WO2017051984A1 - 담즙산 조절제 또는 fxr 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물 - Google Patents

담즙산 조절제 또는 fxr 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물 Download PDF

Info

Publication number
WO2017051984A1
WO2017051984A1 PCT/KR2015/012783 KR2015012783W WO2017051984A1 WO 2017051984 A1 WO2017051984 A1 WO 2017051984A1 KR 2015012783 W KR2015012783 W KR 2015012783W WO 2017051984 A1 WO2017051984 A1 WO 2017051984A1
Authority
WO
WIPO (PCT)
Prior art keywords
extract
fatty liver
bile acid
fxr
residual
Prior art date
Application number
PCT/KR2015/012783
Other languages
English (en)
French (fr)
Inventor
김종우
김정호
Original Assignee
주식회사 바이오웨이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오웨이 filed Critical 주식회사 바이오웨이
Publication of WO2017051984A1 publication Critical patent/WO2017051984A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/34Campanulaceae (Bellflower family)
    • A61K36/342Adenophora

Definitions

  • the present invention relates to a bile acid modulator or FXR agonist, and a pharmaceutical composition for the prevention or treatment of fatty hepatitis and primary biliary cirrhosis or a composition for health food containing the same.
  • bile acids in vivo act as an emulsifier in food intake, regulating mechanisms to restore the absorption of dietary cholesterol and nutrients, inflammation and fibrosis, which can cause damage in the liver, small intestine and kidneys. Therefore, bile acid dysfunction or the production and regulation of bile acids is a critical cause of fatty liver (salt), primary biliary cirrhosis.
  • Nuclear Receptor FXR which regulates the synthesis and clearance of bile acids in the liver, regulates the growth of excess bile acids to target treatment of PBC (Primary Biliary Cirrhosis) and PSC (Primary Sclerosing Cholangitis).
  • Bile activation of FXR induces antifibrosis, anti-inflammatory, and fat accumulation inhibitory effects.
  • FXR is a potential target for the treatment of digestive and liver diseases such as the small and large intestines and the kidneys. Therefore, developing a bile acid regulator or an FXR agonist or inverse-agonist to develop a fatty liver and cirrhosis treatment, a dietary supplement, and its ingredients are very urgently needed in the treatment and prevention of fatty liver disease. Is important.
  • Fatty liver disease is a disease in which fat, especially triglycerides accumulate in hepatocytes, accounting for more than 5% of the weight of the liver.
  • triglycerides of increased hepatocytes 60% of fatty acids are introduced from fatty tissues and 25% of them are in the liver cells.
  • free fatty acids produced by Clinically fatty liver is classified as fatty liver when more than 5% of hepatocytes are observed, or when more than 5 mg of fat per 100 mg of liver is present.
  • Primary Biliary Cirrhosis (PBC) is the primary rare liver disease that results from autoimmune destruction of the bile ducts that release bile acids out of the liver, and persistent accumulation of bile acids causes chronic inflammation and liver damage.
  • Increased toxicity is used as a diagnostic biomarker for primary biliary cirrhosis due to an increase in alkaline phosphatase (ALP).
  • ALP alkaline phosphatase
  • the liver which is the largest organ in the human body and where metabolism is most active, is located between the digestive system and the systemic circulation system, and functions to defend and protect the whole body from in vitro exogenous substances. More importantly, the liver is a very important organ responsible for various metabolism, detoxification, degradation, synthesis and secretion. More specifically, the liver regulates and manages energy metabolism, and the nutrients absorbed from the foods eaten are metabolized into substances that can produce energy in the liver. About 2,000 enzymes, various serum proteins, bile acids, phospholipids, cholesterol and fats are synthesized in the liver and distributed systemically.
  • the liver plays a crucial role in biological activity and life support because of its ability to excrete various metabolites into the duodenum through the bile ducts and its immune function.
  • the most well-known liver function is detoxification and decomposition, and liver cells are easily damaged while detoxifying toxic substances introduced from various foods, drugs, and alcohol, and liver diseases may occur due to various causes. Most of the substances entering the living body once passed through the liver, the liver is exposed to many toxic substances and can be damaged by this.
  • the liver is the only organ with very good regenerative capacity, and it is known to recover most of the time when there is a slight injury.However, the liver persists due to various causes such as viral infection and excessive accumulation of fat. Inflammation can lead to a chronic condition that can't be restored to normal liver, including decreased liver function. As the liver damage becomes chronic, it gradually progresses to chronic hepatitis, fibrosis and cirrhosis, and liver cancer. Chronic hepatitis, liver fibrosis and cirrhosis, and liver cancer currently lack any clear treatment other than liver transplantation. Therefore, preventing or treating liver damage before it progresses chronically is a very important task that can inhibit or reverse the progression of liver fibrosis, cirrhosis, liver cancer.
  • liver damage and liver diseases can be distinguished according to the cause, but the area that is currently the most interest in health and medical care is the area of fatty liver and primary biliary cirrhosis associated with the production and regulation of bile acids.
  • non-alcoholic steatohepatitis is spreading like an epidemic in developed countries as the time for high calorie meals and sedentary life increases.
  • NASH non-alcoholic base hepatitis
  • Fatty liver is divided into alcoholic fatty liver and non-alcoholic fatty liver. Fat accumulates in the liver cells, which crushes the nuclei and other contents of the liver cells, and the scar tissue pushes out healthy liver cells, which leads to cirrhosis or serious liver damage.
  • Alcohol is the major cause of fatty liver disease, and repeated alcohol intake leads to an increase in NADH and NADP + during metabolism, and an increase in NADH promotes fatty synthesis, leading to fatty liver.
  • Nonalcoholic fatty liver disease is a simple steatosis with only excessive accumulation of fat in the liver cells, nonalcoholic steatohepatitis (NAS) with hepatocellular necrosis, inflammation and fibrosis, and more.
  • NAS nonalcoholic steatohepatitis
  • Nonalcoholic steatohepatitis is commonly known to be associated with obesity, which is literally caused by excessive accumulation of fat in the liver, but has been found to be unrelated to alcohol abuse, which in particular causes numerous serious liver diseases.
  • Non-alcoholic hepatitis (NASH) can destroy the liver, so people with severe symptoms may need to have a liver transplant and sometimes die.
  • weight loss drugs e.g. Rimonabant, Orlistat, Sibutramine
  • insulin resistance improving drugs Pioglitazone, Rosiglitazone, Metformin, etc.
  • antioxidants Vitamine E.
  • Vitamine C, etc. hyperlipidemia drugs (Statin, Clofibrate, Gemifibrozil, etc.) and liver (intestinal) protectants (UDCA, Silymarine, DDB, etc.) are all, but do not fundamentally prevent the progression of fatty liver disease.
  • Adenophora Radix is a perennial herbaceous native plant belonging to the Campanulaceae, and the young shoots of early spring are known as “beech” as a representative wild vegetable used for food, but the roots are mainly rooted traditional herbs and foods. It is used as. Root is said to have a similar effect to ginseng called “sasam”, and is used in herbal medicine such as expectoration, Jinhae, health, and tonic. It is known for its high content of vitamins A, C and calcium, and its main ingredients are saponin and inulin. However, the remaining saponins of the residue is a situation that is hardly known in detail yet.
  • Korean Patent Registration No. 10-1501433 (Applicant: Hyung-Jin Park, JBK Natural Medicine Research Institute, Mushmed Co., Ltd.) describes a composition for preventing and treating non-alcoholic fatty liver disease, more specifically, black chokeberry (Aronia melanocarpa) and a composition for the prevention and treatment of non-alcoholic fatty liver disease, characterized in that it comprises a thistle (Silybum marianum) extract.
  • Korean Patent Publication No. 2013-0119146 (Applicant: Catholic University of Korea Industry-Academic Cooperation Group) describes a composition for the prevention and treatment of fatty liver disease containing mineral water, more specifically, potassium 200 ⁇ 230mg / L, Sodium 7000-9500 mg / L, calcium 1400-1700 mg / L, magnesium 900-1100 mg / L, zinc 3-9 mg / L, strontium 25-35 mg / L, selenium 200-500 ⁇ g / L, vanadium 65 75 ⁇ g / L, germanium 0.5-1.5 ⁇ g / L, manganese 10-40 ⁇ g / L, cobalt 1-3 ⁇ g / L, titanium 600-950 ⁇ g / L, copper 3-9 ⁇ g / L, lithium 0.02-0.09 Mg / L, chlorine ion 16000 ⁇ 19500mg / L, fluorine ion 1.5 ⁇ 3.0mg / L, bromine ion 40 ⁇ 56mg / L,
  • Republic of Korea Patent Registration No. 10-0953813 (Applicant: Lee Jung-sik) describes a composition for the prevention and treatment of fatty liver disease containing a complex herbal extract having a lipid inhibitory activity as an active ingredient, more specifically, fingering, Hwanggi, Injin And a pharmaceutical composition for the prevention and treatment of alcoholic fatty liver, obese fatty liver or diabetic fatty liver, which contains a complex herbal extract mixed with the extract of Schisandra chinensis as 0.1 to 10: 0.1 to 10: 0.1 to 10: 1 as an active ingredient. It is described.
  • Korean Patent Registration No. 10-1072247 (Applicant: Univera Co., Ltd., Industry-University Cooperation Group of Sungkyunkwan University) describes processed aloe vera extract for treating or treating liver disease, and a combination therapy of processed aloe vera extract and milk thistle.
  • the extract obtained by extracting the aloe vera leaf with a solvent is concentrated, and the concentrated solution is exposed to 60 to 100 °C and then lyophilized and the processed aloe vera extract and milk thistle as an active ingredient
  • the pharmaceutical composition for the prevention or treatment of liver disease characterized in that the weight ratio of the aloe vera extract and milk thistle is 1: 1.2 to 2.
  • Korean Patent Registration No. 10-1523663 (Applicant: Korea Institute of Oriental Medicine) describes a composition for the prevention or treatment of fatty liver disease or obesity, including mixed herbal extracts of allies, licorice, ginger and hoo, more specifically Pharmaceutical composition for the prevention or treatment of fatty liver disease or obesity, or fatty liver disease, comprising a mixed herbal extract of Arctium lappa Linne, Licorice (Glycyrrhiza uralensis Fischer), Ginger (Zingiberis rhizoma Crudus), and Magnoliae Cortex Or a food composition for preventing or improving obesity; And a method for treating fatty liver disease or obesity using the pharmaceutical composition.
  • An object of the present invention is to contain bile acid (Adenophora Radix) saponin or a remnant extract containing the same as an active ingredient, bile acid regulator or FXR (pane to regulate bile acids in liver tissues or inhibit the synthesis of fat and promote fatty acid oxidation Soy X receptor).
  • bile acid Addenophora Radix
  • FXR pane to regulate bile acids in liver tissues or inhibit the synthesis of fat and promote fatty acid oxidation Soy X receptor.
  • Another object of the present invention is to provide a pharmaceutical composition and a functional food composition for the prevention or treatment of fatty liver disease containing the bile acid regulator or FXR agonist.
  • the present invention provides a bile acid modulator or FXR (panesoid X receptor) adjuvant containing a residual saponin or a residual extract containing the same as an active ingredient.
  • FXR panesoid X receptor
  • the residue extract is preferably a hot water extract or an organic solvent extract.
  • the residue hydrothermal extract is obtained by drying and grinding the residue in the shade to obtain a residue powder; Adding 5-10 times water by volume to the obtained residue powder and extracting twice for 4 to 6 hours at a temperature of 90 to 100 ° C. to obtain a hydrothermal extract; And removing the solids by filtration or centrifugation of the hydrothermal extract obtained, and concentrating and drying to obtain a residual hydrothermal extract powder.
  • the residue organic solvent extract is dried and pulverized the residue in the shade to obtain a residue powder;
  • an alcohol extract was obtained by adding 1 to 5 times C 1 to C 4 alcohol, or a mixture of C 1 to C 4 alcohol and water, and extracting twice at a temperature of 90 to 95 ° C. for 3 hours. Obtaining; And the obtained alcohol extract is filtered or centrifuged to remove solids, concentrated and dried to obtain a residual alcohol extract powder.
  • the C 1 ⁇ C 4 alcohol is ethanol
  • the alcohol extract is an ethanol extract
  • the residue alcohol extract powder is preferably a residue ethanol extract powder.
  • the residue extract preferably comprises 5 to 100% by weight.
  • the present invention provides a pharmaceutical composition and a functional food composition for preventing and treating fatty liver disease containing the bile acid regulator or FXR agonist as an active ingredient.
  • the fatty liver disease is preferably any one selected from the group consisting of alcoholic fatty liver, non-alcoholic fatty liver, obese fatty liver, and fatty liver disease group of diabetic fatty liver and primary biliary cirrhosis.
  • composition containing the remnant saponin or the remnant extract containing the same as an active ingredient is harmless to the human body and acts as a bile acid regulator or FXR (panesoid X receptor) adjuvant to inhibit the synthesis of fat and promote fatty acid oxidation. Since the effect of inhibiting triglyceride accumulation in the liver tissue is excellent, it can be usefully used as a preventive and therapeutic agent for fatty liver disease or health functional food.
  • FXR panesoid X receptor
  • composition of the present invention may play a role in treating common liver diseases such as nonalcoholic steatohepatitis and alcoholic hepatitis, and in particular, has a function of bile activation and regulation, and has an antifibrotic function and an anti-inflammatory function, thereby causing primary biliary cirrhosis. It can be usefully used as a preventive and therapeutic agent or as a dietary supplement.
  • Example 1 is a graph showing the toxicity evaluation in the hepatocytes of the extract according to Example 1.
  • Figure 2 is a diagram showing the inhibitory effect of SREBP-1c, FAS gene expression on the mRNA level of the residue extract according to Example 1.
  • FIG. 3 and 4 are graphs showing the effect of inhibiting fat accumulation in hepatocytes of the extract according to Example 1 (FIG. 3: 8 hours treatment, FIG. 4: 24 hours treatment).
  • Example 5 is a graph showing the inhibitory effect of ROS expression in hepatocytes of the extract according to Example 1.
  • Figure 6 is a view showing the SREBP-1c, FAS gene expression inhibitory effect on the protein level of the remnant extract according to Example 1.
  • Figure 7 is a graph showing the weight change evaluation of the nonalcoholic steatohepatitis animal model of the residue according to Example 1.
  • Figure 8 is a graph showing the evaluation of blood glucose changes in the nonalcoholic steatohepatitis animal model of the residue according to Example 1.
  • Figure 9 is a graph showing the inhibitory effect of cholesterol accumulation in the nonalcoholic steatohepatitis animal model of the extract according to Example 1.
  • Example 10 is a graph showing the evaluation of triglyceride accumulation in the nonalcoholic steatohepatitis animal model of the residual extract according to Example 1.
  • 11 and 12 are diagrams showing the pathological observation evaluation of the nonalcoholic steatohepatitis animal model of the extract according to Example 1.
  • Figure 13 is a graph showing the effect of inhibiting the expression of ALT, AST in the nonalcoholic steatohepatitis animal model of the extract according to Example 1.
  • Example 14 is a graph showing the effect of inhibiting the expression of TGF- ⁇ in the nonalcoholic steatohepatitis animal model of the extract according to Example 1.
  • Example 15 is a SREBP-1c, FAS AMPK expression inhibition effect in the nonalcoholic steatohepatitis animal model of the extract according to Example 1.
  • Figure 16 is a graph showing the inhibition of Hedgehog signal that causes fibrosis of liver tissue of the remnant extract according to Example 1.
  • the term "about” means 30, 25, 20, 10, 9, 8, 7, 6, 5, 4, by reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight, or length. By amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by 3, 2 or 1%.
  • 'panesoid X receptor (FXR)' is one of the nuclear receptors closely related to fatty liver disease.
  • FXR is activated when bile acids bind, and FXR promotes the expression of apolipoprotein CII (ApoCII) and inhibits the expression of ApoCIII, thereby increasing the activity of lipoprotein lipase, thereby increasing triglycerides in the blood (triglycerides).
  • ApoCII apolipoprotein CII
  • ApoCIII apolipoprotein CII
  • triglycerides triglycerides
  • sterol-response-element-binding protein 1c sterol-response-component-binding protein 1c; SREBP1c
  • fatty acid synthase fatty acid synthase
  • the term “improvement” refers to any action by which administration of the composition of the present invention improves or beneficially alters the symptoms of fatty liver disease.
  • administration means providing a subject with a composition of the present invention in any suitable manner.
  • the term "individual” means any animal, such as a human, monkey, dog, goat, pig, or rat, having a disease in which the symptoms of fatty liver disease can be improved by administering the composition of the present invention.
  • the term “pharmaceutically effective amount” means an amount sufficient to treat a disease at a reasonable benefit or risk ratio applicable to medical treatment, which means the type of disease, the severity, the activity of the drug, the drug Sensitivity to, time of administration, route of administration and rate of administration, duration of treatment, factors including drug used concurrently, and other factors well known in the medical arts.
  • the present invention provides a bile acid modulator or FXR (panesoid X receptor) adjuvant containing a residual saponin or a residual extract including the same as an active ingredient.
  • FXR panesoid X receptor
  • the residual saponin is to include quillaic acid (Formula 1 (a)) and gipsogenin (Formula 1 (b)), as represented by the following formula [1] , Minseok Kang et al., Phytochem. Anal. 24, 148-154 (2012).
  • Such compounds may be purchased as commercially available materials, prepared by organic chemical methods according to known literature, or obtained by extracting from plants, more particularly residues, without particular limitation.
  • Step 1 Adding a mixture of 90% methanol and hexane to the dried residue powder and extracting at room temperature to obtain a 90% methanol layer and a hexane layer (step 1); This methanol layer was added water, 30-100% methanol, which was separated by a column (e.g., a Dianion HP-20 resin column) to obtain a water fraction and a 30% to 100% methanol fraction, respectively. Step 2); And performing column chromatography (HSCCC) on 70% methanol fractions of these fractions to obtain compounds of Formula 1, respectively (Step 3) [Minseok Kang et al ., Phytochem. Anal. 24, 148-154 (2012).
  • HSCCC column chromatography
  • the residual saponins used in the present invention include not only the above-mentioned substance itself, but also all pharmaceutically acceptable salts thereof, as well as isomers thereof or possible solvates or hydrates that can be prepared therefrom.
  • the compound of formula 1 of the present invention may be used in the form of a pharmaceutically acceptable salt, and as the salt, an acid addition salt formed by a pharmaceutically acceptable free acid is useful.
  • Acid addition salts include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid and aliphatic mono and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkanes. Obtained from non-toxic organic acids such as dioates, aromatic acids, aliphatic and aromatic sulfonic acids.
  • Such pharmaceutically nontoxic salts include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate chloride, bromide, and iodide.
  • the acid addition salts according to the invention are dissolved in conventional methods, for example, by dissolving a compound of formula 1 in an excess of aqueous acid solution and using the water miscible organic solvent, such as methanol, ethanol, acetone or acetonitrile. It can be prepared by precipitation. It may also be prepared by evaporating the solvent or excess acid from the mixture and then drying or by suction filtration of the precipitated salt.
  • the water miscible organic solvent such as methanol, ethanol, acetone or acetonitrile.
  • Bases can also be used to make pharmaceutically acceptable metal salts.
  • Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically suitable to prepare sodium, potassium or calcium salt as the metal salt.
  • Corresponding silver salts are also obtained by reacting alkali or alkaline earth metal salts with a suitable negative salt (eg, silver nitrate).
  • the active ingredient of the present invention may include a residue extract containing the residual saponin represented by the formula (1).
  • the Adenophora Radix extract may be obtained by extraction and separation from nature using extraction and separation methods known in the art, and the 'extract' defined in the present invention may be prepared by using an appropriate solvent. It is extracted from the residue and may include, for example, all of the hydrothermal extract, polar solvent soluble extract, or nonpolar solvent soluble extract of the residue.
  • any solvent that is acceptable in the art may be used, and water or an organic solvent may be used.
  • water or an organic solvent may be used.
  • Solvents such as benzene, chloroform, ethyl acetate, methylene chloride, hexane and cyclohexane may be used alone or in combination. It is not limited.
  • any one of hot water extraction method, cold leaching extraction method, reflux cooling extraction method, solvent extraction method, steam distillation method, ultrasonic extraction method, elution method and compression method can be used.
  • the desired extract may further be subjected to a conventional fractionation process, it may be purified using conventional purification methods.
  • the method for preparing the residue extract of the present invention there is no limitation on the method for preparing the residue extract of the present invention, and any known method may be used.
  • the residue extract included in the composition of the present invention may be prepared in powder form by additional processes such as distillation under reduced pressure and freeze drying or spray drying, which are extracted by the hot water extraction or the solvent extraction method.
  • the primary extract is further purified using a variety of chromatography, such as silica gel column chromatography, thin layer chromatography, high performance liquid chromatography, etc. You can also get Therefore, in the present invention, the residual extract is a concept including all the extracts, fractions and purified products obtained in each step of extraction, fractionation or purification, their dilutions, concentrates or dried products.
  • the residue extract may be prepared by solvent extraction of raw residue, dry residue or powder milled thereto.
  • the residue is not particularly limited to the type and production area, and includes both diploid and tetraploid.
  • a dry residue may be used, and a drying method may include freeze drying (FD), indoor drying (ID), hot air drying (HD), microwave drying (MD), and the like.
  • ethanol alcohol of 0.1 to 100% concentration may be preferably used.
  • the residue powder is dried in the shade using finely pulverized residue and the hydrothermal extract is added to the residue powder by adding about 2 to 10 times, preferably 5 to 10 times water by volume and 80 to 100 °C
  • the extract obtained by extracting twice for 4 to 6 hours at a temperature of 90 to 100 ° C. is filtered or centrifuged to remove solids and concentrated, followed by freeze drying and spray drying to completely remove moisture. You can get the frozen residue extract.
  • the organic solvent extract is 1 to 5 times, preferably about 3 times, organic solvent, preferably C 1 to C 4 alcohol, or C 1 to C 4 alcohol and water, based on the volume of the residual powder.
  • organic solvent preferably C 1 to C 4 alcohol, or C 1 to C 4 alcohol and water
  • Ethanol may be preferably used as the organic solvent.
  • Such a residue extract of the present invention may be used alone as a bile acid regulator or FXR agonist, or may be used in admixture with other conventionally known bile acid regulators or FXR agonists or other active ingredients, preferably the residual extract of the present invention may be used as a bile acid regulator or It may comprise from 5 to 100% by weight in the FXR agonist.
  • the extract of the remnant has no cytotoxicity, acts as a bile acid regulator or FXR anti-inflammatory agent, inhibits the synthesis of fat, promotes fatty acid oxidation, and inhibits triglyceride accumulation in liver tissue. Accordingly, the compounds of the formula and the residue extracts comprising the same are useful as bile acid modulators or FXR agonists.
  • another aspect of the present invention provides a pharmaceutical composition for preventing and treating fatty liver disease containing the bile acid regulator or FXR anti-inflammatory agent of the present invention as an active ingredient.
  • the pharmaceutical composition of the present invention acts as a bile acid regulator or an FXR agonist to inhibit the synthesis of fat and promote fatty acid oxidation, thereby showing an excellent effect of inhibiting the accumulation of triglycerides in liver tissue, thus showing the prevention and treatment of fatty liver disease.
  • composition containing the compound of Formula 1 of the present invention may further contain one or more active ingredients exhibiting the same or similar functions in addition to the above components.
  • composition of the present invention may further comprise a pharmaceutically acceptable additive, wherein the pharmaceutically acceptable additive may include starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, calcium hydrogen phosphate, lactose , Mannitol, syrup, gum arabic, pregelatinized starch, corn starch, powdered cellulose, hydroxypropyl cellulose, opiodry, sodium starch glycolate, lead carnauba, synthetic aluminum silicate, stearic acid, magnesium stearate, aluminum stearate, calcium stearate , Sucrose, dextrose, sorbitol, talc and the like can be used.
  • the pharmaceutically acceptable additive according to the present invention is preferably included in the composition of 0.1 to 90 parts by weight, but is not limited thereto.
  • composition of the present invention can be administered in various oral and parenteral formulations during actual clinical administration, and when formulated, diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc., which are commonly used It can be prepared using.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate (Calcium carbonate) in the bile acid regulator or FXR agonist of the present invention. ), Sucrose (Sucrose), lactose (Lactose) or gelatin can be prepared by mixing.
  • Oral liquid preparations include suspensions, solvents, emulsions, and syrups, and may include various excipients, such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents, water and liquid paraffin.
  • Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories.
  • non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • composition of the present invention may be administered orally or parenterally according to a desired method, and when administered parenterally, external skin or intraperitoneal injection, rectal injection, subcutaneous injection, intravenous injection, intramuscular injection or intrathoracic injection injection method It is preferable to select. Dosage ranges depending on the patient's weight, age, sex, health condition, diet, time of administration, method of administration, rate of excretion and the severity of the disease.
  • the dosage of the composition of the present invention varies depending on the weight, age, sex, health condition, diet, time of administration, method of administration, excretion rate and severity of the disease of the patient, the daily dosage is the amount of active ingredient It can range from 0.02 to 1000 mg / kg body weight, preferably 1 to 200 mg / kg body weight, and may be administered once or several times.
  • the dosage does not limit the scope of the invention in any aspect.
  • composition of the present invention may be used alone or in combination with methods using other therapies such as procedures, chemotherapy and biological response modifiers for the improvement of fatty liver disease.
  • the present invention also provides a method for ameliorating fatty liver disease comprising administering to a subject suffering from fatty liver disease a composition containing a pharmaceutically effective amount of a bile acid modulator or FXR agonist of the present invention as an active ingredient.
  • the present invention also provides a method for improving fatty liver disease, comprising administering to a subject a composition containing a pharmaceutically effective amount of a bile acid modulator or FXR agonist of the present invention as an active ingredient.
  • the pharmaceutically effective amount is 0.02 to 1000 mg / kg, preferably 1 to 200 mg / kg, but is not limited thereto.
  • the dosage may vary depending on the weight, age, sex, health condition, diet, duration of administration, method of administration, elimination rate, severity of disease, and the like of the particular patient.
  • the subject is a vertebrate and preferably a mammal, more preferably an experimental animal such as a rat, rabbit, guinea pig, hamster, dog, cat, and most preferably an ape-like animal such as a chimpanzee or gorilla.
  • an experimental animal such as a rat, rabbit, guinea pig, hamster, dog, cat, and most preferably an ape-like animal such as a chimpanzee or gorilla.
  • the method of administration may be administered orally or parenterally, intraperitoneal, rectal, subcutaneous, intravenous, intramuscular, intrauterine dural, intracerebroventricular or intrathoracic It can be administered by injection.
  • the bansa saponin and the bansa extract of the present invention acts as a bile acid regulator or FXR agonist to inhibit the synthesis of fat and promote fatty acid oxidation to inhibit triglyceride accumulation in the liver tissues, thereby administering to a subject. It can be usefully used as a method for improving fatty liver disease.
  • the present invention also provides a food composition for preventing or ameliorating fatty liver disease, which contains a residual saponin or a residual extract including the same as an active ingredient.
  • the saponin and the stalk extract of the present invention acts as a bile acid regulator or FXR agonist, inhibits the synthesis of fat and promotes fatty acid oxidation, thereby preventing the accumulation of triglycerides in liver tissues, thereby preventing and improving fatty liver disease. It can be usefully used as an active ingredient.
  • Examples of the food to which the saponin of the present invention or the extract of the same containing the same can be added include various foods, beverages, gums, teas, vitamin complexes, and health functional foods.
  • the amount of the extract in the food or beverage can be added to 0.01 to 50% by weight, preferably 1 to 15% by weight of the total food weight, the health beverage composition is 0.02 to 5g, preferably based on 100 ml It may be added in a ratio of 0.3 to 3 g.
  • the health functional food of the present invention includes the form of tablets, capsules, pills, liquids and the like.
  • the health functional beverage composition of the present invention is not particularly limited to other ingredients except for containing the above-mentioned saponin or the above-mentioned extract as essential ingredients in the indicated ratios, and additional ingredients such as various flavors or natural carbohydrates, such as ordinary drinks. It may contain as.
  • the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disaccharides such as maltose, sucrose and the like; And conventional sugars such as polysaccharides such as dextrin, cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol.
  • natural flavoring agents such as, tauumatin, stevia extract (e.g., Rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used.
  • the proportion of natural carbohydrates is generally about 1-20 g, preferably about 5-12 g per 100 ml of the composition of the present invention.
  • residue saponins of the present invention or the residue extracts containing the same include various nutrients, vitamins, minerals (electrolytes), synthetic flavors and natural flavoring agents such as flavoring agents, colorants and neutralizing agents (cheese, chocolate, etc.), pectic acid And salts thereof, alginic acid and salts thereof, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated drinks, and the like.
  • the residual saponin of the present invention or the residual extract containing the same, so that the intake amount per adult 1 to 3,000 mg.
  • the dosage can be appropriately increased or decreased depending on age, symptoms, and the like.
  • Cell Counting Kit-8 The medium used for cell culture was used by adding 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (penicillin-streptomycin) to Dulbecco's Modified Eagle Medium (DMEM). Trypsin-EDTA (GIBCO, USA) and phosphate buffer (PBS) were used for cell division. HepG2 cells were used in this experiment and dispensed into 96 well plates at 5 ⁇ 10 3 cells / ml, respectively. CCK-8 solution was added 1/10 of the culture solution on 1, 3 and 5 days, and then incubated in a 37 ° C. incubator for 2 hours.
  • FBS fetal bovine serum
  • PBS phosphate buffer
  • the panenoid X reporter expresses the antifungal activity against the panesoid X receptor which promotes fatty acid oxidation and inhibits fatty acid synthesis. It was confirmed through a luciferase assay experiment using a cell line (Indigo bioscience).
  • Panesoid X reporter expressing cell lines stored at ⁇ 80 ° C. were thawed using cell recovery medium and dispensed into 32-well plates. Residual hot water extract and ethanol extract were diluted with compound screening media and treated with cells. After 24 hours of incubation at 37 ° C. and 5% CO 2 , the medium was discarded and the Luc-detection solution was aliquoted and left at room temperature for 10 minutes. Agonist activity for the receptor of X Ipanema small beads treated material is to measure the luminescence as a photometric analyzer was determined the EC 50 value, results are shown in Table 1.
  • GW 4064 (sigma) substance which is an antigen of Panesoid X receptor, was used.
  • the anti-inflammatory activity of the residual hot water extract and ethanol extract against the Panesoid X receptor was confirmed.
  • HepG2 cell line contains 37%, 5% CO in a T-75 flask with 10% FBS, penicillin (100 units / ml), streptomycin (100 ⁇ g / ml) and sodium bicarbonate (3.7 g / L) in DMEM medium.
  • the culture was carried out in two states, and was used for the experiment when 70 to 80% of the culture was performed.
  • the cultured cells were aliquoted into 6-well plates and cultured at 37 ° C. and 5% CO 2 for at least 16 hours until the cells formed well. After treatment with the residual hydrothermal extract and ethanol extract was incubated for 24 hours at 37 °C, 5% CO 2 state.
  • SREBP-1c sterol-response-component-binding protein 1c
  • FAS fatty acid synthase
  • Residual hot water extract and ethanol extract were found to inhibit sterol-response-component-binding protein 1c (SREBP-1c), fatty acid synthase (FAS) gene expression in a concentration-dependent manner (see FIG. 2).
  • SREBP-1c sterol-response-component-binding protein 1c
  • FAS fatty acid synthase
  • HepG2 cell line contains 37%, 5% CO in a T-75 flask with 10% FBS, penicillin (100 units / ml), streptomycin (100 ⁇ g / ml) and sodium bicarbonate (3.7 g / L) in DMEM medium.
  • the culture was carried out in two states, and was used for the experiment when 70 to 80% of the culture was performed.
  • the cultured cells were aliquoted into 6-well plates and cultured at 37 ° C. and 5% CO 2 for at least 16 hours until the cells formed well. After treatment with the residual hydrothermal extract and ethanol extract was incubated for 24 hours at 37 °C, 5% CO 2 state.
  • HepG2 cell line contains 37%, 5% CO in a T-75 flask with 10% FBS, penicillin (100 units / ml), streptomycin (100 ⁇ g / ml) and sodium bicarbonate (3.7 g / L) in DMEM medium.
  • the culture was carried out in two states, and was used for the experiment when 70 to 80% of the culture was performed.
  • the cultured cells were aliquoted into 6-well plates and cultured at 37 ° C. and 5% CO 2 for at least 16 hours until the cells formed well.
  • the cells were washed and cell lysates were prepared using lysis buffer. After adding the enzyme buffer solution to the cell lysate, the absorbance was measured by ELISA analyzer to analyze the degree of fat accumulation. The negative control used only media solution. It was confirmed that the residual hot water extract and the ethanol extract inhibit the fat accumulation in liver cells excellently (see FIG. 4).
  • Active oxygen species reactive oxygen species, ROS
  • ROS reactive oxygen species
  • HepG2 cell line contains 37%, 5% CO in a T-75 flask with 10% FBS, penicillin (100 units / ml), streptomycin (100 ⁇ g / ml) and sodium bicarbonate (3.7 g / L) in DMEM medium.
  • the culture was carried out in two states, and was used for the experiment when 70 to 80% of the culture was performed.
  • the cultured cells were aliquoted into a 100 mm dish and cultured at 37 ° C. and 5% CO 2 for at least 16 hours until the cells formed well. After treatment with the residual hydrothermal extract and ethanol extract was incubated for 24 hours at 37 °C, 5% CO 2 state.
  • Residual hot water extract was removed 12 hours after administration of HepG2 cells at a concentration of 200 ⁇ g / ml.
  • the removed residual hydrothermal extract treated HepG2 cells were added 2 ', 7'-dichlorofluorescein diacetate (Sigma-Aldrich, U.S.A) in PBS solution at 30 mM and incubated in a 37 ° C incubator for 30 minutes.
  • the cultured cells were harvested in a 1.5 ml tube and then spun for 10 minutes at 13,000 rpm using a centrifuge. The supernatant was discarded and 300 ⁇ l of fresh PBS was added and dissolved in an ultrasonic cleaner for 5 minutes.
  • ROS reactive oxygen species
  • Sterol regulatory component-binding protein which is a transcription factor that regulates fat metabolism including fatty acid synthase (FAS) in HepG2 hepatocytes in order to elucidate the mechanism of regulating fat synthase transcription of hepatic hydrothermal extract and ethanol extract of the present invention 1 (SREBP-1) and expression for AMPK that inhibits the expression of FAS and SREBP-1c were confirmed using Western blot.
  • FOS fatty acid synthase
  • HepG2 cell line was added to DMEM medium with 10% FBS, penicillin (100 units / ml), streptomycin (100 ⁇ g / ml) and sodium bicarbonate (3.7 g / L) at 37 ° C, 5% CO2 in a T-75 flask. Cultured in the state, it was used in the experiment when 70 to 80% culture. The cultured cells were aliquoted into 6-well plates and cultured at 37 ° C. and 5% CO 2 for at least 16 hours until the cells formed well. After treatment with the residual hydrothermal extract and ethanol extract was incubated for 24 hours at 37 °C, 5% CO 2 state.
  • the cultured cells were harvested in a 1.5 ml tube, and then spun for 10 minutes at 13,000 rpm using a centrifuge, and then discarded the supernatant and pellets.
  • IPH buffer 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 ⁇ M PMSF
  • 1 ⁇ g / mL protease inhibitors Liepetin, Aprotinin
  • 1 mM DTT Protein was extracted.
  • the extracted protein was transferred to a Hybond-P + polyvinylidene difluoride membrane (GE Healthcare, UK) after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • the membrane was blocked by treatment for 5 hours at room temperature with 5% fat-free milk dissolved in Tris-buffered saline (TBS) containing 0.1% Tween-20 and the indicated specific primary antibodies (SREBP-1c and phospho-AMPK). Incubated overnight at 4 ° C with 1% BSA and 0.05% Tween-20 containing TBS. Membranes were further treated at room temperature for 2 hours with peroxidase-conjugated goat anti-mouse antibody or peroxidase-conjugated goat anti-rabbit antibody diluted 1: 3000 again, 0.1% BSA and 0.1% Tween- After washing with 20 containing TBS, protein expression was confirmed using ECL plus (Amersham Biosciences).
  • Body weight and blood glucose of ICR mice which are animal models, were measured and examined to determine the efficacy of the hepatic hydrothermal extract and ethanol extract of the present invention.
  • Blood glucose was measured by a blood glucose meter after blood was taken from the tail vein after 12 hours of fasting of the animals.
  • Residual hot water extract and ethanol extract was found to decrease the weight and blood glucose levels in a concentration-dependent manner (see FIGS. 7 and 8).
  • Blood was collected using a heparin-treated capillary tube from the tail vein of mice fed oral administration of the residual hydrothermal extract by the Enzymatic Method (Enzymaticmethod). After standing for one hour at, centrifuged at 3000 rpm for 15 minutes to obtain a serum. 300 ⁇ l of the enzyme reagent was added to 4 ⁇ l of the separated serum and reacted in a 37 ° C. water bath for 15 minutes, and the absorbance (OD) was measured at 550 nm with distilled water as a blank using 96 plate wells. Total cholesterol was measured using the following equation using absorbance of distilled water and the sample.
  • Serum cholesterol 300 ⁇ (absorbance of sample / absorbance of standard)
  • Residual hot water extract and ethanol extract was confirmed to decrease the total cholesterol level in a concentration-dependent manner (see Figure 9).
  • Blood was collected using a heparin-treated capillary from the tail vein of the mouse that was orally administered the remnant hot water extract using a triglyceride kit (Trinder method), and the collected blood was collected for one hour at room temperature. After being left for a while, serum was obtained by centrifugation at 3000 rpm for 15 minutes. 300 ⁇ l of the enzyme reagent was added to 4 ⁇ l of the separated serum and reacted for 10 minutes in a 37 ° C. water bath. Then, the absorbance (OD) was measured at 500 nm with distilled water as a blank in 1 hour using a 96-well plate. Triglyceride (TG) was measured using the following equation using absorbance of distilled water and the sample.
  • Triglyceride (mg / 100ml) (absorbance of the sample / absorbance of the standard) ⁇ concentration of the standard
  • the residual hydrothermal extract and ethanol extract was found to decrease triglyceride levels in a concentration-dependent manner (see FIG. 10).
  • mice Four-week-old ICR mice were administered high-fat diets for four weeks, and then weighed to select mice that gained weight. Selected mice were divided into three groups (positive control: high fat diet (HFD), HFD + residue extract 20 mg / kg, HFD + residue extract 200 mg / kg), followed by oral administration of the residual hydrothermal extract at a constant time every day for 4 weeks. Five animals were used for each group.
  • HFD high fat diet
  • HFD + residue extract 20 mg / kg HFD + residue extract 200 mg / kg
  • Liver tissues were extracted by sacrificing animals on Days 1, 14, 28, and 56 after oral administration of the residual hydrothermal extract, fixed in 10% neutral formalin solution for 24 hours, and liver tissues were taken and formatted as paraffin after dehydration.
  • the tissue was sliced to a thickness of 5 ⁇ m using a tissue slicer and attached to a slide to remove paraffin and water, followed by hematoxylin-eosin (H & E) staining, and Masson's trichrome (MT). ) And oil red O staining.
  • H & E hematoxylin-eosin
  • MT Masson's trichrome
  • Epidermal growth, inflammatory response, neo-vascular proliferation and collagen deposition were observed using liver tissue.
  • the tissue sections were hydrated with 100, 90, 80, 70% ethanol and distilled water for 5 minutes, and washed with distilled water. Stained with Harris hematozain for 3 minutes, the tissue was washed with distilled water for 5 minutes. The washed tissues were stained with eosin for 5 minutes, dehydrated with 70, 80, 90 and 100% ethanol and xylene and then sealed with Shandon Synthetic Mountant (Thermo scientific, USA).
  • the tissue sections were paraffin-free with xylene and then watered with 100, 90, 80 and 70% ethanol and distilled water for 5 minutes, and washed with distilled water.
  • the tissues were reacted in a Bouin's (IMEB, USA) solution at 60 ° C. for 1 hour and then washed with distilled water.
  • the tissues were treated with Biebrich scarlet-acid fuchsin, phosphomolybdic-phosphotungstic acid, and aniline blue coloring solution (IMEB, USA) for 5 minutes and washed with distilled water.
  • IMEB aniline blue coloring solution
  • ALT and AST enzymes were measured in blood of ICR mice, an animal model, in order to examine the efficacy of the hepatic hydrothermal extract and ethanol extract of the present invention.
  • ALT was measured by the method of Reitman-Frankel using the Youngdong Pharmaceutical kit.
  • RT-PCR was used for the measurement.
  • RNA-Bee TEL-TEST, USA
  • RNA extracted from image tissue using Maxime RT Premix (Oligo dT primer) kit (Intron Biotechnology, Korea).
  • Quantitative polymerase chain reaction (qPCR) was measured using the Roter-Gene SYBR Green PCR reagent system (Qiagen, Germany). Each primer sequence information is as follows.
  • TGF- ⁇ transforming growth factor
  • Liver tissue was treated with IPH buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 ⁇ M PMSF), 1 ⁇ g / mL protease inhibitors (Luepetin, Aprotinin), 1 mM
  • IPH buffer 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 ⁇ M PMSF
  • 1 ⁇ g / mL protease inhibitors Liepetin, Aprotinin
  • the protein was extracted by treatment with DTT.
  • the extracted protein was transferred to a Hybond-P + polyvinylidene difluoride membrane (GE Healthcare, UK) after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • TBS Tris-buffered saline
  • SREBP-1c and phospho-AMPK specific primary antibodies
  • TBS Tris-buffered saline
  • SREBP-1c and phospho-AMPK specific primary antibodies
  • TBS Tris-buffered saline
  • SREBP-1c and phospho-AMPK specific primary antibodies
  • Membranes were again treated at room temperature for 2 hours with peroxidase-conjugated goat anti-mouse antibody or peroxidase-conjugated goat anti-rabbit antibody diluted 1: 3000, and 0.1% BSA and 0.1% Tween- After washing clean with 20 containing TBS, protein expression was confirmed using ECL plus (Amersham Biosciences).
  • Gli family (Gli1 and Gli2), which are representative markers of Hedgehog signal in liver tissue of ICR mouse, which is an animal model, was examined. Confirmed using Western blot.
  • Liver tissue was treated with IPH buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 ⁇ M PMSF), 1 ⁇ g / mL protease inhibitors (Luepetin, Aprotinin), 1 mM
  • IPH buffer 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 ⁇ M PMSF
  • 1 ⁇ g / mL protease inhibitors Liepetin, Aprotinin
  • the protein was extracted by treatment with DTT.
  • the extracted protein was transferred to a Hybond-P + polyvinylidene difluoride membrane (GE Healthcare, UK) after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).
  • tablets were prepared by tableting according to a conventional method for producing tablets.
  • the capsule was prepared by filling in gelatin capsules according to the conventional method for producing a capsule.
  • an injection was prepared by containing the above components in the contents shown.
  • Example 1 of the present invention 0.5 to 5.0 parts by weight of the extract of Example 1 of the present invention was added to the flour and bread, cake, cookies, crackers and noodles were prepared using this mixture.
  • Example 1 of the present invention 0.1 to 5.0 parts by weight was added to soups and broth to prepare meat products for health promotion, soups of noodles and broths.
  • Example 1 of the present invention 5 to 10 parts by weight of the extract of Example 1 of the present invention was added to milk, and various dairy products such as butter and ice cream were prepared using the milk.
  • Brown rice, barley, glutinous rice, and yulmu were alphad by a known method, and then dried and roasted to prepare a powder having a particle size of 60 mesh.
  • Black beans, black sesame seeds, and perilla were also steamed and dried by a known method, and then ground to a powder having a particle size of 60 mesh.
  • Example 1 of the present invention was concentrated under reduced pressure in a vacuum concentrator and dried by spraying and drying with a hot air dryer to grind the dried product to a particle size of 60 mesh using a grinder to obtain a dry powder.
  • Cereals (30 parts by weight brown rice, 15 parts by weight brittle, 20 parts by weight of barley),
  • Seeds (7 parts by weight perilla, 8 parts by weight black beans, 7 parts by weight black sesame seeds),
  • Example 1 of the present invention Instantly mix the subsidiary materials such as liquid fructose (0.5%), oligosaccharide (2%), sugar (2%), salt (0.5%) and water (75%) with 5 g of the extract of Example 1 of the present invention. After sterilization, it was prepared by packing it in a small packaging container such as a glass bottle or a plastic bottle.
  • a small packaging container such as a glass bottle or a plastic bottle.
  • Example 1 of the present invention 5 g of the extract of Example 1 of the present invention was added to 1,000 ml of tomato or carrot juice to prepare vegetable juice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Botany (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명은 담즙산 조절제 또는 FXR 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방, 개선 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물에 관한 것이다. 본 발명에 따른 잔대 사포닌 또는 이를 포함하는 잔대 추출물을 유효성분으로 함유하는 조성물은 인체에 무해하고 담즙산 조절제 또는 FXR(파네소이드 X 수용체) 항진제로 작용하여 지방의 합성을 억제하고 지방산 산화를 촉진하여 간 조직 내에서의 중성지방 축적 억제 효과가 탁월하므로 지방간 질환 예방, 개선 및 치료제 또는 건강 기능성 식품으로 유용하게 사용될 수 있다. 또한, 본 발명의 조성물은 비알코올성 지방간염과 알코올성 간염과 같은 일반적인 간 질환을 치료하는 역할을 할 수 있으며 특히 담즙 활성화 및 조절의 기능이 있고, 항섬유화 기능과 항염증 기능이 있어 원발성 담즙성 간경변증의 예방, 개선 및 치료제 또는 건강 기능 식품으로 유용하게 사용될 수 있다.

Description

담즙산 조절제 또는 FXR 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물
본 발명은 담즙산 조절제 또는 FXR 항진제, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물에 관한 것이다.
생체내에서 담즙산의 기능은 음식 섭취 시 유화제 역할을 하면서, 식이 콜레스테롤 및 영양소의 흡수, 간, 소장 및 신장에서 손상을 유발할 수 있는 염증 및 섬유증 등을 복구하는 메카니즘을 조절하는 것으로 알려져 있다. 따라서 담즙산의 기능이상 또는 담즙산의 생산과 조절은 지방간(염), 원발성 담즙성 간경변에 결정적인 원인이 된다. 간에서 담즙산의 합성과 정리를 조절하는 핵수용체(Nuclear Receptor) FXR은 과도한 담즙산의 증가를 조절하여 PBC(원발성 담즙성 간경변, Primary Biliary Cirrhosis)와 PSC(원발성 경화성 담관염, Primary Sclerosing Cholangitis)의 치료 타켓이며, 비알콜성 간염(NASH)과 알콜성 간염 같은 일반적인 간질환을 치료하는 메카니즘을 유도한다. FXR의 담즙 활성화는 항섬유증, 항염증, 지방축적 저해 작용을 유도한다. FXR은 소장 및 대장 그리고 신장 등 소화기계 및 간질환 치료를 위한 잠재적인 표적이다. 따라서, 담즙산의 조절제 또는 FXR의 항진제(agonist) 또는 역-항진제(inverse-agonist)를 개발하여 지방간 및 간경변증 치료제와 건강 기능 식품 및 그 소재를 개발하는 것은 지방간 질환의 치료와 예방에 있어 매우 긴급히 필요하고 중요한 것이다.
지방간 질환은 지방질, 그 중에서도 특히 트리글리세라이드가 간세포에 축적되어 간 무게의 5% 이상을 차지하고 있는 질병이며, 증가된 간세포의 중성지방 중에서 지방조직으로부터 유입된 지방산은 60%이며 25%는 간세포 안에서 자체적으로 생산되는 유리 지방산으로 알려져 있다. 임상적으로는 간세포의 5% 이상에서 지방이 관찰되거나 간 100 mg 당 지방이 5 mg 이상일 때 즉 지방이 전체 간 무게의 5% 이상을 차지하게 될 때 지방간으로 분류한다. 원발성 담즙성 간경변(Primary Billiary Cirrhosis. PBC)은 담즙산을 간 밖으로 내보내는 담관의 자가 면역 파괴로부터 발생하는 1차적 희귀 간질환으로 지속적인 담즙산의 독성 축적은 만성염증과 간 손상을 유발한다. 독성의 증가는 알칼리 포스파타제(Alkaline phosphatase, ALP)가 증가함으로 원발성 담즙성 간경변의 진단 바이오 마커로 활용된다.
인체내에서 가장 큰 장기이면서 대사가 가장 활발하게 일어나는 간은 소화기계와 전신순환계 사이에 위치하면서 외부에서 유입되는 생체외 물질로부터 전신을 방어 보호하는 기능을 수행하고 있다. 또한, 더욱 중요하게는 간은 각종 대사작용, 해독, 분해, 합성 및 분비를 담당하는 매우 중요한 장기이다. 보다 구체적으로 간은 에너지 대사를 조절 관리하며, 섭취한 음식물로부터 흡수된 영양소들은 간에서 에너지를 생산할 수 물질들로 대사된다. 약 2,000여 종의 효소, 다양한 혈청 단백질, 담즙산, 인지질, 콜레스테롤 및 지방 등이 간에서 합성되고 전신으로 분배된다. 간은 다양한 종류의 대사산물을 담관을 통해 십이지장으로 배설하는 기능과 면역기능이 있어서 생체활동과 생명유지에 결정적으로 중요한 역할을 하고 있다. 가장 잘 알려진 간의 기능은 해독 및 분해 작용으로서 간에서 각종 음식물, 약물, 술 등에서 유입된 독성물질을 해독시키면서 간세포는 손상을 받기 쉽고 각종 원인에 의한 간질환이 발생할 수 있다. 생체내로 유입되는 물질은 대부분 일단 간을 통과하게 되므로 간은 많은 독성물질에 노출되어 있고 이로 인해 손상을 받을 수 있다.
간은 재생능력은 매우 뛰어난 유일한 장기로 약간의 손상이 있을 경우에는 대부분 회복되는 것으로 알려져 있으나, 바이러스 감염, 지방의 과다 축적 등 다양한 원인에 의해 손상이 지속되고 이로 인해 간 조직의 일부에서 궤사가 일어나고 염증이 발생하면 간 기능이 저하되는 등 정상 간으로의 회복이 불가능한 만성 상태로 갈 수 있다. 이렇게 간 손상이 만성화되면 점차적으로 만성 간염, 섬유화 및 간경변, 간암 등으로 진행하게 된다. 만성 간염, 간 섬유화 및 간경변증, 간암은 현재는 간 이식 이외에는 허가된 뚜렷한 치료제가 전혀 없는 실정이다. 따라서, 간 손상이 만성으로 진행되기 전에 이러한 간 손상을 예방하거나 치료하는 것은 간 섬유화, 간경변, 간암으로의 진행을 억제하거나 역전시킬 수 있는 매우 중요한 일이다.
이러한 간 손상 및 간 질환은 원인에 따라 구별할 수 있으나, 최근 보건 의학적으로 가장 관심이 증가되고 있는 부분은 담즙산의 생산 및 조절과 관련한 지방간과 원발성 담즙성 간경변 분야이다. 특히 비알코올성 지방간염은 고칼로리 식사와 좌식생활 시간이 늘어남에 따라 선진국에서는 마치 전염병처럼 번지고 있는 실정이다. 비알콜성기반간염(NASH)이 발생하고 악화되는 원인이 점차 밝혀지면서 의료계와 제약사들의 관심이 높아지고 있다.
지방간은 알코올성 지방간과 비알코올성 지방간으로 구분되며 간세포에 지방이 축적되고 이것이 간세포의 핵과 기타 내용물을 짓누르게 되며 흉터조직이 건강한 간세포를 밀어내면서 간 경변증이나 심각한 간 손상이 시작된다.
알코올성 지방간 질환의 주 원인은 음주이며 반복된 알코올 섭취는 대사과정 중 NADH와 NADP+의 증가를 유도하고 NADH의 증가는 지방합성을 촉진하여 지방간을 유도한다.
비알코올성 지방간 질환(Nonalcoholic fatty liver disease, NAFLD)은 간세포에 지방의 과도한 축적만 있는 단순 지방간(simple steatosis)과, 간세포 괴사와 염증과 섬유화를 동반하는 비알코올성 지방간염(Nonalcoholic steatohepatitis, NASH) 및 더 진행된 형태인 간경변증을 포함하는 일련의 질환군을 의미한다. 비알코올성 지방간염(NASH)은 일반적으로 비만과 관련된 것으로 알려져 있는데 문자 그대로 간에 지방이 과잉 축적됨으로써 발생하지만 특이하게도 수많은 중증 간질환을 초래하는 알코올(Alcohol) 남용과는 관련성이 없는 것으로 밝혀졌다. 비알코올성간염(NASH)은 간을 파괴할 수 있으므로, 증상이 심각한 환자들은 간을 이식 받아야 할 수도 있고 때로는 사망에 이를 수도 있다. 이러한 비알코올성 지방간 질환은 대부분 인슐린 저항성, 비만, 당뇨, 고지혈등 합병증을 동반하는 경우가 많으며 반드시 치료해야 하지만 현재 치료의 원칙은 식사요법이나 운동요법과 몇 종류의 대체 치료제를 처방할 수 밖에 없는 실정이다. 따라서, 보다 적극적으로 지방간 질환의 예방과 개선 및 치료를 목적으로 하는 의약품의 개발 또는 건강 기능 식품소재개발 및 이를 활용한 건강 기능 식품의 개발이 절실히 요구된다.
지방간을 포함하는 간 질환의 치료제로서 다양한 제품의 개발이 시도되고 있으나 실질적으로 효능이 입증된 제품은 아직 없으며 보조적인 약물이 사용되고 있는 실정이다. 식이요법, 체중 줄이기, 당뇨병과 고지혈증의 보조적 치료 등이 현재 표준치료법으로 쓰이고 있으나 결정적으로 질병의 진행을 막지는 못한다. 현재 처방되고 있는 보조요법제로는 체중감소약물(예를 들어, Rimonabant, Orlistat, Sibutramine 등), 인슐린 저항성 개선 약물(Pioglitazone, Rosiglitazone, Metformin 등), 항산화제(Vitamine E. Vitamine C 등), 고지혈증 치료제(Statin, Clofibrate, Gemifibrozil 등), 간(장)보호제(UDCA, Silymarine, DDB 등)가 전부이지만, 근본적으로 지방간 질환의 진행을 막지는 못한다.
한편, 잔대(Adenophora Radix)는 초롱꽃과(Campanulaceae)에 속하는 다년생 초본류 자생식물로서 이른 봄에 나오는 어린 싹은 식용으로 이용되는 대표적인 산나물로 "딱주"라고 알려져 있지만, 잔대는 주로 뿌리가 전통적인 생약재 및 식품으로 활용되고 있다. 뿌리는 "사삼"이라 하여 인삼과 비슷한 약효가 있는 것으로 알려져 있으며, 한방에서는 거담, 진해, 건위, 및 강장제 등의 약재로 이용한다. 잔대는 비타민 A와 C 그리고 칼슘 함량이 높고 주성분은 사포닌(Saponin)과 이눌린당(Inulin)으로 알려져 있다. 그러나 잔대의 사포닌은 그 성분과 구조가 아직 구체적으로 알려진 것이 거의 없는 실정이다. 따라서, 잔대의 연구는 매우 제한적으로 진행되었고 그나마 수행된 대부분의 연구들도 잔대의 조추출물 정도로 연구가 진행된 실정이다. 특히 잔대의 사포닌, 깁소게닌(Gypsogenin), 퀼라익산(Quillaic acid) 등과 이것이 포함된 잔대 추출물이 담즙산 생산 및 조절 또는 간세포의 담즙산 합성과 정리를 조절하는 핵 수용체 FXR과 관련되고 이것이 지방간 질환과 원발성 담즙성 간경변증의 예방과 치료를 위한 용도의 약학적 조성물과 건강 기능 식품을 위한 소재와 그 조성물에 관한 연구는 아직 시도된 바 없다.
이하에서는 간 질환 예방 및 치료용 조성물에 관한 종래 기술을 기술코자 한다.
대한민국 특허등록번호 제 10-1501433호(출원인: 박형진, (주)제이비케이자연의학연구소, 주식회사 머쉬메드)에는 비알코올성 지방간 질환의 예방 및 치료용 조성물이 기재되어 있는데, 보다 구체적으로, 블랙 초크베리(Aronia melanocarpa) 추출물 및 엉겅퀴(Silybum marianum) 추출물을 포함하는 것을 특징으로 하는 비 알코올성 지방간 질환의 예방 및 치료용 조성물이 기재되어 있다.
대한민국 특허공개번호 제2013-0119146호(출원인: 카톨릭대학교 산학협력단)에는 광천수를 함유한 지방간 질환의 예방 및 치료용 조성물이 기재되어 있는데, 보다 구체적으로, 미네랄 성분으로서 칼륨 200~230㎎/L, 나트륨 7000~9500㎎/L, 칼슘 1400~1700㎎/L, 마그네슘 900~1100㎎/L, 아연 3~9㎎/L, 스트론튬 25~35㎎/L, 셀레늄 200~500㎍/L, 바나듐 65~75㎍/L, 게르마늄 0.5~1.5㎍/L, 망간 10~40㎍/L, 코발트 1~3㎍/L, 티탄 600~950㎍/L, 구리 3~9㎍/L, 리튬 0.02~0.09㎎/L, 염소이온 16000~19500㎎/L, 불소이온 1.5~3.0㎎/L, 브롬이온 40~56㎎/L, 황산이온 3000~4500㎎/L, 보론 0.8~1.2㎎/L 및 이산화규소 0.5~15㎎/L를 포함한 지방간 질환의 예방 또는 치료용 조성물이 기재되어 있다.
대한민국 특허등록번호 제10-0953813호(출원인: 이정식)에는 지질억제활성을 갖는 복합생약추출물을 유효성분으로함유하는 지방간 질환 예방 및 치료용 조성물이 기재되어 있는데, 보다 구체적으로, 운지, 황기, 인진 및 오미자의 추출물 배합중량비가 0.1 ~ 10 : 0.1 ~ 10 : 0.1 ~ 10 : 1 로 혼합된 복합생약추출물을 유효성분으로 함유하는 알코올성 지방간, 비만성 지방간 또는 당뇨병성 지방간의 예방 및 치료용 약학조성물이 기재되어 있다.
대한민국 특허등록번호 제10-1072247호(출원인: 주식회사 유니베라, 성균관대학교 산학협력단)에는 간 질환 예방 또는 치료용 가공된 알로에 베라 추출물, 및 가공된 알로에 베라 추출물과 밀크씨슬의 배합요법이 기재되어 있는데, 보다 구체적으로, 알로에 베라(Aloe vera) 잎을 용매로 추출하여 얻은 추출액을 농축하고, 농축액을 60 내지 100℃에 노출한 후 이를 동결건조하여 가공된 알로에 베라 추출물 및 밀크씨슬을 유효성분으로 포함하고, 알로에 베라 추출물 및 밀크씨슬의 중량비가 1:1.2 내지 2인 것을 특징으로 하는 간 질환의 예방 또는 치료용 의약 조성물이 기재되어 있다.
대한민국 특허등록번호 제10-1523663호(출원인: 한국 한의학 연구원)에는 우방자, 감초, 생강 및 후박의 혼합 생약 추출물을 포함하는, 지방간 질환 또는 비만의 예방 또는 치료용 조성물이 기재되어 있는데, 보다 구체적으로 우방자(Arctium lappa Linne), 감초(Glycyrrhiza uralensis Fischer), 생강(Zingiberis rhizoma Crudus) 및 후박(Magnoliae Cortex)의 혼합 생약 추출물을 포함하는, 지방간 질환 또는 비만의 예방 또는 치료용 약학적 조성물, 또는 지방간 질환 또는 비만의 예방 또는 개선용 식품 조성물; 및 상기 약학적 조성물을 이용한 지방간 질환 또는 비만의 치료 방법이 기재되어 있다.
본 발명의 목적은 잔대(Adenophora Radix) 사포닌 또는 이를 포함하는 잔대 추출물을 유효성분으로 함유하는, 간 조직 내에서의 담즙산을 조절하거나 지방의 합성을 억제하고 지방산 산화를 촉진하는 담즙산 조절제 또는 FXR(파네소이드 X 수용체) 항진제를 제공하기 위한 것이다.
또한, 본 발명의 다른 목적은 상기 담즙산 조절제 또는 FXR 항진제를 함유하는 지방간 질환의 예방 또는 치료용 약학적 조성물과 기능성 식품용 조성물을 제공하기 위한 것이다.
상기한 목적을 달성하기 위하여, 본 발명은 잔대 사포닌 또는 이를 포함하는 잔대 추출물을 유효성분으로 함유하는 담즙산 조절제 또는 FXR(파네소이드 X 수용체) 항진제를 제공한다.
일 구체예에서, 상기 잔대 추출물은 열수 추출물 또는 유기용매 추출물인 것이 바람직하다.
일 구체예에서, 상기 잔대 열수 추출물은 잔대를 음지에서 건조하고 분쇄하여 잔대 분말을 얻는 단계; 얻어진 잔대 분말에 부피를 기준으로 5 내지 10배의 물을 첨가하고 90 내지 100℃의 온도에서 4 내지 6시간 동안 2회 추출하여 열수 추출물을 얻는 단계; 및 얻어진 열수 추출물을 여과 또는 원심분리하여 고형분을 제거하고 농축 및 건조시켜 잔대 열수 추출 분말을 얻는 단계를 포함하는 방법에 의해 얻어진 것이 바람직하다.
일 구체예에서, 상기 잔대 유기용매 추출물은 잔대를 음지에서 건조하고 분쇄하여 잔대 분말을 얻는 단계; 얻어진 잔대 분말에 부피를 기준으로 1 내지 5배의 C1~C4 알코올, 또는 C1~C4 알코올과 물의 혼합물을 첨가하고 90 내지 95℃의 온도에서 3시간 동안 2회 추출하여 알코올 추출물을 얻는 단계; 및 얻어진 알코올 추출물을 여과 또는 원심분리하여 고형분을 제거하고 농축 및 건조시켜 잔대 알코올 추출 분말을 얻는 단계를 포함하는 방법에 의해 얻어진 것이 바람직하다.
일 구체예에서, 상기 C1~C4 알코올은 에탄올이며, 상기 알코올 추출물은 에탄올 추출물이며, 상기 잔대 알코올 추출 분말은 잔대 에탄올 추출 분말인 것이 바람직하다.
일 구체예에서, 상기 잔대 추출물은 5 내지 100 중량%를 포함되는 것이 바람직하다.
또한, 본 발명은 상기 담즙산 조절제 또는 FXR 항진제를 유효성분으로 함유하는 지방간 질환을 예방 및 치료하기 위한 약제 조성물 및 기능성 식품용 조성물을 제공한다.
일 구체예에서, 상기 지방간 질환은 알콜성 지방간, 비알콜성 지방간, 비만성 지방간, 및 당뇨병성 지방간 및 원발성 담즙성 간경변증의 지방간 질환 군으로 이루어진 군으로부터 선택되는 어느 하나인 것이 바람직하다.
본 발명에 따른 잔대 사포닌 또는 이를 포함하는 잔대 추출물을 유효성분으로 함유하는 조성물은 인체에 무해하고 담즙산 조절제 또는 FXR(파네소이드 X 수용체) 항진제로 작용하여 지방의 합성을 억제하고 지방산 산화를 촉진하여 간 조직 내에서의 중성지방 축적 억제 효과가 탁월하므로 지방간 질환 예방 및 치료제 또는 건강 기능성 식품으로 유용하게 사용될 수 있다. 또한, 본 발명의 조성물은 비알코올성 지방간염과 알코올성 간염과 같은 일반적인 간 질환을 치료하는 역할을 할 수 있으며 특히 담즙 활성화 및 조절의 기능이 있고, 항섬유화 기능과 항염증 기능이 있어 원발성 담즙성 간경변증의 예방 및 치료제 또는 건강 기능 식품으로 유용하게 사용될 수 있다.
도 1은 실시예 1에 따른 잔대 추출물의 간세포에서의 독성평가를 나타낸 그래프이다.
도 2는 실시예 1에 따른 잔대 추출물의 mRNA 수준에서의 SREBP-1c, FAS 유전자 발현 억제 효과를 나타낸 도면이다.
도 3 및 도 4는 실시예 1에 따른 잔대 추출물의 간세포에서 지방축적 억제 효과를 나타낸 그래프이다[도 3: 8시간 처리, 도 4: 24시간 처리].
도 5는 실시예 1에 따른 잔대 추출물의 간세포내의 ROS 발현 억제 효과를 나타낸 그래프이다.
도 6는 실시예 1에 따른 잔대 추출물의 단백질 수준에서의 SREBP-1c, FAS 유전자 발현 억제 효과를 나타낸 도면이다.
도 7은 실시예 1에 따른 잔대 추출물의 비알코올성 지방간염 동물모델에서의 체중 변화 평가를 나타낸 그래프이다.
도 8은 실시예 1에 따른 잔대 추출물의 비알코올성 지방간염 동물모델에서의 혈당 변화 평가를 나타낸 그래프이다.
도 9는 실시예 1에 따른 잔대 추출물의 비알코올성 지방간염 동물모델에서의 콜레스테롤 축적 억제 효과를 나타낸 그래프이다.
도 10은 실시예 1에 따른 잔대 추출물의 비알코올성 지방간염 동물모델에서의 중성지방 축적 평가를 나타낸 그래프이다.
도 11 및 도 12는 실시예 1에 따른 잔대 추출물의 비알코올성 지방간염 동물모델에서의 병리학적 관찰 평가를 나타낸 도면이다.
도 13은 실시예 1에 따른 잔대 추출물의 비알코올성 지방간염 동물모델에서의 ALT, AST 발현 억제 효과를 나타낸 그래프이다.
도 14는 실시예 1에 따른 잔대 추출물의 비알코올성 지방간염 동물모델에서의 TGF-β 발현 억제 효과를 나타낸 그래프이다.
도 15는 실시예 1에 따른 잔대 추출물의 비알코올성지방간염 동물모델에서의 SREBP-1c, FAS AMPK 발현 억제 효과이다.
도 16은 실시예 1에 따른 잔대 추출물의 간 조직의 섬유화를 유발하는 Hedgehog 신호 억제를 나타낸 그래프이다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 하기의 정의를 가지며 본 발명의 관련 분야에서 통상의 과학기술인 및 당업자가 일반적으로 이해하는 바와 같은 의미에 부합된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.
용어 "약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다.
명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군을 포함하나, 임의의 다른 단계 또는 구성요소, 또는 단계 또는 구성요소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.
본 발명에서 '파네소이드 X 수용체(FXR)'는 지방간 질환과 밀접한 관련이 있는 핵수용체의 하나이다. FXR은 담즙산이 결합하면 활성화되며, FXR은 아포지질 단백질 CII(apolipoprotein CII, ApoCII)의 발현을 촉진하고 ApoCIII의 발현은 억제함으로써 리포단백 리파아제(lipoprotein lipase)의 활성을 증가시켜 혈중 중성지방(트리글리세라이드)을 감소시킨다[참고: Goodwin B et al., Mol. Cell, 6, 517-526 (2000); Claudel T et al., Gastroenterology, 125, 544-555 (2003)]. 또한, 간에서 스테롤-반응-엘리먼트-결합 단백질 1c(스테롤-반응-성분-결합 단백질 1c; SREBP1c), 지방산 합성효소(지방산 합성 효소; FAS)의 발현을 억제하여 간에서 중성지방 합성을 감소시키며[참고: Watanabe M et al., J. Clin. Invest. 113, 1408-1418 (2004)], PPARα의 발현을 촉진하여 지방산 산화를 증가시킨다[참고: Jorge A et al., Journal of Lipids, 2012, 1-10 (2012)].
본 발명에서 사용되는 용어 "개선"은 본 발명의 조성물의 투여로 지방간 질환의 증상이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.
본 발명에서 사용되는 용어 "투여"는 임의의 적절한 방법으로 개체에 소정의 본 발명의 조성물을 제공하는 것을 의미한다.
본 발명에서 사용되는 용어 "개체"는 본 발명의 조성물을 투여하여 지방간 질환의 증상이 호전될 수 있는 질환을 가진 인간, 원숭이, 개, 염소, 돼지 또는 쥐 등 모든 동물을 의미한다.
본 발명에서 사용되는 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜 또는 위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 이는 개체의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출비율, 치료기간, 동시에 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명은 잔대 사포닌 또는 이를 포함하는 잔대 추출물을 유효성분으로 함유하는 담즙산 조절제 또는 FXR(파네소이드 X 수용체) 항진제를 제공한다.
본 발명에서 잔대 사포닌은 하기 화학식 1로 표현되는 바와 같이, 퀼라익산(quillaic acid)(화학식 1의 (a)) 및 깁소게닌(gypsogenin)(화학식 1의 (b))을 포함하는 것이다[참조, Minseok Kang et al., Phytochem. Anal. 24, 148-154 (2012)].
[화학식 1]
Figure PCTKR2015012783-appb-I000001
이러한 화합물들은 시판되는 물질로 구입하거나, 공지된 문헌에 따라 유기화학적인 방법으로 제조하거나, 식물, 보다 특히 잔대로부터 추출하여 얻어질 수 있으며, 이에 대해서는 특별히 한정하지 않는다.
일 예로서, 잔대로부터 상기 화학식 1을 얻는 방법은 하기와 같다.
건조된 잔대 분말에 90%의 메탄올 및 헥산의 혼합물을 가하고, 실온에서 추출하여 90% 메탄올 층 및 헥산 층을 수득하는 단계 (단계 1); 이러한 메탄올 층을 물, 30 내지 100% 메탄올을 첨가하고, 이를 컬럼 (예를 들어, Dianion HP-20 수지 컬럼)으로 분리하여, 물 분획, 및 30% 내지 100% 메탄올 분획물을 각각 수득하는 단계 (단계 2); 및 이러한 분획물들 중에서 70% 메탄올 분획물을 컬럼 크로마토그래피(HSCCC)를 실시하여 화학식 1의 화합물을 각각 수득하는 단계 (단계 3)를 포함한다[Minseok Kang et al., Phytochem. Anal. 24, 148-154 (2012)].
본 발명에서 사용되는 잔대 사포닌은 상술된 물질 자체, 뿐만 아니라, 이의 약학적으로 허용되는 염 뿐만 아니라, 이의 이성질체 또는 이로부터 제조될 수 있는 가능한 용매화물 또는 수화물을 모두 포함한다.
본 발명의 화학식 1의 화합물은 약학적으로 허용 가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염이 유용하다. 산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 얻는다. 이러한 약학적으로 무독한 염류로는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함한다.
본 발명에 따른 산 부가염은 통상의 방법, 예를 들면, 화학식 1의 화합물을 과량의 산 수용액 중에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들면 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조할 수 있다. 또한 이 혼합물에서 용매나 과량의 산을 증발시킨 후 건조시키거나 또는 석출된 염을 흡입 여과시켜 제조할 수도 있다.
또한, 염기를 사용하여 약학적으로 허용 가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻는다. 이때, 금속 염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 또한, 이에 대응하는 은 염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 음염(예, 질산은)과 반응시켜 얻는다.
또한, 본 발명의 다른 활성 성분으로서, 상기 화학식 1로 표현되는 잔대 사포닌을 함유한 잔대 추출물을 포함할 수 있다.
본 발명에서 잔대(Adenophora Radix) 추출물은 당업계에 공지된 추출 및 분리하는 방법을 사용하여 천연으로부터 추출 및 분리하여 수득한 것을 사용할 수 있으며, 본 발명에서 정의된 '추출물'은 적절한 용매를 이용하여 잔대로부터 추출한 것이며, 예를 들어, 잔대의 열수 추출물, 극성용매 가용 추출물 또는 비극성 용매 가용 추출물을 모두 포함할 수 있다.
잔대 추출물을 위한 적절한 추출 용매로는 당업계에서 허용되는 용매라면 어느 것을 사용해도 무방하며, 물 또는 유기용매를 사용할 수 있다. 예를 들어, 정제수, 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 이소프로판올(isopropanol), 부탄올(butanol) 등을 포함하는 탄소수 1 내지 4개의 알코올, 아세톤(acetone), 에테르(ether), 벤젠(benzene), 클로로포름(chloroform), 에틸아세테이트(ethyl acetate), 메틸렌클로라이드(methylene chloride), 헥산(hexane) 및 시클로헥산(cyclohexane) 등의 각종 용매를 단독으로 혹은 혼합하여 사용할 수 있으나, 이에 제한되지는 않는다.
추출 방법으로는 열수추출법, 냉침추출법, 환류냉각추출법, 용매추출법, 수증기증류법, 초음파추출법, 용출법, 압착법 등의 방법 중 어느 하나를 선택하여 사용할 수 있다. 또한, 목적하는 추출물은 추가로 통상의 분획 공정을 수행할 수도 있으며, 통상의 정제 방법을 이용하여 정제될 수도 있다. 본 발명의 잔대 추출물의 제조방법에는 제한이 없으며, 공지되어 있는 어떠한 방법도 이용될 수 있다.
예를 들면, 본 발명의 조성물에 포함되는 잔대 추출물은 상기한 열수 추출 또는 용매 추출법으로 추출된 1차 추출물을, 감압 증류 및 동결 건조 또는 분무 건조 등과 같은 추가적인 과정에 의해 분말 상태로 제조할 수 있다. 또한, 상기 1차 추출물을 실리카겔 컬럼 크로마토그래피(silica gel column chromatography), 박층 크로마토그래피(thin layer chromatography), 고성능 액체 크로마토그래피(high performance liquid chromatography) 등과 같은 다양한 크로마토그래피를 이용하여 추가로 정제된 분획을 얻을 수도 있다. 따라서, 본 발명에 있어서, 잔대 추출물은 추출, 분획 또는 정제의 각 단계에서 얻어지는 모든 추출액, 분획 및 정제물, 그들의 희석액, 농축액 또는 건조물을 모두 포함하는 개념이다.
바람직한 예에서, 상기 잔대 추출물은 생잔대, 건조잔대 또는 이를 분쇄한 분말을 용매 추출함으로써 제조할 수 있다. 상기 잔대는 종류 및 산지에 특별히 제한되지 않으며 2배체 잔대, 4배체 잔대 등이 모두 포함된다. 바람직하게는 건조잔대를 이용할 수 있고, 건조방법은 동결건조(FD), 실내건조(ID), 열풍건조(HD), 마이크로웨이브 건조(MD) 등을 들 수 있으나 이에 한정되지 않는다. 상기 용매로는 0.1 내지 100% 농도의 에탄올(주정)이 바람직하게 사용될 수 있다.
구체적인 예에서, 상기 잔대 분말은 음지에서 건조하여 잘게 분쇄한 잔대를 사용하며 열수 추출물은 잔대 분말에 부피를 기준으로 약 2∼10배, 바람직하게 5 내지 10배의 물을 첨가하고 80∼100℃, 바람직하게 90 내지 100℃의 온도에서 4∼6시간 동안 2회 추출하여 수득된 추출물을 여과 또는 원심분리하여 고형분을 제거하고 농축한 후 동결 건조, 분무건조 등의 방법으로 건조시켜 수분이 완전히 제거된 잔대 추출물을 얻을 수 있다.
또 다른 예에서, 상기 유기 용매 추출물은 잔대 분말에 부피를 기준으로 하여 1 내지 5배, 바람직하게 약 3배의 유기 용매, 바람직하게 C1∼C4 알코올, 또는 C1∼C4 알코올과 물의 혼합물을 첨가하고 90∼100℃, 바람직하게 90 내지 95℃의 온도에서 4∼6시간 동안, 바람직하게 3시간 동안 2회 추출하여 얻어진 추출물을 여과 또는 원심분리하여 고형분을 제거하고 농축한 후 동결 건조, 분무건조 등의 방법으로 건조시켜 수분이 완전히 제거된 잔대 추출물을 얻을 수 있다. 유기 용매로는 에탄올이 바람직하게 사용될 수 있다.
이러한 본 발명의 잔대 추출물은 담즙산 조절제 또는 FXR 항진제로서 단독으로 사용될 수 있거나, 다른 종래 공지된 담즙산 조절제 또는 FXR 항진제 또는 다른 활성 성분과 혼합하여 사용할 수 있으며, 바람직하게 본 발명의 잔대 추출물은 담즙산 조절제 또는 FXR 항진제에 5 내지 100 중량%를 포함할 수 있다.
본 발명자들은 잔대 추출물이 세포독성이 없고, 담즙산 조절제 또는 FXR 항진제로 작용하여 지방의 합성을 억제하고 지방산 산화를 촉진시키고, 간 조직 내에서의 중성 지방 축적 억제 효과가 탁월함을 확인하였다. 이에 따라, 상기 화학식의 화합물 및 이를 포함하는 잔대 추출물은 담즙산 조절제 또는 FXR 항진제로서 유용하다.
또한, 본 발명의 다른 양태는 본 발명의 담즙산 조절제 또는 FXR 항진제를 유효성분으로 함유하는 지방간 질환을 예방 및 치료하기 위한 약제 조성물을 제공한다.
본 발명의 약제 조성물은 담즙산 조절제 또는 FXR 항진제로 작용하여 지방의 합성을 억제하고 지방산 산화를 촉진하여 간 조직 내에서의 중성지방 축적 억제 효과가 탁월하므로 지방간 질환의 예방 및 치료 효과를 나타낸다.
본 발명의 화학식 1의 화합물을 함유하는 조성물은 상기 성분에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다.
본 발명의 조성물은 약제학적으로 허용 가능한 첨가제를 더 포함할 수 있으며, 이때 약제학적으로 허용 가능한 첨가제로는 전분, 젤라틴화 전분, 미결정셀룰로오스, 유당, 포비돈, 콜로이달실리콘디옥사이드, 인산수소칼슘, 락토스, 만니톨, 엿, 아라비아고무, 전호화전분, 옥수수전분, 분말셀룰로오스, 히드록시프로필셀룰로오스, 오파드라이, 전분글리콜산나트륨, 카르나우바 납, 합성규산알루미늄, 스테아린산, 스테아린산마그네슘, 스테아린산 알루미늄, 스테아린산칼슘, 백당, 덱스트로스, 소르비톨 및 탈크 등이 사용될 수 있다. 본 발명에 따른 약제학적으로 허용 가능한 첨가제는 상기 조성물에 대해 0.1 내지 90 중량부 포함되는 것이 바람직하나 이에 한정되는 것은 아니다.
즉, 본 발명의 조성물은 실제 임상 투여 시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있는데, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 본 발명의 담즙산 조절제 또는 FXR 항진제에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(Calcium carbonate), 수크로스(Sucrose), 락토오스(Lactose) 또는 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제 및 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.
본 발명의 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여할 수 있으며, 비경구 투여시 피부 외용 또는 복강내주사, 직장내주사, 피하주사, 정맥주사, 근육내 주사 또는 흉부내 주사 주입방식을 선택하는 것이 바람직하다. 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다.
본 발명의 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도에 따라 그 범위가 다양하며, 일일 투여량은 활성 성분의 양을 기준으로 0.02 내지 1000 mg/kg 체중, 바람직하게는 1 내지 200 mg/kg 체중의 범위일 수 있고, 1회 또는 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
본 발명의 약제 조성물은 지방간 질환의 개선을 위하여 단독으로, 또는 다른 치료법, 예를 들어 시술, 화학 치료 및 생물학적 반응 조절제 등을 사용하는 방법들과 병용하여 사용할 수 있다.
또한, 본 발명은 약학적으로 유효한 양의 본 발명의 담즙산 조절제 또는 FXR 항진제를 유효성분으로 함유하는 조성물을 지방간 질환에 걸린 개체에 투여하는 단계를 포함하는 지방간 질환을 개선시키는 방법을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의 본 발명의 담즙산 조절제 또는 FXR 항진제를 유효성분으로 함유하는 조성물을 개체에 투여하는 단계를 포함하는 지방간 질환의 개선 방법을 제공한다.
상기 약학적으로 유효한 양이란 0.02 내지 1000 mg/kg 이고, 바람직하게는 1 내지 200 mg/kg 이며, 이에 제한되는 것은 아니다. 투여량은 특정 환자의 체중, 연령, 성별, 건강상태, 식이, 투여기간, 투여방법, 제거율, 질환의 중증도 등에 따라 변화될 수 있다.
상기 개체는 척추동물이고 바람직하게는 포유동물이며, 그보다 바람직하게는 쥐, 토끼, 기니아피크, 햄스터, 개, 고양이와 같은 실험동물이고, 가장 바람직하게는 침팬지, 고릴라와 같은 유인원류 동물이다.
상기 투여 방법은 경구 또는 비경구 투여할 수 있으며, 비경구 투여시 복강내주사, 직장내주사, 피하주사, 정맥 주사, 근육내 주사, 자궁내 경막 주사, 뇌혈관내(intracerebroventricular) 주사 또는 흉부내 주사에 의해 투여될 수 있다.
본 발명의 잔대 사포닌 및 잔대 추출물은 담즙산 조절제 또는 FXR 항진제로 작용하여 지방의 합성을 억제하고 지방산 산화를 촉진하여 간 조직 내에서의 중성지방 축적 억제 효과가 탁월하므로, 개체에 투여하는 단계를 포함하는 지방간 질환의 개선 방법으로 유용하게 사용될 수 있다.
또한, 본 발명은 잔대 사포닌 또는 이를 포함하는 잔대 추출물을 유효성분으로 함유하는 지방간 질환을 예방하거나 개선시키기 위한 식품 조성물을 제공한다.
본 발명의 잔대 사포닌 및 잔대 추출물은 담즙산 조절제 또는 FXR 항진제로 작용하여 지방의 합성을 억제하고 지방산 산화를 촉진하여 간 조직 내에서의 중성지방 축적 억제 효과가 탁월하므로, 지방간 질환의 예방 및 개선을 위한 유효성분으로 유용하게 사용될 수 있다.
본 발명의 잔대 사포닌 또는 이를 포함하는 잔대 추출물을 첨가할 수 있는 식품으로는, 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제, 건강 기능성 식품류 등이 있다.
또한, 지방간 질환 개선을 목적으로 식품 또는 음료에 첨가될 수 있다. 이 때, 식품 또는 음료 중의 상기 추출물의 양은 전체 식품 중량의 0.01 내지 50 중량%, 바람직하게는 1 내지 15 중량%로 가할 수 있으며, 건강 음료 조성물은 100 ㎖를 기준으로 0.02 내지 5g, 바람직하게는 0.3 내지 3g의 비율로 가할 수 있다.
본 발명의 건강 기능성 식품은 정제, 캡슐제, 환제, 액제 등의 형태를 포함한다.
본 발명의 건강 기능성 음료 조성물은 지시된 비율로 필수 성분으로서 상기 잔대 사포닌 또는 상기 잔대 추출물을 함유하는 것 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 ㎖당 일반적으로 약 1 내지 20g, 바람직하게는 약 5 내지 12g이다.
상기 외에 본 발명의 잔대 사포닌 또는 이를 포함하는 잔대 추출물을 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다.
또한, 본 발명의 잔대 사포닌 또는 이를 포함하는 잔대 추출물은, 성인 하루 당 섭취량이 1 내지 3,000mg이 되도록 투여하는 것이 적당하다. 투여량은 연령, 증상 등에 따라 적당히 증감하는 것이 가능하다.
이하, 본 발명을 바람직한 실시예에 의거하여 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이로써 한정되는 것은 아니다.
< 실시예 1> 본 발명의 잔대 추출물의 제조
(1) 본 발명의 잔대 열수 추출물의 제조
잔대 분말 0.2 kg에 증류수 2L를 가하고 90 내지 100℃에서 5시간 동안 2회 추출한 후 여과하고 20분간 원심분리(10,000 x g)하여 고형분을 제거하였다. 이를 감압 증류기를 이용하여 농축 후 동결 건조해서 분말 형태의 잔대 열수 추출물 100g 얻었다.
(2) 본 발명의 잔대 에탄올 추출물의 제조
잔대 분말 1 kg에 에탄올 3L를 가하고 90 내지 95℃에서 3시간 동안 2회 추출한 후 여과하고 20분간 원심분리(10,000 x g)하여 고형분을 제거하였다. 이를 감압 증류기를 이용하여 농축 후 동결 건조해서 분말 형태의 잔대 에탄올 추출물 150g 얻었다.
< 실험예 1> 본 발명의 잔대 추출물에 대한 세포독성 평가
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 세포독성을 평가하기 위하여 간세포주인 HepG2를 이용한 MTT 실험을 실시하였다.
세포 성장을 확인하기 세포 카운팅 키트-8(Cell Counting Kit-8)을 사용하여 측정하였다. 세포배양에 사용된 배지는 둘베코 변형 이글 배지(Dulbecco's Modified Eagle Medium; DMEM)에 10% 소태아혈청(FBS)과 1% 페니실린-스트렙토마이신(페니실린-스트렙토마이신)을 첨가하여 사용하였다. 세포분열을 위해 트립신-EDTA(GIBCO, USA)와 인산완충액(PBS)을 사용하였다. 본 실험에 HepG2 세포를 사용하였고, 각각 5×103 세포/ml로 96웰 플레이트에 분주하였다. 1, 3, 5일 각각에 CCK-8 용액을 배양액의 1/10씩 넣은 다음 2시간 동안 37℃ 인큐베이터에서 배양하였다. 배양된 용액을 96웰에 100 ㎕씩 분주하고 ELISA 플레이트 판독기(Molecular Devices, Sunnyvale, CA, USA)를 사용하여 450 nm에서 흡광도를 측정하였다. 실시예 1의 잔대 열수 추출물 및 잔대 에탄올 추출물이 HepG2 cell에 대한 세포독성이 없음을 확인하였다(도 1 참조).
< 실험예 2> 잔대 추출물의 FXR에 대한 항진제 활성 평가
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능에 대한 작용기전을 규명하기 위하여 지방산 산화를 촉진하고 지방산 합성을 억제하는 역할을 하는 파네소이드 X 수용체에 대한 항진제 활성을 파네소이드 X 리포터 발현 세포주(Indigo bioscience)를 이용한 루시페라제 검정(luciferase assay) 실험을 통해 확인하였다.
-80℃에 보관된 파네소이드 X 리포터 발현 세포주를 세포 회수 배지를 이용하여 녹인 후 32-웰 플레이트에 분주하였다. 잔대 열수 추출물 및 에탄올 추출물을 화합물 스크리닝 배지(compound screening media)를 이용하여 희석한 후 세포에 처리하였다. 37℃, 5% CO2 상태에서 24시간 배양한 후 배지를 버리고 Luc-검출 용액을 분주하고 실온에서 10분간 방치하였다. 처리한 물질들의 파네소이드 X 수용체에 대한 항진제 활성은 광도계 분석기로 발광을 측정하여 EC50 값을 결정하였으며, 결과는 하기 표 1과 같다. 양성 대조군은 파네소이드 X 수용체의 항진제인 GW 4064(sigma) 물질을 사용하였다. 잔대 열수 추출물 및 에탄올 추출물의 파네소이드 X 수용체에 대한 항진제 활성을 확인하였다.
[표 1]
Figure PCTKR2015012783-appb-I000002
< 실험예 3> 지방 합성에 관여하는 스테롤-반응-성분-결합 단백질 1c( SREBP -1c), 지방산 합성 효소(FAS) 유전자 발현 억제 효과
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능에 대한 작용기전을 규명하기 위하여 지방 합성에 관여하는 스테롤-반응-성분-결합 단백질 1c(SREBP-1c), 지방산 합성 효소(FAS) 유전자 발현 억제 효과를 간세포주인 HepG2를 이용한 RT-PCR 실험을 통해 확인하였다.
HepG2 세포주는 DMEM 배지에 10% FBS, 페니실린(100 units/ml), 스트렙토마이신(100 ㎍/ml)과 소듐 비카보네이트(3.7 g/L)를 첨가하여 T-75 플라스크에서 37℃, 5% CO2 상태에서 배양하였으며, 70 내지 80% 배양이 되었을 때 실험에 사용하였다. 배양하고 있는 세포를 6-웰 플레이트 에 분주하고 세포가 모양을 제대로 형성할 때까지 16시간 이상 37℃, 5% CO2 상태에서 배양하였다. 잔대 열수 추출물 및 에탄올 추출물을 처리한 후 24시간 37℃, 5% CO2 상태에서 배양하였다.
배양이 끝나면 세포로부터 SV 전체 RNA 단리 시스템(Promega corporation)을 이용하여 총 RNA를 분리하고 GeneQuant pro (Amersham bioscience)를 이용하여 RNA를 정량하였다. 스테롤-반응-성분-결합 단백질 1c(SREBP-1c), 지방산 합성 효소(FAS) 유전자를 타깃으로 하는 프라이머를 사용하여 AccessQuick™ RT-PCR 시스템(Promega corporation)을 이용한 RT-PCR 방법으로 유전자 발현을 측정하였다. 음성 대조군은 단독 배지 용액만을 사용하였다. 잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 스테롤-반응-성분-결합 단백질 1c(SREBP-1c), 지방산 합성 효소(FAS) 유전자 발현을 억제시키는 것을 확인하였다(도 2 참조).
< 실험예 4> 지방산 산화에 관여하는 PPARα 유전자 발현 증가 효과
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능에 대한 작용기전을 규명하기 위하여 지방산 산화에 관여하는 PPARα 유전자 발현 증가 효과를 간세포주인 HepG2를 이용한 RT-PCR 실험을 통해 확인하였다.
HepG2 세포주는 DMEM 배지에 10% FBS, 페니실린(100 units/ml), 스트렙토마이신(100 μg/ml)과 소듐 비카보네이트(3.7 g/L)을 첨가하여 T-75 플라스크에서 37℃, 5% CO2 상태에서 배양하였으며, 70 내지 80% 배양이 되었을 때 실험에 사용하였다. 배양하고 있는 세포를 6-웰 플레이트에 분주하고 세포가 모양을 제대로 형성할 때까지 16시간 이상 37℃, 5% CO2 상태에서 배양하였다. 잔대 열수 추출물 및 에탄올 추출물을 처리한 후 24시간 37℃, 5% CO2 상태에서 배양하였다.
배양이 끝나면 세포로부터 SV 전체 RNA 단리 시스템(Promega corporation)을 이용하여 총 RNA를 분리하고 GeneQuant pro (Amersham bioscience)를 이용하여 RNA를 정량하였다. PPARα 유전자를 타깃으로 하는 프라이머를 사용하여 AccessQuick™ RT-PCR 시스템(Promega corporation)을 이용한 RT-PCR 방법으로 유전자 발현을 측정하였다. 음성 대조군은 단독 배지 용액만을 사용하였다. 잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 PPARα 유전자 발현을 증가시키는 것을 확인하였다(도 3 참조).
< 실험예 5> 잔대 추출물의 간세포에서 지방축적 억제 효과
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능을 규명하기 위해 간세포주인 HepG2 에서 지방 축적 억제를 트리글리세라이드 비색 검정 키트(트리글리세라이드 Colorimetric Assay Kit; Cayman chemical)를 이용한 실험을 통해 확인하였다.
HepG2 세포주는 DMEM 배지에 10% FBS, 페니실린(100 units/ml), 스트렙토마이신(100 μg/ml)과 소듐 비카보네이트(3.7 g/L)을 첨가하여 T-75 플라스크에서 37℃, 5% CO2 상태에서 배양하였으며, 70 내지 80% 배양이 되었을 때 실험에 사용하였다. 배양하고 있는 세포를 6-웰 플레이트에 분주하고 세포가 모양을 제대로 형성할 때까지 16시간 이상 37℃, 5% CO2 상태에서 배양하였다. 올레에이트와 팔미테이트의 몰(mole)농도 비율이 2:1이 되도록 용해시켜 만든 0.5 mM 유리 지방산 혼합액을 배지에 첨가한 뒤, 잔대 열수 추출물 및 에탄올 추출물을 처리하고 8시간, 24시간 37℃, 5% CO2 상태에서 배양하였다.
배양이 완료된 후 세포를 세척한 후 용해 완충제를 이용하여 세포 용해물을 제조하였다. 세포 용해물에 효소 완충제 용액을 첨가한 뒤 ELISA 분석기로 흡광도를 측정하여 지방 축적 정도를 분석하였다. 음성 대조군은 단독 배지 용액만을 사용하였다. 잔대 열수 추출물 및 에탄올 추출물이 우수하게 간 세포 내 지방 축적을 억제시키는 것을 확인하였다(도 4 참조).
< 실험예 6> 잔대 추출물의 간세포에서 반응성 산소 종 변화 측정
본 발명 잔대 열수 추출물의 간세포주 에서의 활성산소 생성억제 효과를 확인하기 위하여 활성산소종(반응성 산소 종, ROS)을 측정하였다.
HepG2 세포주는 DMEM 배지에 10% FBS, 페니실린(100 units/ml), 스트렙토마이신(100 μg/ml)과 소듐 비카보네이트(3.7 g/L)을 첨가하여 T-75 플라스크에서 37℃, 5% CO2 상태에서 배양하였으며, 70 내지 80% 배양이 되었을 때 실험에 사용하였다. 배양하고 있는 세포를 100mm 접시에 분주하고 세포가 모양을 제대로 형성할 때까지 16시간 이상 37℃, 5% CO2 상태에서 배양하였다. 잔대 열수 추출물 및 에탄올 추출물을 처리한 후 24시간 37℃, 5% CO2 상태에서 배양하였다.
잔대 열수 추출물을 HepG2세포에 200 ㎍/ml 농도로 투여 후 12시간 후 배지를 제거하였다. 제거한 잔대 열수 추출물 처리 HepG2세포에 PBS용액에 2',7'-디클로로플루오레신 디아세테이트(Sigma-Aldrich, U.S.A)를 30mM로 넣고 30분 동안 37℃ 인큐베이터에서 배양하였다. 배양한 세포를 1.5 ml 튜브에 수확한 후 원심분리기를 이용하여 13,000 rpm에서 10분 동안 돌린 다음 상층액을 버리고 새로운 PBS를 300 ㎕을 넣고 초음파 세척기로 5분간 용해하였다. 다시 한번 원심분리기를 이용하여 13,000 rpm에서 10분 동안 돌린 후 상층액을 96 웰 플레이트에 200 ㎕씩 분주하고 ELISA 플레이트 리더(Molecular Devices, Sunnyvale, CA, USA)를 사용하여 485 nm와 530 nm 사이에서 흡광도를 측정하였다. 잔대 열수 추출물 및 에탄올 추출물에서 반응성 산소 종 (ROS) 수준을 억제시키는 것을 확인하였다(도 5 참조).
< 실험예 7> 잔대 추출물의 비알콜성 지방간 대사 조절 및 기전 연구(In vitro)
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능의 지방합성 효소 전사 조절 기전을 규명하기 위해 HepG2 간세포주에서 지방산 합성 효소(FAS)를 비롯한 지방 대사를 조절하는 전사 인자인 스테롤 조절 성분 결합 단백질-1(SREBP-1) 및 FAS 및 SREBP-1c의 발현을 억제하는 AMPK 대한 발현을 웨스턴 블롯을 이용하여 확인하였다.
HepG2 세포주는 DMEM 배지에 10% FBS, 페니실린(100 units/ml), 스트렙토마이신(100 μg/ml)과 소듐 비카보네이트(3.7 g/L)을 첨가하여 T-75 플라스크에서 37℃, 5% CO2 상태에서 배양하였으며, 70 내지 80% 배양이 되었을 때 실험에 사용하였다. 배양하고 있는 세포를 6 웰 플레이트에 분주하고 세포가 모양을 제대로 형성할 때까지 16시간 이상 37℃, 5% CO2 상태에서 배양하였다. 잔대 열수 추출물 및 에탄올 추출물을 처리한 후 24시간 37℃, 5% CO2 상태에서 배양하였다. 배양한 세포를 1.5 ml 튜브에 수확한 후 원심분리기를 이용하여 13,000 rpm에서 10분 동안 돌린 다음 상층액을 버리고 펠렛을 얻은 후. IPH 완충액(50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 μM PMSF), 1 ㎍/mL 단백질 분해효소 억제제(Luepetin, Aprotinin), 1 mM DTT를 처리하여 단백질을 추출하였다. 추출한 단백질을 소듐 도데실 설페이트 폴리아크릴아미드 겔 전기영동(SDS-PAGE) 후 Hybond-P+ 폴리비닐리덴 디플루오라이드 막(GE Healthcare, UK)에 이동시켰다. 0.1% Tween-20를 함유한 Tris-완충 염수(TBS)에 녹인 5% 무지방 우유로 상온에서 2시간 동안 처리하여 막을 차단하고, 지시된 특이적 1차 항체(SREBP-1c 및 phospho-AMPK)를 투입한 1% BSA 및 0.05% Tween-20 함유 TBS로 4℃에서 하룻밤 배양하였다. 막들은 다시 1:3000로 희석된 퍼옥시다제-콘주게이션된 염소 항-마우스 항체 또는 퍼옥시다제-콘주게이션된 염소 항-토끼 항체로 상온에서 2시간 처리하였으며, 0.1% BSA 및 0.1% Tween-20 함유 TBS으로 깨끗하게 세척한 후, ECL plus(Amersham Biosciences)를 사용하여 단백질 발현을 확인하였다. 그 결과, 잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 스테롤-반응-성분-결합 단백질 1c(SREBP-1c), 지방산 합성 효소(FAS) 유전자 발현을 억제시키는 것을 확인하였다 (도 6 참조).
< 실험예 8> 잔대 열수 추출물 경구 투여한 마우스의 체중 및 혈당 측정
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능을 규명하기 위해 동물모델인 ICR 마우스의 체중 및 혈당을 측정 확인하였다.
체중 변화는 식이 개시일을 시작으로 정상군(Normal Diet)과 고지방 식이 대조군(High Fat Diet)을 이용하여 잔대 열수 추출물을 20 mg/kg, 200 mg/kg 씩 각각 경구 투여 후 충분한 양의 사료와 물을 급여 하면서 1주일에 2번씩 4주간 측정하였다.
혈당은 실험 종료 시점에 실험동물을 12시간 절식시킨 후 꼬리정맥에서 혈액을 채취하여 혈당계로 측정하였다.
잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 체중 및 혈당의 수치가 줄어드는 것을 확인하였다(도 7 및 8 참조).
< 실험예 9> 잔대 열수 추출물 경구 투여한 마우스의 콜레스테롤 및 트리글리세라이드 측정 평가
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 비알코올성 지방간염 질환 개선 효능을 규명하기 위해 동물모델인 ICR 마우스에서 간 트리글리세라이드(Hepatic triglyceride; TG)및 전체 콜레스테롤 함량을 측정 확인하였다.
(1) 전체 콜레스테롤 측정
콜레스테롤 키트(Enzymaticmethod)를 이용하여 잔대 열수 추출물을 농도별로 경구 투여한 마우스의 꼬리정맥에서 해파린(heparin)이 처리된 모세관 튜브(capillary tube)를 이용하여 혈액을 채취한 다음, 채혈한 혈액을 실온에서 한 시간 동안 방치한 후, 3000 rpm에서 15분 원심 분리하여 혈청을 얻었다. 분리된 혈청 4 ㎕에 효소시약 300 ㎕를 가하여 37℃ 수욕에 15분간 반응시킨 다음 96 플레이트 웰을 이용하여 증류수를 블랭크(Blank)로 잡고 파장 550 nm에서 흡광도(OD)를 측정하였다. 증류수와 검체의 흡광도를 이용하는 하기 수학식을 이용하여 전체 콜레스테롤을 측정하였다.
[수학식 1]
혈청 콜레스테롤 (㎎/100㎖)= 300×(검체의 흡광도/표준의 흡광도)
잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 전체 콜레스테롤 수치가 줄어드는 것을 확인하였다(도 9 참조).
(2) 트리글리세라이드(TG) 측정
트리글리세라이드 키트(Trinder법)를 이용하여 잔대 열수 추출물을 농도별로 경구 투여한 마우스의 꼬리정맥에서 해파린(heparin)이 처리된 모세관을 이용하여 혈액을 채취한 다음, 채혈한 혈액을 실온에서 한 시간 동안 방치한 후, 3000 rpm에서 15분 원심 분리하여 혈청을 얻었다. 분리된 혈청 4 ㎕에 효소시약 300 ㎕을 가하여 37℃ 수욕에서 10분간 반응시킨 다음 96 플레이트 웰을 이용하여 1시간 내에 증류수를 블랭크로 잡고 파장 500 nm에서 흡광도 (OD)를 측정하였다. 증류수와 검체의 흡광도를 이용하는 하기 수학식을 이용하여 트리글리세라이드(TG)를 측정하였다.
[수학식 2]
트리글리세라이드(㎎/100㎖)=(검체의 흡광도/표준의 흡광도)×표준의 농도
잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 트리글리세라이드 수치가 줄어드는 것을 확인하였다(도 10 참조).
< 실험예 10> 잔대 추출물의 마우스 간 조직에서 지방축적 억제효과 조직학적 관찰(H&E 염색, MT 염색)
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능을 규명하기 위해 동물모델인 ICR 마우스의 간 조긱에서 지방 축적 억제를 H&E, MT 착색을 이용한 실험을 통해 확인하였다.
4주령의 ICR 마우스에 고지방 식이를 4주간 투여한 후, 몸무게를 측정하여 몸무게가 증가한 마우스를 선별하였다. 선별된 마우스를 3 그룹(양성 대조군: 고지방 식이(HFD), HFD+잔대추출물 20 mg/kg, HFD+잔대추출물 200 mg/kg)으로 나눈 후 잔대 열수 추출물을 4주 동안 매일 일정한 시간에 구강 투여하였다. 각 그룹 당 5마리를 사용하였다.
잔대 열수 추출물을 경구 투여 후 1, 14, 28 및 56 일차에 동물을 희생시켜 간 조직을 적출하고, 10% 중성 포르말린 용액에 24시간 고정한 후, 간 조직을 취하여 탈수 후에 파라핀으로 포맷하였다. 조직 절편기를 이용하여 조직을 5 ㎛의 두께로 박절하고 슬라이드에 붙여 파라핀 제거 및 함수과정을 거친 후, 헤마토자일린-에오신(hematoxylin-eosin, H&E) 염색, 마손의 트리크롬(Masson's trichrome; MT) 및 오일 레드 O 염색을 실시하였다. 이를 이용하여 간 조직의 상피 재생(epidermal growth), 염증 반응, 신생혈관 증식(neo-vascular proliferation) 및 교원질(collagen)의 침착 정도를 관찰하였다.
(1) H&E 염색
조직 절편을 자일렌으로 파라핀 제거 후 100, 90, 80, 70% 에탄올과 증류수로 각각 5분간 함수시켰으며, 증류수로 세척한 후 사용하였다. Harris 헤마토자일린으로 3분간 염색하였고, 증류수로 조직을 5분간 세척하였다. 세척이 끝난 조직을 에오신으로 5분간 염색 후, 70, 80, 90 및 100% 에탄올 및 자일렌을 이용하여 탈수한 후에 Shandon Synthetic Mountant(Thermo scientific, USA)으로 봉입하였다.
실험 결과 HFD 군에서는 지방간 소견이 관찰되었으나, 잔대 열수 추출물 및 에탄올 추출물 투여군에서는 지방간 소견이 현저히 감소한 것을 확인하였다(도 11 참조).
(2) MT 염색
조직 절편을 자일렌으로 파라핀 제거한 후 100, 90, 80 및 70% 에탄올과 증류수로 각각 5분간 함수시켰으며, 증류수로 세척한 후 사용하였다. 60℃의 Bouin's(IMEB, USA) 용액에 한 시간 동안 조직을 반응시킨 후 증류수로 세척하였다. 반응과 세척이 끝난 조직을 다시 Biebrich scarlet-acid fuchsin, 포스포몰리브딕-포스포텅스트산, 아닐린 블루 착색 용액(IMEB, USA)으로 각각 5분간 처리한 후 증류수로 세척하였다. 70, 80, 90, 100% 에탄올 및 자일렌을 이용하여 탈수한 후 Shandon Synthetic Mountant(Thermo scientific, USA)으로 봉입하였다.
실험 결과 HFD 군에서는 섬유화 소견이 관찰되었으나, 잔대 열수 추출물 및 에탄올 추출물 투여군 에서는 섬유화 소견이 현저히 감소한 것을 확인하였다(도 12 참조).
< 실험예 11> 잔대 추출물의 마우스 간 조직에서 혈중 ALT(s-GPT), AST (s-GOT) 효소 활성
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능을 규명하기 위해 동물모델인 ICR 마우스의 혈중에서의 ALT, AST 효소를 측정하였다.
마우스의 꼬리정맥에서 해파린이 처리된 모세관을 이용하여 혈액을 채취한 다음, 채혈한 혈액을 실온에서 한 시간 동안 방치한 후, 3000 rpm에서 15분 원심 분리하여 혈청을 얻었으며 실험에 사용하기 전까지 -70℃에서 보관하였다. ALT는 영동제약 키트를 사용하여 라이트만-프란켈(Reitman-Frankel)의 방법에 의하여 측정하였다.
그 결과, 잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 ALT 및 AST 수치가 줄어드는 것을 확인하였다(도 13 참조).
< 실험예 12> 잔대 추출물의 마우스 간 조직에서 TGF - β1 활성화 억제 효과
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능을 규명하기 위해 동물모델인 ICR 마우스의 간 조직에서의 세포의 섬유화 과정에서 핵심 역할을 수행하는 것으로 알려진 TGF-β1 발현 억제에 대한 효과를 알아보기 위해 RT-PCR을 이용하여 측정하였다.
간 조직을 채취하여 액체질소로 급속동결 후 -80℃에서 분석하기 전까지 보관했다. RNA-Bee(TEL-TEST, USA)를 이용하여 화상 조직에서 추출한 RNA로부터 Maxime RT Premix(Oligo dT primer) 키트(Intron Biotechnology, Korea)를 이용하여 cDNA를 합성하였다. 정량적 폴리머라제 연쇄 반응(qPCR)은 Roter-Gene SYBR Green PCR 시약 시스템(Qiagen, Germany)을 사용하여 측정하였다. 각각의 프라이머(primer) 서열 정보는 하기와 같다.
Figure PCTKR2015012783-appb-I000003
잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 변형 성장 인자(TGF-β) 유전자 발현을 억제시키는 것을 확인하였다(도 14 참조).
< 실험예 13> 잔대 추출물의 비알콜성 지방간 대사 조절 및 기전 연구(In vivo)
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 지방간 치료 효능의 지방합성 효소 전사 조절 기전을 규명하기 위해 동물모델인 ICR 마우스의 간 조직에서의 지방산 합성 효소(FAS)를 비롯한 지방 대사를 조절하는 전사 인자인 스테롤 조절 성분 결합 단백질-1(SREBP-1) 및 FAS 및 SREBP-1c의 발현을 억제하는 AMPK에 대한 발현을 웨스턴 블롯을 이용하여 확인하였다.
간 조직을 IPH 완충액(50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 μM PMSF), 1 ㎍/mL 단백질 분해효소 억제제(Luepetin, Aprotinin), 1 mM DTT를 처리하여 단백질을 추출하였다. 추출한 단백질을 소듐 도데실 설페이트 폴리아크릴아미드 겔 전기영동(SDS-PAGE) 후 Hybond-P+ 폴리비닐리덴 디플루오라이드 막(GE Healthcare, UK)에 이동시켰다. 0.1% Tween-20를 함유한 Tris-완충 염수(TBS)에 녹인 5% 무지방 우유로 상온에서 2시간 동안 처리하여 막을 블록하고, 지시된 특정 1차 항체(SREBP-1c 및 phospho-AMPK)를 투입한 1% BSA 및 0.05% Tween-20 함유 TBS로 4℃에서 하룻밤 배양하였다. 막들은 다시 1:3000로 희석된 퍼옥시다제-콘주게이션된 염소 항-마우스 항체 또는 퍼옥시나제-콘주게이션된 염소 항-토끼 항체로 상온에서 2시간 처리하였으며, 0.1% BSA 및 0.1% Tween-20 함유 TBS로 깨끗하게 세척한 후, ECL plus(Amersham Biosciences)를 사용하여 단백질 발현을 확인하였다. 그 결과, 잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 스테롤-반응-성분-결합 단백질 1c(SREBP-1c), 지방산 합성 효소(FAS), AMP-활성화된 단백질 키나제(AMPK) 유전자 발현을 억제시키는 것을 확인하였다(도 15 참조).
< 실험예 14> 간 조직의 섬유화를 유발하는 Hedgehog 신호 억제(In vivo )
본 발명의 잔대 열수 추출물 및 에탄올 추출물의 간 섬유화 억제 효능을 확인하기 위하여 동물모델인 ICR 마우스의 간 조직에서의 Hedgehog 신호의 대표적 표지지표인 교아종(Gli) 패밀리(Gli1, Gli2)에 대한 발현을 웨스턴 블롯을 이용하여 확인하였다.
간 조직을 IPH 완충액(50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 100 μM PMSF), 1 ㎍/mL 단백질 분해효소 억제제(Luepetin, Aprotinin), 1 mM DTT를 처리하여 단백질을 추출하였다. 추출한 단백질을 소듐 도데실 설페이트 폴리아크릴아미드 겔 전기영동(SDS-PAGE) 후 Hybond-P+ 폴리비닐리덴 디플루오라이드 막(GE Healthcare, UK)에 이동시켰다. 0.1% Tween-20를 함유한 Tris-완충 염수(TBS)에 녹인 5% 무지방 우유로 상온에서 2시간 동안 처리하여 막을 차단하고, 지시된 특정 1차 항체(Gli1 및 Gli2)를 투입한 1% BSA 및 0.05% Tween-20 함유 TBS로 4℃에서 하룻밤 배양하였다. 막들은 다시 1:3000로 희석된 옥시다제-콘주게이션된 염소 항-마우스 항체 또는 퍼옥시다제-콘주게이션된 염소 항-토끼 항체로 상온에서 2시간 처리하였으며, 0.1% BSA 및 0.1% Tween-20 함유 TBS으로 깨끗하게 세척한 후, ECL plus (Amersham Biosciences)를 사용하여 단백질 발현을 확인하였다. 그 결과, 잔대 열수 추출물 및 에탄올 추출물이 농도 의존적으로 Gli1, Gli2 발현을 억제시키는 것을 확인하였다(도 16 참조).
< 제형예 1> 약학적 제제의 제조
<1-1> 산제의 제조
실시예 1의 추출물 2 g
유당 1 g
상기의 성분을 혼합하고 기밀포에 충진하여 산제를 제조하였다.
<1-2> 정제의 제조
실시예 1의 추출물 100 mg
옥수수전분 100 mg
유당 100 mg
스테아린산 마그네슘 2 mg
상기의 성분을 혼합한 후, 통상의 정제의 제조방법에 따라서 타정하여 정제를 제조하였다.
<1-3> 캡슐제의 제조
실시예 1의 추출물 100 mg
옥수수전분 100 mg
유당 100 mg
스테아린산 마그네슘 2 mg
상기의 성분을 혼합한 후, 통상의 캡슐제의 제조방법에 따라서 젤라틴 캡슐에 충전하여 캡슐제를 제조하였다.
<1-4> 환제의 제조
실시예 1의 추출물 1 g
유당 1.5 g
글리세린 1 g
자일리톨 0.5 g
상기의 성분을 혼합한 후, 통상의 방법에 따라 1환 당 4 g이 되도록 제조하였다.
<1-5> 과립의 제조
실시예 1의 추출물 150 ㎎
대두추출물 50 ㎎
포도당 200 ㎎
전분 600 ㎎
상기의 성분을 혼합한 후, 30% 에탄올 100 ㎎을 첨가하여 60℃에서 건조하여 과립을 형성한 후 포에 충진하였다.
<1-6> 주사제의 제조
실시예 1의 추출물 100 ㎎
만니톨 180 ㎎
Na2HPO4·12H2O 26 ㎎
증류수 2974 ㎎
통상적인 주사제의 제조방법에 따라, 상기 성분들을 제시된 함량으로 함유시켜 주사제를 제조하였다.
< 제형예 2> 식품의 제조
<2-1> 밀가루 식품의 제조
본 발명의 실시예 1의 추출물 0.5 내지 5.0 중량부를 밀가루에 첨가하고, 이 혼합물을 이용하여 빵, 케이크, 쿠키, 크래커 및 면류를 제조하였다.
<2-2> 스프 및 육즙(gravies)의 제조
본 발명의 실시예 1의 추출물 0.1 내지 5.0 중량부를 스프 및 육즙에 첨가하여 건강 증진용 육가공 제품, 면류의 수프 및 육즙을 제조하였다.
<2-3> 그라운드 비프(ground beef)의 제조
본 발명의 실시예 1의 추출물 10 중량부를 그라운드 비프에 첨가하여 건강 증진용 그라운드 비프를 제조하였다.
<2-4> 유제품(dairy products)의 제조
본 발명의 실시예 1의 추출물 5 내지 10 중량부를 우유에 첨가하고, 상기 우유를 이용하여 버터 및 아이스크림과 같은 다양한 유제품을 제조하였다.
<2-5> 선식의 제조
현미, 보리, 찹쌀, 율무를 공지의 방법으로 알파화시켜 건조시킨 것을 배전한 후 분쇄기로 입도 60 메쉬의 분말로 제조하였다.
검정콩, 검정깨, 들깨도 공지의 방법으로 쪄서 건조시킨 것을 배전한 후 분쇄기로 입도 60 메쉬의 분말로 제조하였다.
본 발명의 실시예 1의 추출물을 진공 농축기에서 감압농축하고, 분무, 열풍건조기로 건조하여 얻은 건조물을 분쇄기로 입도 60 메쉬로 분쇄하여 건조분말을 얻었다.
상기에서 제조한 곡물류, 종실류 및 실시예 1의 추출물을 다음의 비율로 배합하여 제조하였다.
곡물류(현미 30 중량부, 율무 15 중량부, 보리 20 중량부),
종실류(들깨 7 중량부, 검정콩 8 중량부, 검정깨 7 중량부),
실시예 1의 추출물(3 중량부),
영지(0.5 중량부),
지황(0.5 중량부)
< 제형예 4> 음료의 제조
<4-1> 건강음료의 제조
액상과당(0.5%), 올리고당(2%), 설탕(2%), 식염(0.5%), 물(75%)과 같은 부재료와 본 발명의 실시예 1의 추출물 5 g을 균질하게 배합하여 순간 살균을 한 후 이를 유리병, 패트병 등 소포장 용기에 포장하여 제조하였다.
<4-2> 야채 주스의 제조
본 발명의 실시예 1의 추출물 5 g을 토마토 또는 당근 주스 1,000 ㎖에 가하여 야채 주스를 제조하였다.
<4-3> 과일 주스의 제조
본 발명의 실시예 1의 추출물 1 g을 사과 또는 포도 주스 1,000 ㎖ 에 가하여 과일 주스를 제조하였다.

Claims (10)

  1. 하기 화학식 1로 표현되는 퀼라익산 및 깁소게닌 중 어느 하나로 이루어진 잔대 사포닌 또는 이를 포함하는 잔대(Adenophora Radix) 추출물을 유효성분으로 함유하는 담즙산 조절제 또는 FXR(파네소이드 X 수용체) 항진제:
    [화학식 1]
    Figure PCTKR2015012783-appb-I000004
  2. 제1항에 있어서, 상기 잔대 추출물이 열수 추출물 또는 유기용매 추출물인 것을 특징으로 하는 담즙산 조절제 또는 FXR 항진제.
  3. 제2항에 있어서, 상기 잔대 열수 추출물이
    잔대를 음지에서 건조하고 분쇄하여 잔대 분말을 얻는 단계;
    얻어진 잔대 분말에 부피를 기준으로 5 내지 10배의 물을 첨가하고 90 내지 100℃의 온도에서 4 내지 6시간 동안 2회 추출하여 열수 추출물을 얻는 단계; 및
    얻어진 열수 추출물을 여과 또는 원심분리하여 고형분을 제거하고 농축 및 건조시켜 잔대 열수 추출 분말을 얻는 단계를 포함하는 방법에 의해 얻어진 것을 특징으로 하는 담즙산 조절제 또는 FXR 항진제.
  4. 제2항에 있어서, 상기 잔대 유기용매 추출물이
    잔대를 음지에서 건조하고 분쇄하여 잔대 분말을 얻는 단계;
    얻어진 잔대 분말에 부피를 기준으로 1 내지 5배의 C1~C4 알코올, 또는 C1~C4 알코올과 물의 혼합물을 첨가하고 90 내지 95℃의 온도에서 3시간 동안 2회 추출하여 알코올 추출물을 얻는 단계; 및
    얻어진 알코올 추출물을 여과 또는 원심분리하여 고형분을 제거하고 농축 및 건조시켜 잔대 알코올 추출 분말을 얻는 단계를 포함하는 방법에 의해 얻어진 것을 특징으로 하는 담즙산 조절제 또는 FXR 항진제.
  5. 제4항에 있어서, 상기 C1~C4 알코올이 에탄올이며, 상기 알코올 추출물이 에탄올 추출물이며, 상기 잔대 알코올 추출 분말이 잔대 에탄올 추출 분말인 것을 특징으로 하는 담즙산 조절제 또는 FXR 항진제.
  6. 제1항에 있어서, 상기 잔대 추출물이 5 내지 100 중량%를 포함하는 것을 특징으로 하는 담즙산 조절제 또는 FXR 항진제.
  7. 제1항 내지 제6항 중 어느 한 항에 따른 담즙산 조절제 또는 FXR 항진제를 유효성분으로 함유하는 지방간 질환을 예방 및 치료하기 위한 약제 조성물.
  8. 제7항에 있어서, 상기 지방간 질환이 알콜성 지방간, 비알콜성 지방간, 비만성 지방간, 및 당뇨병성 지방간 및 원발성 담즙성 간경변증의 지방간 질환 군으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 지방간 질환을 예방 및 치료하기 위한 약제 조성물.
  9. 제1항 내지 제6항 중 어느 한 항에 따른 담즙산 조절제 또는 FXR 항진제를 유효성분으로 함유하는 지방간 질환을 예방 및 개선하기 위한 기능성 식품용 조성물.
  10. 제9항에 있어서, 상기 지방간 질환이 알콜성 지방간, 비알콜성 지방간, 비만성 지방간, 및 당뇨병성 지방간 및 원발성 담즙성 간경변증의 지방간 질환 군으로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 지방간 질환을 예방 및 개선하기 위한 기능성 식품용 조성물.
PCT/KR2015/012783 2015-09-21 2015-11-26 담즙산 조절제 또는 fxr 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물 WO2017051984A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0133100 2015-09-21
KR1020150133100A KR20170034611A (ko) 2015-09-21 2015-09-21 담즙산 조절제 또는 fxr 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물

Publications (1)

Publication Number Publication Date
WO2017051984A1 true WO2017051984A1 (ko) 2017-03-30

Family

ID=58386102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012783 WO2017051984A1 (ko) 2015-09-21 2015-11-26 담즙산 조절제 또는 fxr 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물

Country Status (2)

Country Link
KR (1) KR20170034611A (ko)
WO (1) WO2017051984A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200097091A (ko) 2019-02-07 2020-08-18 전남대학교산학협력단 신장질환 예방 및 치료용 약학조성물 및 건강기능성식품

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762448B1 (ko) * 2006-03-30 2007-10-04 조민경 잔대를 포함하는 생약재 추출물 및 이를 유효성분으로함유하는 간질환 예방 및 치료용 건강식품 조성물
KR20150072660A (ko) * 2013-12-20 2015-06-30 주식회사 에이치씨바이오텍 잔대 추출물을 포함하는 간 보호용 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762448B1 (ko) * 2006-03-30 2007-10-04 조민경 잔대를 포함하는 생약재 추출물 및 이를 유효성분으로함유하는 간질환 예방 및 치료용 건강식품 조성물
KR20150072660A (ko) * 2013-12-20 2015-06-30 주식회사 에이치씨바이오텍 잔대 추출물을 포함하는 간 보호용 조성물

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI, H. ET AL.: "Antiobese and Hypocholesterolaemic Effects of an Adenophora Triphylla Extract in HepG2 Cells and High Fat Diet-induced Obese Mice", FOOD CHEMISTRY, vol. 119, 2010, pages 437 - 444, XP026709121 *
GOODWIN, B. ET AL.: "A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis", MOLECULAR CELL, vol. 6, no. 3, 2000, pages 517 - 526, XP002209573 *
KANG, M. ET AL.: "Separation of Two Cytotoxic Saponins from the Roots of Adenophora Triphylla var. Japonica by High-speed Counter-current Chromatography", PHYTOCHEMICAL ANALYSIS, vol. 24, 2013, pages 148 - 154, XP055370341 *
YANG, Z. ET AL.: "Effects of Nuclear Receptor FXR on the Regulation of Liver Lipid Metabolism in Patients with Non-alcoholic Fatty Liver Disease", HEPATOLOGY INTERNATIONAL, vol. 4, 2010, pages 741 - 748, XP055370339 *

Also Published As

Publication number Publication date
KR20170034611A (ko) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2012124888A2 (en) Composition comprising the extract of herbal combination for preventing or treating diabetic peripheral neuropathy
WO2015160219A1 (ko) 피스타시아 웨인마니폴리아 추출물, 이의 분획물 또는 이로부터 분리된 화합물을 포함하는 만성폐쇄성 폐질환(copd) 예방 또는 치료용 약학적 조성물
WO2012033378A2 (ko) 비만억제 활성과 혈당강하 효능이 있는 꾸지뽕 및 의이인을 포함하는 조성물 및 이의 용도
WO2017179931A1 (ko) 쥐꼬리망초 추출물을 포함하는 호흡기 질환의 예방 또는 치료용 약학적 조성물
WO2014200261A1 (ko) 혼합 생약 추출물을 유효성분으로 포함하는 항암용 조성물
WO2016032249A1 (ko) 모새나무 추출물 또는 이의 분획물을 유효성분으로 포함하는 신경염증 또는 퇴행성 뇌신경 질환의 예방 또는 치료용 약학적 조성물
WO2015111832A1 (ko) 지실 추출물을 포함하는 전립선 관련 질환의 예방 또는 치료용 조성물
WO2021071269A1 (ko) 복합 생약 추출물을 포함하는 염증성 장질환의 예방 또는 치료용 조성물
WO2016010340A1 (ko) 오풍칠 추출물을 유효성분으로 함유하는 염증 또는 알러지 질환의 예방 및 치료용 조성물 및 이의 용도
WO2021080297A1 (ko) 달맞이꽃 추출물을 유효성분으로 포함하는 비만 또는 비만으로부터 유도된 대사증후군의 예방 또는 치료용 조성물
WO2013069934A1 (ko) 밀순 추출물을 유효성분으로 함유하는 비만증의 치료 및 예방을 위한 조성물
WO2013151192A1 (ko) 등골나물속 추출물을 유효성분으로 하는 비만 및 골대사질환 예방 및 치료용 조성물
EP3978005B1 (en) Composition for use in preventing, alleviating or treating metabolic syndrome accompanied by obesity and/or diabetes, containing, as active ingredient, complex (ib complex) of indian gooseberry extract and sprout barley extract
WO2017051984A1 (ko) 담즙산 조절제 또는 fxr 항진제로서의 잔대 사포닌을 포함하는 잔대 추출물, 및 이를 포함하는 지방간염 및 원발성 담즙성 간경변의 예방 또는 치료용 약학적 조성물 또는 건강기능 식품용 조성물
WO2015002430A1 (ko) 피스타시아 웨인마니폴리아 추출물 또는 이의 분획물을 포함하는 천식의 예방 또는 치료용 약학 조성물
WO2019124757A1 (ko) 오가피, 노근, 및 적송 추출물을 유효성분으로 포함하는 전립선 질환 예방, 치료, 또는 개선용 조성물
KR101445966B1 (ko) 백두구 추출물을 포함하는 항비만 조성물
WO2021256858A1 (ko) 비알코올성 지방간 질환의 개선, 예방 또는 치료용 조성물 및 그 제조방법
WO2014065640A2 (ko) 외톨개모자반 추출물 또는 이의 분획물을 유효성분으로 함유하는 염증성 질환 치료 또는 예방용 조성물
WO2016204493A1 (en) A novel compound (ks 513) isolated from pseudolysimachion rotundum var. subintegrum, the composition comprising the same as an active ingredient for preventing or treating allergy disease, inflammatory disease, asthma or chronic obstructive pulmonary disease and the use thereof
WO2010143825A2 (en) Anti-arthritic agent using cyathula officinalis
WO2015105373A1 (ko) 화살나무 추출물 또는 이의 분획물을 포함하는 천식의 예방 또는 치료용 조성물
KR20150012926A (ko) 구절초 추출물을 포함하는 항비만 조성물
WO2018008838A1 (ko) 조골세포 분화를 촉진하며 지방세포 분화를 저해하는 벼 추출물 및 그 용도
WO2011081231A1 (ko) 호장근 부탄올 분획물 또는 에칠아세테이트 분획물을 이용한 비만 치료 및 예방용 조성물과 기능성 식품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904795

Country of ref document: EP

Kind code of ref document: A1