the lens lens, that is, the projection lines intersect at the main point of the corresponding camera lens, and the camera sensor may also be located at the lens.
  • the focus position of the lens, that is, the projection line is parallel to the optical axis of the corresponding camera lens, which is not limited in this embodiment of the present invention.
  • Step 102 Acquire a sub-hologram of each sub-picture by using GS iteration.
  • the principle of the Gauss-Seidel (GS) iteration is simple, the calculation requires that the memory of the computer is not high, the programming is easy to implement, and the optical field complex amplitude distribution of the sub-hologram of each subgraph is made due to the convergence of the GS iteration. Converging the complex amplitude distribution of the original light field of the corresponding subgraph, The difference between the sub-hologram of the subgraph and the original subgraph is reduced.
  • Step 103 Acquire a phase hologram of the three-dimensional scene according to the sub-hologram of each sub-picture.
  • the angle value of the complex amplitude distribution of the light field of each sub-hologram of the sub-picture can be encoded, and the coded angle value of the complex amplitude distribution of the optical field of each phase sub-hologram is obtained, and then the complex amplitude of the coded optical field is obtained.
  • the phase factor of the distribution which is the phase sub-hologram corresponding to each subgraph.
  • the phase sub-hologram of each sub-picture is sequentially acquired, and the phase sub-hologram of each sub-picture is arranged in order of view to obtain a phase hologram of the three-dimensional scene.
  • the sub-hologram of each sub-picture may be first arranged in order of view to obtain a hologram of the three-dimensional scene, and then the angle value of the complex amplitude distribution of the light field of each sub-hologram of the sub-picture is encoded to obtain a three-dimensional scene.
  • Phase hologram may be selected according to the actual situation, which is not limited by the embodiment of the present invention.
  • Step 104 Perform holographic projection according to the phase hologram to reconstruct the three-dimensional scene.
  • the projection device may be used to complete the projection of the phase hologram.
  • the projection device may include a phase spatial light modulator 201, a beam splitting prism 202, a screen 203, a monochrome laser 204, a polarizing plate 205, and a projection as shown in FIG. Computer 206.
  • the projection computer 206 is coupled to the phase spatial light modulator 201, and the projection computer 206 can be a computer that generates a hologram configured to load a phase hologram into the phase spatial light modulator 201.
  • phase spatial light modulator 201, the dichroic prism 202, and the screen 203 are sequentially disposed, and the phase spatial light modulator 201, the dichroic prism 202, and the screen 203 are on the same straight line,
  • the monochromatic laser 204 and the polarizing plate 205 are disposed on one side of the dichroic prism 202, and the polarizing plate 205 is located between the dichroic prism 202 and the monochromatic laser 204.
  • the sub-hologram of each subgraph is obtained by GS iteration, so that the complex amplitude distribution of the light field of the sub-hologram of each subgraph converges to the complex amplitude distribution of the original light field of each subgraph, and the depth of field information of the three-dimensional scene is retained to the utmost extent. Smaller to reconstruct the error between the 3D image and the original 3D scene, Improve the effect of 3D display.
  • the original optical field complex amplitude distribution of each sub-picture may be first obtained, and the original optical field complex amplitude distribution of each sub-picture is subjected to Fourier transform.
  • the complex amplitude distribution of the optical field of each sub-picture hologram is obtained, and then the phase factor of the complex amplitude distribution of the holographic surface of each sub-picture is inverse Fourier transformed, and the complex amplitude distribution of the optical field of each sub-picture on the imaging surface is obtained.
  • the original gray scale of each subgraph corresponds to the amplitude factor of the complex amplitude distribution of the light field on each image plane of each subgraph, and the new light field complex amplitude distribution of each subgraph on the imaging surface is obtained, and the new light field of each subgraph on the imaging surface is obtained.
  • the complex amplitude distribution is Fourier transformed, and the complex amplitude distribution of the light field of each subgraph on the holographic surface is obtained again.
  • the phase factor of the complex amplitude distribution of the holographic surface of each subgraph is repeatedly performed to perform inverse Fourier transform to obtain each subgraph.
  • the complex amplitude of the light field on the imaging surface is distributed to the Fourier transform of the new optical field complex amplitude distribution of each subgraph on the imaging surface.
  • the step of obtaining the complex amplitude distribution of the light field of each subgraph on the holographic surface is obtained again, until the phase factor of the complex amplitude distribution of the light field of each subgraph obtained on the hologram is obtained in the Nth time, and each subgraph corresponding to the N-1th time is obtained on the holographic surface.
  • the difference of the phase factors of the complex amplitude distribution of the light field is less than a preset threshold; the phase factor of the complex amplitude distribution of the optical field of each subgraph obtained at the Nth time is obtained, and the amplitude distribution of each subgraph in the optical field of the holographic surface is
  • the phase factor is the sub-hologram corresponding to each subgraph.
  • the sub-hologram of each sub-picture may be encoded by using formula (1); the formula (1) is:
  • the angle value representing the sub-hologram of each subgraph Indicates the coded angle value corresponding to each subgraph obtained after phase encoding.
  • phase sub-hologram corresponding to each sub-picture is obtained according to the coding angle value corresponding to each sub-picture; and the phase sub-hologram of each sub-picture is arranged according to the view order of each sub-picture A phase hologram of the three-dimensional scene is obtained.
  • At least one camera when acquiring at least one sub-picture of the three-dimensional scene, at least one camera may be disposed according to different viewing angles, and a camera sensor of each camera is located at an imaging position of a lens lens of the camera, and then each camera separately captures a corresponding viewing angle.
  • At least one camera when acquiring at least one sub-picture of the three-dimensional scene, at least one camera may be disposed according to different viewing angles, and a camera sensor of each camera is located at a focus position of the lens lens of the camera, and then each camera separately captures a corresponding viewing angle.
  • the image of the three-dimensional scene is a set of pixel points at the same position of each image to form an orthogonal projection image, and the orthogonal projection image is a sub-graph of the three-dimensional scene on a corresponding viewing angle.
  • An embodiment of the present invention provides a holographic projection method, the method comprising: acquiring at least one sub-picture of a three-dimensional scene; acquiring a sub-hologram of each sub-picture by using a Gauss-Seidel (GS) iteration; and sub-hologram according to each sub-picture, Acquiring a phase hologram of the three-dimensional scene; performing holographic projection according to the phase hologram to reconstruct the three-dimensional scene.
  • GS Gauss-Seidel
  • the sub-hologram of each subgraph is obtained by GS iteration, so that the complex amplitude distribution of the light field of the sub-hologram of each subgraph converges to the complex amplitude distribution of the original light field of each subgraph, and the depth of field information of the three-dimensional scene is retained to the utmost extent.
  • the error of reconstructing the three-dimensional image and the original three-dimensional scene is small, and the effect of the three-dimensional display is improved.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are configured to perform the holographic projection method according to the embodiment of the invention.
  • FIG. 3 is a flowchart of another holographic projection method according to an embodiment of the present invention; as shown in FIG. 3, the method includes:
  • Step 301 Acquire at least one subgraph of the three-dimensional scene.
  • a plurality of cameras are disposed on different viewing angles of the three-dimensional scene, and the camera sensor may be located at an imaging position of the lens lens or at a focus position of the lens lens. Set it up.
  • the image acquired by each camera sensor is a sub-picture of the corresponding angle of view of the three-dimensional scene, and the sub-pictures of the multiple viewing angles are respectively acquired, so that multiple sub-pictures can be acquired;
  • the camera sensor is located When the lens lens is in the focus position, each camera sensor is configured to acquire a basic image of the three-dimensional scene at a corresponding angle of view, and combine the pixels of the same position of each basic image to form an orthogonal projection image, the orthogonal The projected image, that is, the three-dimensional scene is in the sub-picture corresponding to the viewing angle, and the sub-pictures of the multiple viewing angles are respectively acquired, and multiple sub-pictures can be acquired.
  • Step 302 Acquire a primary optical field complex amplitude distribution G 1 exp(-i ⁇ 1 ) of the reference subgraph.
  • the reference sub-picture is any one of the at least one sub-picture, that is, the embodiment of the present invention is described by taking a reference sub-picture as an example.
  • each subgraph can be represented by a complex amplitude distribution of the optical field.
  • the original light field complex amplitude distribution of the reference subgraph may be expressed as G 1 exp( ⁇ i ⁇ 1 ), where G 1 is the original gray scale of the reference subgraph, and exp( ⁇ i ⁇ 1 ) is the reference subgraph.
  • the original phase factor is the original phase factor.
  • Step 303 performing a Fourier transform on the original optical field complex amplitude distribution G 1 exp(-i ⁇ 1 ) of the reference subgraph to obtain a complex amplitude distribution H 1 exp(-i ⁇ H1 ) of the reference subgraph on the holographic surface.
  • the original light field complex amplitude distribution G 1 exp(-i ⁇ 1 ) of the reference subgraph is a complex number
  • the complex amplitude distribution of the light field can be processed by Fourier transform in the complex variable function.
  • the specific Fourier transform process belongs to the prior art, and the embodiments of the present invention are not described herein.
  • Step 304 Preserve the phase factor exp(-i ⁇ H1 ) in the complex amplitude distribution H 1 exp(-i ⁇ H1 ) of the light field of the holographic surface of the reference subgraph.
  • H 1 is the gray scale of the reference subgraph on the holographic surface
  • exp(-i ⁇ H1 ) is the phase factor of the reference subgraph on the holographic surface
  • Step 305 Perform inverse Fourier transform on the phase factor exp(-i ⁇ H1 ) of the complex amplitude distribution of the light field of the reference subgraph to obtain a complex amplitude distribution of the light field of the reference subgraph on the imaging plane G 2 exp( -i ⁇ 2 ).
  • the phase factor with reference to FIG sub light field complex amplitude distribution of the hologram surface exp (-i ⁇ H1) is a complex number
  • the phase factor can be processed using an inverse Fourier transform of the complex function. After the inverse Fourier transform is performed on the phase factor exp(-i ⁇ H1 ) of the complex amplitude distribution of the holographic surface, the complex amplitude distribution G 2 exp(-i ⁇ 2 ) of the reference subgraph on the imaging plane can be obtained again. ), where G 2 is the gray scale of the reference subgraph on the imaging plane, and exp(-i ⁇ 2 ) is the phase factor of the reference subgraph on the imaging plane.
  • Step 306 replacing the amplitude factor G 2 of the complex amplitude distribution G 2 exp(-i ⁇ 2 ) of the light field on the imaging plane by using G 1 , and obtaining a new optical field complex amplitude distribution G of the reference subgraph on the imaging plane. 0 exp (-i ⁇ 2).
  • a hologram is formed by using a phase factor exp(-i ⁇ H1 ) of a complex amplitude distribution of a light field of a holographic surface after only one time of Fourier transform, and the hologram is used for three-dimensional projection, the error will be Larger, because the process of projection using hologram is equivalent to the process of one inverse Fourier transform, and the exponential Fourier transform of exp(-i ⁇ H1 ) is G 2 exp(-i ⁇ 2 ) and the original reference subgraph.
  • the original optical field complex amplitude distribution G 1 exp(-i ⁇ 1 ) has a large difference.
  • GS iteration can be used to process exp(-i ⁇ H1 ). Specifically, first, after exp(-i ⁇ H1 ) Fourier transform of the complex amplitude of the reference sub FIG optical field of the imaging plane G 2 exp (-i ⁇ 2) distribution, using the original reference sub-picture replacement gray scale G 1 G 2, to obtain new reference sub-picture in the imaging plane The light field complex amplitude distribution G 0 exp(-i ⁇ 2 ).
  • Step 307 performing a Fourier transform on the new light field complex amplitude distribution G 0 exp(-i ⁇ 2 ) of the reference subgraph on the imaging surface, and again obtaining the light field complex amplitude distribution H 2 exp of the reference subgraph on the holographic surface ( -i ⁇ H2 ).
  • the new light field complex amplitude distribution G 0 exp(-i ⁇ 2 ) of the reference subgraph on the imaging plane is a complex number
  • the Fourier transform can also be performed, and the optical field complex amplitude distribution of the imaging surface is once repeated.
  • the complex amplitude distribution of the light field of each subgraph hologram is obtained, that is, the new subfield complex amplitude distribution of the reference subgraph on the imaging surface is subjected to the Fourier transform for the second time to obtain the reference subgraph on the holographic surface.
  • Step 308 repeat steps 304 to 307 until the Nth time of the reference subgraph is obtained on the holographic surface of the light field complex amplitude distribution H N exp (-i ⁇ HN ) phase factor and the N-1th reference subgraph is in the hologram
  • the difference in the phase factor of the surface complex amplitude distribution H N-1 exp(-i ⁇ HN-1 ) is less than a preset threshold.
  • step 304 to step 307 to complete the GS iteration.
  • the N-th time of the reference subgraph is obtained on the holographic surface of the light field complex amplitude distribution H N exp(-i ⁇ HN )
  • the gray scale converges on the original gray scale G 1 of the reference subgraph, that is, the difference between H N and G 1 is small.
  • the complex amplitude distribution H N exp (-i ⁇ HN of the light field of the reference subgraph on the holographic surface is obtained for the Nth time.
  • the phase factor exp(-i ⁇ HN ) also converges to the original phase factor exp(-i ⁇ 1 ) of the reference subgraph, ie, the difference between exp(-i ⁇ HN ) and exp(-i ⁇ 1 ) is small.
  • the complex amplitude distribution H N exp(-i ⁇ HN ) of the holographic surface is a gradual convergence process.
  • the threshold can be set in advance, that is, the preset threshold.
  • the phase factor of the complex amplitude distribution H N exp(-i ⁇ HN ) of the reference subgraph on the holographic surface and the N-th When the difference of the phase factors of the light field complex amplitude distribution H N-1 exp(-i ⁇ HN-1 ) of the holographic surface is less than the preset threshold value, the Nth time is obtained.
  • the light field complex amplitude distribution H N exp(-i ⁇ HN ) has converge to the reference sub-picture original light field complex amplitude distribution G 1 exp(-i ⁇ 1 ), which can stop the GS iteration.
  • the preset threshold may be 0.0001, which may be set according to the accuracy requirement in an actual application, which is not limited by the embodiment of the present invention.
  • the preset iteration number can also be set according to the specific situation.
  • the number of GS iterations reaches the preset number of iterations, it indicates that the N-th order of the reference sub-graph is obtained on the holographic surface of the reference image H N exp(-i ⁇ HN Having converge to the reference sub-picture original optical field complex amplitude distribution G 1 exp(-i ⁇ 1 ), the GS iteration can be stopped, which is not described in the present invention.
  • Step 309 encoding the phase factor exp(-i ⁇ HN ) of the light field complex amplitude distribution H N exp(-i ⁇ HN ) of the holographic surface of the reference subgraph obtained by the Nth time to obtain a phase sub-hologram of the reference subgraph.
  • the complex amplitude distributions of the light fields of the holographic planes of the respective sub-pictures converge to the complex amplitude distribution of the original light field are sequentially acquired, and then the sub-holograms of the respective sub-pictures are spliced according to the order of the different sub-pictures to obtain a hologram.
  • the sub-hologram is the phase factor of the complex amplitude distribution of the optical field of the holographic surface finally obtained by each subgraph, and encodes the phase factor of the complex amplitude distribution of the optical field of each subgraph.
  • formula (1) can be used:
  • the coded angle value of the complex amplitude of the light field of the reference subgraph after encoding that is, the complex amplitude distribution of the light field on the holographic surface obtained by the Nth time after encoding is
  • the complex amplitude distribution of the light field of the holographic surface obtained by the reference subgraph obtained after the encoding for the Nth time is Phase factor Refer to the phase sub-hologram of the subgraph.
  • phase hologram of the encoded subgraphs is used to form a phase hologram.
  • Step 310 Perform three-dimensional projection according to the phase sub-hologram.
  • the projection apparatus is shown in FIG. 2 and includes a phase spatial light modulator 201, a beam splitting prism 202, a screen 203, a monochrome laser 204, a polarizing plate 205, and a projection computer 206.
  • the projection computer 206 is coupled to the phase spatial light modulator 201, and the projection computer 206 can cause a computer that generates a hologram to be configured to load a phase hologram into the phase spatial light modulator 201.
  • phase spatial light modulator 201, the dichroic prism 202, and the screen 203 are sequentially disposed, and the phase spatial light modulator 201, the dichroic prism 202, and the screen 203 are on the same straight line,
  • the monochromatic laser 204 and the polarizing plate 205 are disposed on one side of the dichroic prism 202, and the polarizing plate 205 is located between the dichroic prism 202 and the monochromatic laser 204.
  • the plane wave emitted by the monochromatic laser 204 becomes polarized light through the polarizing plate 205, and the polarized light passes through the dichroic prism 202 and can be incident into the phase spatial light modulation.
  • the phase spatial light modulator 201 then modulates the incident polarized light according to the loaded phase hologram, and then emits the modulated light, and the modulated light passes through the dichroic prism 202 and is projected in the device.
  • the three-dimensional projection can be completed.
  • the embodiment of the invention provides a holographic projection method and device, which can obtain the sub-hologram of each sub-picture by GS iteratively, so that the complex amplitude distribution of the light field of each sub-picture sub-hologram converges to the original optical field complex amplitude distribution of each sub-picture.
  • the depth information of the 3D scene is retained to the utmost extent, and the error of reconstructing the 3D image and the original 3D scene is reduced, and the effect of the 3D display is improved.
  • FIG. 4 is a schematic structural diagram of a holographic projection device according to an embodiment of the present invention.
  • the collecting unit 401 is configured to collect at least one sub-picture of the three-dimensional scene
  • the obtaining unit 402 is configured to acquire a sub-hologram of each sub-picture by using a Gauss-Seidel (GS) iteration; and acquiring a phase hologram of the three-dimensional scene according to the sub-hologram of each sub-picture;
  • GS Gauss-Seidel
  • the reconstruction unit 403 is configured to perform holographic projection according to the phase hologram to reconstruct the three-dimensional scene.
  • the obtaining unit 402 obtains the sub-hologram of each subgraph by GS iteration, so that the complex amplitude distribution of the light field of the sub-hologram of each subgraph converges to the complex amplitude distribution of the original light field of each subgraph, and the three-dimensional scene is retained to the utmost extent.
  • the depth of field information reduces the error of the reconstructed unit reconstructing the three-dimensional image from the original three-dimensional scene, and improves the effect of the three-dimensional display.
  • the acquiring unit 402 is configured to: acquire a complex amplitude distribution of the original light field of each subgraph; perform Fourier transform on the complex amplitude distribution of the original light field of each subgraph to obtain light of each subgraph holographic surface Field complex amplitude distribution; inverse phase Fourier transform is performed on the phase factor of the complex amplitude distribution of the holographic surface of each subgraph, and the complex amplitude distribution of the light field of each subgraph on the imaging plane is obtained; the original gray scale corresponding replacement of each subgraph is used.
  • the amplitude factor of the complex amplitude distribution of the light field of each subgraph on the imaging surface is obtained; the Fourier transform of the new optical field complex amplitude distribution of each subgraph on the imaging surface is performed. , again obtain the complex amplitude distribution of the light field of each subgraph on the holographic surface; repeatedly perform the inverse Fourier transform on the phase factor of the complex amplitude distribution of the holographic surface of each subgraph, and obtain the optical field complex of each subgraph on the imaging surface.
  • the amplitude is distributed to Fourier transform of the new optical field complex amplitude distribution of each subgraph on the imaging surface, and each subgraph is again obtained on the holographic surface.
  • the difference of the phase factors of the complex amplitude distribution of the light field of each subgraph in the holographic surface is less than a preset threshold; the phase factor of the complex amplitude distribution of the light field of each subgraph obtained at the Nth time is obtained, and each subgraph is on the holographic surface
  • the phase factor of the complex amplitude distribution of the light field is the sub-hologram corresponding to each subgraph.
  • the obtaining unit 402 is configured to: encode a sub-hologram of each sub-picture by using formula (1); the formula (1) is:
  • the angle value representing the sub-hologram of each subgraph Representing a coded angle value corresponding to each subgraph obtained after phase encoding
  • the collecting unit 401 is configured to:
  • At least one camera is provided, the camera sensor of each camera being located at an imaging position of the lens lens of the camera; each camera respectively capturing an image of the three-dimensional scene corresponding to the angle of view, the image being the three-dimensional A subgraph of the scene at the corresponding perspective.
  • the collecting unit 401 is configured to:
  • each camera is located at a focus position of the lens lens of the camera; each camera respectively captures an image of the three-dimensional scene at a corresponding viewing angle;
  • the set of pixel points forms an orthogonal projection image, which is a sub-picture of the three-dimensional scene on a corresponding viewing angle.
  • the embodiment of the present invention provides a holographic projection device, the device includes an acquisition unit 401 configured to acquire at least one sub-picture of a three-dimensional scene, and an acquisition unit 402 configured to obtain each sub-picture by iteratively using a Gauss-Seidel (GS) iteration. a hologram; and acquiring a phase hologram of the three-dimensional scene according to the sub-hologram of each sub-picture; and a reconstruction unit 403 configured to perform holographic projection according to the phase hologram to reconstruct the three-dimensional scene.
  • GS Gauss-Seidel
  • each piece is obtained through GS iteration
  • the sub-hologram of the graph makes the complex amplitude distribution of the light field of each sub-hologram converge to the complex amplitude distribution of the original light field of each subgraph, maximally retaining the depth information of the three-dimensional scene, and reducing the reconstructed three-dimensional image and original
  • the error of the three-dimensional scene improves the effect of the three-dimensional display.
  • the acquisition unit 401 and the acquisition unit 402 may be configured by a central processing unit (CPU) or a microprocessor (MPU) located in a computer. , Digital Signal Processor (DSP), or Field Programmable Gate Array (FPGA) implementation.
  • the reconstruction unit 403 is implemented by a projection device that is arranged.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the sub-hologram of each sub-picture is obtained by GS iteration, so that the complex amplitude distribution of the light field of each sub-hologram converges to the complex amplitude distribution of the original light field of each sub-picture, and the depth information of the three-dimensional scene is retained to the utmost extent.
  • the error of reconstructing the three-dimensional image and the original three-dimensional scene is reduced, and the effect of the three-dimensional display is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

一种全息投影方法,包括:采集三维场景的至少一张子图;采用高斯-赛德尔(GS)迭代获取每张子图的子全息图;根据每张子图的子全息图,获取三维场景的相位全息图;按照相位全息图进行全息投影,重建三维场景。还公开了一种全息投影装置。

Description

一种全息投影方法、装置及计算机存储介质 技术领域
本发明涉及显示领域的投影技术,尤其涉及一种全息投影方法、装置及计算机存储介质。
背景技术
随着显示技术的发展,用户对显示效果的要求也越来越高。由于全息显示技术可以重建三维场景,因此被认为是未来显示技术最有潜力的发展方向。
现有技术中,在进行三维显示时,计算机可以首先采用立体全息算法描述需要显示的三维场景,然后通过立体全息算法的数学描述得到计算机生成的全息图(Computer-Generated Holograms,CGH),进而可以通过该CGH重建三维场景。传统的立体全息算法类似于集成成像,即首先利用数字或光学生成多角度二维视差图,然后对每张视差图施加傅里叶变换,并按照拍摄顺序拼接成最终的一张完整的全息图,即全息图在空间上被分割成许多立体单元,每个单元对应的是相应角度拍摄的视差图的傅里叶频谱图。
但是,在重建三维场景过程中所用的器件大部分为相位型器件,该类器件仅能反应相位信息,因此在三维显示时,仅能根据相位全息图进行三维图像的重建。所述相位全息图是在对各个视差图进行傅里叶变换后直接取各视差图的相位得到的全息图,而仅采用相位信息重建的三维图像由于景深信息的丢失,导致最终得到的三维图像与原始的三维场景误差较大,三维显示效果不佳。
发明内容
本发明实施例期望提供一种全息投影方法、装置及计算机存储介质,能够减小重建三维图像与原始三维场景的误差,提高三维显示的效果。
本发明实施例的技术方案是这样实现的:
一方面,本发明实施例提供一种全息投影方法,包括:
采集三维场景的至少一张子图;
采用高斯-赛德尔(Gauss-Seidel,GS)迭代获取每张子图的子全息图;
根据每张子图的子全息图,获取所述三维场景的相位全息图;
按照所述相位全息图进行全息投影,重建所述三维场景。
作为一种实施方式,所述采用GS迭代获取每张子图的子全息图包括:
获取每张子图的原始光场复振幅分布;
对每张子图的所述原始光场复振幅分布进行傅里叶变换,得到每张子图全息面的光场复振幅分布;
对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布;
采用每张子图的原始灰阶对应替换每张子图在成像面上的光场复振幅分布的振幅因子,得到每张子图在成像面的新的光场复振幅分布;
对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布;
重复执行对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布至对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布的步骤,直至第N次得到每张子图在全息面的光场复振幅分布的相位因子与第N-1次得到对应的每张子图在全息面的光场复振幅分布的相位因子的差小于预设阈值;
获取第N次得到的每张子图在全息面的光场复振幅分布的相位因子,所述每张子图在全息面的光场复振幅分布的相位因子为每张子图对应的子全息图。
作为一种实施方式,所述根据每张子图的子全息图,获取所述三维场景的相位全息图包括:
采用公式(1)对每张子图的子全息图进行编码;
所述公式(1)为:
Figure PCTCN2015098785-appb-000001
其中,
Figure PCTCN2015098785-appb-000002
表示每张子图的子全息图的角度值,
Figure PCTCN2015098785-appb-000003
表示经过相位编码后得到的每张子图对应的编码角度值;
根据每张子图对应的编码角度值,获取每张子图对应的相位子全息图;
根据每张子图的视角顺序,排列每张子图的所述相位子全息图,得到所述三维场景的相位全息图。
作为一种实施方式,所述采集三维场景的至少一张子图包括:
根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的成像位置;
每个相机分别拍摄对应视角上的所述三维场景的图像,所述图像为所述三维场景在对应视角上的子图。
作为一种实施方式,所述采集三维场景的至少一张子图包括:
根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的焦点位置;
每个相机分别拍摄对应视角上的所述三维场景的图像;
将每张图像相同位置的像素点集合形成正交投影图像,所述正交投影图像为所述三维场景在对应视角上的子图。
另一方面,本发明实施例还提供一种全息投影装置,包括:
采集单元,配置为采集三维场景的至少一张子图;
获取单元,配置为采用高斯-赛德尔(GS)迭代获取每张子图的子全息图;并根据每张子图的子全息图,获取所述三维场景的相位全息图;
重建单元,配置为按照所述相位全息图进行全息投影,重建所述三维场景。
作为一种实施方式,所述获取单元配置为:
获取每张子图的原始光场复振幅分布;
对每张子图的所述原始光场复振幅分布进行傅里叶变换,得到每张子图全息面的光场复振幅分布;
对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布;
采用每张子图的原始灰阶对应替换每张子图在成像面上的光场复振幅分布的振幅因子,得到每张子图在成像面的新的光场复振幅分布;
对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布;
重复执行对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布至对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布的步骤,直至第N次得到每张子图在全息面的光场复振幅分布的相位因子与第N-1次得到对应的每张子图在全息面的光场复振幅分布的相位因子的差小于预设阈值;
获取第N次得到的每张子图在全息面的光场复振幅分布的相位因子,所述每张子图在全息面的光场复振幅分布的相位因子为每张子图对应的子全息图。
作为一种实施方式,其中,所述获取单元配置为:
采用公式(1)对每张子图的子全息图进行编码;
所述公式(1)为:
Figure PCTCN2015098785-appb-000004
其中,
Figure PCTCN2015098785-appb-000005
表示每张子图的子全息图的角度值,
Figure PCTCN2015098785-appb-000006
表示经过相位编码后得到的每张子图对应的编码角度值;
根据每张子图对应的编码角度值,获取每张子图对应的相位子全息图;
根据每张子图的视角顺序,排列每张子图的所述相位子全息图,得到所述三维场景的相位全息图。
作为一种实施方式,所述采集单元配置为:
根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的成像位置;
每个相机分别拍摄对应视角上的所述三维场景的图像,所述图像为所述三维场景在对应视角上的子图。
作为一种实施方式,所述采集单元配置为:
根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的焦点位置;
每个相机分别拍摄对应视角上的所述三维场景的图像;
将每张图像相同位置的像素点集合形成正交投影图像,所述正交投影图像为所述三维场景在对应视角上的子图。
第三方面,本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令配置为执行本发明实施例所述的全息投影方法。
本发明实施例提供了一种全息投影方法、装置及计算机存储介质,所述方法包括:采集三维场景的至少一张子图;采用高斯-赛德尔(GS)迭代获取每张子图的子全息图;根据每张子图的子全息图,获取所述三维场景 的相位全息图;按照所述相位全息图进行全息投影,重建所述三维场景。这样一来,通过GS迭代获取每张子图的子全息图,使得每张子图的子全息图的光场复振幅分布收敛于每张子图的原始光场复振幅分布,最大限度的保留了三维场景的景深信息,减小了重建三维图像与原始三维场景的误差,提高了三维显示的效果。
附图说明
图1为本发明实施例提供的一种全息投影方法的流程图;
图2为本发明实施例提供的一种投影设备的结构示意图;
图3为本发明实施例提供的另一种全息投影方法的流程图;
图4为本发明实施例提供的一种全息投影装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例提供一种全息投影方法,图1为本发明实施例提供的一种全息投影方法的流程图;如图1所示,包括:
步骤101、采集三维场景的至少一张子图。
作为一种实施方式,将多个相机设置在三维场景的不同的视角上,相机传感器可以位于镜头透镜的成像位置上,即投影线相交在对应相机镜头的主点位置,相机传感器也可以位于镜头透镜的焦点位置上,即投影线与对应相机镜头的光轴平行,本发明实施例对此不做限定。
步骤102、采用GS迭代获取每张子图的子全息图。
所述高斯-赛德尔(GS)迭代的原理简单,计算式要求对计算机内存的要求不高,编程容易实现,而且由于GS迭代的收敛性,使得每张子图的子全息图的光场复振幅分布收敛于对应子图的原始光场复振幅分布,可以使 得子图的子全息图与原始子图的差别减小。
步骤103、根据每张子图的子全息图,获取所述三维场景的相位全息图。
具体的,可以对每张子图的子全息图的光场复振幅分布的角度值进行编码,获取每张子图的相位子全息图的光场复振幅分布的编码角度值,进而获取编码后光场复振幅分布的相位因子,所述相位因子即为每张子图对应的相位子全息图。依次获取每张子图的相位子全息图,按照视角顺序排列所述每张子图的相位子全息图,即可得到三维场景的相位全息图。实际应用中,也可以首先按照视角顺序排列每张子图的子全息图,得到三维场景的全息图,然后对每张子图的子全息图的光场复振幅分布的角度值进行编码,即可获取三维场景的相位全息图。实际应用中可以根据实际情况进行选择,本发明实施例对此不做限定。
步骤104、按照所述相位全息图进行全息投影,重建所述三维场景。
示例的,可以选用投影设备完成相位全息图的投影,所述投影设备可以如图2所示,包括相位空间光调制器201、分光棱镜202、屏幕203、单色激光器204、偏振片205和投影计算机206。其中,所述投影计算机206与所述相位空间光调制器201连接,所述投影计算机206可以是生成全息图的计算机,配置为将相位全息图加载在所述相位空间光调制器201中,所述相位空间光调制器201、所述分光棱镜202和所述屏幕203依次布设,且所述相位空间光调制器201、所述分光棱镜202和所述屏幕203处于同一条直线上,在所述分光棱镜202的一侧布设所述单色激光器204和所述偏振片205,所述偏振片205位于所述分光棱镜202和所述单色激光器204之间。
如此,通过GS迭代获取每张子图的子全息图,使得每张子图的子全息图的光场复振幅分布收敛于每张子图的原始光场复振幅分布,最大限度的保留了三维场景的景深信息,减小了重建三维图像与原始三维场景的误差, 提高了三维显示的效果。
作为一种实施方式,在采用GS迭代获取每张子图的子全息图时,可以首先获取每张子图的原始光场复振幅分布,对每张子图的所述原始光场复振幅分布进行傅里叶变换,得到每张子图全息面的光场复振幅分布,然后对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布,采用每张子图的原始灰阶对应替换每张子图在成像面上的光场复振幅分布的振幅因子,得到每张子图在成像面的新的光场复振幅分布,对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布;重复执行对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布至对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布的步骤,直至第N次得到每张子图在全息面的光场复振幅分布的相位因子与第N-1次得到对应的每张子图在全息面的光场复振幅分布的相位因子的差小于预设阈值;获取第N次得到的每张子图在全息面的光场复振幅分布的相位因子,所述每张子图在全息面的光场复振幅分布的相位因子为每张子图对应的子全息图。
其中,在根据每张子图的子全息图,获取所述三维场景的相位全息图时,可以采用公式(1)对每张子图的子全息图进行编码;所述公式(1)为:
Figure PCTCN2015098785-appb-000007
其中,
Figure PCTCN2015098785-appb-000008
表示每张子图的子全息图的角度值,
Figure PCTCN2015098785-appb-000009
表示经过相位编码后得到的每张子图对应的编码角度值。
进一步地,根据每张子图对应的编码角度值,获取每张子图对应的相位子全息图;根据每张子图的视角顺序,排列每张子图的所述相位子全息 图,得到所述三维场景的相位全息图。
具体的,在采集三维场景的至少一张子图时,可以根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的成像位置,然后每个相机分别拍摄对应视角上的所述三维场景的图像,所述图像为所述三维场景在对应视角上的子图。
具体的,在采集三维场景的至少一张子图时,可以根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的焦点位置,然后每个相机分别拍摄对应视角上的所述三维场景的图像,将每张图像相同位置的像素点集合形成正交投影图像,所述正交投影图像为所述三维场景在对应视角上的子图。
本发明实施例提供了一种全息投影方法,所述方法包括:采集三维场景的至少一张子图;采用高斯-赛德尔(GS)迭代获取每张子图的子全息图;根据每张子图的子全息图,获取所述三维场景的相位全息图;按照所述相位全息图进行全息投影,重建所述三维场景。如此,通过GS迭代获取每张子图的子全息图,使得每张子图的子全息图的光场复振幅分布收敛于每张子图的原始光场复振幅分布,最大限度的保留了三维场景的景深信息,减小了重建三维图像与原始三维场景的误差,提高了三维显示的效果。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令配置为执行本发明实施例所述的全息投影方法。
本发明实施例还提供一种全息投影方法,图3为本发明实施例提供的另一种全息投影方法的流程图;如图3所示,所述方法包括:
步骤301、采集三维场景的至少一张子图。
作为一种实施方式,将多个相机设置在三维场景的不同的视角上,相机传感器可以位于镜头透镜的成像位置上,也可以位于镜头透镜的焦点位 置上。当相机传感器位于镜头透镜的成像位置上时,每个相机传感器采集到的图像即为三维场景在对应视角的子图,分别采集多个视角的子图,即可获取多个子图;相机传感器位于镜头透镜的焦点位置上时,每个相机传感器配置为采集三维场景在对应视角的一张基本图像,将每张基本图像相同位置的像素点集合起来形成一张正交投影图像,所述正交投影图像即三维场景在对应视角的子图,分别采集多个视角的子图,即可获取多个子图。
步骤302、获取参考子图的原始光场复振幅分布G1exp(-iθ1)。
这里,所述参考子图为所述至少一个子图中任意一个子图,即本发明实施例以参考子图为例进行说明。通常情况下,每张子图均可以用光场复振幅分布表示。作为一种实施方式,参考子图的原始光场复振幅分布可以表示为G1exp(-iθ1),其中G1为参考子图的原始灰阶,exp(-iθ1)为参考子图的原始相位因子。
步骤303、对参考子图的原始光场复振幅分布G1exp(-iθ1)进行傅里叶变换,得到参考子图在全息面的光场复振幅分布H1exp(-iθH1)。
这里,参考子图的原始光场复振幅分布G1exp(-iθ1)是一个复数,可以采用复变函数中的傅里叶变换对该光场复振幅分布进行处理。具体的傅里叶变换过程属于现有技术,本发明实施例在此不做赘述。
步骤304、保留参考子图在全息面的光场复振幅分布H1exp(-iθH1)中的相位因子exp(-iθH1)。
其中,所述光场复振幅分布H1exp(-iθH1)中,H1为参考子图在全息面的灰阶,exp(-iθH1)为参考子图在全息面的相位因子,由于相位因子决定了投影时光束的方向,在三维图像的重建过程中更为重要,所以本发明实施例中主要分析它的相位分布。
步骤305、对参考子图在全息面的光场复振幅分布的相位因子exp(-iθH1)进行逆傅里叶变换,得到参考子图在成像面上的光场复振幅分布 G2exp(-iθ2)。
这里,参考子图在全息面的光场复振幅分布的相位因子exp(-iθH1)是一个复数,可以采用复变函数中的逆傅里叶变换对该相位因子进行处理。对全息面的光场复振幅分布的相位因子exp(-iθH1)进行逆傅里叶变换后,即可重新得到参考子图在成像面上的光场复振幅分布G2exp(-iθ2),其中G2为参考子图在成像面上的灰阶,exp(-iθ2)为参考子图在成像面上的相位因子。当G2与G1相差较小,且exp(-iθ2)与exp(-iθ1)相差较小时,成像面上显示的参考子图与原始参考子图的差别也较小。具体的,逆傅里叶变换过程属于现有技术,本发明实施例在此不做赘述。
步骤306、采用G1替换参考子图在成像面上的光场复振幅分布G2exp(-iθ2)的振幅因子G2,得到参考子图在成像面的新的光场复振幅分布G0exp(-iθ2)。
通常的,如果采用仅经过一次傅里叶变换后获得参考子图在全息面的光场复振幅分布的相位因子exp(-iθH1)组成全息图,并采用该全息图进行三维投影,误差会较大,因为采用全息图进行投影的过程相当于一次逆傅里叶变换的过程,而exp(-iθH1)经过逆傅里叶变换得到的G2exp(-iθ2)与原始参考子图的原始光场复振幅分布G1exp(-iθ1)差别较大。为了使得通过全息图投影得到的三维投影与原始参考子图的差别较小,可以采用GS迭代,对exp(-iθH1)进行处理,具体的,首先,在exp(-iθH1)经过逆傅里叶变换得到参考子图在成像面上的光场复振幅分布G2exp(-iθ2)后,采用原始参考子图的灰阶G1替换G2,得到参考子图在成像面的新的光场复振幅分布G0exp(-iθ2)。
步骤307、对参考子图在成像面的新的光场复振幅分布G0exp(-iθ2)进行傅里叶变换,再次得到参考子图在全息面的光场复振幅分布H2exp(-iθH2)。
作为一种实施方式,参考子图在成像面的新的光场复振幅分布G0exp(-iθ2)为复数,同样可以进行傅里叶变换,成像面的光场复振幅分布经 过一次傅里叶变换之后,得到每张子图全息面的光场复振幅分布,即参考子图在成像面的新的光场复振幅分布经过一次傅里叶变换之后第二次得到参考子图在全息面的光场复振幅分布H2exp(-iθH2)。
步骤308、重复步骤304至步骤307,直至第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)的相位因子与第N-1次得到参考子图在全息面的光场复振幅分布HN-1exp(-iθHN-1)的相位因子的差小于预设阈值。
重复执行步骤304至步骤307,完成GS迭代,在GS迭代的过程中,通过每次迭代,使得第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)的灰阶,收敛于参考子图的原始灰阶G1,即HN与G1相差较小,此时第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)的相位因子exp(-iθHN)也收敛于参考子图的原始相位因子exp(-iθ1),即exp(-iθHN)与exp(-iθ1)的相差较小。因为根据GS迭代的次数,全息面的光场复振幅分布HNexp(-iθHN)是一个逐渐收敛的过程,当GS迭代到达一定次数之后,相邻两次全息面的光场复振幅分布的差值趋于平缓,因此可以预先设置阈值,即预设阈值,当第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)的相位因子与第N-1次得到参考子图在全息面的光场复振幅分布HN-1exp(-iθHN-1)的相位因子的差小于预设阈值时,说明第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)已经收敛于参考子图原始光场复振幅分布G1exp(-iθ1),可以停止GS迭代。
作为一种实施方式,第5次得到参考子图在全息面的光场复振幅分布为H5exp(-iθH5),其相位因子为exp(-iθH5),第6次得到参考子图在全息面的光场复振幅分布为H6exp(-iθH6),其相位因子为exp(-iθH6),当exp(-iθH6)与exp(-iθH5)的差值小于预设阈值时,说明第6次得到参考子图在全息面的光场复振幅分布H6exp(-iθH6)已经收敛于参考子图原始光场复振幅分布G1exp(-iθ1),即H6exp(-iθH6)与G1exp(-iθ1)相差较小,可以停止GS迭代。具 体的,所述预设阈值可以为0.0001,实际应用中可以根据精度要求进行设置,本发明实施例对此不做限定。
实际应用中也可以根据具体情况设置预设迭代次数,当GS迭代的次数达到预设迭代次数时,说明第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)已经收敛于参考子图原始光场复振幅分布G1exp(-iθ1),可以停止GS迭代,本发明对此不作赘述。
步骤309、对第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)的相位因子exp(-iθHN)进行编码,得到参考子图的相位子全息图。
这里,依次获取各个子图收敛于原始光场复振幅分布的全息面的光场复振幅分布,然后按照不同子图的视角顺序,将各个子图的子全息图拼接起来得到全息图,所述子全息图为各个子图最终得到的全息面的光场复振幅分布的相位因子,并对每张子图的全息面的光场复振幅分布的相位因子进行编码。
作为一种实施方式,可以采用公式(1):
Figure PCTCN2015098785-appb-000010
对第N次得到参考子图在全息面的光场复振幅分布HNexp(-iθHN)的相位因子exp(-iθHN)进行编码,其中,
Figure PCTCN2015098785-appb-000011
表示每张子图的子全息图的角度值,
Figure PCTCN2015098785-appb-000012
表示经过相位编码后得到的每张子图对应的编码角度值,即
Figure PCTCN2015098785-appb-000013
表示GS迭代并拼接后得到的全息面上的光场复振幅的相位因子的角度值,
Figure PCTCN2015098785-appb-000014
表示经过相位编码后得到的全息面上的光场复振幅的相位因子的编码角度值。
进行编码时,将θHN带入公式(1)替换
Figure PCTCN2015098785-appb-000015
计算得到的
Figure PCTCN2015098785-appb-000016
即为编码后参考子图在全息面的光场复振幅的编码角度值,即编码后第N次得到参考子图在全息面的光场复振幅分布为
Figure PCTCN2015098785-appb-000017
所述编码后第N次得到参考子图在全息面的光场复振幅分布为
Figure PCTCN2015098785-appb-000018
的相位因子
Figure PCTCN2015098785-appb-000019
为参 考子图的相位子全息图。
对每张子图的全息面的光场复振幅分布的相位因子进行编码后,采用编码后的各子图的相位子全息图组成相位全息图。
步骤310、根据相位子全息图进行三维投影。
作为一种实施方式,投影设备参考图2所示,包括:相位空间光调制器201、分光棱镜202、屏幕203、单色激光器204、偏振片205和投影计算机206。其中,所述投影计算机206与所述相位空间光调制器201连接,所述投影计算机206可以使生成全息图的计算机,配置为将相位全息图加载在所述相位空间光调制器201中,所述相位空间光调制器201、所述分光棱镜202和所述屏幕203依次布设,且所述相位空间光调制器201、所述分光棱镜202和所述屏幕203处于同一条直线上,在所述分光棱镜202的一侧布设所述单色激光器204和所述偏振片205,所述偏振片205位于所述分光棱镜202和所述单色激光器204之间。
在采用投影设备20进行投影时,所述单色激光器204发出的平面波通过所述偏振片205变为偏振光,所述偏振光通过所述分光棱镜202后可射入到所述相位空间光调制器201中,然后所述相位空间光调制器201按照加载的相位全息图对入射的偏振光进行调制,然后将调制后的光出射,调制后的光经过所述分光棱镜202后,投影在所述屏幕203上,即可完成三维投影。
本发明实施例提供了一种全息投影方法及装置,能够通过GS迭代获取每张子图的子全息图,使得每张子图的子全息图的光场复振幅分布收敛于每张子图的原始光场复振幅分布,最大限度的保留了三维场景的景深信息,减小了重建三维图像与原始三维场景的误差,提高了三维显示的效果。
需要说明的是,本发明实施例提供的全息投影方法的步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术 领域的技术人员在本发明揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本发明的保护范围之内,因此不再赘述。
本发明实施例提供一种全息投影装置,图4为本发明实施例提供的一种全息投影装置的结构示意图,如图4所示,包括:
采集单元401,配置为采集三维场景的至少一张子图;
获取单元402,配置为采用高斯-赛德尔(GS)迭代获取每张子图的子全息图;并根据每张子图的子全息图,获取所述三维场景的相位全息图;
重建单元403,配置为按照所述相位全息图进行全息投影,重建所述三维场景。
如此,所述获取单元402通过GS迭代获取每张子图的子全息图,使得每张子图的子全息图的光场复振幅分布收敛于每张子图的原始光场复振幅分布,最大限度的保留了三维场景的景深信息,减小了重建单元重建三维图像与原始三维场景的误差,提高了三维显示的效果。
作为一种实施方式,所述获取单元402配置为:获取每张子图的原始光场复振幅分布;对每张子图的所述原始光场复振幅分布进行傅里叶变换,得到每张子图全息面的光场复振幅分布;对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布;采用每张子图的原始灰阶对应替换每张子图在成像面上的光场复振幅分布的振幅因子,得到每张子图在成像面的新的光场复振幅分布;对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布;重复执行对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布至对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布的步骤,直至第N次得到每张子图在全息面的光场复振幅分布的相位因子与第N-1次得到对应的 每张子图在全息面的光场复振幅分布的相位因子的差小于预设阈值;获取第N次得到的每张子图在全息面的光场复振幅分布的相位因子,所述每张子图在全息面的光场复振幅分布的相位因子为每张子图对应的子全息图。
作为一种实施方式,,所述获取单元402配置为:采用公式(1)对每张子图的子全息图进行编码;所述公式(1)为:
Figure PCTCN2015098785-appb-000020
其中,
Figure PCTCN2015098785-appb-000021
表示每张子图的子全息图的角度值,
Figure PCTCN2015098785-appb-000022
表示经过相位编码后得到的每张子图对应的编码角度值;
根据每张子图对应的编码角度值,获取每张子图对应的相位子全息图;根据每张子图的视角顺序,排列每张子图的所述相位子全息图,得到所述三维场景的相位全息图。
具体的,所述采集单元401配置为:
根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的成像位置;每个相机分别拍摄对应视角上的所述三维场景的图像,所述图像为所述三维场景在对应视角上的子图。
具体的,所述采集单元401配置为:
根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的焦点位置;每个相机分别拍摄对应视角上的所述三维场景的图像;将每张图像相同位置的像素点集合形成正交投影图像,所述正交投影图像为所述三维场景在对应视角上的子图。
本发明实施例提供了一种全息投影装置,所述装置包括采集单元401,配置为采集三维场景的至少一张子图;获取单元402,配置为采用高斯-赛德尔(GS)迭代获取每张子图的子全息图;并根据每张子图的子全息图,获取所述三维场景的相位全息图;重建单元403,配置为按照所述相位全息图进行全息投影,重建所述三维场景。这样一来,通过GS迭代获取每张子 图的子全息图,使得每张子图的子全息图的光场复振幅分布收敛于每张子图的原始光场复振幅分布,最大限度的保留了三维场景的景深信息,减小了重建三维图像与原始三维场景的误差,提高了三维显示的效果。
需要说明的是,第一,在实际应用中,所述采集单元401、获取单元402、均可由位于计算机中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。所述重建单元403通过布设的投影设备实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明实施例的保护范围。
工业实用性
本发明实施例通过GS迭代获取每张子图的子全息图,使得每张子图的子全息图的光场复振幅分布收敛于每张子图的原始光场复振幅分布,最大限度的保留了三维场景的景深信息,减小了重建三维图像与原始三维场景的误差,提高了三维显示的效果。

Claims (11)

  1. 一种全息投影方法,包括:
    采集三维场景的至少一张子图;
    采用高斯-赛德尔GS迭代获取每张子图的子全息图;
    根据每张子图的子全息图,获取所述三维场景的相位全息图;
    按照所述相位全息图进行全息投影,重建所述三维场景。
  2. 根据权利要求1所述的方法,其中,所述采用GS迭代获取每张子图的子全息图包括:
    获取每张子图的原始光场复振幅分布;
    对每张子图的所述原始光场复振幅分布进行傅里叶变换,得到每张子图全息面的光场复振幅分布;
    对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布;
    采用每张子图的原始灰阶对应替换每张子图在成像面上的光场复振幅分布的振幅因子,得到每张子图在成像面的新的光场复振幅分布;
    对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布;
    重复执行对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布至对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布的步骤,直至第N次得到每张子图在全息面的光场复振幅分布的相位因子与第N-1次得到对应的每张子图在全息面的光场复振幅分布的相位因子的差小于预设阈值;
    获取第N次得到的每张子图在全息面的光场复振幅分布的相位因子,所述每张子图在全息面的光场复振幅分布的相位因子为每张子图对应的子 全息图。
  3. 根据权利要求1或2所述的方法,其中,所述根据每张子图的子全息图,获取所述三维场景的相位全息图包括:
    采用公式(1)对每张子图的子全息图进行编码;
    所述公式(1)为:
    Figure PCTCN2015098785-appb-100001
    其中,
    Figure PCTCN2015098785-appb-100002
    表示每张子图的子全息图的角度值,
    Figure PCTCN2015098785-appb-100003
    表示经过相位编码后得到的每张子图对应的编码角度值;
    根据每张子图对应的编码角度值,获取每张子图对应的相位子全息图;
    根据每张子图的视角顺序,排列每张子图的所述相位子全息图,得到所述三维场景的相位全息图。
  4. 根据权利要求1或2所述的方法,其中,所述采集三维场景的至少一张子图包括:
    根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的成像位置;
    每个相机分别拍摄对应视角上的所述三维场景的图像,所述图像为所述三维场景在对应视角上的子图。
  5. 根据权利要求1或2所述的方法,其中,所述采集三维场景的至少一张子图包括:
    根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的焦点位置;
    每个相机分别拍摄对应视角上的所述三维场景的图像;
    将每张图像相同位置的像素点集合形成正交投影图像,所述正交投影图像为所述三维场景在对应视角上的子图。
  6. 一种全息投影装置,包括:
    采集单元,配置为采集三维场景的至少一张子图;
    获取单元,配置为采用高斯-赛德尔GS迭代获取每张子图的子全息图;并根据每张子图的子全息图,获取所述三维场景的相位全息图;
    重建单元,配置为按照所述相位全息图进行全息投影,重建所述三维场景。
  7. 根据权利要求6所述的全息投影装置,其中,所述获取单元配置为:
    获取每张子图的原始光场复振幅分布;
    对每张子图的所述原始光场复振幅分布进行傅里叶变换,得到每张子图全息面的光场复振幅分布;
    对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布;
    采用每张子图的原始灰阶对应替换每张子图在成像面上的光场复振幅分布的振幅因子,得到每张子图在成像面的新的光场复振幅分布;
    对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布;
    重复执行对每张子图的全息面的光场复振幅分布的相位因子进行逆傅里叶变换,得到每张子图在成像面上的光场复振幅分布至对每张子图在成像面的新的光场复振幅分布进行傅里叶变换,再次得到每张子图在全息面的光场复振幅分布的步骤,直至第N次得到每张子图在全息面的光场复振幅分布的相位因子与第N-1次得到对应的每张子图在全息面的光场复振幅分布的相位因子的差小于预设阈值;
    获取第N次得到的每张子图在全息面的光场复振幅分布的相位因子,所述每张子图在全息面的光场复振幅分布的相位因子为每张子图对应的子全息图。
  8. 根据权利要求6或7所述的全息投影装置,其中,所述获取单元配 置为:
    采用公式(1)对每张子图的子全息图进行编码;
    所述公式(1)为:
    Figure PCTCN2015098785-appb-100004
    其中,
    Figure PCTCN2015098785-appb-100005
    表示每张子图的子全息图的角度值,
    Figure PCTCN2015098785-appb-100006
    表示经过相位编码后得到的每张子图对应的编码角度值;
    根据每张子图对应的编码角度值,获取每张子图对应的相位子全息图;
    根据每张子图的视角顺序,排列每张子图的所述相位子全息图,得到所述三维场景的相位全息图。
  9. 根据权利要求6或7所述的全息投影装置,其中,所述采集单元配置为:根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的成像位置;每个相机分别拍摄对应视角上的所述三维场景的图像,所述图像为所述三维场景在对应视角上的子图。
  10. 根据权利要求6或7所述的全息投影装置,其中,所述采集单元配置为:根据不同的视角,设置至少一个相机,每个相机的相机传感器位于所述相机的镜头透镜的焦点位置;每个相机分别拍摄对应视角上的所述三维场景的图像;将每张图像相同位置的像素点集合形成正交投影图像,所述正交投影图像为所述三维场景在对应视角上的子图。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令配置为执行权利要求1至5任一项所述的全息投影方法。
PCT/CN2015/098785 2015-09-28 2015-12-24 一种全息投影方法、装置及计算机存储介质 WO2017054342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510628943.3A CN106557004A (zh) 2015-09-28 2015-09-28 一种全息投影方法及装置
CN201510628943.3 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017054342A1 true WO2017054342A1 (zh) 2017-04-06

Family

ID=58415736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098785 WO2017054342A1 (zh) 2015-09-28 2015-12-24 一种全息投影方法、装置及计算机存储介质

Country Status (2)

Country Link
CN (1) CN106557004A (zh)
WO (1) WO2017054342A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108364266A (zh) * 2018-02-09 2018-08-03 重庆大学 使用微流控芯片进行细胞全息重建观测的流路结构去除方法
CN109636895A (zh) * 2018-10-31 2019-04-16 北京航天晨信科技有限责任公司 一种全息显示方法和电子沙盘装置
CN110738727A (zh) * 2019-09-29 2020-01-31 东南大学 一种基于光场的复振幅全息图算法
US20200117138A1 (en) * 2013-07-30 2020-04-16 Dolby Laboratories Licensing Corporation Projector display systems having non-mechanical mirror beam steering
CN112037110A (zh) * 2020-08-25 2020-12-04 北京航空航天大学 一种基于可伸缩查找表的相息图生成方法
CN115061348A (zh) * 2022-08-01 2022-09-16 世优(北京)科技有限公司 基于物点的三维动态全息显示方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111459004B (zh) * 2020-04-14 2021-09-14 清华大学 双光路合成孔径全息图拼接方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200905424A (en) * 2007-03-09 2009-02-01 Seereal Technologies Sa Holographic projection display with corrected phase coding
US20090103151A1 (en) * 2007-03-02 2009-04-23 Olympus Corporation Holographic projection method and holographic projection device
CN101443712A (zh) * 2006-05-11 2009-05-27 剑桥实业有限公司 相位恢复及相位全息合成
CN102568031A (zh) * 2011-09-23 2012-07-11 苏州大学 三维图像并行数字构建方法
CN102749793A (zh) * 2012-07-24 2012-10-24 东南大学 一种全息投影方法
CN103235477A (zh) * 2013-05-06 2013-08-07 东南大学 一种倾斜平面的纯相位全息投影方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097070A (zh) * 1993-06-30 1995-01-04 惠州市新世纪发展总公司 用计算全息技术制作模压合成彩虹全息母全息图的方法
US7982931B2 (en) * 2007-04-05 2011-07-19 Intellectual Ventures Holding 32 Llc Data system for storing holographic media
CN103997636B (zh) * 2014-05-16 2016-02-10 北京理工大学 一种计算全息三维显示物体间遮挡关系的方法
CN104657004B (zh) * 2015-03-06 2018-07-06 联想(北京)有限公司 电子设备和投影控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101443712A (zh) * 2006-05-11 2009-05-27 剑桥实业有限公司 相位恢复及相位全息合成
US20090103151A1 (en) * 2007-03-02 2009-04-23 Olympus Corporation Holographic projection method and holographic projection device
TW200905424A (en) * 2007-03-09 2009-02-01 Seereal Technologies Sa Holographic projection display with corrected phase coding
CN102568031A (zh) * 2011-09-23 2012-07-11 苏州大学 三维图像并行数字构建方法
CN102749793A (zh) * 2012-07-24 2012-10-24 东南大学 一种全息投影方法
CN103235477A (zh) * 2013-05-06 2013-08-07 东南大学 一种倾斜平面的纯相位全息投影方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210294266A1 (en) * 2013-07-30 2021-09-23 Dolby Laboratories Licensing Corporation Projector display systems having non-mechanical mirror beam steering
US20230168626A1 (en) * 2013-07-30 2023-06-01 Dolby Laboratories Licensing Corporation Projector display systems having non-mechanical mirror beam steering
US20200117138A1 (en) * 2013-07-30 2020-04-16 Dolby Laboratories Licensing Corporation Projector display systems having non-mechanical mirror beam steering
US10969742B2 (en) * 2013-07-30 2021-04-06 Dolby Laboratories Licensing Corporation Projector display systems having non-mechanical mirror beam steering
US11592783B2 (en) * 2013-07-30 2023-02-28 Dolby Laboratories Licensing Corporation Projector display systems having non-mechanical mirror beam steering
CN108364266B (zh) * 2018-02-09 2021-11-30 重庆大学 使用微流控芯片进行细胞全息重建观测的流路结构去除方法
CN108364266A (zh) * 2018-02-09 2018-08-03 重庆大学 使用微流控芯片进行细胞全息重建观测的流路结构去除方法
CN109636895A (zh) * 2018-10-31 2019-04-16 北京航天晨信科技有限责任公司 一种全息显示方法和电子沙盘装置
CN109636895B (zh) * 2018-10-31 2023-11-17 北京航天晨信科技有限责任公司 一种全息显示方法和电子沙盘装置
CN110738727A (zh) * 2019-09-29 2020-01-31 东南大学 一种基于光场的复振幅全息图算法
CN110738727B (zh) * 2019-09-29 2024-04-02 东南大学 一种基于光场的复振幅全息图方法
CN112037110A (zh) * 2020-08-25 2020-12-04 北京航空航天大学 一种基于可伸缩查找表的相息图生成方法
CN112037110B (zh) * 2020-08-25 2022-07-15 北京航空航天大学 一种基于可伸缩查找表的相息图生成方法
CN115061348A (zh) * 2022-08-01 2022-09-16 世优(北京)科技有限公司 基于物点的三维动态全息显示方法及装置
CN115061348B (zh) * 2022-08-01 2024-05-17 世优(北京)科技有限公司 基于物点的三维动态全息显示方法及装置

Also Published As

Publication number Publication date
CN106557004A (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2017054342A1 (zh) 一种全息投影方法、装置及计算机存储介质
CN106707680B (zh) 一种基于光场的全息投影方法
US9500470B2 (en) Apparatus and method for measuring quality of holographic image
CN102749793A (zh) 一种全息投影方法
Jeon et al. Texture map generation for 3D reconstructed scenes
KR20150081010A (ko) 홀로그램 재현 영상의 시야각 측정 평가 장치 및 방법
Endo et al. Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera
Li et al. Two-step holographic imaging method based on single-pixel compressive imaging
Seo et al. Digital holographic video service system for natural color scene
US10996628B2 (en) Apparatus and method for evaluating hologram encoding/holographic image quality for amplitude-modulation hologram
JP5831930B2 (ja) ホログラム生成装置およびホログラム生成方法
Adhikarla et al. Real-time adaptive content retargeting for live multi-view capture and light field display
US11277633B2 (en) Method and apparatus for compensating motion for a holographic video stream
KR101166719B1 (ko) 평행사변형 기반의 무한 호모그래피 산출 방법과 이를 이용한 건물 구조 복원 방법
JP5001570B2 (ja) ホログラムデータ作成装置、ホログラムデータ作成方法及びホログラムデータ作成プログラム
US10824113B2 (en) Method for processing a holographic image
US11561511B2 (en) Method and apparatus for generating hologram with wide viewing angle
Oh et al. Analysis on digital holographic data representation and compression
Yao et al. Compressed sensing of ray space for free viewpoint image (FVI) generation
Jeon et al. Selective interpolation method for two-step parallel phase-shifting digital holography
Wu et al. Integral computer-generated hologram via a modified Gerchberg-Saxton algorithm
Liu et al. Radiance-field holography for high-quality 3D reconstruction
Goodman Holography viewed from the perspective of the light field camera
Chen et al. Light field compression with holography
KR20140041316A (ko) 데이터 인코딩 방식에 적응적인 홀로그램 프린지 데이터 포맷을 사용하는 홀로그램 데이터 처리 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905252

Country of ref document: EP

Kind code of ref document: A1