WO2017051710A1 - 固定式等速自在継手 - Google Patents
固定式等速自在継手 Download PDFInfo
- Publication number
- WO2017051710A1 WO2017051710A1 PCT/JP2016/076291 JP2016076291W WO2017051710A1 WO 2017051710 A1 WO2017051710 A1 WO 2017051710A1 JP 2016076291 W JP2016076291 W JP 2016076291W WO 2017051710 A1 WO2017051710 A1 WO 2017051710A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- track
- joint member
- angle
- constant velocity
- velocity universal
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/224—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/224—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere
- F16D3/2245—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a sphere where the groove centres are offset from the joint centre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D3/226—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
- F16D3/2265—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being non-telescopic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D3/00—Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
- F16D3/16—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
- F16D3/20—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
- F16D3/22—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
- F16D3/223—Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
- F16D2003/22309—Details of grooves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S464/00—Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
- Y10S464/904—Homokinetic coupling
- Y10S464/906—Torque transmitted via radially spaced balls
Definitions
- the present invention relates to a fixed type constant velocity universal joint applied in automobiles and various industrial machines.
- ⁇ Fixed type constant velocity universal joints include barfield type (BJ) and undercut free type (UJ).
- BJ barfield type
- UJ undercut free type
- 8-ball type BJs and UJs that are both lightweight and compact, and various fixed constant velocity universal joints are used depending on the purpose.
- Patent Documents 1 to 4 As fixed type constant velocity universal joints, various types of track-crossing constant velocity universal joints have been proposed to reduce contact between the outer spherical surface and inner spherical surface of the cage and to reduce heat generation in order to further improve performance.
- the track intersection type constant velocity universal joint includes an outer joint member 3 in which a plurality (six) of track grooves 2 are formed on the inner spherical surface 1, and an outer surface on the outer spherical surface 4.
- the inner joint member 6 in which a plurality of (six) track grooves 5 that are paired with the track grooves 2 of the joint member 3 are formed, and between the track grooves 2 of the outer joint member 3 and the track grooves 5 of the inner joint member 6.
- a plurality of (six) balls 7 that transmit torque by being interposed between the inner spherical surface 1 of the outer joint member 3 and the outer spherical surface 4 of the inner joint member 6. It has.
- the axial offset between the center of curvature O1 of the track groove 2 of the outer joint member 3 and the center of curvature O2 of the track groove 5 of the inner joint member 6 is set to zero. That is, the curvature center O1 and the curvature center O2 are made to coincide with the joint center O.
- the track groove 2 of the outer joint member 3 and the track groove 5 of the inner joint member 6 opposed thereto constitute a torque transmission ball track 10.
- each track groove 2 is inclined with respect to the axial direction.
- the inclination directions of the track grooves 2 adjacent to each other in the circumferential direction are made to conflict. That is, when the track groove 2A is inclined by the angle ⁇ with respect to the axis L in the clockwise direction from the back side toward the opening side, the other track groove 2B adjacent to the track groove 2A in the clockwise direction is Inclined by ⁇ with respect to the axis L in the counterclockwise direction from the back side toward the opening side.
- each track groove 5 is inclined with respect to the axial direction.
- the inclination directions of the track grooves 5 adjacent to each other in the circumferential direction are contradictory. That is, when the track groove 5A is inclined counterclockwise by an angle ⁇ (the same angle as the track groove 2 of the outer joint member 3) in the counterclockwise direction from the back side to the opening side, the track groove 5A
- the other track groove 5B adjacent in the clockwise direction is inclined by ⁇ with respect to the axis L1 in the clockwise direction from the back side toward the opening side.
- the outer joint member 3 has the track grooves 2 inclined in the clockwise direction and the track grooves 2 inclined in the counterclockwise direction alternately arranged along the circumferential direction.
- the track grooves 5 inclined in the counterclockwise direction and the track grooves 5 inclined in the clockwise direction are alternately arranged along the circumferential direction.
- the track groove 2 of the outer joint member 3 inclined in the clockwise direction corresponds to the track groove 5 of the inner joint member 6 inclined in the counterclockwise direction
- the outer joint member 3 inclined in the counterclockwise direction corresponds.
- the track groove 2 corresponds to the track groove 5 of the inner joint member 6 inclined in the clockwise direction.
- the torque transmission ball track 10 is classified into a P type and an M type depending on the inclination direction of the track grooves 2 and 5.
- the track groove 2 is the track groove 2B
- the track groove 5 is the track groove 5B
- the track groove 2A is the track groove 2A
- the track groove 5 is the track groove 5A.
- the cage 8 is an annular body, and a plurality of pockets 9 in which the balls 7 are accommodated are arranged in the circumferential direction on the peripheral wall.
- the circumferential length W of the pocket 9 is the same, and the column width of the column portion 8c (between adjacent pockets along the circumferential direction) is relatively small.
- the center of curvature of the outer spherical surface 8a and the center of curvature of the inner spherical surface 8b are made to coincide.
- the circumferential length W of the pocket 9 is the same.
- Such a track crossing type fixed constant velocity universal joint is becoming an effective means for meeting the environmental performance required for automobiles in recent years.
- the fixed constant velocity universal joint of the truck crossing type has low heat generation, so that not only the drive shaft but also 4WD vehicles (four-wheel drive vehicles) and FR vehicles (rear wheel drive vehicles) can be changed from transmission to differential.
- the performance can also be exhibited in the propeller shaft that transmits the rotational driving force.
- the type with six torque transmission balls has advantages such as a small number of parts, good workability, good assembly, and a large ball size (a large load capacity).
- the operability is significantly lowered depending on the crossing angle and the contact state of the ball (contact angle, contact rate).
- the cage In the ball type constant velocity universal joint, the cage is restrained by the angle (wedge angle) between which the outer and inner ring tracks sandwich the ball, and the constant velocity universal joint is operated. As shown in FIG. 31, the wedge angle changes every moment as the constant velocity universal joint takes an operating angle, and fluctuates even during one rotation. As the operating angle increases, the wedge received by the ball in each phase changes to “+” or “ ⁇ ”, but the position is determined by the cage. Since adjacent track grooves are mirror-symmetric, a wedge angle is generated on the opposite side.
- the 6-ball cross-cross type constant velocity universal joint has no track offset, the wedge angle is determined by the crossing angle, contact angle and operating angle of the track, and the force by the wedge works to rotate the cage in a certain operating angle range.
- the cage becomes unstable, and contact with the outer spherical surface of the cage or the inner spherical surface of the cage occurs, causing problems such as an increase in torque loss and abnormal heat generation of the joint.
- the wedge angle is A as the contact point between the ball 7 and the track groove 5 of the inner joint member 6 and B as the contact point between the ball 7 and the track groove 2 of the outer joint member 3.
- FIG. 31 shows the phase angle of six tracks 10 (first track 10A, second track 10B, third track 10C, fourth track 10D, fifth track 10E, and sixth track 10F). And the wedge angle.
- the crossing angle ⁇ is 6 deg and the operating angle is 12 deg.
- FIG. 32 shows “+” and “ ⁇ ” of the wedge angle at the portion d in FIG.
- the first track 10A and the fourth track 10D are “0”
- the second track 10B and the sixth track 10F are “ ⁇ ”
- the third track 10C and the fifth track 10E Is “+”.
- FIG. 33 shows the relationship between the phase angle and the wedge angle when the crossing angle ⁇ is 6 deg and the operating angle is 24 deg.
- 34A shows the wedge angle “+” and “ ⁇ ” in part a of FIG. 33
- FIG. 34B shows the wedge angle “+” and “ ⁇ ” in part b of FIG. 33
- FIG. “+” and “ ⁇ ” of the wedge angle of part c are shown.
- the first track 10A, the fifth track 10E, and the sixth track 10F are “+”, and the second track 10B, the third track 10C, and the fourth track 10D are “ ⁇ ”.
- the first track 10A, the third track 10C, the fourth track 10D, and the sixth track 10F are “0”, the second track 10B is “ ⁇ ”, The track 10E is “+”.
- the first track 10A, the second track 10B, and the sixth track 10F are “ ⁇ ”, and the third track 10C, the fourth track 10D, and the fifth track 10E are “+”. Is.
- the cage will continue to receive a rotational force, so that it will not function as a constant velocity universal joint.
- the wedge angle during one rotation varies depending on the crossing angle and the contact angle.
- the phase at which the wedge angle becomes 0 does not change. It cannot be solved.
- the crossing angle is increased, the wedge angle is not reversed ( ⁇ ). Therefore, by limiting the crossing angle, it is possible to delay the initial operating angle at which the problem occurs.
- Table 1 shows the relationship between the operating angle and the crossing angle of the six-ball crossing type fixed constant velocity universal joint shown in FIG.
- Table 1 shows the relationship between the operating angle and the crossing angle of the six-ball crossing type fixed constant velocity universal joint shown in FIG.
- increasing the crossing angle maintains the balance of the cage, so that it can be used as a constant velocity universal joint.
- the spherical width F2 see FIG. 26
- the intersection angle ⁇ is limited to about 17 °.
- FIG. 37A is a graph showing the relationship between the wedge angle and the phase angle where there is no cage inversion
- FIG. 37B is a graph showing the relationship between the wedge angle and the phase angle at which the state where the cage is inverted starts to occur
- FIG. 37C is a graph showing the relationship between the wedge angle and the phase angle at which the cage is inverted at any phase angle.
- the present invention is not a perfect balance in a six-ball track crossing type fixed constant velocity universal joint, but the contact angle of the spherical surface can be reduced as much as possible.
- a constant velocity universal joint that does not deteriorate the operability in the range.
- the fixed type constant velocity universal joint includes an outer joint member in which a plurality of track grooves are formed on the inner spherical surface, and an inner joint in which a plurality of track grooves that are paired with the track grooves of the outer joint member are formed on the outer spherical surface.
- the track groove of the outer joint member and the track groove of the inner joint member are inclined with respect to the axis, respectively, and in each torque transmission ball track, the track groove of the outer joint member and the inner side opposite to the track groove
- the track groove of the joint member is inclined in the opposite direction with respect to the axis, and the inclination angles of the torque transmitting ball tracks adjacent in the circumferential direction are made different.
- the track groove of the outer joint member and the track groove of the inner joint member facing the outer joint member are inclined in opposite directions with respect to the axis, and the torque transmitting ball tracks adjacent to each other in the circumferential direction. Therefore, it is possible to increase the spherical surface width of the inner joint member on the side where the track grooves are close to each other (the width of the outer spherical surface between the track grooves adjacent in the circumferential direction).
- the maximum movement amount of the balls in the pockets adjacent in the circumferential direction of the cage will be different, and the adjacent torque transmission ball tracks in the circumferential direction are adjacent to each other in the circumferential direction as compared with the same inclination angle.
- the circumferential length of the column portion between the pockets can be increased.
- intersection angle that is the inclination angle of the first track, the third track, and the fifth track is the same, and this intersection angle is ⁇ 1, and the intersection is the inclination angle of the second track, the fourth track, and the sixth track. It is preferable that ⁇ 1> ⁇ 2 when the angles are the same and the crossing angle is ⁇ 2.
- the crossing angle ⁇ 1 of the first track, the third track, and the fifth track is 8 ° ⁇ ⁇ 1 ⁇ 20 °. Further, the crossing angle ⁇ 1 of the first track, the third track, and the fifth track and the crossing angle ⁇ 2 of the second track, the fourth track, and the sixth track can be 4 ° ⁇ ⁇ 2 ⁇ 1. .
- the center of curvature of the track groove of the outer joint member is radially offset with respect to the center of curvature of the inner spherical surface of the outer joint member, and the center of curvature of the track groove of the inner joint member is relative to the center of curvature of the outer spherical surface of the inner joint member. Further, it may be offset in the radial direction.
- the present invention since it is possible to increase the spherical surface width on the side where the track groove of the inner joint member is close, it is possible to achieve both strength, weight reduction and compactness. Further, the circumferential length (column width) of the column portion of the cage can be increased, and the cage strength can be improved.
- the contact angle between the ball and the track groove an angular contact of 30 ° to 45 °, it is possible to prevent the ball from climbing onto the edge of the track groove when high torque is input, and to reduce the amount of slip between the track groove and the ball.
- the contact surface pressure can be in a good range.
- the groove depth of the track groove can be changed. For this reason, it can be set as the structure which can prevent the ball
- FIG. 6 is a graph showing the relationship between the wedge angle and the phase angle, and changing the contact angle while keeping the crossing angle constant. It is a graph in the case where the relationship between the wedge angle and the phase angle is shown and the crossing angle is changed. It is a graph in the case where there is no inversion of a cage, showing the relationship between the wedge angle and the phase angle when the adjacent crossing angles are the same.
- FIG. 5 is a graph showing a relationship between a wedge angle and a phase angle when adjacent crossing angles are the same, and a state in which a state where a cage is reversed starts to occur.
- FIG. 6 is a graph showing the relationship between the wedge angle and the phase angle when adjacent crossing angles are the same, and inversion occurring at any phase.
- FIGS. 1 and 2 show a fixed type constant velocity universal joint according to the embodiment.
- This fixed type constant velocity universal joint includes an outer joint member 13 in which six (six) track grooves 12 are formed on an inner spherical surface 11;
- the inner joint member 16 in which six (six) track grooves 15 that are paired with the track grooves 12 of the outer joint member 13 are formed on the outer spherical surface 14, and the track grooves 12 and the inner joint member 16 of the outer joint member 13 are formed.
- the ball 17 is interposed between the inner ball 11 of the outer joint member 13 and the outer spherical surface 14 of the inner joint member 16.
- a cage 18 is interposed between the inner ball 11 of the outer joint member 13 and the outer spherical surface 14 of the inner joint member 16.
- the axial offset between the center of curvature O1 of the track groove 12 of the outer joint member 13 and the center of curvature O2 of the track groove 15 of the inner joint member 16 is set to zero. That is, the curvature center O1 and the curvature center O2 are made to coincide with the joint center O.
- each track groove 12 is inclined with respect to the axial direction.
- 4 is a front view of the outer joint member 13 of the fixed type constant velocity universal joint shown in FIG. 1
- FIG. 5 is a sectional view of the outer joint member 13
- FIG. 6 is a perspective view of the outer joint member 13.
- the track groove 12 is inclined in the clockwise direction from the back side to the opening side by an angle ⁇ 1 with respect to the axis L, and is opposite to the opening side from the back side. Some of them incline by an angle ⁇ 2 with respect to the axis L in the clockwise direction.
- each track groove 15 is inclined with respect to the axial direction.
- the track groove 15 has an angle ⁇ 1 inclined with respect to the axis L1 in the counterclockwise direction from the back side toward the opening side, and from the back side toward the opening side. Some are inclined by an angle ⁇ 2 with respect to the axis L1 in the clockwise direction.
- the track groove 12 of the outer joint member 13 and the track groove 15 of the inner joint member 16 opposed to the outer joint member 13 constitute one torque transmission ball track 20.
- six torque transmission ball tracks 20 are formed.
- the track groove 12 of the outer joint member 13 and the track groove 15 of the inner joint member 16 opposed thereto are inclined in the opposite directions with respect to the axis.
- the inclination directions of the track grooves 12 and 15 of the torque transmitting ball track 20 are the three balls of the first ball track 20A, the third ball track 20C, and the fifth ball track 20E.
- the track 20 is the P1 type, and the three ball tracks 20 of the other second ball track 20B, the fourth track ball 20D, and the sixth ball track 20F are the M1 type.
- the track groove 12 of the outer joint member 13 is inclined by ⁇ 1 (see FIG. 5) with respect to the axis L in the clockwise direction from the back side toward the opening side.
- the track groove 15 of the joint member 16 is inclined by ⁇ 1 (see FIG. 7) with respect to the axis L1 in the counterclockwise direction from the back side toward the opening side.
- the track groove 12 of the outer joint member 13 is inclined by ⁇ 2 (see FIG. 5) with respect to the axis L in the counterclockwise direction from the back side toward the opening side.
- the track groove 15 of the joint member 16 is inclined by ⁇ 2 (see FIG. 7) with respect to the axis L1 in the clockwise direction from the back side toward the opening side.
- FIG. 2 the track groove 12 of the outer joint member 13 and the track groove 15 of the inner joint member 16 are clearly shown so that the P1 type and the M1 type can be seen.
- the track grooves 12 and 15 of the first ball track 20A, the third ball track 20C, and the fifth ball track 20E are inclined in the same direction.
- the track grooves 12 and 15 are inclined in the same direction.
- the inclination angles (intersection angles ⁇ 1) of the track grooves 12 and 15 of the ball tracks 20 of the first ball track 20A, the third ball track 20C, and the fifth ball track 20E are the same angle.
- the inclination angles (intersection angle ⁇ 2) of the track grooves 12 and 15 of the ball tracks 20 of the second ball track 20B, the fourth ball track 20D, and the sixth ball track 20F are the same angle.
- ⁇ 1 is preferably 8 ° ⁇ ⁇ 1 ⁇ 20 °, and preferably 4 ° ⁇ ⁇ 2 ⁇ 1.
- the track grooves 12 and 15 of the ball track 20 are formed in a Gothic arch shape as shown in FIG. Accordingly, the ball 17 contacts the track groove 12 of the outer joint member 13 at two points C11 and C12 (angular contact), and contacts the track groove 15 of the inner joint member 16 at two points C21 and C22 (angular contact). is doing.
- An angle ⁇ formed by a straight line passing through the ball center O 3 and each of the contacts C11, C12, C21, C22 and a straight line passing through the ball center O 3 and the joint center O is a contact angle.
- the contact angles ⁇ of the contacts C11, C12, C21, and C22 are all equal, the lower limit value of the contact angle ⁇ is set to 30 °, and the upper limit value is set to 45 °.
- the cage 18 is an annular body, and a plurality of pockets 19 for accommodating the balls 17 are arranged along the circumferential direction on the peripheral wall. Further, as shown in FIG. 1, the center of curvature of the outer spherical surface 18a and the center of curvature of the inner spherical surface 18b are made to coincide with the joint center O.
- the pocket 19 includes a first pocket 19A corresponding to the tracks 20A, 20C, and 20E having a large intersection angle and a second pocket corresponding to the tracks 20B, 20D, and 20F having a small intersection angle. Two types of pockets 19B are formed. In this case, when the circumferential length of the first pocket 19A is W1, and the circumferential length of the second pocket 19b is W2, W1> W2.
- the column width of the column portion 18c can be set larger than the column width of the column portion 8c of the conventional cage 8 of FIG.
- FIG. 15A shows “+” and “ ⁇ ” of the wedge angle of each track 20 in FIG. 14a
- FIG. 15B shows “+” and “ ⁇ ” of the wedge angle of each track 20 in FIG. 14b
- FIG. 15C shows “+” and “ ⁇ ” of the wedge angle of each track 20 in part c of FIG.
- the crossing angle ⁇ 1 is 6 ° (deg)
- the crossing angle ⁇ 2 is 4 ° (deg)
- the operating angle ⁇ is 8 ° (deg).
- the first ball track 20A, the third ball track 20C, and the fifth ball track 20E are “+”, and the second ball track 20B, the fourth ball track 20D, and the Six ball tracks 20F are “ ⁇ ”.
- the first ball track 20A, the third ball track 20C, and the fifth ball track 20E are “+”, and the second ball track 20B, the fourth ball track 20D, and the sixth ball track 20E are “+”.
- the ball track 20F is “ ⁇ ”.
- the first ball track 20A, the third ball track 20C, and the fifth ball track 20E are “+”, and the second ball track 20B and the sixth ball track 20F are “ ⁇ ”.
- the fourth ball track 20D is “0”.
- FIG. 16 shows the relationship between the phase angle and the wedge angle of each track 20 when the crossing angle ⁇ 1 is 6 ° (deg), the crossing angle ⁇ 2 is 4 ° (deg), and the operating angle ⁇ is 12 ° (deg). Showing the relationship. 17A shows the wedge angle “+” and “ ⁇ ” of each track 20 in FIG. 16a, and FIG. 17B shows the wedge angle “+” and “ ⁇ ” of each track 20 in FIG. 16b. FIG. 17C shows “+” and “ ⁇ ” of the wedge angle of each track 20 in part c of FIG.
- the first ball track 20A, the third ball track 20C, the fifth ball track 20E, and the sixth ball track 20F are “+”, and the second ball track 20B and the fourth ball track 20F are “+”.
- the ball track 20D is “ ⁇ ”.
- the first ball track 20A, the third ball track 20C, and the fifth ball track 20E are “+”, and the second ball track 20B, the fourth ball track 20D, and the sixth ball track 20E are “+”.
- the ball track 20F is “ ⁇ ”.
- the first ball track 20A is “0”, the third ball track 20C, the fourth ball track 20D, and the fifth ball track 20E are “+”, and the second ball track 20B.
- the sixth ball track 20F is “ ⁇ ”.
- the track groove 12 of the outer joint member 13 and the track groove 15 of the inner joint member 16 facing the outer joint member 13 are inclined in opposite directions with respect to the axis, and are adjacent in the circumferential direction. Since the inclination angle of the torque transmission ball track 20 is made different, the spherical surface width F (see FIG. 8) on the side where the track groove 15 of the inner joint member 16 is close can be increased. For this reason, it is possible to achieve both strength, weight reduction and compactness.
- the maximum amount of movement of the balls 17 in the pockets 19 adjacent to each other in the circumferential direction of the cage 18 is different, and the inclination angle of the torque transmitting ball tracks 20 adjacent in the circumferential direction is different in the circumferential direction.
- the circumferential length of the pillar portion between the pockets 19 adjacent to each other can be increased. For this reason, the cage strength can be improved.
- the contact angle between the ball 17 and the track grooves 12 and 15 an angular contact of 30 ° to 45 °, it is possible to prevent the ball from riding on the edge of the track groove when a high torque is input, and the sliding amount of the track groove and the ball Can be reduced, and the contact surface pressure can be in a favorable range.
- the center of curvature O1 of the track groove 12 of the outer joint member 13 and the center of curvature O2 of the track groove 15 of the inner joint member 16 are matched without being offset in the radial direction.
- the center of curvature O5 of the track groove 12 of the outer joint member 13 is offset from the joint center O in the radial direction
- the center of curvature O6 of the track groove 15 of the inner joint member 16 is It is offset from the center O in the radial direction.
- FIG. 18 When securing the groove depth of the track groove 12 of the outer joint member 13, as shown in FIG. 18, when securing the groove depth of the track groove 15 of the inner joint member 16 in the negative direction, FIG. As shown in FIG. 4, the offset is made in the radial direction in the positive direction.
- R2 indicates the center locus of the ball 17 when the track center is offset by Fr in the radial direction (radial direction) with respect to the spherical center.
- the groove depth of the track grooves 12 and 15 can be changed.
- it can be set as the structure which can prevent detachment
- the limit angle for stably operating the constant velocity universal joint is the intersection angle side on the side where the inclination angle is large. Depends on the intersection angle. For this reason, it has the usual six ball crossing tracks, and the inclination angle of the torque transmitting ball tracks adjacent in the circumferential direction can take the same operating angle. That is, the angle of inclination of adjacent tracks can be made larger than that of the same type, so the limit angle for stably operating the constant velocity universal joint can be increased (higher operating angle is possible). Become).
- the crossing angle ⁇ 1 is set to 8 ° or more from the limit operating angle, taking into account the maximum operating angle of the propeller shaft and rear drive shaft. With respect to the crossing angle ⁇ 2, ⁇ 2 ⁇ ⁇ 1 can be set. However, when the crossing angle of ⁇ 2 is 4 ° or less, the force in the pocket direction (component of the track load) generated in the track is the normal angle range (normal driving) The angle of the constant velocity universal joint) becomes very small, and the balance of the forces acting on the cage becomes worse. For this reason, the crossing angle ⁇ 2 is preferably set to 4 ° or more.
- the present invention has been described.
- the present invention is not limited to the above-described embodiment, and various modifications are possible.
- the outer joint member 13 and The radial offset amount can be arbitrarily set within a range in which the load capacity of the track grooves 12 and 15 of the inner joint member 16 can be increased and the thickness of the bottom of the track grooves 12 and 15 can be increased.
- the fixed type constant velocity universal joint of the present invention can be used for a drive shaft, a propeller shaft, and the like, and further, can be used for a power transmission system of other various industrial machines.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
- Bearings For Parts Moving Linearly (AREA)
- Steering Controls (AREA)
Abstract
本発明の固定式等速自在継手においては、トルク伝達ボールトラック(20)が周方向に沿って、第1トラック、第2トラック、第3トラック、第4トラック、第5トラック、及び第6トラックの6個とされている。 また、本発明の固定式等速自在継手においては、外側継手部材(13)のトラック溝(12)の曲率中心、及び、内側継手部材(16)のトラック溝(15)の曲率中心の両曲率中心の軸方向に対するオフセットが、0とされている。 また、本発明の固定式等速自在継手においては、外側継手部材(13)のトラック溝(12)及び内側継手部材(16)のトラック溝(15)がそれぞれ軸線に対して傾斜している。 また、本発明の固定式等速自在継手においては、外側継手部材(13)のトラック溝(12)及び、これに対向する内側継手部材(16)のトラック溝(15)を軸線に対して反対方向に傾斜させると共に、周方向に隣り合うトルク伝達ボールトラック(20)の傾斜角度が相違している。
Description
本発明は、自動車や各種産業機械において適用される固定式等速自在継手に関する。
固定式等速自在継手には、バーフィールド型(BJ)やアンダーカットフリー型(UJ)等がある。また、近年、軽量・コンパクトを兼ね備えた8個ボールタイプのBJやUJもあり、目的に応じて様々な固定式等速自在継手を使い分けている。
固定式等速自在継手としては、更なる高性能化を図るべく、ケージの外球面・内球面の接触を低減させ低発熱化を狙った、トラック交差タイプの等速自在継手が種々提案されている(特許文献1~特許文献4)。
トラック交差タイプの等速自在継手は、例えば、図20と図21に示すように、内球面1に複数(6個)のトラック溝2が形成された外側継手部材3と、外球面4に外側継手部材3のトラック溝2と対をなす複数(6個)のトラック溝5が形成された内側継手部材6と、外側継手部材3のトラック溝2と内側継手部材6のトラック溝5との間に介在してトルクを伝達する複数(6個)のボール7と、外側継手部材3の内球面1と内側継手部材6の外球面4との間に介在してボール7を保持するケージ8とを備えている。
外側継手部材3のトラック溝2の曲率中心O1と、内側継手部材6のトラック溝5の曲率中心O2との軸方向のオフセットを0としている。すなわち、曲率中心O1と曲率中心O2とを継手中心Oに一致させている。外側継手部材3のトラック溝2とこれに対向する内側継手部材6のトラック溝5とでトルク伝達ボールトラック10を構成する。
図22~図24に示すように、外側継手部材3において、各トラック溝2を軸方向に対して傾斜させている。この場合、周方向に隣合うトラック溝2の傾斜方向を相反させている。すなわち、トラック溝2Aが、奥側から開口側に向かって時計廻り方向に軸線Lに対して角度γだけ傾斜する場合、このトラック溝2Aに対して時計廻り方向に隣合う他のトラック溝2Bは、奥側から開口側に向かって反時計廻り方向に軸線Lに対してγだけ傾斜する。
また、図25~図27に示すように、内側継手部材6において、各トラック溝5を軸方向に対して傾斜させている。この場合、周方向に隣合うトラック溝5の傾斜方向を相反させている。すなわち、トラック溝5Aが、奥側から開口側に向かって反時計廻り方向に軸線L1に対して角度γ(外側継手部材3のトラック溝2と同じ角度)だけ傾斜する場合、このトラック溝5Aに対して時計廻り方向に隣合う他のトラック溝5Bは、奥側から開口側に向かって時計廻り方向に軸線L1に対してγだけ傾斜する。
このように、外側継手部材3は、時計廻り方向に傾斜するトラック溝2と、反時計廻り方向に傾斜するトラック溝2とが周方向に沿って交互に配設されることになり、また、内側継手部材6は、反時計廻り方向に傾斜するトラック溝5と、時計廻り方向に傾斜するトラック溝5とが周方向に沿って交互に配設されることになる。そして、時計廻り方向に傾斜する外側継手部材3のトラック溝2と、反時計廻り方向に傾斜する内側継手部材6のトラック溝5とが対応し、反時計廻り方向に傾斜する外側継手部材3のトラック溝2と、時計廻り方向に傾斜する内側継手部材6のトラック溝5とが対応する。
このため、トルク伝達ボールトラック10は、図21に示すように、トラック溝2,5の傾斜方向によって、PタイプとMタイプとがある。Pタイプとは、トラック溝2がトラック溝2Bであり、トラック溝5がトラック溝5Bであり、Mタイプとは、トラック溝2がトラック溝2Aであり、トラック溝5がトラック溝5Aである。
ケージ8は、図28及び図29に示すように、円環状体であって、その周壁にボール7が収容されるポケット9が周方向に沿って複数配設されている。この場合、ポケット9の周方向長さWは同一となり、柱部8c(周方向に沿って隣り合うポケット間)の柱幅は比較的小さくなっている。また、外球面8aの曲率中心と、内球面8bの曲率中心とを一致させている。この場合、ポケット9の周方向長さWは同一となる。
このようなトラック交差タイプの固定式等速自在継手は、近年自動車に求められる環境性能への対応に有効な手段となりつつある。また、トラック交差タイプの固定式等速自在継手は、低発熱であることから、ドライブシャフトだけでなく、4WD車(4輪駆動車)やFR車(後輪駆動車)等においてトランスミッションからディファレンシャルに回転駆動力を伝達するプロペラシャフトにおいても性能を発揮することができる。
このようなタイプにおいて、トルク伝達ボールが6個のタイプは、部品総数の少なさ、加工性の良さ、組立性の良さやボールサイズを大きく出来る(負荷容量を大きく出来る)などの利点がある。しかしながら、交差角やボールの接触状態(接触角、接触率)により作動性が著しく低下する問題があった。
ボールタイプの等速自在継手においては、外内輪トラックがボールを挟む角度(楔角)によってケージが拘束を受けて、等速自在継手を作動させる。この楔角は、図31に示すように、等速自在継手が作動角を取るに従って刻々と変化し、一回転中においても変動している。作動角が大きくなると、各位相にあるボールが受ける楔が「+」や「-」へ変動するが、ケージによって位置を定めている。隣り合うトラック溝が鏡面対称であるため、楔角が逆側に発生する。
6個ボールのトラック交差タイプの等速自在継手はトラックオフセットが無く、トラックの交差角・接触角・作動角によって楔角が決まり、ある作動角範囲において楔による力がケージを回転させる様に働くことが分かった。これにより、ケージは不安定になり、ケージの外球面やケージの内球面での接触が生じ、トルク損失の増大、継手の異常発熱などの問題が発生することになる。ここで、楔角とは、図20に示すように、ボール7と内側継手部材6のトラック溝5の接触点をAとし、ボール7と外側継手部材3のトラック溝2の接触点をBとし、ボール中心点をCとしたとき、直線ACと直線BCとが成す角度をα´としたときの(π-α´)=αのことである(狭角側)。なお、図20では、2次元平面での図示のため、楔角が0に見えるが、実際には交差角による楔角が存在する。
図31は、6個のトラック10(第1のトラック10A、第2のトラック10B、第3のトラック10C、第4のトラック10D、第5のトラック10E、及び第6のトラック10F)の位相角と楔角との関係を示している。この場合、交差角γを6degとし、作動角を12degとしている。
図32は、図31のd部の楔角の「+」「-」を示している。この場合、第1のトラック10A及び第4のトラック10Dが「0」であり、第2のトラック10B及び第6のトラック10Fが「-」であり、第3のトラック10C及び第5のトラック10Eが「+」である。
このため、この図31のd部では、図32で示すように、軸Xに関して「+」「-」が対称に配設されることになる。このように、楔角が対称状態で「+」と「-」になる場合が発生することによって、ケージに回転力が加わり、等速自在継手が不安定となる。
また、図33は、交差角γを6degとし作動角を24degとしている場合の位相角と楔角との関係を示している。また、図34Aは図33のa部の楔角の「+」「-」を示し、図34Bは図33のb部の楔角の「+」「-」を示し、図34Cは図33のc部の楔角の「+」「-」を示している。
a部では、第1のトラック10A,第5のトラック10E,及び第6のトラック10Fが「+」であり、第2のトラック10B,第3のトラック10C,及び第4のトラック10Dが「-」である。b部では、第1のトラック10A、第3のトラック10C、第4のトラック10D、及び第6のトラック10Fが「0」であり、第2のトラック10Bが「-」であり、第5のトラック10Eが「+」である。c部では、第1のトラック10A、第2のトラック10B、及び第6のトラック10Fは「-」であり、第3のトラック10C、第4のトラック10D、及び第5のトラック10Eが「+」である。
このため、図33のa部では、図34Aで示すように、軸X1に関して「+」「-」が対称に配設されることになる。図33のb部では、図34Bで示すように、軸X2に関して「+」「-」が対称に配設されることになる。図33のc部では、図34Cで示すように、軸Xに関して「+」「-」が対称に配設される。
このように、図31に示すものよりも図33に示すように作動角を大きく取ると、ケージは常に回転力を受け続ける為、等速自在継手としての機能を果たさなくなる。
ところで、交差角と接触角により1回転中の楔角が変動するが、図35で示すように、交差角一定で接触角を変更しても楔角0となる位相が変わらないため前記課題を解決することができない。また、図36に示すように、交差角を大きくすると楔角の反転(±)が発生しないため、交差角を制限することで、前記課題が発生する初期作動角を遅らせることが可能である。
次に、表1に、前記図20に示す6個ボール交差タイプの固定式等速自在継手の作動角と交差角との関係を示す。この表1から分かるように、隣り合う交差角が同じ角度である場合、交差角を大きくすることで、ケージのバランスが保たれる為に、等速自在継手として使用することが可能である。しかしながら、交差角を大きくとると、内側継手部材や外側継手部材のトラックの近接する側の球面幅F2(図26参照)が減少し、成立しなくなる。等速自在継手の大きさの兼ね合いから、交差角度γは、17°位までが限界である。
図37Aはケージ反転無しとなる楔角と位相角との関係を示すグラフ図であり、図37Bはケージが反転する状態が発生し始める楔角と位相角との関係を示すグラフ図であり、図37Cは、どの位相角でもケージが反転する状態が発生する楔角と位相角との関係を示すグラフ図である。
本発明は、上記課題に鑑みて、本発明は、6個ボールのトラック交差タイプ固定式等速自在継手において、完全な釣り合い状態ではないが、球面の接触を極力低減でき、適用される作動角範囲において、作動性が悪化しない等速自在継手を提供する。
本発明の固定式等速自在継手は、内球面に複数のトラック溝が形成された外側継手部材と、外球面に外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、外側継手部材のトラック溝とこれに対応する内側継手部材のトラック溝とが協働して形成される複数のトルク伝達ボールトラックに配設される複数のトルク伝達ボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してトルク伝達ボールを保持するケージとを備え、前記トルク伝達ボールトラックを周方向に沿って、第1トラック、第2トラック、第3トラック、第4トラック、第5トラック、及び第6トラックの6個とし、外側継手部材のトラック溝の曲率中心と、内側継手部材のトラック溝の曲率中心とは、軸方向のオフセットを0とした等速自在継手において、外側継手部材のトラック溝及び内側継手部材のトラック溝をそれぞれ軸線に対して傾斜させるとともに、各トルク伝達ボールトラックでは、外側継手部材のトラック溝とこれに対向する内側継手部材のトラック溝を軸線に対して反対方向に傾斜させ、周方向に隣り合うトルク伝達ボールトラックの傾斜角度を相違させたものである。
本発明の固定式等速自在継手によれば、外側継手部材のトラック溝とこれに対向する内側継手部材のトラック溝を軸線に対して反対方向に傾斜させ、周方向に隣り合うトルク伝達ボールトラックの傾斜角度を相違させたため、内側継手部材のトラック溝が近接した側の球面幅(周方向に隣り合うトラック溝間の外球面の幅寸法)を大きくとることが可能となる。また、ケージの周方向に隣り合うポケット内でのボールの最大移動量が異なることになり、周方向に隣り合うトルク伝達ボールトラックの傾斜角度が同じものに比べて、周方向に沿って隣り合うポケット間の柱部の周方向長さを大きくとることができる。
第1トラック、第3トラック、及び第5トラックの傾斜角度である交差角を同一とするとともに、この交差角をγ1とし、第2トラック、第4トラック、及び第6トラックの傾斜角度である交差角を同一とするとともに、この交差角をγ2としたときに、γ1>γ2とするのが好ましい。
また、第1トラック、第3トラック、及び第5トラックの交差角γ1を8°≦γ1≦20°とするのが好ましい。さらには、第1トラック、第3トラック、及び第5トラックの交差角γ1と、第2トラック、第4トラック、及び第6トラックの交差角γ2とを4°≦γ2<γ1とすることができる。
ボールとトラック溝との接触角を30°~45°のアンギュラコンタクトとすることができる。
外側継手部材のトラック溝の曲率中心が外側継手部材の内球面の曲率中心に対して径方向にオフセットするとともに、内側継手部材のトラック溝の曲率中心が内側継手部材の外球面の曲率中心に対して、径方向にオフセットしたものであってもよい。
本発明では、内側継手部材のトラック溝が近接した側の球面幅を大きくとることが可能であるため、強度と、軽量化・コンパクト化の両立が可能となる。また、ケージの柱部の周方向長さ(柱幅)を大きくとることができ、ケージ強度の向上を図ることができる。
ボールとトラック溝との接触角を30°~45°のアンギュラコンタクトとすることよって、高トルク入力時のトラック溝エッジ部へのボール乗り上げを防止でき、トラック溝とボールの滑り量の低減を図ることができ、接触面圧を良好な範囲とすることができる。
径方向にオフセットさせることによって、トラック溝の溝深さに変化を付けることができる。このため、トラック溝のボールの外れを防止できる構造としたり、外輪及び内輪の剛性向上等を図ることができる構造としたりできる。
以下本発明の実施の形態を図1~図19に基づいて説明する。図1と図2に実施形態の固定式等速自在継手を示し、この固定式等速自在継手は、内球面11に6個(6本)のトラック溝12が形成された外側継手部材13と、外球面14に外側継手部材13のトラック溝12と対をなす6個(6本)のトラック溝15が形成された内側継手部材16と、外側継手部材13のトラック溝12と内側継手部材16のトラック溝15との間に介在してトルクを伝達する6個のボール17と、外側継手部材13の内球面11と内側継手部材16の外球面14との間に介在してボール17を保持するケージ18とを備えている。
外側継手部材13のトラック溝12の曲率中心O1と、内側継手部材16のトラック溝15の曲率中心O2との軸方向のオフセットを0としている。すなわち、曲率中心O1と曲率中心O2とを継手中心Oに一致させている。
図4~図6に示すように、外側継手部材13において、各トラック溝12を軸方向に対して傾斜させている。なお、図4は図1に示す固定式等速自在継手の外側継手部材13の正面図であり、図5は外側継手部材13の断面図、図6は外側継手部材13の斜視図である。この場合、図5に示すように、トラック溝12には、奥側から開口側に向かって時計廻り方向に軸線Lに対して角度γ1だけ傾斜するものと、奥側から開口側に向かって反時計廻り方向に軸線Lに対して角度γ2だけ傾斜するものとがある。
また、図7~図9に示すように、内側継手部材16においても、各トラック溝15を軸方向に対して傾斜させている。この場合、図7に示すように、トラック溝15には、奥側から開口側に向かって反時計廻り方向に軸線L1に対して角度γ1だけ傾斜するものと、奥側から開口側に向かって時計廻り方向に軸線L1に対して角度γ2だけ傾斜するものとがある。
図1および図2に示すように、外側継手部材13のトラック溝12とこれに相対向する内側継手部材16のトラック溝15とで、1個のトルク伝達ボールトラック20を構成することになる。このため、この実施形態では、トルク伝達ボールトラック20が6個形成される。また、トルク伝達ボールトラック20では、外側継手部材13のトラック溝12とこれに対向する内側継手部材16のトラック溝15を軸線に対して反対方向に傾斜させている。
また、トルク伝達ボールトラック20のトラック溝12、15の傾斜方向は、図2に示すように、第1のボールトラック20A、第3のボールトラック20C、第5のボールトラック20Eの3個のボールトラック20をP1タイプとし、他の第2のボールトラック20B、第4のトラックボール20D、及び第6のボールトラック20Fの3個のボールトラック20をM1タイプとしている。
ここで、P1タイプとしては、外側継手部材13のトラック溝12が、奥側から開口側に向かって時計廻り方向に軸線Lに対してγ1(図5参照)だけ傾斜させたものであり、内側継手部材16のトラック溝15が、奥側から開口側に向かって反時計廻り方向に軸線L1に対してγ1(図7参照)だけ傾斜させたものである。また、M1タイプとしては、外側継手部材13のトラック溝12が、奥側から開口側に向かって反時計廻り方向に軸線Lに対してγ2(図5参照)だけ傾斜させたものであり、内側継手部材16のトラック溝15が、奥側から開口側に向かって時計廻り方向に軸線L1に対してγ2(図7参照)だけ傾斜させたものである。なお、図2にP1タイプとM1タイプとがわかるように、外側継手部材13のトラック溝12と内側継手部材16のトラック溝15のそれぞれに明記している。
このため、第1のボールトラック20Aと、第3のボールトラック20C,及び第5のボールトラック20Eとは、各トラック溝12,15がそれぞれ同一方向に傾斜している。第2のボールトラック20Bと、第4のボールトラック20D,及び第6のボールトラック20Fとは、各トラック溝12,15がそれぞれ同一方向に傾斜している。
ところで、第1のボールトラック20A、第3のボールトラック20C、第5のボールトラック20Eの各ボールトラック20のトラック溝12,15の傾斜角度(交差角γ1)を、同一角度とする。また、第2のボールトラック20B、第4のボールトラック20D、第6のボールトラック20Fの各ボールトラック20のトラック溝12,15の傾斜角度(交差角γ2)を、同一角度とする。また、γ1>γ2とする。γ1は、8°≦γ1≦20°とし、また、4°≦γ2<γ1とするのが好ましい。
また、ボールトラック20のトラック溝12,15は、図3に示すように、ゴシックアーチ状に形成されている。従って、ボール17は、外側継手部材13のトラック溝12とC11,C12の2点で接触(アンギュラコンタクト)し、内側継手部材16のトラック溝15とC21,C22の2点で接触(アンギュラコンタクト)している。
ボール中心O3と各接点C11,C12,C21,C22を通る直線と、ボール中心O3と継手中心Oを通る直線が成す角度βが、接触角である。各接点C11,C12,C21,C22の接触角βは全て等しく、接触角βの下限値を30°とし、上限値を45°と設定している。
ケージ18は、図10~13に示すように、円環状体であって、その周壁にボール17が収容されるポケット19が周方向に沿って複数配設されている。また、図1に示すように、外球面18aの曲率中心と、内球面18bの曲率中心とを継手中心Oに一致させている。この場合、図13に示すように、ポケット19は、交差角が大きいトラック20A,20C,20Eに対応する第1のポケット19Aと、交差角が小さいトラック20B、20D,20Fに対応する第2のポケット19Bとの2種類が形成される。この場合、第1のポケット19Aの周方向長さをW1とし、第2のポケット19bの周方向長さをW2としたとき、W1>W2とされる。
これに対して、図29に示す従来の6個ボール交差トラックの固定式等速自在継手のケージ8では、各ポケット9の周方向長さWは同一となる。このため、図29の従来のケージ8の柱部8cの柱幅に比べて、図13に示すケージ18では、柱部18cの柱幅を大きく設定することができる。
前記のように構成された固定式等速自在継手では、ボールトラック20は、各トラック20の位相角と楔角との関係が図14に示すようになる。図15Aは図14のa部の各トラック20の楔角の「+」、「-」を示し、図15Bは図14のb部の各トラック20の楔角の「+」、「-」を示し、図15Cは図14のc部の各トラック20の楔角の「+」、「-」を示している。この場合、交差角γ1を6°(deg)とし、交差角γ2を4°(deg)とし、作動角θを8°(deg)としている。
すなわち、図15Aでは、第1のボールトラック20A、第3のボールトラック20C,及び第5のボールトラック20Eが「+」であり、第2のボールトラック20B、第4のボールトラック20D、及び第6のボールトラック20Fが「-」である。図15Bにおいても、第1のボールトラック20A、第3のボールトラック20C,及び第5のボールトラック20Eが「+」であり、第2のボールトラック20B、第4のボールトラック20D、及び第6のボールトラック20Fが「-」である。図15Cでは、第1のボールトラック20A、第3のボールトラック20C,及び第5のボールトラック20Eが「+」であり、第2のボールトラック20B及び第6のボールトラック20Fが「-」であり、第4のボールトラック20Dが「0」である。
図16は、交差角γ1を6°(deg)とし、交差角γ2を4°(deg)とし、作動角θを12°(deg)とした場合の各トラック20の位相角と楔角との関係を示している。図17Aは図16のa部の各トラック20の楔角の「+」、「-」を示し、図17Bは図16のb部の各トラック20の楔角の「+」、「-」を示し、図17Cは図16のc部の各トラック20の楔角の「+」、「-」を示している。
図17Aでは、第1のボールトラック20A、第3のボールトラック20C,及び第5のボールトラック20E、及び第6のボールトラック20Fが「+」であり、第2のボールトラック20B及び第4のボールトラック20Dが「-」である。図17Bでは、第1のボールトラック20A、第3のボールトラック20C,及び第5のボールトラック20Eが「+」であり、第2のボールトラック20B、第4のボールトラック20D、及び第6のボールトラック20Fが「-」である。図17Cでは、第1のボールトラック20Aが「0」であり、第3のボールトラック20C、第4のボールトラック20D及び第5のボールトラック20Eが「+」であり、第2のボールトラック20B及び第6のボールトラック20Fが「-」である。
本発明の固定式等速自在継手によれば、外側継手部材13のトラック溝12とこれに対向する内側継手部材16のトラック溝15を軸線に対して反対方向に傾斜させ、周方向に隣り合うトルク伝達ボールトラック20の傾斜角度を相違させたため、内側継手部材16のトラック溝15が近接した側の球面幅F(図8参照)を大きくとることが可能となる。このため、強度と、軽量化・コンパクト化の両立が可能となる。また、ケージ18の周方向に隣り合うポケット19内でのボール17の最大移動量が異なることになり、周方向に隣り合うトルク伝達ボールトラック20の傾斜角度が同じものに比べて、周方向に沿って隣り合うポケット19間の柱部の周方向長さを大きくとることができる。このため、ケージ強度の向上を図ることができる。
ボール17とトラック溝12,15との接触角を30°~45°のアンギュラコンタクトとすることによって、高トルク入力時のトラック溝エッジ部へのボール乗り上げを防止でき、トラック溝とボールの滑り量の低減を図ることができ、接触面圧を良好な範囲とすることができる。
前記実施形態では、外側継手部材13のトラック溝12の曲率中心O1と、内側継手部材16のトラック溝15の曲率中心O2とを径方向にオフセットされることなく一致させている。これに対して、図18では、外側継手部材13のトラック溝12の曲率中心O5を継手中心Oから径方向にオフセットさせ、図19では、内側継手部材16のトラック溝15の曲率中心O6を継手中心Oから径方向にオフセットさせている。
外側継手部材13のトラック溝12の溝深さを確保する場合は、図18に示すように、負の方向に、内側継手部材16のトラック溝15の溝深さを確保する場合は、図19に示すように、正の方向に径方向にオフセットさせることになる。なお、図18と図19において、R2はトラック中心を球面中心に対し径方向(半径方向)にFrだけオフセットさせた時のボール17の中心軌跡を示している。
このように径方向にオフセットさせることによって、トラック溝12、15の溝深さに変化を付けることができる。このため、トラック溝12、15からのボール17の外れを防止できる構造としたり、外側継手部材13及び内側継手部材16の剛性向上等を図るこができる構造としたりできる。
本願発明のように、周方向に隣り合うトルク伝達ボールトラック20の傾斜角度が異なる場合であっても、等速自在継手を安定的に作動させる限界角度は傾斜角度が大きい側の交差角側の交差角に依存する。このため、通常の6個のボール交差トラックを有するものであって、周方向に隣り合うトルク伝達ボールトラックの傾斜角度が同じものと同じ作動角をとることができる。すなわち、隣り合うトラックの傾斜角度が同じタイプのものに比べて、傾斜角度を大きくすることができるため、等速自在継手を安定的に作動させる限度角度が高くできる(高作動角化が可能となる)。
交差角γ1はプロペラシャフトやリア用ドライブシャフトの最大作動角を考慮し、限界作動角から8°以上に設定する。交差角γ2に関しては、γ2≦γ1とすることができるが、γ2の交差角が4°以下の場合、そのトラックで発生するポケット方向の力(トラック荷重の分力)が常用角度域(通常走行時の等速自在継手の角度)で非常に小さくなり、ケージに作用する力のバランスが悪くなる。このため、交差角γ2は4°以上に設定するのが好ましい。
以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、径方向オフセットを有するものである場合、外側継手部材13及び内側継手部材16のトラック溝12,15の負荷容量を大きくしたり、トラック溝12,15の底部の肉厚を厚くしたりすることができる範囲で、径方向オフセット量を任意に設定できる。
本発明の固定式等速自在継手は、ドライブシャフトやプロペラシャフト等に用いることができ、さらには、他の各種の産業機械の動力伝達系に使用できる。
11 内球面
12,15 トラック溝
13 外側継手部材
14 外球面
16 内側継手部材
17 ボール
18 ケージ
18a 外球面
18b 内球面
20 トルク伝達ボールトラック
12,15 トラック溝
13 外側継手部材
14 外球面
16 内側継手部材
17 ボール
18 ケージ
18a 外球面
18b 内球面
20 トルク伝達ボールトラック
Claims (6)
- 内球面に複数のトラック溝が形成された外側継手部材と、外球面に外側継手部材のトラック溝と対をなす複数のトラック溝が形成された内側継手部材と、外側継手部材のトラック溝とこれに対応する内側継手部材のトラック溝とが協働して形成される複数のトルク伝達ボールトラックに配設される複数のトルク伝達ボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してトルク伝達ボールを保持するケージとを備え、前記トルク伝達ボールトラックを周方向に沿って、第1トラック、第2トラック、第3トラック、第4トラック、第5トラック、及び第6トラックの6個とし、外側継手部材のトラック溝の曲率中心と、内側継手部材のトラック溝の曲率中心とは、軸方向のオフセットを0とした等速自在継手において、
外側継手部材のトラック溝及び内側継手部材のトラック溝をそれぞれ軸線に対して傾斜させるとともに、各トルク伝達ボールトラックでは、外側継手部材のトラック溝とこれに対向する内側継手部材のトラック溝を軸線に対して反対方向に傾斜させ、周方向に隣り合うトルク伝達ボールトラックの傾斜角度を相違させたことを特徴とする固定式等速自在継手。 - 第1トラック、第3トラック、及び第5トラックの傾斜角度である交差角を同一とするとともに、この交差角をγ1とし、第2トラック、第4トラック、及び第6トラックの傾斜角度である交差角を同一とするとともに、この交差角をγ2としたときに、γ1>γ2としたことを特徴とする請求項1に記載の固定式等速自在継手。
- 第1トラック、第3トラック、及び第5トラックの交差角γ1を8°≦γ1≦20°としたことを特徴とする請求項2に記載の固定式等速自在継手。
- 第1トラック、第3トラック、及び第5トラックの交差角γ1と、第2トラック、第4トラック、及び第6トラックの交差角γ2とを4°≦γ2<γ1としたことを特徴とする請求項2又は請求項3に記載の固定式等速自在継手。
- ボールとトラック溝との接触角を30°~45°のアンギュラコンタクトとしたことを特徴とする請求項1~請求項4のいずれか1項に記載の固定式等速自在継手。
- 外側継手部材のトラック溝の曲率中心が外側継手部材の内球面の曲率中心に対して径方向にオフセットするとともに、内側継手部材のトラック溝の曲率中心が内側継手部材の外球面の曲率中心に対して、径方向にオフセットしたことを特徴とする請求項1~請求項5のいずれか1項に記載の固定式等速自在継手。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680055190.4A CN108138855B (zh) | 2015-09-24 | 2016-09-07 | 固定式等速万向联轴器 |
EP16848498.8A EP3354919B1 (en) | 2015-09-24 | 2016-09-07 | Fixed constant velocity universal joint |
US15/761,594 US10837498B2 (en) | 2015-09-24 | 2016-09-07 | Fixed constant velocity universal joint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-187268 | 2015-09-24 | ||
JP2015187268A JP6821295B2 (ja) | 2015-09-24 | 2015-09-24 | 固定式等速自在継手 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017051710A1 true WO2017051710A1 (ja) | 2017-03-30 |
Family
ID=58386571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/076291 WO2017051710A1 (ja) | 2015-09-24 | 2016-09-07 | 固定式等速自在継手 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10837498B2 (ja) |
EP (1) | EP3354919B1 (ja) |
JP (1) | JP6821295B2 (ja) |
CN (1) | CN108138855B (ja) |
WO (1) | WO2017051710A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019076672A1 (fr) | 2017-10-20 | 2019-04-25 | IFP Energies Nouvelles | Dispositif de forme spherique et muni de cannelures bombees pour former une liaison rotule a doigt, et pompe a barillet muni d'un tel dispositif |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020169718A (ja) | 2019-04-05 | 2020-10-15 | Ntn株式会社 | 固定式等速自在継手 |
KR102281953B1 (ko) * | 2020-02-13 | 2021-07-26 | 서한산업(주) | 크로스 그루브 등속 조인트 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006058860A1 (de) * | 2006-12-13 | 2008-07-10 | Volkswagen Ag | Gleichlauffestgelenk |
DE102007056371A1 (de) * | 2007-11-22 | 2009-05-28 | Volkswagen Ag | Kugelverschiebegelenk mit geschrägten Kugellaufbahnen |
JP2009250365A (ja) * | 2008-04-08 | 2009-10-29 | Ntn Corp | 等速自在継手 |
US20100209202A1 (en) * | 2007-07-06 | 2010-08-19 | Sandvik Intellectual Property Ab | Method of milling ball races and side milling cutter for ball races |
JP2015090171A (ja) * | 2013-11-05 | 2015-05-11 | Ntn株式会社 | 固定式等速自在継手 |
WO2015197205A1 (de) * | 2014-06-26 | 2015-12-30 | Neapco Europe Gmbh | Kugelverschiebegelenk mit sich kreuzenden laufbahnen mit unterschiedlichem schrägungswinkel und mindestradialabstand |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS511430B1 (ja) | 1971-04-20 | 1976-01-17 | ||
JPS5138449B2 (ja) | 1972-04-05 | 1976-10-21 | ||
JP5101430B2 (ja) | 2008-08-11 | 2012-12-19 | Ntn株式会社 | 固定式等速自在継手 |
US8070611B2 (en) * | 2009-05-13 | 2011-12-06 | Gkn Driveline North America, Inc. | Plunging cross-track constant velocity joint |
US8684850B2 (en) * | 2010-04-02 | 2014-04-01 | Ntn Corporation | Constant velocity universal joint |
JP5823127B2 (ja) * | 2011-01-06 | 2015-11-25 | Ntn株式会社 | 固定式等速自在継手 |
JP5885997B2 (ja) | 2011-05-30 | 2016-03-16 | Ntn株式会社 | 固定式等速自在継手 |
JP5885998B2 (ja) | 2011-05-30 | 2016-03-16 | Ntn株式会社 | 固定式等速自在継手 |
-
2015
- 2015-09-24 JP JP2015187268A patent/JP6821295B2/ja active Active
-
2016
- 2016-09-07 WO PCT/JP2016/076291 patent/WO2017051710A1/ja active Application Filing
- 2016-09-07 US US15/761,594 patent/US10837498B2/en active Active
- 2016-09-07 CN CN201680055190.4A patent/CN108138855B/zh active Active
- 2016-09-07 EP EP16848498.8A patent/EP3354919B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006058860A1 (de) * | 2006-12-13 | 2008-07-10 | Volkswagen Ag | Gleichlauffestgelenk |
US20100209202A1 (en) * | 2007-07-06 | 2010-08-19 | Sandvik Intellectual Property Ab | Method of milling ball races and side milling cutter for ball races |
DE102007056371A1 (de) * | 2007-11-22 | 2009-05-28 | Volkswagen Ag | Kugelverschiebegelenk mit geschrägten Kugellaufbahnen |
JP2009250365A (ja) * | 2008-04-08 | 2009-10-29 | Ntn Corp | 等速自在継手 |
JP2015090171A (ja) * | 2013-11-05 | 2015-05-11 | Ntn株式会社 | 固定式等速自在継手 |
WO2015197205A1 (de) * | 2014-06-26 | 2015-12-30 | Neapco Europe Gmbh | Kugelverschiebegelenk mit sich kreuzenden laufbahnen mit unterschiedlichem schrägungswinkel und mindestradialabstand |
Non-Patent Citations (1)
Title |
---|
See also references of EP3354919A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019076672A1 (fr) | 2017-10-20 | 2019-04-25 | IFP Energies Nouvelles | Dispositif de forme spherique et muni de cannelures bombees pour former une liaison rotule a doigt, et pompe a barillet muni d'un tel dispositif |
Also Published As
Publication number | Publication date |
---|---|
CN108138855B (zh) | 2021-04-16 |
JP6821295B2 (ja) | 2021-01-27 |
EP3354919A4 (en) | 2019-04-24 |
EP3354919B1 (en) | 2022-11-16 |
EP3354919A1 (en) | 2018-08-01 |
JP2017061984A (ja) | 2017-03-30 |
US20180347636A1 (en) | 2018-12-06 |
CN108138855A (zh) | 2018-06-08 |
US10837498B2 (en) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9206855B2 (en) | Fixed type constant-velocity universal joint | |
US9169877B2 (en) | Fixed constant velocity universal joint | |
JP5634777B2 (ja) | 固定式等速自在継手 | |
US9163672B2 (en) | Fixed constant velocity universal joint | |
WO2017051710A1 (ja) | 固定式等速自在継手 | |
JP2012017809A5 (ja) | ||
JP2007085488A (ja) | 摺動式等速自在継手 | |
JP2001153149A (ja) | 固定型等速自在継手 | |
WO2013069434A1 (ja) | 固定式等速自在継手 | |
WO2015068536A1 (ja) | 固定式等速自在継手 | |
US20090087250A1 (en) | Cross Groove Constant Velocity Universal Joint | |
JP5882050B2 (ja) | 固定式等速自在継手 | |
WO2018168622A1 (ja) | 後輪用ドライブシャフトに用いられる固定式等速自在継手 | |
JP6297419B2 (ja) | 固定式等速自在継手 | |
JP2009085326A (ja) | 等速自在継手 | |
JP4896662B2 (ja) | 固定式等速自在継手 | |
JP2007247848A (ja) | クロスグルーブ型等速自在継手 | |
JP6863785B2 (ja) | 固定式等速自在継手 | |
JP2008019961A (ja) | 固定式等速自在継手 | |
WO2017141731A1 (ja) | 固定式等速自在継手 | |
JP2008089112A (ja) | 等速自在継手 | |
JP2006266368A (ja) | 固定式等速自在継手 | |
JP2018155320A (ja) | 後輪用ドライブシャフトに用いられる固定式等速自在継手 | |
JP6899716B2 (ja) | 固定式等速自在継手 | |
JP5220480B2 (ja) | 固定型等速自在継手 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16848498 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016848498 Country of ref document: EP |