WO2017051612A1 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
WO2017051612A1
WO2017051612A1 PCT/JP2016/072691 JP2016072691W WO2017051612A1 WO 2017051612 A1 WO2017051612 A1 WO 2017051612A1 JP 2016072691 W JP2016072691 W JP 2016072691W WO 2017051612 A1 WO2017051612 A1 WO 2017051612A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
signal
luminance level
image processing
conversion
Prior art date
Application number
PCT/JP2016/072691
Other languages
English (en)
French (fr)
Inventor
俊也 浜田
金井 健一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201680054234.1A priority Critical patent/CN108028036B/zh
Priority to MX2018003360A priority patent/MX2018003360A/es
Priority to JP2017541465A priority patent/JP6825568B2/ja
Priority to EP16848400.4A priority patent/EP3355300B1/en
Priority to US15/759,686 priority patent/US10638023B2/en
Priority to CA2999098A priority patent/CA2999098A1/en
Priority to AU2016326942A priority patent/AU2016326942B2/en
Publication of WO2017051612A1 publication Critical patent/WO2017051612A1/ja
Priority to HK18106869.5A priority patent/HK1247369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/82Camera processing pipelines; Components thereof for controlling camera response irrespective of the scene brightness, e.g. gamma correction

Definitions

  • the present disclosure relates to an image processing apparatus and an image processing method.
  • ITU-R International Telecommunication Union-Radio communications sector
  • SDR Standard Dynamic Range
  • HDR High Dynamic Range
  • Application-1 is a signal system based on PQ (Perceptual Quantizer) -EOTF (Electro-Optical Transfer Function) for the purpose of expressing the absolute value of the luminance of the shooting environment (see Non-Patent Document 1). ).
  • Application-2 is a signal system that expresses a relative luminance level by an HLG (Hybrid Log-Gamma) curve that combines a gamma curve at a luminance level lower than the reference white and a logarithmic curve at a luminance level higher than the reference white. (See Non-Patent Document 2).
  • Up to the Application-1 can display the absolute luminance of 10,000 cd / m 2, while the relative luminance of 12 times the reference white up to the Application-2 (20-fold when using the headroom) Can be displayed.
  • ITU-R Application-1 is the same method as ST2084 established by SMPTE (Society of Motion Picture and Television Engineers), which is a standardization organization different from ITU-R. There are other signal systems similar to SMPTE ST2084 (see Non-Patent Document 3).
  • the peak luminance of the display is often different from the upper limit of the HDR dynamic luminance dynamic range.
  • the luminance of one or more pixels included in the video signal exceeds the peak luminance of the display, so-called overexposure occurs in the reproduced video as a result of clipping. If the maximum brightness is below the peak brightness of the display, the display performance will not be fully utilized.
  • One simple technique for eliminating such a range mismatch is to adjust the brightness level by multiplying gains. However, simple gain multiplication changes even the luminance level of the reference point that should be fixedly handled.
  • the display brightness level of the reference white is maintained by using an image signal based on a signal system that handles the display brightness level of the reference white in a fixed manner using a parameter determined based on the peak brightness level of the display.
  • an image processing apparatus includes a conversion unit that converts into a display signal by performing gamma conversion.
  • an image processing method executed by an image processing apparatus wherein an image signal based on a signal method that handles a reference white display luminance level in a fixed manner is determined based on a peak luminance level of a display.
  • An image processing method is provided that includes performing a gamma conversion so that the display brightness level of the reference white color is maintained using a parameter to be converted into a display signal.
  • the technique according to the present disclosure it is possible to eliminate or at least reduce inconvenience related to the mismatch between the dynamic range of the HDR video signal and the peak luminance of the display.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
  • 11 is a flowchart showing a first example of a flow of RW maintenance gamma conversion processing shown in FIG. 10.
  • 12 is a flowchart illustrating a second example of the flow of the RW maintenance gamma conversion process illustrated in FIG. 10.
  • 11 is a flowchart illustrating a third example of the flow of the RW maintenance gamma conversion process illustrated in FIG. 10. It is a flowchart which shows an example of the flow of the linear transformation process shown in FIG. It is explanatory drawing for demonstrating an example of the method of recording and reproducing
  • FIG. 1 is an explanatory diagram for explaining an outline of conversion characteristics of a video signal.
  • an imaging device 10 a network 20, a recording device 30, and a display device 50 are shown.
  • the photographing device 10 photographs a subject in a photographing environment and generates a video signal.
  • the photographing apparatus 10 has an array of photoelectric conversion elements (image sensors) such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and converts light incident from the photographing environment into an electrical signal. Convert.
  • the characteristic of conversion from light to an electrical signal is modeled by an OETF (Opto-Electronic Transfer Function).
  • OETF is a linear function
  • the voltage level of the electrical signal is proportional to the amount of light received for each element.
  • BT. which is a standard specification established by ITU-R. 709 or BT.
  • the OETF of 2020 is nonlinear, for example, the overall gamma value is 0.45, and has linearity only in the low luminance region.
  • the imaging device 10 transmits a video signal including a series of frame image signals and control signals to the display device 50 via the network 20 or causes the recording device 30 to record the video signal on a recording medium.
  • the network 20 may be a wired communication network, a wireless communication network, or a simple connection cable.
  • the recording device 30 records the video signal received from the photographing device 10 on a recording medium by a designated recording method.
  • the recording medium may be a removable medium such as a BD (Blu-ray (registered trademark) disk) or a DVD (Digital Versatile Disc), or a built-in medium such as a hard disk.
  • Display device 50 reproduces a video from a video signal received via network 20 or read from a recording medium. More specifically, the display device 50 has an array of display elements that convert an input electrical signal into light (for example, a liquid crystal panel, an organic light emitting diode (OLED) panel, a plasma display panel (PDP), or the like). .
  • the characteristics of conversion from an electric signal to light are modeled by EOTF (Electro-Optical Transfer Function). If EOTF is an inverse function of OETF, the intensity of the displayed light is equal to the intensity of the photographed light.
  • OOTF Opto-Optical Transfer Function
  • OOTF is also called system gamma or total gamma.
  • BT. which is a standard specification formulated by ITU-R.
  • the gamma value of 1886 EOTF is 2.4.
  • the upper limit of the general luminance dynamic range of the existing SDR video signal is 100 cd / m 2 (also referred to as nit).
  • the upper limit of the luminance dynamic range of the HDR video signal is expanded from several hundred to several thousand cd / m 2 .
  • the ITU-R is expected to add two systems, Application-1 and Application-2, as the HDR video signal signal system.
  • FIG. 2 is an explanatory diagram for explaining the photoelectric transfer function of ITU-R Application-2.
  • Application-2 is an HLG (Hybrid Log-Gamma) curve that combines a gamma curve at a luminance level lower than the reference white and a logarithmic curve at a luminance level higher than the reference white, and expresses a relative luminance level.
  • the horizontal axis represents the light intensity E normalized so that the luminance level of the reference white is equal to 1
  • the vertical axis represents the signal level E ′ of the corresponding electrical signal.
  • the gamma value is equal to 0.5 in the low luminance region below the reference white, and there is no linear portion. This improves the Weber fraction in dark conditions.
  • the upper limit of the luminance dynamic range is further increased.
  • FIG. 3 is an explanatory diagram for explaining the OOTF of ITU-R Application-2.
  • the horizontal axis represents the same normalized light intensity E as in FIG. 2, and the vertical axis represents the luminance level L (cd / m 2 ) after the inverse transformation (OETF ⁇ 1 ) is executed.
  • FIG. 3 shows an example of ITU-R Application-2.
  • the upper limit of the luminance dynamic range is from several hundred to several thousand cd / m 2 . Reach.
  • FIG. 4 is an explanatory diagram for explaining examples of several methods for adapting the luminance dynamic range to the peak luminance of the display.
  • the horizontal axis represents the normalized light intensity E
  • the vertical axis represents the luminance level L.
  • a graph 42 represented by an alternate long and short dash line is a result of hard clipping of the original OOTF (graph 41) with the peak luminance of the display. Such clipping causes over-exposure in a region where the light intensity E is larger than the clipping point P CLP , thereby losing image information.
  • a graph 43 represented by a broken line is a result of soft clipping for giving an inclination to the OOTF in a region where the light intensity E is larger than the clipping point P CLP ′ . Although soft clipping does not cause complete overexposure, since the slope becomes discontinuous at the clipping point P CLP ′ , an unnatural image may be displayed.
  • a graph 44 represented by a two-dot chain line is a result of linear conversion of the original OOTF with a constant gain.
  • the luminance level corresponding to the reference white (E 1) that should be handled fixedly changes (P 1 ⁇ P 1 ′ ).
  • the luminance level of the reference white changes, it becomes difficult to appropriately reproduce the brightness of the shooting environment (or the brightness that the content producer desires to show to the viewer).
  • Such a linear transformation is not consistent with the purpose of, for example, ITU-R Application-2.
  • FIG. 5 is a block diagram illustrating an example of the configuration of the image processing apparatus 100 according to an embodiment.
  • the image processing apparatus 100 may be, for example, a photographing apparatus, a recording apparatus, or a display apparatus as shown in FIG. 1, or may be an image processing module mounted on these apparatuses.
  • the image processing apparatus 100 includes an image acquisition unit 110, a conversion unit 120, and a control unit 130.
  • the image acquisition unit 110 acquires an input image signal from some signal source.
  • the input image signal may be an image signal of each of a series of frames constituting the video signal, or may be an image signal for a still image.
  • the input image signal is based on the HDR signal system, and here, as an example, an image signal based on ITU-R Application-2 (hereinafter referred to as an HLG image signal) is acquired.
  • ITU-R Application-2 is an example of a signal system that handles the display brightness level of the reference white in a fixed manner.
  • the HLG image signal is a signal after normalization at the luminance level of the reference white.
  • the image acquisition unit 110 generates a linear image signal by applying an OETF inverse function (OETF ⁇ 1 ) of the signal method to the acquired input image signal.
  • the linear image signal is a signal that linearly represents the intensity of light at the time of photographing.
  • the calculation of the inverse function here may be implemented as a numerical calculation using calculation parameters stored in advance for each signal system, or implemented using a lookup table that maps the input value and output value of the signal. May be. Then, the image acquisition unit 110 outputs the generated linear image signal to the conversion unit 120.
  • the conversion unit 120 performs gamma conversion on the linear image signal input from the image acquisition unit 110 using parameters determined based on the peak luminance level of the display so that the reference white display luminance level is maintained. To convert to a display signal.
  • the conversion unit 120 uses a conversion method corresponding to one or a combination of two or more of the following three basic conversions to obtain a signal level of an image signal.
  • Convert. ⁇ Standard white (RW) fixed gamma conversion ⁇ Linear conversion ⁇ Peak fixed gamma conversion
  • the RW fixed gamma conversion is a gamma conversion that does not change the luminance level of the reference white.
  • FIG. 6A shows a graph of RW fixed gamma conversion.
  • the luminance level decreases in a range lower than the reference white, and the luminance level increases in a range higher than the reference white.
  • the luminance level increases in a range lower than the reference white, and the luminance level decreases in a range higher than the reference white. The brightness level of the reference white is maintained.
  • the linear transformation is expressed as a function T 2 (E) of the image signal E using the gain value G as follows:
  • FIG. 6B shows a linear transformation graph.
  • the gain value G when the gain value G is larger than 1, the luminance level increases over the entire range, and when the gain value is smaller than 1, the luminance level decreases over the entire range. If the gain value is not 1, the luminance level of the reference white also changes.
  • the peak fixed gamma conversion is a gamma conversion that does not change the upper limit of the dynamic range.
  • the peak fixed gamma conversion can be expressed as a function T 3 (E) of the image signal E as shown in the following equation.
  • FIG. 6C shows a graph of peak fixed gamma conversion.
  • K 12.
  • the luminance level decreases over the entire range
  • the gamma value is smaller than 1
  • the luminance level increases over the entire range.
  • the rate of change of the brightness level is larger as it is closer to the center of the range. If the gamma value is not 1, the luminance level of the reference white also changes.
  • the role of the conversion unit 120 is to match the maximum luminance level that can be expressed by the display signal to the peak luminance level of the display, and to maintain the reference white display luminance level when necessary.
  • the peak luminance level of the display here may be the maximum luminance level in terms of the performance of the display (or display element), or may be smaller than the upper limit in terms of performance, in terms of additional restrictions. It may be the maximum luminance level (for example, user settings or environmental conditions).
  • the display brightness level of the reference white is maintained by the RW fixed gamma conversion.
  • the display brightness level of the reference white is maintained by a combination of linear conversion and peak fixed gamma conversion.
  • the conversion unit 120 determines the first gamma value ⁇ 1 so that the maximum luminance level that can be expressed by the display signal matches the peak luminance level of the display. Then, the linear image signal is gamma-transformed using the determined first gamma value ⁇ 1 .
  • FIG. 7A is a first explanatory diagram showing how OOTF changes according to RW fixed gamma conversion.
  • the peak luminance of the display is assumed to be greater than 2000 cd / m 2 .
  • the maximum luminance level that can be expressed is about 4000 cd / m 2 .
  • the maximum expressible luminance level exceeds 5000 cd / m 2 .
  • the maximum representable luminance level reaches about 9000 cd / m 2 .
  • the brightness level of the reference white is maintained (point P 1 ).
  • FIG. 7B is a second explanatory diagram showing how OOTF changes according to RW fixed gamma conversion.
  • the peak luminance of the display is smaller than 2000 cd / m 2 .
  • the brightness level of the reference white is maintained (point P 1 ).
  • the system gamma in the low luminance region (0 ⁇ E ⁇ 1) is smaller than that in the existing SDR display case, but its visual influence Is not so big.
  • FIG. 7C is a third explanatory diagram illustrating how the OOTF changes according to the RW fixed gamma conversion.
  • the peak luminance of the display is assumed to be smaller than 1200 cd / m 2 .
  • the conversion unit 120 determines the gain value G so that the maximum luminance level that can be expressed by the display signal matches the peak luminance level of the display, and the determined gain The linear image signal is linearly transformed using the value G. Further, the conversion unit 120 determines the second gamma value ⁇ 2 so that the display brightness level of the reference white is restored to the original brightness level, and uses the determined second gamma value ⁇ 2 to perform the above linear operation. Gamma-convert the converted image signal. The conversion unit 120 executes gamma conversion using the second gamma value ⁇ 2 so as not to change the peak luminance level.
  • FIG. 8A is an explanatory diagram showing how OOTF changes in accordance with linear conversion and peak fixed gamma conversion.
  • FIG. 8B is an enlarged view of the low luminance region of FIG. 8A.
  • the upper limit of the luminance dynamic range that is, the maximum representable luminance level is close to the peak luminance of the display. Pulled down to about 1200 cd / m 2 .
  • the occurrence of overexposure is suppressed and the performance of the display can be utilized to the maximum extent.
  • the input value E of the gamma conversion here is divided by the parameter K as shown in the above equation (4).
  • the value of the parameter K may be, for example, 12 when the headroom is not used and 20 when the headroom is used.
  • the conversion unit 120 may support both the first operation mode that maintains the display brightness level of the reference white and the second operation mode that does not maintain the display brightness level of the reference white.
  • the first operation mode and the second operation mode are referred to as an RW maintenance mode and an RW non-maintenance mode, respectively.
  • the conversion unit 120 executes either the first conversion method or the second conversion method described above.
  • the conversion unit 120 outputs a display signal by another method without maintaining the reference white display luminance level.
  • the conversion unit 120 performs ITU-R BT.
  • the image signal may be converted into a display signal.
  • ITU-R BT For display output (SDR display) at 1886, a gamma value of 2.4 is used throughout the range.
  • the conversion unit 120 determines a gain value so that the maximum luminance level that can be expressed by the display signal matches the peak luminance level of the display, and linearizes the image signal using the determined gain value. It may be converted.
  • FIG. 18 is an explanatory diagram for describing OOTF in SDR display in 1886.
  • the one-dot chain line graph is BT.
  • the maximum luminance level that can be expressed is about 500 cd / m 2 , so when the peak luminance level of the display exceeds about 500 cd / m 2 , Requires linear transformation with large gain.
  • the conversion unit 120 does not have to execute the gain adjustment.
  • the system gamma in the low luminance region (0 ⁇ E ⁇ 1) is maintained at about 1.2.
  • the case of SDR display shows an average luminance level in the middle luminance region (1 ⁇ E ⁇ 8).
  • SDR display can be a visually better option when the peak brightness of the display is low (eg, less than about 600 cd / m 2 ).
  • the control unit 130 controls the operations of the image acquisition unit 110 and the conversion unit 120. For example, the control unit 130 determines the signal method of the input image signal from the control parameter associated with the input image signal, and causes the image acquisition unit 110 and the conversion unit 120 to execute processing corresponding to the determined signal method. Examples of control parameters here will be further described later.
  • the control unit 130 may switch the type of the inverse function of the OETF that the image acquisition unit 110 should apply to the input image signal according to the signal method of the input image signal.
  • the control unit 130 may control the operation mode of the image processing apparatus 100.
  • control unit 130 selects an operation mode to be used by the conversion unit 120 among an RW maintaining mode in which the reference white display luminance level is maintained and an RW non-maintaining mode in which the reference white display luminance level is not maintained. To do.
  • RW maintenance mode the control unit 130 causes the conversion unit 120 to use a conversion method in which the reference white display luminance level is maintained in the conversion process for adjusting the dynamic range.
  • the control unit 130 may select one of the operation modes based on one or more of the following conditions.
  • Signal system type When the signal system of the input image signal is a signal system (for example, ITU-R Application-2) in which the display brightness level of the reference white is fixed, the control unit 130 is in the RW maintenance mode. Select.
  • a signal system for example, ITU-R Application-2
  • the control unit 130 is in the RW maintenance mode. Select.
  • the user sets the RW maintenance mode or the RW non-maintenance mode via the user interface.
  • a user who desires to appropriately reproduce the brightness of the shooting environment can set the RW maintenance mode.
  • the user may set an acceptable peak luminance level for the display.
  • the control unit 130 may select the RW maintenance mode when the allowable peak luminance level is greater than a predetermined threshold, and otherwise select the RW non-maintenance mode.
  • the control unit 130 determines the peak luminance level of the display from the display attribute (for example, device type, model number, or performance value), and the determined peak luminance level is greater than a predefined threshold value.
  • RW maintenance mode may be selected in some cases, and RW non-maintenance mode may be selected otherwise.
  • the control unit 130 determines the recommended peak luminance level of the display from the conditions of the display environment (environmental illuminance, location, etc.) detected via a sensor (not shown), and the determined recommended peak luminance level is defined in advance.
  • the RW maintenance mode may be selected if the threshold value is larger than the threshold value, and the RW non-maintenance mode may be selected otherwise.
  • control unit 130 selectively uses the first conversion method (RW fixed gamma conversion) and the second conversion method (combination of linear conversion and peak fixed gamma conversion) described above for the conversion unit 120. May be used. Similar to the selection of the operation mode described above, the control unit 130 is based on, for example, a mode setting by the user or a comparison between a peak luminance value (which may include a performance value, an allowable value by the user, and a system recommended value) and a threshold value. Any conversion method may be selected.
  • FIG. 10 is a flowchart illustrating an example of the flow of the image conversion process executed by the image processing apparatus 100 described above.
  • control unit 130 determines the signal method of the input image signal from the control parameter associated with the input image signal (step S102).
  • the control unit 130 obtains the peak luminance L P of the display (step S104).
  • the control unit 130 selects an operation mode based on a condition such as a signal system type or user setting (step S106).
  • the image conversion process in FIG. 10 branches depending on the signal method determined in step S102 and the operation mode selected in step S106 (steps S110 and S125). For example, when the signal system is not the HDR system, ITU-R BT. In accordance with 1886, a display signal is output from the conversion unit 120 to the display, and the video is displayed in SDR (step S120). On the other hand, if the signal method is the HDR method (for example, the HLG method) and the RW maintenance mode is selected, the process proceeds to step S130. If the signaling method is the HDR method and the RW non-maintaining mode is selected, the process proceeds to step S165.
  • the signal method is the HDR method and the RW non-maintaining mode is selected
  • step S130 the image acquisition unit 110 and the conversion unit 120 execute RW maintenance gamma conversion processing.
  • the display brightness level of the reference white (RW) is maintained.
  • step S165 the display brightness level of the reference white is not necessarily maintained.
  • the control unit 130 determines whether or not to perform SDR display based on, for example, user settings or the peak luminance level of the display determined in step S104 (step S165). If it is determined that the SDR display is to be performed, the process proceeds to step S120, and the ITU-R BT. In accordance with 1886, a display signal is output from the conversion unit 120 to the display. If it is determined not to perform SDR display, the process proceeds to step S170, and linear conversion processing is performed by the image acquisition unit 110 and the conversion unit 120 (step S170). A more detailed flow of the linear conversion process will be further described later.
  • a display signal is output to the display, and the HDR video is displayed on the display (step S190).
  • FIG. 11A is a flowchart showing a first example of the flow of the RW maintenance gamma conversion process shown in FIG.
  • the conversion unit 120 the upper limit L max of the peak luminance level L P and the luminance dynamic range of the display, to compute the gamma value gamma 1 (step S132).
  • the gamma value ⁇ 1 can be calculated so that the maximum luminance level that can be expressed by the display signal is matched with the peak luminance level of the display, for example, through the RW fixed gamma conversion shown in Equation (2).
  • the image acquisition unit 110 acquires an input image signal from some signal source (step S136), and generates a linear image signal by applying an inverse function of OETF (OETF ⁇ 1 ) to the acquired input image signal. (Step S138).
  • the conversion unit 120 uses the gamma value gamma 1 calculated in step S132, a linear image signal inputted from the image acquisition unit 110 by gamma conversion, generates display signals (step S144). Then, the conversion unit 120 outputs the generated display signal to the display (Step S150).
  • FIG. 11B is a flowchart showing a second example of the flow of the RW maintenance gamma conversion process shown in FIG.
  • the conversion unit 120 the upper limit L max of the peak luminance level L P and the luminance dynamic range of the display, to compute the gain G 1 and the gamma value gamma 2 (step S134).
  • Gain G 1 for example, it may be calculated as Equation 3 to a maximum brightness level that can be expressed by the display signal through the linear transformation shown is matched to the peak brightness level of the display.
  • the gamma value ⁇ 2 may be calculated such that the reference white display luminance level is restored to the original luminance level by further applying the peak fixed gamma transformation shown in Equation (4).
  • the image acquisition unit 110 acquires an input image signal from some signal source (step S136), and generates a linear image signal by applying an inverse function of OETF (OETF ⁇ 1 ) to the acquired input image signal. (Step S138).
  • control unit 130 determines whether or not to adjust the system gamma based on, for example, the user setting or the peak luminance level of the display (step S140). If it is determined that the system gamma is to be adjusted, the conversion unit 120 gamma-converts the linear image signal input from the image acquisition unit 110 using a predetermined system gamma value (for example, 1.2). (Step S142).
  • a predetermined system gamma value for example, 1.2
  • the conversion unit 120 uses the gain G 1 calculated in step S134, executes the (system gamma is adjusted as necessary) linear transformation of the linear image signal (step S146).
  • the conversion unit 120 by the gamma converting the image signal after linear transformation by using a gamma value gamma 2 calculated in step S134 generates display signals (step S148).
  • the conversion unit 120 outputs the generated display signal to the display (Step S150).
  • FIG. 11C is a flowchart illustrating a third example of the flow of the RW maintenance gamma conversion process illustrated in FIG. In the third example, selective switching between the first conversion method and the second conversion method is performed.
  • the control unit 130 determines the first based on, for example, a mode setting by the user or a comparison between a peak luminance value (which may include a performance value, an allowable value by the user, and a system recommended value) and a threshold value.
  • the conversion method (RW fixed gamma conversion) and the second conversion method (combination of linear conversion and peak fixed gamma conversion) are selected (step S152).
  • the control unit 130 causes the image acquisition unit 110 and the conversion unit 120 to execute Steps S132 to S150 illustrated in FIG. 11A (Step S154).
  • the control unit 130 causes the image acquisition unit 110 and the conversion unit 120 to execute steps S134 to S150 illustrated in FIG. 11B (step S156).
  • FIG. 12 is a flowchart illustrating an example of the flow of the linear conversion process illustrated in FIG.
  • Gain G 2 is, for example, may be calculated as Equation (3) to the maximum brightness level that can be expressed by the display signal through the linear transformation shown is matched to the peak brightness level of the display.
  • the image acquisition unit 110 acquires an input image signal from some signal source (step S174), and generates a linear image signal by applying an inverse function of OETF (OETF ⁇ 1 ) to the acquired input image signal. (Step S176).
  • control unit 130 determines whether or not to adjust the system gamma based on, for example, the user setting or the peak luminance level of the display (step S178). If it is determined that the system gamma is to be adjusted, the conversion unit 120 gamma-converts the linear image signal input from the image acquisition unit 110 using a predetermined system gamma value (for example, 1.2). (Step S180).
  • a predetermined system gamma value for example, 1.2
  • the conversion unit 120 uses the gain G 2 calculated in step S172, by performing a linear transformation of the (system gamma is adjusted as necessary) linear image signal to generate a display signal (Step S182). Then, the conversion unit 120 outputs the generated display signal to the display (step S184).
  • HLG image recognition As described with reference to FIG. 5, the signal system of the input image signal is determined based on the control parameter associated with the input image signal.
  • the image signal of a series of frames is usually compressed and encoded according to some video codec, and then recorded on a recording medium or transmitted over a network.
  • Control parameters that identify the signaling scheme are also encoded and associated with the bit stream of the image signal.
  • UHD-BD Ultra HD-Blu-ray Disc
  • HEVC High Efficiency Video Coding
  • VUI Video Usability Information
  • a new value definition for the HLG method is added as the value of this OETF number.
  • the UHD-BD recorder writes the currently permitted value (for example, “1” or “14”) to the OETF number in the VUI, while the signal type in the SEI is for the HLG system.
  • the number “18” may be written.
  • the HDR-compatible player or display can recognize the HLG video without violating the UHD-BD specification by preferentially referring to the parameters in the SEI.
  • FIG. 13 is an explanatory diagram for explaining an example of a method for recording and reproducing HLG video.
  • FIG. 13 shows a recording device 30 that is an HDR-compatible recorder / player, a recording medium 40, a playback device 45 that is an HDR-incompatible player, a display device 50 that is an HDR-compatible display, and an HDR-incompatible type.
  • a display device 55 which is a display of the above is shown.
  • the recording device 30 includes an encoding unit 32, a decoding unit 34, an HLG processing unit 36, and a control unit 38.
  • the encoding unit 32 of the recording device 30 encodes the HLG image signal generated by the HLG processing unit 36 according to HEVC, and records the encoded bit stream on the recording medium 40 according to UHD-BD.
  • the control unit 38 writes a control parameter indicating an OETF number for the HLG method into the VUI or SEI.
  • a VUI or SEI is associated with an encoded bitstream that includes a compressed image signal.
  • the control unit 38 reads the OETF number in the VUI or SEI, thereby recognizing that the video recorded on the recording medium 40 is an HLG video.
  • the decoding unit 34 decodes the HLG image signal according to HEVC.
  • the control unit 38 of the recording device 30 may signal the decoded HLG image signal to an output destination display of the image signal together with an HLG indicator indicating that the image signal is an HLG image signal.
  • the display device 50 that is an HDR-compatible display processes the image signal according to the HLG method and displays an HDR video.
  • the image processing apparatus 100 described above is mounted on the display device 50, for example, and can perform the dynamic range adjustment described above before the HDR video is displayed.
  • the output destination display of the image signal is the HDR non-compliant display device 55
  • the display device 55 displays the video in SDR without noticing the presence of the HLG sign.
  • the HDR non-compliant playback device 45 When playing back video, the HDR non-compliant playback device 45 does not read the OETF number in the VUI or SEI, or ignores it because the read OETF number is an unknown (or contradicts) value. .
  • the playback device 45 outputs the image signal decoded according to HEVC to the display device 50 or the display device 55 without an HLG label.
  • the display device 50 displays the video in SDR since the HLG indicator is not received.
  • the display device 55 also displays the video in SDR.
  • the HLG processing unit 36 of the recording device 30 may have the function of the image processing device 100 described above.
  • the HLG processing unit 36 processes the decoded HLG image signal according to the HLG method to generate a display signal for HDR video having a wide luminance dynamic range.
  • the display signal is output to the display device 50, the display device 50 displays the HDR video.
  • FIG. 14 is a flowchart illustrating an example of a recording process executed by the recording apparatus 30 according to an embodiment.
  • the HLG processing unit 36 of the recording device 30 acquires an original image signal that linearly represents the light intensity of the video content (step S202).
  • the HLG processing unit 36 converts the original image signal into an HLG image signal (step S204).
  • the encoding unit 32 encodes the HLG image signal to generate an encoded stream (step S206).
  • the control unit 38 generates a control parameter indicating the OETF number of the HLG method (step S208).
  • the control unit 38 records the encoded stream of the HLG image signal on the recording medium, and writes a control parameter indicating the OLG number of the HLG method to the VUI or SEI associated with the encoded stream (step S210).
  • FIG. 15A is a flowchart illustrating a first example of the flow of a reproduction process according to an embodiment.
  • the control unit 38 of the recording device 30 reads the encoded stream and the associated control parameter from the recording medium (step S222).
  • the decoding unit 34 decodes the image signal from the read encoded stream (step S224).
  • the control unit 38 determines whether or not the signal method of the image signal is the HLG method based on the control parameter read in step S222 (step S226).
  • the process proceeds to step S228, and a non-HLG image signal is output to the display (step S228).
  • the control unit 38 further determines whether or not the output destination display is an HLG compatible type (step S230).
  • the image signal is output to the display without executing the HLG conversion (step S228). If the output destination display is HLG compatible, the HLG processing unit 36 processes the decoded image signal in accordance with the HLG method to generate a display signal having a wide luminance dynamic range (step S232). Then, a display signal is output to the display (step S234).
  • FIG. 15B is a flowchart illustrating a second example of the flow of the reproduction process according to an embodiment.
  • the control unit 38 of the recording device 30 reads the encoded stream and the associated control parameter from the recording medium (step S222).
  • the decoding unit 34 decodes the image signal from the read encoded stream (step S224).
  • the control unit 38 determines whether or not the signal method of the image signal is the HLG method based on the control parameter read in step S222 as in the first example (step S226). If an image signal that is not an HLG image signal is decoded, the process proceeds to step S228, and a non-HLG image signal is output to the display (step S228). When the HLG image signal is decoded, the process proceeds to step S236, and the control unit 38 outputs the HLG image signal to the display together with the HLG indicator signaling (step S236).
  • Video content may also include a supplemental stream containing subtitle information or graphics information in addition to the encoded stream of image signals, audio signals and control signals in a series of frames.
  • the recording device 30 that is an HDR-compatible recorder / player can display the content of the supplementary stream (for example, subtitle, GUI, or other display).
  • appropriate visibility of the content can be ensured by matching the maximum luminance level of the supplemental stream content to the reference white display luminance level of the HDR video.
  • Hardware configuration example The above-described embodiments may be realized using any of software, hardware, and a combination of software and hardware.
  • a program constituting the software is stored in advance in a storage medium (non-transitory media) provided inside or outside the apparatus, for example.
  • Each program is read into a RAM (Random Access Memory) at the time of execution and executed by a processor such as a CPU (Central Processing Unit).
  • a processor such as a CPU (Central Processing Unit).
  • FIG. 16 is a block diagram illustrating an example of a hardware configuration of an apparatus to which the above-described embodiment can be applied.
  • the image processing apparatus 800 includes a system bus 810, an image processing chip 820, and an off-chip memory 890.
  • the image processing chip 820 includes n (n is 1 or more) processing circuits 830-1, 830-2,..., 830-n, a reference buffer 840, a system bus interface 850, and a local bus interface 860.
  • the system bus 810 provides a communication path between the image processing chip 820 and an external module (for example, a central control function, an application function, a communication interface, a user interface, or a display interface).
  • the processing circuits 830-1, 830-2,..., 830-n are connected to the system bus 810 via the system bus interface 850 and to the off-chip memory 890 via the local bus interface 860.
  • the processing circuits 830-1, 830-2,..., 830-n can also access a reference buffer 840 that may correspond to an on-chip memory (eg, SRAM).
  • the off-chip memory 890 may be a frame memory that stores image data processed by the image processing chip 820, for example.
  • the processing circuit 830-1 may be used for adjusting the luminance dynamic range of the HDR image signal
  • the processing circuit 830-2 may be used for encoding or decoding the image signal according to HEVC. Note that these processing circuits may be formed not on the same image processing chip 820 but on separate chips.
  • FIG. 17 illustrates an example of a schematic configuration of a television device to which the above-described embodiment is applied.
  • the television apparatus 900 includes an antenna 901, a tuner 902, a demultiplexer 903, a decoder 904, a video signal processing unit 905, a display unit 906, an audio signal processing unit 907, a speaker 908, an external interface 909, a control unit 910, a user interface 911, And a bus 912.
  • Tuner 902 extracts a signal of a desired channel from a broadcast signal received via antenna 901, and demodulates the extracted signal. Then, the tuner 902 outputs the encoded bit stream obtained by the demodulation to the demultiplexer 903. In other words, the tuner 902 serves as a transmission unit in the television apparatus 900 that receives an encoded stream in which an image is encoded.
  • the demultiplexer 903 separates the video stream and audio stream of the viewing target program from the encoded bit stream, and outputs each separated stream to the decoder 904. In addition, the demultiplexer 903 extracts auxiliary data such as EPG (Electronic Program Guide) from the encoded bit stream, and supplies the extracted data to the control unit 910. Note that the demultiplexer 903 may perform descrambling when the encoded bit stream is scrambled.
  • EPG Electronic Program Guide
  • the decoder 904 decodes the video stream and audio stream input from the demultiplexer 903. Then, the decoder 904 outputs the video data generated by the decoding process to the video signal processing unit 905. In addition, the decoder 904 outputs audio data generated by the decoding process to the audio signal processing unit 907.
  • the video signal processing unit 905 reproduces the video data input from the decoder 904 and causes the display unit 906 to display the video.
  • the video signal processing unit 905 may cause the display unit 906 to display an application screen supplied via a network.
  • the video signal processing unit 905 may perform additional processing such as noise removal on the video data according to the setting.
  • the video signal processing unit 905 may generate a GUI (Graphical User Interface) image such as a menu, a button, or a cursor, and superimpose the generated image on the output image.
  • GUI Graphic User Interface
  • the display unit 906 is driven by a drive signal supplied from the video signal processing unit 905, and displays a video or an image on a video screen of a display device (for example, a liquid crystal display, a plasma display, or an OLED).
  • a display device for example, a liquid crystal display, a plasma display, or an OLED.
  • the audio signal processing unit 907 performs reproduction processing such as D / A conversion and amplification on the audio data input from the decoder 904, and outputs audio from the speaker 908.
  • the audio signal processing unit 907 may perform additional processing such as noise removal on the audio data.
  • the external interface 909 is an interface for connecting the television apparatus 900 to an external device or a network.
  • a video stream or an audio stream received via the external interface 909 may be decoded by the decoder 904. That is, the external interface 909 also has a role as a transmission unit in the television apparatus 900 that receives an encoded stream in which an image is encoded.
  • the control unit 910 has a processor such as a CPU (Central Processing Unit) and a memory such as a RAM (Random Access Memory) and a ROM (Read Only Memory).
  • the memory stores a program executed by the CPU, program data, EPG data, data acquired via a network, and the like.
  • the program stored in the memory is read and executed by the CPU when the television device 900 is activated, for example.
  • the CPU controls the operation of the television device 900 according to an operation signal input from the user interface 911, for example, by executing the program.
  • the user interface 911 is connected to the control unit 910.
  • the user interface 911 includes, for example, buttons and switches for the user to operate the television device 900, a remote control signal receiving unit, and the like.
  • the user interface 911 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 910.
  • the bus 912 connects the tuner 902, the demultiplexer 903, the decoder 904, the video signal processing unit 905, the audio signal processing unit 907, the external interface 909, and the control unit 910 to each other.
  • the video signal processing unit 905 has the function of the image processing apparatus 100 according to the above-described embodiment. Therefore, when reproducing the HDR video in the television apparatus 900, it is possible to eliminate or at least reduce inconvenience related to the mismatch between the dynamic range of the video signal and the peak luminance of the display.
  • FIG. 18 shows an example of a schematic configuration of a mobile phone to which the above-described embodiment is applied.
  • a cellular phone 920 includes an antenna 921, a communication unit 922, an audio codec 923, a speaker 924, a microphone 925, a camera unit 926, an image processing unit 927, a demultiplexing unit 928, a recording / reproducing unit 929, a display unit 930, a control unit 931, an operation A portion 932 and a bus 933.
  • the antenna 921 is connected to the communication unit 922.
  • the speaker 924 and the microphone 925 are connected to the audio codec 923.
  • the operation unit 932 is connected to the control unit 931.
  • the bus 933 connects the communication unit 922, the audio codec 923, the camera unit 926, the image processing unit 927, the demultiplexing unit 928, the recording / reproducing unit 929, the display unit 930, and the control unit 931 to each other.
  • the mobile phone 920 has various operation modes including a voice call mode, a data communication mode, a shooting mode, and a videophone mode, and is used for sending and receiving voice signals, sending and receiving e-mail or image data, taking images, and recording data. Perform the action.
  • the analog voice signal generated by the microphone 925 is supplied to the voice codec 923.
  • the audio codec 923 converts an analog audio signal into audio data, A / D converts the compressed audio data, and compresses it. Then, the audio codec 923 outputs the compressed audio data to the communication unit 922.
  • the communication unit 922 encodes and modulates the audio data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921. In addition, the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • the communication unit 922 demodulates and decodes the received signal to generate audio data, and outputs the generated audio data to the audio codec 923.
  • the audio codec 923 expands the audio data and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the control unit 931 generates character data constituting the e-mail in response to an operation by the user via the operation unit 932.
  • the control unit 931 causes the display unit 930 to display characters.
  • the control unit 931 generates e-mail data in response to a transmission instruction from the user via the operation unit 932, and outputs the generated e-mail data to the communication unit 922.
  • the communication unit 922 encodes and modulates email data and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • the communication unit 922 demodulates and decodes the received signal to restore the email data, and outputs the restored email data to the control unit 931.
  • the control unit 931 displays the content of the electronic mail on the display unit 930 and stores the electronic mail data in the storage medium of the recording / reproducing unit 929.
  • the recording / reproducing unit 929 has an arbitrary readable / writable storage medium.
  • the storage medium may be a built-in storage medium such as a RAM or a flash memory, or an externally mounted storage medium such as a hard disk, a magnetic disk, a magneto-optical disk, an optical disk, a USB memory, or a memory card. May be.
  • the camera unit 926 images a subject to generate image data, and outputs the generated image data to the image processing unit 927.
  • the image processing unit 927 encodes the image data input from the camera unit 926 and stores the encoded stream in the storage medium of the recording / playback unit 929.
  • the demultiplexing unit 928 multiplexes the video stream encoded by the image processing unit 927 and the audio stream input from the audio codec 923, and the multiplexed stream is the communication unit 922. Output to.
  • the communication unit 922 encodes and modulates the stream and generates a transmission signal. Then, the communication unit 922 transmits the generated transmission signal to a base station (not shown) via the antenna 921.
  • the communication unit 922 amplifies a radio signal received via the antenna 921 and performs frequency conversion to acquire a received signal.
  • These transmission signal and reception signal may include an encoded bit stream.
  • the communication unit 922 demodulates and decodes the received signal to restore the stream, and outputs the restored stream to the demultiplexing unit 928.
  • the demultiplexing unit 928 separates the video stream and the audio stream from the input stream, and outputs the video stream to the image processing unit 927 and the audio stream to the audio codec 923.
  • the image processing unit 927 decodes the video stream and generates video data.
  • the video data is supplied to the display unit 930, and a series of images is displayed on the display unit 930.
  • the audio codec 923 decompresses the audio stream and performs D / A conversion to generate an analog audio signal. Then, the audio codec 923 supplies the generated audio signal to the speaker 924 to output audio.
  • the image processing unit 927 has the function of the image processing apparatus 100 according to the above-described embodiment. Therefore, when the mobile phone 920 reproduces the HDR video, it is possible to eliminate or at least reduce the inconvenience related to the mismatch between the dynamic range of the video signal and the peak luminance of the display.
  • FIG. 19 shows an example of a schematic configuration of a recording / reproducing apparatus to which the above-described embodiment is applied.
  • the recording / reproducing device 940 encodes audio data and video data of a received broadcast program and records the encoded data on a recording medium.
  • the recording / reproducing device 940 may encode audio data and video data acquired from another device and record them on a recording medium, for example.
  • the recording / reproducing device 940 reproduces data recorded on the recording medium on a monitor and a speaker, for example, in accordance with a user instruction. At this time, the recording / reproducing device 940 decodes the audio data and the video data.
  • the recording / reproducing apparatus 940 includes a tuner 941, an external interface 942, an encoder 943, an HDD (Hard Disk Drive) 944, a disk drive 945, a selector 946, a decoder 947, an OSD (On-Screen Display) 948, a control unit 949, and a user interface. 950.
  • Tuner 941 extracts a signal of a desired channel from a broadcast signal received via an antenna (not shown), and demodulates the extracted signal. Then, the tuner 941 outputs the encoded bit stream obtained by the demodulation to the selector 946. That is, the tuner 941 has a role as a transmission unit in the recording / reproducing apparatus 940.
  • the external interface 942 is an interface for connecting the recording / reproducing apparatus 940 to an external device or a network.
  • the external interface 942 may be, for example, an IEEE 1394 interface, a network interface, a USB interface, or a flash memory interface.
  • video data and audio data received via the external interface 942 are input to the encoder 943. That is, the external interface 942 serves as a transmission unit in the recording / reproducing device 940.
  • the encoder 943 encodes video data and audio data when the video data and audio data input from the external interface 942 are not encoded. Then, the encoder 943 outputs the encoded bit stream to the selector 946.
  • the HDD 944 records an encoded bit stream in which content data such as video and audio is compressed, various programs, and other data on an internal hard disk. Also, the HDD 944 reads out these data from the hard disk when playing back video and audio.
  • the disk drive 945 performs recording and reading of data to and from the mounted recording medium.
  • the recording medium loaded in the disk drive 945 may be, for example, a DVD disk (DVD-Video, DVD-RAM, DVD-R, DVD-RW, DVD + R, DVD + RW, etc.) or a Blu-ray (registered trademark) disk. .
  • the selector 946 selects an encoded bit stream input from the tuner 941 or the encoder 943 when recording video and audio, and outputs the selected encoded bit stream to the HDD 944 or the disk drive 945. In addition, the selector 946 outputs the encoded bit stream input from the HDD 944 or the disk drive 945 to the decoder 947 during video and audio reproduction.
  • the decoder 947 decodes the encoded bit stream and generates video data and audio data. Then, the decoder 947 outputs the generated video data to the OSD 948. The decoder 904 outputs the generated audio data to an external speaker.
  • the OSD 948 reproduces the video data input from the decoder 947 and displays the video. Further, the OSD 948 may superimpose a GUI image such as a menu, a button, or a cursor on the video to be displayed.
  • a GUI image such as a menu, a button, or a cursor
  • the control unit 949 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, and the like.
  • the program stored in the memory is read and executed by the CPU when the recording / reproducing apparatus 940 is activated, for example.
  • the CPU controls the operation of the recording / reproducing device 940 according to an operation signal input from the user interface 950, for example, by executing the program.
  • the user interface 950 is connected to the control unit 949.
  • the user interface 950 includes, for example, buttons and switches for the user to operate the recording / reproducing device 940, a remote control signal receiving unit, and the like.
  • the user interface 950 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 949.
  • the OSD 948 has the function of the image processing apparatus 100 according to the above-described embodiment. Therefore, when the recording / reproducing apparatus 940 reproduces the HDR video, it is possible to eliminate or at least reduce inconvenience related to the mismatch between the dynamic range of the video signal and the peak luminance of the display.
  • FIG. 20 illustrates an example of a schematic configuration of an imaging apparatus to which the above-described embodiment is applied.
  • the imaging device 960 captures an image of a subject, generates an image, encodes the image data, and records the image data on a recording medium.
  • the imaging device 960 includes an optical block 961, an imaging unit 962, a signal processing unit 963, an image processing unit 964, a display unit 965, an external interface 966, a memory 967, a media drive 968, an OSD 969, a control unit 970, a user interface 971, and a bus. 972.
  • the optical block 961 is connected to the imaging unit 962.
  • the imaging unit 962 is connected to the signal processing unit 963.
  • the display unit 965 is connected to the image processing unit 964.
  • the user interface 971 is connected to the control unit 970.
  • the bus 972 connects the image processing unit 964, the external interface 966, the memory 967, the media drive 968, the OSD 969, and the control unit 970 to each other.
  • the optical block 961 includes a focus lens and a diaphragm mechanism.
  • the optical block 961 forms an optical image of the subject on the imaging surface of the imaging unit 962.
  • the imaging unit 962 includes an image sensor such as a CCD or a CMOS, and converts an optical image formed on the imaging surface into an image signal as an electrical signal by photoelectric conversion. Then, the imaging unit 962 outputs the image signal to the signal processing unit 963.
  • the signal processing unit 963 performs various camera signal processing such as knee correction, gamma correction, and color correction on the image signal input from the imaging unit 962.
  • the signal processing unit 963 outputs the image data after the camera signal processing to the image processing unit 964.
  • the image processing unit 964 encodes the image data input from the signal processing unit 963 and generates encoded data. Then, the image processing unit 964 outputs the generated encoded data to the external interface 966 or the media drive 968. The image processing unit 964 also decodes encoded data input from the external interface 966 or the media drive 968 to generate image data. Then, the image processing unit 964 outputs the generated image data to the display unit 965. In addition, the image processing unit 964 may display the image by outputting the image data input from the signal processing unit 963 to the display unit 965. Further, the image processing unit 964 may superimpose display data acquired from the OSD 969 on an image output to the display unit 965.
  • the OSD 969 generates a GUI image such as a menu, a button, or a cursor, for example, and outputs the generated image to the image processing unit 964.
  • the external interface 966 is configured as a USB input / output terminal, for example.
  • the external interface 966 connects the photographing device 960 and a printer, for example, when printing an image.
  • a drive is connected to the external interface 966 as necessary.
  • a removable medium such as a magnetic disk or an optical disk is attached to the drive, and a program read from the removable medium can be installed in the photographing apparatus 960.
  • the external interface 966 may be configured as a network interface connected to a network such as a LAN or the Internet. That is, the external interface 966 has a role as a transmission unit in the photographing apparatus 960.
  • the recording medium mounted on the media drive 968 may be any readable / writable removable medium such as a magnetic disk, a magneto-optical disk, an optical disk, or a semiconductor memory. Further, a recording medium may be fixedly attached to the media drive 968, and a non-portable storage unit such as an internal hard disk drive or an SSD (Solid State Drive) may be configured.
  • a non-portable storage unit such as an internal hard disk drive or an SSD (Solid State Drive) may be configured.
  • the control unit 970 includes a processor such as a CPU and memories such as a RAM and a ROM.
  • the memory stores a program executed by the CPU, program data, and the like.
  • the program stored in the memory is read and executed by the CPU when the photographing apparatus 960 is activated, for example.
  • the CPU controls the operation of the imaging device 960 according to an operation signal input from the user interface 971, for example, by executing the program.
  • the user interface 971 is connected to the control unit 970.
  • the user interface 971 includes, for example, buttons and switches for the user to operate the photographing apparatus 960.
  • the user interface 971 detects an operation by the user via these components, generates an operation signal, and outputs the generated operation signal to the control unit 970.
  • the image processing unit 964 has the function of the image processing apparatus 100 according to the above-described embodiment. Therefore, when the HDR image is played back by the photographing device 960, the inconvenience related to the mismatch between the dynamic range of the video signal and the peak luminance of the display can be eliminated or at least reduced.
  • the image signal based on the signal system that handles the reference white display luminance level in a fixed manner is gamma-converted for conversion into a display signal.
  • the gamma conversion is performed so that the reference white display luminance level is maintained using a parameter determined based on the peak luminance level of the display. Therefore, the occurrence of loss of information (so-called overexposure) in the high-luminance area due to luminance clipping (or excessively strong roll-off) is avoided, and it is used as a reference for brightness during content shooting or production. It is possible to appropriately reproduce the brightness of the reference white color when displaying the content.
  • the luminance level of the reference white does not change due to gamma conversion.
  • the signal after normalization at the reference white luminance level is linear using a gain value determined to match the maximum luminance level that can be represented by the display signal to the peak luminance level of the display.
  • the converted image signal after the linear conversion is gamma-converted using a second gamma value determined so as to restore the reference white display luminance level to the original luminance level.
  • the luminance level of the reference white is finally maintained as the original level (although it changes during the calculation).
  • the gamma conversion using the second gamma value can be executed so as not to change the maximum luminance level that can be expressed by the display signal.
  • the second conversion method may be executed after gamma-converting the image signal using a predetermined system gamma value. For example, by using a system gamma value of 1.2, the luminance gradation in the displayed video is changed to ITU-R BT. A display based on existing specifications such as 1886 can be approached.
  • the first conversion method and the second conversion method described above may be selectively switched. Thereby, it is possible to provide the user with various expressions of the HDR video and to select an optimal expression according to the characteristics of the display.
  • the operation mode is switched between a first operation mode in which the reference white display luminance level is maintained and a second operation mode in which the reference white display luminance level is not maintained.
  • the operating mode may be selected based on the type of signaling. In this case, for example, when the image signal is generated by the HLG method in which the luminance level is relatively expressed with respect to the reference white level, the reference white level is maintained, and otherwise, the reference white level is set. Switching such as not maintaining is possible.
  • the type of the signal method can be determined based on, for example, a control parameter included in VUI (Video Usability Information) or SEI (Supplemental Enhancement Information).
  • VUI Video Usability Information
  • SEI Supplemental Enhancement Information
  • the operation mode may be selected based on user settings. For example, a user who wants to reproduce the brightness of the shooting environment or the content production environment will select the first operation mode. The operation mode may be selected based on other factors such as a peak luminance level as the performance of the display or a peak luminance level that is automatically set based on conditions of the display environment.
  • a simple linear conversion using a gain value may be performed. In this case, occurrence of a loss of information in the high luminance region due to luminance clipping is avoided.
  • ITU-R BT. SDR display according to 1886 may be performed, and in this case, an image with good visibility in the medium luminance region can be obtained.
  • An image processing apparatus comprising: (2) The image signal is a signal after normalization at the luminance level of the reference white, The conversion unit performs gamma conversion on the image signal using a first gamma value. The image processing apparatus according to (1). (3) The image processing apparatus according to (2), wherein the conversion unit determines the first gamma value so that a maximum luminance level that can be expressed by the display signal matches the peak luminance level of the display.
  • the image signal is a signal after normalization at the luminance level of the reference white
  • the conversion unit linearly converts the image signal using a gain value, and uses the second gamma value determined so that the display luminance level of the reference white is restored to the original luminance level. Gamma-convert the converted image signal,
  • the image processing apparatus according to (1).
  • (6) The image according to (4) or (5), wherein the conversion unit executes gamma conversion using the second gamma value so as not to change a maximum luminance level that can be expressed by the display signal. Processing equipment.
  • the conversion unit performs the gamma conversion using the linear conversion and the second gamma value after performing the gamma conversion on the image signal using a predetermined system gamma value, (4) to (6)
  • the image processing apparatus according to any one of the above.
  • the image processing apparatus selects a mode to be used by the conversion unit from a first operation mode in which the display brightness level of the reference white is maintained and a second operation mode in which the display brightness level of the reference white is not maintained Further comprising a control unit, The conversion unit converts the image signal into the display signal so that the display brightness level of the reference white is maintained when the first operation mode is selected by the control unit.
  • the image processing apparatus according to any one of (1) to (7).
  • the control unit may be configured to select the first operation mode and the second operation mode based on one or more of a signaling method type, a user setting, an attribute of the display, and a display environment condition.
  • the image processing apparatus according to (8), wherein one is selected.
  • the converter is A first conversion method for gamma-converting the image signal so that the display brightness level of the reference white does not change;
  • the image signal after linear conversion is performed using a second gamma value that is determined so that the display luminance level of the reference white is restored to the original luminance level by linearly converting the image signal using a gain value.
  • a second conversion method for gamma-converting The image processing device according to any one of (1) to (9), wherein the image processing device is selectively used.
  • the conversion unit is a gain value determined to match the maximum luminance level that can be expressed by the display signal with the peak luminance level of the display when the control unit selects the second operation mode. Linearly transforming the image signal using The image processing apparatus according to (8) or (9). (12) When the second operation mode is selected by the control unit, the conversion unit performs ITU-R BT. The image processing apparatus according to (8) or (9), wherein the image signal is converted into the display signal in accordance with 1886. (13)
  • the signal system is an HLG (Hybrid Log Gamma) system based on a combination of a gamma curve at a luminance level lower than the reference white and a logarithmic curve at a luminance level higher than the reference white.
  • the image processing apparatus according to any one of the above.
  • the image signal is decoded from an encoded stream encoded according to HEVC (High Efficiency Video Coding) system, Based on parameters included in SEI (Supplemental Enhancement Information) associated with the encoded stream, it is determined that the HLG method is used for the image signal.
  • the image processing apparatus according to (13).
  • the image signal includes an encoded stream encoded in accordance with HEVC (High Efficiency Video Coding) system, Based on parameters included in VUI (Video Usability Information) associated with the encoded stream, it is determined that the HLG method is used for the image signal.
  • VUI Video Usability Information
  • Imaging device 10 Imaging device 20 Network 30 Recording device (HDR compatible type) 40 Recording medium 45 Playback device (non-HDR compatible type) 50 Display device (HDR compatible) 55 Display device (non-HDR compatible type) DESCRIPTION OF SYMBOLS 100 Image processing apparatus 110 Image acquisition part 120 Conversion part 130 Control part

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Processing Of Color Television Signals (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

HDR映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる不都合を解消し又は少なくとも軽減する。 基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、前記基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換する変換部、を備える画像処理装置を提供する。

Description

画像処理装置及び画像処理方法
 本開示は、画像処理装置及び画像処理方法に関する。
 現在、ITU-R(International Telecommunication Union-Radio communications sector)では、映像信号の輝度ダイナミックレンジを従来のSDR(Standard Dynamic Range)から拡張するための議論が進められている。拡張後のダイナミックレンジは、EIDRTV(Extended Image Dynamic Range Television)、又はより簡易にHDR(High Dynamic Range)と呼ばれる。ITU-Rにおける最新のステータスでは、HDR映像信号の信号方式として、Application-1及びApplication-2という2つの方式が共に勧告案に含まれる見込みである。
 Application-1は、撮影環境の輝度の絶対値を表現できるようにすることを目的とした、PQ(Perceptual Quantizer)-EOTF(Electro-Optical Transfer Function)に基づく信号方式である(非特許文献1参照)。Application-2は、基準白色よりも低い輝度レベルにおけるガンマ曲線と、基準白色よりも高い輝度レベルにおける対数曲線とを組合せたHLG(Hybrid Log-Gamma)曲線で相対的な輝度レベルを表現する信号方式である(非特許文献2参照)。Application-1では最大で1万cd/mの絶対輝度を表示することができ、一方でApplication-2では最大で基準白色の12倍(ヘッドルームを使用する場合には20倍)の相対輝度を表示することができる。
 ITU-R Application-1は、ITU-Rとは異なる標準化団体であるSMPTE(Society of Motion Picture and Television Engineers)により策定されたST2084と同じ方式である。SMPTE ST2084に類似する他の信号方式も存在する(非特許文献3参照)。
Society of Motion Picture and Television Engineers,「High Dynamic Range Electro-Optical Transfer Function of Mastering Reference Displays」,ST 2084:2014,2014,[online],[2015年9月9日検索],インターネット<URL: http://standards.smpte.org/content/978-1-61482-829-7/st-2084-2014/SEC1> Association of Radio Industries and Businesses,「ESSENTIAL PARAMETER VALUES FOR THE EXTENDED IMAGE DYNAMIC RANGE TELEVISION (EIDRTV) SYSTEM FOR PROGRAMME PRODUCTION ARIB STANDARD」,ARIB STD-B67 Version 1.0,July 3, 2015,[online],[2015年9月9日検索],インターネット<URL: http://www.arib.or.jp/english/html/overview/doc/2-STD-B67v1_0.pdf> Philips International B.V.,「Philips HDR technology-white paper, hdr」,Version 0.1,2015-08-21,[online],[2015年9月9日検索],インターネット<URL: http://www.ip.philips.com/data/downloadables/1/9/7/9/philips_hdr_white_paper.pdf>
 しかしながら、ディスプレイのピーク輝度は、HDR信号方式の輝度ダイナミックレンジの上限とは異なることが多い。映像信号に含まれる1つ以上の画素の輝度がディスプレイのピーク輝度を上回る場合には、クリッピングの結果として、再生される映像内でいわゆる白とびが発生する。最大輝度がディスプレイのピーク輝度を下回る場合には、ディスプレイの性能が最大限活用されないことになる。こうしたレンジの不一致を解消するための簡易な手法の1つは、ゲインの乗算によって輝度レベルを調整することである。しかし、単なるゲインの乗算は、固定的に扱われるべき基準点の輝度レベルまでをも変化させてしまう。
 従って、HDR映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる上述した不都合を解消し又は少なくとも軽減する新たな仕組みが提供されることが望ましい。
 本開示によれば、基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、前記基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換する変換部、を備える画像処理装置が提供される。
 また、本開示によれば、画像処理装置により実行される画像処理方法であって、基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、前記基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換すること、を含む画像処理方法が提供される。
 本開示に係る技術によれば、HDR映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる不都合を解消し又は少なくとも軽減することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果と共に、又は上記の効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
映像信号の変換特性の概略について説明するための説明図である。 ITU-R Application-2のOETFについて説明するための説明図である。 ITU-R Application-2のOOTFについて説明するための説明図である。 輝度ダイナミックレンジをディスプレイのピーク輝度へ適応させるためのいくつかの手法の例について説明するための説明図である。 一実施形態に係る画像処理装置の構成の一例を示すブロック図である。 基準白色(RW)固定ガンマ変換のグラフを表している。 線形変換のグラフを表している。 ピーク固定ガンマ変換のグラフを表している。 RW固定ガンマ変換に従ってOOTFが変化する様子を示す第1の説明図である。 RW固定ガンマ変換に従ってOOTFが変化する様子を示す第2の説明図である。 RW固定ガンマ変換に従ってOOTFが変化する様子を示す第3の説明図である。 線形変換及びピーク固定ガンマ変換に従ってOOTFが変化する様子を示す説明図である。 図8Aの低輝度領域を拡大した図である。 BT.1886でのSDR表示におけるOOTFについて説明するための説明図である。 一実施形態に係る画像変換処理の流れの一例を示すフローチャートである。 図10に示したRW維持ガンマ変換処理の流れの第1の例を示すフローチャートである。 図10に示したRW維持ガンマ変換処理の流れの第2の例を示すフローチャートである。 図10に示したRW維持ガンマ変換処理の流れの第3の例を示すフローチャートである。 図10に示した線形変換処理の流れの一例を示すフローチャートである。 HLG映像を記録し及び再生する手法の一例について説明するための説明図である。 一実施形態に係る記録処理の流れの一例を示すフローチャートである。 一実施形態に係る再生処理の流れの第1の例を示すフローチャートである。 一実施形態に係る再生処理の流れの第2の例を示すフローチャートである。 装置のハードウェア構成の一例を示すブロック図である。 テレビジョン装置の概略的な構成の一例を示すブロック図である。 携帯電話機の概略的な構成の一例を示すブロック図である。 記録再生装置の概略的な構成の一例を示すブロック図である。 撮像装置の概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下の順序で説明を行う。
  1.関連技術の説明
   1-1.映像信号の変換特性
   1-2.HDR映像信号の信号方式の例
   1-3.ディスプレイピークへの適応
  2.画像処理装置の構成例
   2-1.画像取得部
   2-2.変換部
   2-3.制御部
  3.処理の流れ
   3-1.画像変換処理
   3-2.RW維持ガンマ変換処理
   3-3.線形変換処理
  4.HLG映像の記録及び再生
   4-1.HLG映像の認識
   4-2.処理の流れ
   4-3.補足的なストリームの扱い
  5.ハードウェア構成例
  6.応用例
  7.まとめ
 <1.関連技術の説明>
 まず、図1~図4を用いて、本開示に関連する技術について説明する。
  [1-1.映像信号の変換特性]
 図1は、映像信号の変換特性の概略について説明するための説明図である。図1には、撮影装置10、ネットワーク20、記録装置30及び表示装置50が示されている。撮影装置10は、撮影環境において被写体を撮影して、映像信号を生成する。より具体的には、撮影装置10は、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)といった光電変換素子(イメージセンサ)の配列を有し、撮影環境から入射する光を電気信号へと変換する。光から電気信号への変換の特性は、OETF(Opto-Electronic Transfer Function;光電気伝達関数)でモデル化される。OETFが線形関数であれば、電気信号の電圧レベルは素子ごとの受光量に比例する。但し、ITU-Rにより策定された標準仕様であるBT.709又はBT.2020のOETFは非線形であり、例えば全体的なガンマ値が0.45で、低輝度領域においてのみ線形性を有する。
 撮影装置10は、一連のフレームの画像信号と制御信号とを含む映像信号を、ネットワーク20を介して表示装置50へと伝送し、又は記録装置30により記録媒体へと記録させる。ネットワーク20は、有線通信ネットワーク若しくは無線通信ネットワークであってもよく、又は簡易な接続ケーブルであってもよい。記録装置30は、撮影装置10から受信される映像信号を、指定された記録方式で記録媒体へと記録する。記録媒体は、BD(Blu-ray(登録商標)ディスク)若しくはDVD(Digital Versatile Disc)のようなリムーバブルな媒体であってもよく、又はハードディスクのような内蔵型の媒体であってもよい。
 表示装置50は、ネットワーク20を介して受信され又は記録媒体から読み出される映像信号から、映像を再生する。より具体的には、表示装置50は、入力される電気信号を光へと変換する表示素子の配列を有する(例えば、液晶パネル、有機発光ダイオード(OLED)パネル又はプラズマディスプレイパネル(PDP)など)。電気信号から光への変換の特性は、EOTF(Electro-Optical Transfer Function;電気光伝達関数)でモデル化される。EOTFがOETFの逆関数であれば、表示される光の強さは、撮影された光の強さに等しい。OETFとEOTFとを包括するエンドツーエンドの撮影光から表示光への変換の特性を、OOTF(Opto-Optical Transfer Function;光光伝達関数)という。OOTFは、システムガンマ又はトータルガンマとも呼ばれる。ITU-Rにより策定された標準仕様であるBT.1886のEOTFのガンマ値は2.4であり、例えばOETFのガンマ値が0.5であるとすると、システムガンマ値は(0.5×2.4=)1.2である。
  [1-2.HDR映像信号の信号方式の例]
 既存のSDR映像信号の一般的な輝度ダイナミックレンジの上限は、100cd/m(nitともいう)である。一方、HDR映像信号の輝度ダイナミックレンジの上限は、数百から数千cd/mへと拡張される。上述したように、ITU-Rは、HDR映像信号の信号方式として、Application-1及びApplication-2という2つの方式を勧告案に併記するものと見込まれている。
 図2は、ITU-R Application-2の光電気伝達関数について説明するための説明図である。Application-2は、基準白色よりも低い輝度レベルにおけるガンマ曲線と、基準白色よりも高い輝度レベルにおける対数曲線とを組合せたHLG(Hybrid Log-Gamma)曲線で、相対的な輝度レベルを表現する。図2において、横軸は基準白色の輝度レベルが1に等しくなるように正規化された光の強度Eを表し、縦軸は対応する電気信号の信号レベルE´を表す。Application-2のOETFは、次の条件C1~C3を満たすように設計されており、式(1)で表現される:
  C1)基準白色(E=1)でE´=0.5
  C2)基準白色の12倍の光強度(E=12)でE´=1
  C3)基準白色(E=1)において傾き0.25でガンマ曲線と対数曲線とが滑らかに接続する
Figure JPOXMLDOC01-appb-M000001
 式(1)から理解されるように、基準白色未満の低輝度領域ではガンマ値が0.5に等しく、線形部分が存在しない。これにより、暗い状況でのウェーバー比(Weber fraction)を改善される。Application-2の輝度ダイナミックレンジの上限は、ヘッドルームを使用しない場合には基準白色の12倍(E=12)であり、これは基準白色を100cd/mとすると1200cd/mに相当する。ヘッドルームを使用する場合には、輝度ダイナミックレンジの上限は、E=20に対応する2000cd/mに達する。但し、1よりも大きいシステムガンマが使用される場合には、輝度ダイナミックレンジの上限はさらに大きくなる。
 図3は、ITU-R Application-2のOOTFについて説明するための説明図である。図3において、横軸は図2と同じ正規化された光の強度Eを表し、縦軸は逆変換(OETF-1)を実行した後の輝度のレベルL(cd/m)を表す。点線は、システムガンマγ=1.0の場合のOOTFを表し、E=1のときL=100(点P)、E=12のときL=1200(点P31)である。実線は、システムガンマγ=1.2の場合のOOTFを表し、E=1のときL=100(点P)、E=12のときL=12001.2≒2000(点P32)である。システムガンマγ=1.2は、既存のSDR表示において典型的に用いられており、視覚的に自然な映像を実現する値として知られている。
 図3ではITU-R Application-2の例が示されているが、ITU-R Application-1などの他のHDR信号方式でも、輝度ダイナミックレンジの上限は、数百から数千cd/mへ達する。
  [1-3.ディスプレイピークへの適応]
 HDR信号方式により輝度ダイナミックレンジの上限が拡張されたとしても、ディスプレイのピーク輝度が必ずその上限に一致するわけではない。映像信号に含まれる1つ以上の画素の輝度がディスプレイのピーク輝度を上回る場合には、クリッピングの結果として、再生される映像内でいわゆる白とびが発生する。最大輝度がディスプレイのピーク輝度を下回る場合には、ディスプレイの性能が最大限活用されないことになる。こうしたレンジの不一致を解消するために、いくつかの手法が考えられる。
 図4は、輝度ダイナミックレンジをディスプレイのピーク輝度へ適応させるためのいくつかの手法の例について説明するための説明図である。図3と同様、横軸は正規化された光の強度Eを表し、縦軸は輝度レベルLを表す。実線で表されるグラフ41は、システムガンマγ=1.2の場合のピーク輝度への適応前のOOTFである。
 1点鎖線で表されるグラフ42は、元のOOTF(グラフ41)をディスプレイのピーク輝度でハードクリッピングした結果である。こうしたクリッピングは、クリッピング点PCLPよりも光強度Eが大きい領域で白とびを生じさせ、画像情報を欠損させる。破線で表されるグラフ43は、クリッピング点PCLP ´よりも光強度Eが大きい領域でOOTFに傾きを持たせるためのソフトクリッピングの結果である。ソフトクリッピングは完全な白とびを生じさせないものの、クリッピング点PCLP ´において傾きが不連続となるため、不自然な映像の表示をもたらすことがある。
 2点鎖線により表されるグラフ44は、元のOOTFを一定のゲインで線形変換した結果である。例えば、ディスプレイのピーク輝度が1200cd/mである場合に、ゲインG=1200/2000での線形変換を適用することで、E=12に対応する輝度レベルを約2000から約1200へと引き下げることができる(P41→P44)。しかし、この場合、固定的に扱われるべき基準白色(E=1)に対応する輝度レベルまでが変化してしまう(P→P ´)。基準白色の輝度レベルが変化すると、撮影環境の明るさ(又はコンテンツ製作者が視聴者へ見せようと望む明るさ)を適切に再現することが難しくなる。こうした線形変換は、例えばITU-R Application-2の目的に整合しない。
 次節以降で説明する本開示に係る技術の実施形態は、HDR映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる上述した不都合を解消し又は少なくとも軽減するための仕組を提供する。
 <2.画像処理装置の構成例>
 図5は、一実施形態に係る画像処理装置100の構成の一例を示すブロック図である。画像処理装置100は、例えば、図1に示したような撮影装置、記録装置若しくは表示装置であってもよく、又はこれら装置に搭載される画像処理モジュールであってもよい。図5を参照すると、画像処理装置100は、画像取得部110、変換部120及び制御部130を備える。
  [2-1.画像取得部]
 画像取得部110は、何らかの信号源から入力画像信号を取得する。入力画像信号は、映像信号を構成する一連のフレームの各々の画像信号であってもよく、又は静止画のための画像信号であってもよい。入力画像信号はHDR信号方式に基づいており、ここでは一例として、ITU-R Application-2に基づく画像信号(以下、HLG画像信号という)が取得されるものとする。ITU-R Application-2は、基準白色の表示輝度レベルを固定的に扱う信号方式の一例である。HLG画像信号は、基準白色の輝度レベルでの正規化後の信号である。
 画像取得部110は、取得した入力画像信号にその信号方式のOETFの逆関数(OETF-1)を適用することにより、線形画像信号を生成する。線形画像信号は、撮影時の光の強度を線形的に表現する信号である。ここでの逆関数の演算は、信号方式ごとに予め記憶される演算パラメータを用いた数値演算として実装されてもよく、又は信号の入力値と出力値とをマッピングするルックアップテーブルを用いて実装されてもよい。そして、画像取得部110は、生成した線形画像信号を変換部120へ出力する。
  [2-2.変換部]
 変換部120は、画像取得部110から入力される線形画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換する。
   (1)3通りの基本変換
 本実施形態において、変換部120は、次の3通りの基本変換のうちの1つ又は2つ以上の組合せに相当する変換法を用いて、画像信号の信号レベルを変換する。
  ・基準白色(RW)固定ガンマ変換
  ・線形変換
  ・ピーク固定ガンマ変換
 RW固定ガンマ変換は、基準白色の輝度レベルを変化させないガンマ変換である。HLG画像の場合、画像信号は基準白色の輝度レベルで正規化されており、即ち基準白色においてE=1である。よって、RW固定ガンマ変換を、次式のような画像信号Eの関数T(E)として表現することができる。
Figure JPOXMLDOC01-appb-M000002
 
 図6Aは、RW固定ガンマ変換のグラフを表している。RW固定ガンマ変換では、ガンマ値が1より大きい場合、基準白色よりも低いレンジで輝度レベルは減少し、基準白色よりも高いレンジで輝度レベルは増加する。ガンマ値が1より小さい場合、基準白色よりも低いレンジで輝度レベルは増加し、基準白色よりも高いレンジで輝度レベルは減少する。基準白色の輝度レベルは維持される。
 線形変換は、ゲイン値Gを用いて、画像信号Eの関数T(E)として次式のように表現される。
Figure JPOXMLDOC01-appb-M000003
 図6Bは、線形変換のグラフを表している。線形変換では、ゲイン値Gが1より大きい場合、全てのレンジにわたって輝度レベルは増加し、ゲイン値が1より小さい場合、全てのレンジにわたって輝度レベルは減少する。ゲイン値が1でなければ、基準白色の輝度レベルもまた変化する。
 ピーク固定ガンマ変換は、ダイナミックレンジの上限を変化させないガンマ変換である。入力値の上限に相当するパラメータKを用いて、ピーク固定ガンマ変換を、次式のような画像信号Eの関数T(E)として表現することができる。
Figure JPOXMLDOC01-appb-M000004
 図6Cは、ピーク固定ガンマ変換のグラフを表している。ここでは、K=12である。ピーク固定ガンマ変換では、ガンマ値が1より大きい場合、全てのレンジにわたって輝度レベルは減少し、ガンマ値が1より小さい場合、全てのレンジにわたって輝度レベルは増加する。輝度レベルの変化の割合は、レンジの中央に近いほどより大きい。ガンマ値が1でなければ、基準白色の輝度レベルもまた変化する。
 変換部120の役割は、表示用信号により表現可能な最大輝度レベルをディスプレイのピーク輝度レベルに合わせること、及び、必要とされる場合に基準白色の表示輝度レベルを維持することである。ここでのディスプレイのピーク輝度レベルとは、ディスプレイ(若しくは表示素子)の性能の観点での最大輝度レベルであってもよく、又は、性能の観点での上限よりも小さい、追加的な制約の観点(例えば、ユーザ設定若しくは環境条件など)での最大輝度レベルであってもよい。以下に詳しく説明する第1の変換法では、基準白色の表示輝度レベルは、RW固定ガンマ変換によって維持される。第2の変換法では、基準白色の表示輝度レベルは、線形変換及びピーク固定ガンマ変換の組合せによって維持される。
   (2)第1の変換法
 第1の変換法において、変換部120は、表示用信号により表現可能な最大輝度レベルをディスプレイのピーク輝度レベルに合わせるように第1のガンマ値γを決定し、決定した第1のガンマ値γを用いて線形画像信号をガンマ変換する。
 図7Aは、RW固定ガンマ変換に従ってOOTFが変化する様子を示す第1の説明図である。図7Aの例では、ディスプレイのピーク輝度が2000cd/mよりも大きいものとする。実線のグラフはγ=1.2、破線のグラフはγ=1.5、2点鎖線のグラフはγ=1.6のケースをそれぞれ示している。γ=1.2かつヘッドルーム不使用の場合の輝度ダイナミックレンジの上限は約2000cd/mである。ガンマ値γを1.5まで引き上げると、表現可能な最大輝度レベルは約4000cd/mとなる。ガンマ値γを1.6まで引き上げると、表現可能な最大輝度レベルは5000cd/mを上回る。γ=1.2かつヘッドルームが使用される場合の輝度ダイナミックレンジの上限は約3600cd/mである。ガンマ値γを1.5まで引き上げると、表現可能な最大輝度レベルは約9000cd/mに達する。基準白色の輝度レベルは維持される(点P)。
 図7Bは、RW固定ガンマ変換に従ってOOTFが変化する様子を示す第2の説明図である。図7Bの例では、ディスプレイのピーク輝度が2000cd/mよりも小さいものとする。実線のグラフはγ=1.2、破線のグラフはγ=1.0のケースをそれぞれ示している。γ=1.2かつヘッドルーム不使用の場合の輝度ダイナミックレンジの上限は約2000cd/mである。γ=1.0かつヘッドルーム不使用の場合の輝度ダイナミックレンジの上限は1200cd/mである。基準白色の輝度レベルは維持される(点P)。ガンマ値γが1.0≦γ<1.2を満たす場合、低輝度領域(0<E<1)のシステムガンマは既存のSDR表示のケースよりも小さくなるが、その視覚上の影響はそれほど大きくない。
 図7Cは、RW固定ガンマ変換に従ってOOTFが変化する様子を示す第3の説明図である。図7Cの例では、ディスプレイのピーク輝度が1200cd/mよりも小さいものとする。実線のグラフはγ=1.2、破線のグラフはγ=1.0、点線のグラフはγ=0.9、1点鎖線のグラフはγ=0.7のケースをそれぞれ示している。γ=0.9かつヘッドルーム不使用の場合に表現可能な最大輝度レベルは約1000cd/mを下回る。γ=0.7かつヘッドルーム不使用の場合に表現可能な最大輝度レベルは約600cd/mを下回る。これらケースにおいて、基準白色の輝度レベルは維持されるが、低輝度領域(0<E<1)において本来は暗いはずの被写体がグレーがかって浮かび上がって見えるようになり、主観的な画質が劣化する。
   (3)第2の変換法
 第2の変換法において、変換部120は、表示用信号により表現可能な最大輝度レベルをディスプレイのピーク輝度レベルに合わせるようにゲイン値Gを決定し、決定したゲイン値Gを用いて線形画像信号を線形変換する。さらに、変換部120は、基準白色の表示輝度レベルが元の輝度レベルへと復元されるように第2のガンマ値γを決定し、決定した第2のガンマ値γを用いて上記線形変換後の画像信号をガンマ変換する。変換部120は、第2のガンマ値γを用いたガンマ変換を、ピーク輝度レベルを変化させないように実行する。変換部120は、線形画像信号の代わりに、線形画像信号を所定のシステムガンマ値γ(例えば、γ=1.2)を用いてガンマ変換することにより得られる中間画像信号を、第2の変換法への入力信号として扱ってもよい。
 図8Aは、線形変換及びピーク固定ガンマ変換に従ってOOTFが変化する様子を示す説明図である。図8Bは、図8Aの低輝度領域を拡大した図である。これら図において、実線のグラフは、γ=1.2であって第2の変換法の適用前のケースを示している。破線のグラフは、γ=1.2であってゲインG=0.6での線形変換のみを適用した後のケースを示している。点線のグラフは、γ=1.2であってゲインG=0.6での線形変換と第2のガンマ値γ=0.8295とを適用した後のケースを示している。図8Aから理解されるように、γ=1.2かつヘッドルーム不使用の場合の輝度ダイナミックレンジの上限は約2000cd/mである。例えばディスプレイのピーク輝度が1200cd/mである場合に、ゲインG=0.6での線形変換を実行すると、輝度ダイナミックレンジの上限、即ち表現可能な最大輝度レベルは、ディスプレイのピーク輝度に近い約1200cd/mにまで引き下げられる。その結果、白とびの発生が抑制され、かつディスプレイの性能を最大限活用することが可能となる。しかし、図8Bから理解されるように、固定的に扱われるべき基準白色の輝度レベルまでが引き下げられる(点P→点P´)。そこで、さらに第2のガンマ値γ=0.8295でのガンマ変換が実行される。但し、ピーク輝度レベルを変化させないために、ここでのガンマ変換の入力値Eは、上に示した式(4)のようにパラメータKで除算される。パラメータKの値は、例えば、ヘッドルームが使用されない場合には12、ヘッドルームが使用される場合には20であってよい。第2のガンマ値γでのガンマ変換の結果、基準白色の表示輝度レベルは元の輝度レベルへと復元される(点P´→点P)。
   (4)他の手法
 変換部120は、基準白色の表示輝度レベルを維持する第1の動作モード及び基準白色の表示輝度レベルを維持しない第2の動作モードの双方をサポートしてもよい。ここでは一例として、第1の動作モード及び第2の動作モードをそれぞれRW維持モード及びRW非維持モードという。変換部120は、RW維持モードが選択された場合には、上述した第1の変換法又は第2の変換法のいずれかを実行する。一方、変換部120は、RW非維持モードが選択された場合には、基準白色の表示輝度レベルを維持することなく、他の手法で表示用信号を出力する。
 変換部120は、例えば、RW非維持モードが選択された場合に、ITU-R BT.1886に従って画像信号を表示用信号へと変換してもよい。ITU-R BT.1886でのディスプレイ出力(SDR表示)では、レンジの全体にわたってガンマ値2.4が用いられる。その代わりに又はそれに加えて、変換部120は、表示用信号により表現可能な最大輝度レベルをディスプレイのピーク輝度レベルに合わせるようにゲイン値を決定し、決定したゲイン値を用いて画像信号を線形変換してもよい。
 図9は、BT.1886でのSDR表示におけるOOTFについて説明するための説明図である。図9において、実線及び破線のグラフは、それぞれγ=1.2及びγ=0.7のケースを示している(SDR表示ではない)。1点鎖線のグラフは、BT.1886でのSDR表示におけるOOTFを示しており、点線のグラフはそのSDR表示のOOTFにゲインG=1.5での線形変換を適用した結果を示している。ゲイン無しでのSDR表示(1点鎖線)では、表現可能な最大輝度レベルは約500cd/m程度であるため、ディスプレイのピーク輝度レベルが約500cd/mを上回る場合には、1よりも大きいゲインでの線形変換を要する。SDR対応型のディスプレイがこうしたゲイン調整の機能を有する場合には、変換部120はゲイン調整を実行しなくてもよい。SDR表示では、低輝度領域(0<E<1)でのシステムガンマが約1.2に維持される。システムガンマγを1.0よりも低い値に設定したケース(点線)と比較して、SDR表示のケース(1点鎖線)は中輝度領域(1<E<8)の輝度レベルを平均的に高める作用を有することから、SDR表示は、ディスプレイのピーク輝度が低い場合(例えば、約600cd/m未満)の、視覚的により良好な選択肢であり得る。
  [2-3.制御部]
 制御部130は、画像取得部110及び変換部120の動作を制御する。例えば、制御部130は、入力画像信号に関連付けられる制御パラメータから入力画像信号の信号方式を判定し、判定した信号方式に対応する処理を画像取得部110及び変換部120に実行させる。ここでの制御パラメータの例について、後にさらに説明する。制御部130は、入力画像信号の信号方式に応じて、画像取得部110が入力画像信号に適用すべきOETFの逆関数の種類を切り替えさせてもよい。また、制御部130は、画像処理装置100の動作モードを制御してもよい。
 ある実施例において、制御部130は、基準白色の表示輝度レベルが維持されるRW維持モード及び基準白色の表示輝度レベルが維持されないRW非維持モードのうち変換部120が使用すべき動作モードを選択する。制御部130は、RW維持モードを選択した場合には、ダイナミックレンジの調整のための変換処理において、基準白色の表示輝度レベルが維持される変換法を変換部120に使用させる。制御部130は、例えば、次の条件のうちの1つ以上に基づいて、いずれかの動作モードを選択してよい。
  1)信号方式のタイプ:制御部130は、入力画像信号の信号方式が基準白色の表示輝度レベルを固定的に扱う信号方式(例えば、ITU-R Application-2)である場合に、RW維持モードを選択する。
  2)ユーザ設定:RW維持モード又はRW非維持モードを、ユーザインタフェースを介してユーザが設定する。撮影環境の明るさを適切に再現することを望むユーザは、RW維持モードを設定し得る。その代わりに、ユーザは、ディスプレイの許容ピーク輝度レベルを設定してもよい。制御部130は、許容ピーク輝度レベルが予め定義される閾値よりも大きい場合にはRW維持モードを、そうでない場合にはRW非維持モードを選択し得る。
  3)ディスプレイの属性:制御部130は、ディスプレイの属性(例えば、デバイスタイプ、モデル番号又は性能値)からディスプレイのピーク輝度レベルを判定し、判定したピーク輝度レベルが予め定義される閾値よりも大きい場合にはRW維持モードを、そうでない場合にはRW非維持モードを選択し得る。
  4)表示環境:制御部130は、図示しないセンサを介して検知される表示環境の条件(環境照度又はロケーションなど)からディスプレイの推奨ピーク輝度レベルを決定し、決定した推奨ピーク輝度レベルが予め定義される閾値よりも大きい場合にはRW維持モードを、そうでない場合にはRW非維持モードを選択し得る。
 他の実施例において、制御部130は、上述した第1の変換法(RW固定ガンマ変換)と第2の変換法(線形変換及びピーク固定ガンマ変換の組合せ)とを、変換部120に選択的に使用させてもよい。制御部130は、上述した動作モードの選択と同様に、例えばユーザによるモード設定、又はピーク輝度値(性能上の値、ユーザによる許容値及びシステム推奨値を含み得る)と閾値との比較に基づいて、いずれかの変換法を選択してよい。
 <3.処理の流れ>
  [3-1.画像変換処理]
 図10は、上述した画像処理装置100により実行される画像変換処理の流れの一例を示すフローチャートである。
 図10を参照すると、まず、制御部130は、入力画像信号に関連付けられる制御パラメータから、入力画像信号の信号方式を判定する(ステップS102)。また、制御部130は、ディスプレイのピーク輝度Lを取得する(ステップS104)。次に、制御部130は、信号方式のタイプ又はユーザ設定といった条件に基づいて、動作モードを選択する(ステップS106)。
 次に、図10の画像変換処理は、ステップS102において判定された信号方式及びステップS106において選択された動作モードに依存して分岐する(ステップS110、S125)。例えば、信号方式がHDR方式ではない場合には、ITU-R BT.1886に従って変換部120からディスプレイへと表示用信号が出力され、映像がSDR表示される(ステップS120)。一方、信号方式がHDR方式(例えば、HLG方式)であって、RW維持モードが選択された場合には、処理はステップS130へ進む。信号方式がHDR方式であって、RW非維持モードが選択された場合には、処理はステップS165へ進む。
 ステップS130において、画像取得部110及び変換部120は、RW維持ガンマ変換処理を実行する。RW維持ガンマ変換処理では、基準白色(RW)の表示輝度レベルが維持される。RW維持ガンマ変換処理のより詳細な流れについて、後にさらに説明する。
 処理がステップS165へと遷移した場合、基準白色の表示輝度レベルは必ずしも維持されない。制御部130は、例えばユーザ設定又はステップS104において判定したディスプレイのピーク輝度レベルに基づいて、SDR表示を行うか否かを判定する(ステップS165)。SDR表示を行うと判定された場合には、処理はステップS120へ進み、ITU-R BT.1886に従って変換部120からディスプレイへと表示用信号が出力される。SDR表示を行わないと判定された場合には、処理はステップS170へと進み、画像取得部110及び変換部120により線形変換処理が行われる(ステップS170)。線形変換処理のより詳細な流れについて、後にさらに説明する。
 RW維持ガンマ変換処理又は線形変換処理が実行されると、表示用信号がディスプレイへと出力され、HDR映像がディスプレイにより表示される(ステップS190)。
  [3-2.RW維持ガンマ変換処理]
   (1)第1の例
 図11Aは、図10に示したRW維持ガンマ変換処理の流れの第1の例を示すフローチャートである。
 図11Aを参照すると、まず、変換部120は、ディスプレイのピーク輝度レベルL及び輝度ダイナミックレンジの上限値Lmaxから、ガンマ値γを計算する(ステップS132)。ガンマ値γは、例えば、式(2)に示したRW固定ガンマ変換を通じて、表示用信号により表現可能な最大輝度レベルがディスプレイのピーク輝度レベルに合わせられるように計算され得る。
 また、画像取得部110は、何らかの信号源から入力画像信号を取得し(ステップS136)、取得した入力画像信号にOETFの逆関数(OETF-1)を適用することにより、線形画像信号を生成する(ステップS138)。
 次に、変換部120は、ステップS132において計算したガンマ値γを用いて、画像取得部110から入力される線形画像信号をガンマ変換することにより、表示用信号を生成する(ステップS144)。そして、変換部120は、生成した表示用信号をディスプレイへ出力する(ステップS150)。
   (2)第2の例
 図11Bは、図10に示したRW維持ガンマ変換処理の流れの第2の例を示すフローチャートである。
 図11Bを参照すると、まず、変換部120は、ディスプレイのピーク輝度レベルL及び輝度ダイナミックレンジの上限値Lmaxから、ゲインG及びガンマ値γを計算する(ステップS134)。ゲインGは、例えば、式(3)に示した線形変換を通じて表示用信号により表現可能な最大輝度レベルがディスプレイのピーク輝度レベルに合わせられるように計算され得る。ガンマ値γは、式(4)に示したピーク固定ガンマ変換をさらに適用することによって、基準白色の表示輝度レベルが元の輝度レベルへと復元されるように計算され得る。
 また、画像取得部110は、何らかの信号源から入力画像信号を取得し(ステップS136)、取得した入力画像信号にOETFの逆関数(OETF-1)を適用することにより、線形画像信号を生成する(ステップS138)。
 次に、制御部130は、例えばユーザ設定又はディスプレイのピーク輝度レベルに基づいて、システムガンマを調整するか否かを判定する(ステップS140)。ここでシステムガンマを調整すると判定された場合には、変換部120は、画像取得部110から入力される線形画像信号を、所定のシステムガンマ値(例えば、1.2)を用いてガンマ変換する(ステップS142)。
 次に、変換部120は、ステップS134において計算したゲインGを用いて、(必要に応じてシステムガンマが調整された)線形画像信号の線形変換を実行する(ステップS146)。次に、変換部120は、ステップS134において計算したガンマ値γを用いて線形変換後の画像信号をガンマ変換することにより、表示用信号を生成する(ステップS148)。そして、変換部120は、生成した表示用信号をディスプレイへ出力する(ステップS150)。
   (3)第3の例
 図11Cは、図10に示したRW維持ガンマ変換処理の流れの第3の例を示すフローチャートである。第3の例では、第1の変換法と第2の変換法との間の選択的な切替えが行われる。
 図11Cを参照すると、制御部130は、例えばユーザによるモード設定、又はピーク輝度値(性能上の値、ユーザによる許容値及びシステム推奨値を含み得る)と閾値との比較に基づいて、第1の変換法(RW固定ガンマ変換)と第2の変換法(線形変換及びピーク固定ガンマ変換の組合せ)のうちのいずれかを選択する(ステップS152)。そして、制御部130は、第1の変換法を選択した場合には、図11Aに示したステップS132~ステップS150を画像取得部110及び変換部120に実行させる(ステップS154)。一方、制御部130は、第2の変換法を選択した場合には、図11Bに示したステップS134~ステップS150を画像取得部110及び変換部120に実行させる(ステップS156)。
  [3-3.線形変換処理]
 図12は、図10に示した線形変換処理の流れの一例を示すフローチャートである。
 図12を参照すると、まず、変換部120は、ディスプレイのピーク輝度レベルL及び輝度ダイナミックレンジの上限値Lmaxから、ゲインGを計算する(ステップS172)。ゲインGは、例えば、式(3)に示した線形変換を通じて表示用信号により表現可能な最大輝度レベルがディスプレイのピーク輝度レベルに合わせられるように計算され得る。
 また、画像取得部110は、何らかの信号源から入力画像信号を取得し(ステップS174)、取得した入力画像信号にOETFの逆関数(OETF-1)を適用することにより、線形画像信号を生成する(ステップS176)。
 次に、制御部130は、例えばユーザ設定又はディスプレイのピーク輝度レベルに基づいて、システムガンマを調整するか否かを判定する(ステップS178)。ここでシステムガンマを調整すると判定された場合には、変換部120は、画像取得部110から入力される線形画像信号を、所定のシステムガンマ値(例えば、1.2)を用いてガンマ変換する(ステップS180)。
 次に、変換部120は、ステップS172において計算したゲインGを用いて、(必要に応じてシステムガンマが調整された)線形画像信号の線形変換を実行することにより、表示用信号を生成する(ステップS182)。そして、変換部120は、生成した表示用信号をディスプレイへ出力する(ステップS184)。
 <4.HLG映像の記録及び再生>
  [4-1.HLG映像の認識]
 図5に関連して説明したように、入力画像信号の信号方式は、入力画像信号に関連付けられる制御パラメータに基づいて判定される。一連のフレームの画像信号は、通常、何らかの映像コーデックに従って圧縮符号化された上で、記録媒体に記録され又はネットワーク上で伝送される。信号方式を識別する制御パラメータもまた符号化され、画像信号のビットストリームに関連付けられる。
 一例として、HDR映像を記録することの可能な次世代の映像記録方式であるUHD-BD(Ultra HD - Blu-ray Disc)は、映像コーデックとしてHEVC(High Efficiency Video Coding)を採用している。HEVCでは、符号化された画像信号のOETFを特定するためのOETF番号をVUI(Video Usability Information)に含めることができ、このOETF番号の値として、HLG方式用の新たな値の定義を追加することが提案されている(Y. Nishida, T. Yamashita, and A. Ichigaya, “Proposed addition of transfer characteristics in VUI”, JCTVC-U0032, JCTVC 21st Meeting, Warsaw, June 19-26, 2015)。但し、UHD-BDでは、現在のところVUIにおけるOETF番号に値の制約が課せられており、新たなHLG方式用の番号“18”を使用することは許可されていない。また、HEVCのSEIにおいてHDR映像信号の信号方式のタイプをシグナリングすることも提案されている(Matteo Naccari, et. al, “High dynamic range compatibility information SEI message”, JCTVC-U0033, JCTVC 21st Meeting, Warsaw, June 19-26, 2015)。ここでの信号方式のタイプの定義は、VUIのOETF番号の定義から再利用され、よって値“18”がHLG方式を識別する。これらVUI又はSEIに含まれるOETF番号が、信号方式を識別する制御パラメータとして利用されてよい。例えば、UHD-BDレコーダは、VUI内のOETF番号には現在のところ許可されている値(例えば、“1”又は“14”)を書き込みつつ、SEI内の信号方式のタイプにHLG方式用の番号“18”を書き込んでもよい。この場合、HDR対応型のプレーヤ又はディスプレイは、SEI内のパラメータを優先的に参照することで、UHD-BDの仕様に違反することなく、HLG映像を認識することができる。
 図13は、HLG映像を記録し及び再生する手法の一例について説明するための説明図である。図13には、HDR対応型のレコーダ/プレーヤである記録装置30、記録媒体40、HDR非対応型のプレーヤである再生装置45、HDR対応型のディスプレイである表示装置50、及びHDR非対応型のディスプレイである表示装置55が示されている。記録装置30は、符号化部32、復号部34、HLG処理部36及び制御部38を備える。
 記録装置30の符号化部32は、例えば、HLG処理部36によって生成されるHLG画像信号をHEVCに従って符号化し、符号化ビットストリームをUHD-BDに従って記録媒体40へ記録する。制御部38は、記録媒体40への記録の際に、VUI又はSEIへ、HLG方式用のOETF番号を示す制御パラメータを書き込む。VUI又はSEIは、圧縮された画像信号を含む符号化ビットストリームに関連付けられる。制御部38は、記録装置30が映像を再生しようとする際、VUI又はSEI内のOETF番号を読み取ることにより、記録媒体40に記録されている映像がHLG映像であることを認識する。復号部34は、HEVCに従ってHLG画像信号を復号する。
 記録装置30の制御部38は、復号されたHLG画像信号を、当該画像信号がHLG画像信号であることを示すHLG標識と共に、画像信号の出力先のディスプレイへとシグナリングしてよい。HDR対応型のディスプレイである表示装置50は、HLG標識を受信すると、HLG方式に従って画像信号を処理して、HDR映像を表示する。上で説明した画像処理装置100は、例えば表示装置50に搭載され、HDR映像が表示される前に上述したダイナミックレンジの調整を実行し得る。画像信号の出力先のディスプレイがHDR非対応型の表示装置55である場合、表示装置55は、HLG標識の存在に気付くことなく、映像をSDR表示する。
 HDR非対応型の再生装置45は、映像を再生する際、VUI又はSEI内のOETF番号を読み取らず、又は読み取ったOETF番号が未知の(若しくは制約に反する)値であるためにこれを無視する。再生装置45は、HEVCに従って復号した画像信号を、HLG標識を伴うことなく表示装置50又は表示装置55へ出力する。表示装置50は、HLG標識が受信されないため、映像をSDR表示する。表示装置55もまた映像をSDR表示する。
 表示装置50の代わりに、記録装置30のHLG処理部36が上で説明した画像処理装置100の機能を有していてもよい。この場合、HLG処理部36は、復号されたHLG画像信号をHLG方式に従って処理して、広い輝度ダイナミックレンジを有するHDR映像のための表示用信号を生成する。そして、表示用信号が表示装置50へ出力されると、表示装置50によりHDR映像が表示される。
  [4-2.処理の流れ]
   (1)記録処理
 図14は、一実施形態に係る記録装置30により実行される記録処理の流れの一例を示すフローチャートである。図14を参照すると、まず、記録装置30のHLG処理部36は、映像コンテンツの光強度を線形的に表現する原画像信号を取得する(ステップS202)。次に、HLG処理部36は、原画像信号をHLG画像信号に変換する(ステップS204)。次に、符号化部32は、HLG画像信号を符号化して、符号化ストリームを生成する(ステップS206)。次に、制御部38は、HLG方式のOETF番号を示す制御パラメータを生成する(ステップS208)。そして、制御部38は、HLG画像信号の符号化ストリームを記録媒体へ記録すると共に、当該符号化ストリームに関連付けられるVUI又はSEIへ、HLG方式のOETF番号を示す制御パラメータを書き込む(ステップS210)。
   (2)再生処理-第1の例
 図15Aは、一実施形態に係る再生処理の流れの第1の例を示すフローチャートである。図15Aを参照すると、まず、記録装置30の制御部38は、符号化ストリーム及び関連付けられている制御パラメータを記録媒体から読み出す(ステップS222)。次に、復号部34は、読み出された符号化ストリームから画像信号を復号する(ステップS224)。制御部38は、画像信号の信号方式がHLG方式であるか否かを、ステップS222において読み出した制御パラメータに基づいて判定する(ステップS226)。例えば、HLG方式用のOETF番号“18”がVUIに含まれる場合、又は他のOETF番号がVUIに含まれているとしてもSEIにおいてOETF番号が値“18”で上書きされている場合には、画像信号の信号方式はHLG方式であると判定され得る。HLG画像信号ではない画像信号が復号された場合には、処理はステップS228へ進み、非HLG画像信号がディスプレイへ出力される(ステップS228)。HLG画像信号が復号された場合には、処理はステップS230へ進み、制御部38は、出力先のディスプレイがHLG対応型であるか否かをさらに判定する(ステップS230)。出力先のディスプレイがHLG対応型ではない場合には、HLG変換が実行されることなく、画像信号がディスプレイへ出力される(ステップS228)。出力先のディスプレイがHLG対応型である場合、HLG処理部36は、復号された画像信号をHLG方式に従って処理して、広い輝度ダイナミックレンジを有する表示用信号を生成する(ステップS232)。そして、表示用信号がディスプレイへ出力される(ステップS234)。
   (3)再生処理-第2の例
 図15Bは、一実施形態に係る再生処理の流れの第2の例を示すフローチャートである。図15Bを参照すると、まず、記録装置30の制御部38は、符号化ストリーム及び関連付けられている制御パラメータを記録媒体から読み出す(ステップS222)。次に、復号部34は、読み出された符号化ストリームから画像信号を復号する(ステップS224)。制御部38は、画像信号の信号方式がHLG方式であるか否かを、第1の例と同様に、ステップS222において読み出した制御パラメータに基づいて判定する(ステップS226)。HLG画像信号ではない画像信号が復号された場合には、処理はステップS228へ進み、非HLG画像信号がディスプレイへ出力される(ステップS228)。HLG画像信号が復号された場合には、処理はステップS236へ進み、制御部38は、HLG標識のシグナリングと共に、HLG画像信号をディスプレイへ出力する(ステップS236)。
  [4-3.補足的なストリームの扱い]
 映像コンテンツは、一連のフレームの画像信号、音声信号及び制御信号の符号化ストリームに加えて、字幕情報又はグラフィックス情報を含む補足的なストリームをも有し得る。HDR対応型のレコーダ/プレーヤである記録装置30は、こうした補足的なストリームが画像信号の符号化ストリームに関連付けられている場合に、当該補足的なストリームのコンテンツ(例えば字幕、GUI又はその他の表示オブジェクト)の最大輝度レベルが基準白色の表示輝度レベル(図2におけるE´=0.5)に一致するように、コンテンツの輝度を調整する。これは、HDR非対応型の再生装置45又は表示装置55がSDR映像の最大輝度レベルと補足的なストリームのコンテンツの最大輝度レベルとを一致させることとは対照的である。例えば字幕又はGUIの白色がHDR映像の最大輝度レベル(ヘッドルーム不使用の場合、図2におけるE´=1.0)で表示されてしまうと、その白色は明る過ぎて却って視認性を損なう。しかし、上述したように、補足的なストリームのコンテンツの最大輝度レベルをHDR映像の基準白色の表示輝度レベルに合わせることで、コンテンツの適切な視認性を確保することができる。
 本節では、主にHLG方式で表現される信号の記録及び再生について説明したが、ここで説明した手法は、HDR映像のためのHLG方式以外の信号方式が使用されるケースにも適用されてよい。
 <5.ハードウェア構成例>
 上述した実施形態は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアが使用される場合、ソフトウェアを構成するプログラムは、例えば、装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、実行時にRAM(Random Access Memory)に読み込まれ、CPU(Central Processing Unit)などのプロセッサにより実行される。
 図16は、上述した実施形態を適用可能な装置のハードウェア構成の一例を示すブロック図である。図16を参照すると、画像処理装置800は、システムバス810、画像処理チップ820及びオフチップメモリ890を備える。画像処理チップ820は、n個(nは1以上)の処理回路830-1、830-2、…、830-n、参照バッファ840、システムバスインタフェース850及びローカルバスインタフェース860を含む。
 システムバス810は、画像処理チップ820と外部モジュール(例えば、中央制御機能、アプリケーション機能、通信インタフェース、ユーザインタフェース又はディスプレイインタフェースなど)との間の通信路を提供する。処理回路830-1、830-2、…、830-nは、システムバスインタフェース850を介してシステムバス810と接続され、及びローカルバスインタフェース860を介してオフチップメモリ890と接続される。処理回路830-1、830-2、…、830-nは、オンチップメモリ(例えば、SRAM)に相当し得る参照バッファ840にもアクセスすることができる。オフチップメモリ890は、例えば、画像処理チップ820により処理される画像データを記憶するフレームメモリであってよい。一例として、処理回路830-1はHDR画像信号の輝度ダイナミックレンジの調整のために利用され、処理回路830-2はHEVCに従った画像信号の符号化又は復号のために利用され得る。なお、これら処理回路は、同一の画像処理チップ820ではなく、別個のチップ上に形成されてもよい。
 <6.応用例>
 上述した実施形態は、様々な電子機器に応用され得る。以下、4つの応用例について説明する。
   (1)第1の応用例
 図17は、上述した実施形態を適用したテレビジョン装置の概略的な構成の一例を示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース909、制御部910、ユーザインタフェース911、及びバス912を備える。
 チューナ902は、アンテナ901を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ902は、復調により得られた符号化ビットストリームをデマルチプレクサ903へ出力する。即ち、チューナ902は、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送手段としての役割を有する。
 デマルチプレクサ903は、符号化ビットストリームから視聴対象の番組の映像ストリーム及び音声ストリームを分離し、分離した各ストリームをデコーダ904へ出力する。また、デマルチプレクサ903は、符号化ビットストリームからEPG(Electronic Program Guide)などの補助的なデータを抽出し、抽出したデータを制御部910に供給する。なお、デマルチプレクサ903は、符号化ビットストリームがスクランブルされている場合には、デスクランブルを行ってもよい。
 デコーダ904は、デマルチプレクサ903から入力される映像ストリーム及び音声ストリームを復号する。そして、デコーダ904は、復号処理により生成される映像データを映像信号処理部905へ出力する。また、デコーダ904は、復号処理により生成される音声データを音声信号処理部907へ出力する。
 映像信号処理部905は、デコーダ904から入力される映像データを再生し、表示部906に映像を表示させる。また、映像信号処理部905は、ネットワークを介して供給されるアプリケーション画面を表示部906に表示させてもよい。また、映像信号処理部905は、映像データについて、設定に応じて、例えばノイズ除去などの追加的な処理を行ってもよい。さらに、映像信号処理部905は、例えばメニュー、ボタン又はカーソルなどのGUI(Graphical User Interface)の画像を生成し、生成した画像を出力画像に重畳してもよい。
 表示部906は、映像信号処理部905から供給される駆動信号により駆動され、表示デバイス(例えば、液晶ディスプレイ、プラズマディスプレイ又はOLEDなど)の映像面上に映像又は画像を表示する。
 音声信号処理部907は、デコーダ904から入力される音声データについてD/A変換及び増幅などの再生処理を行い、スピーカ908から音声を出力させる。また、音声信号処理部907は、音声データについてノイズ除去などの追加的な処理を行ってもよい。
 外部インタフェース909は、テレビジョン装置900と外部機器又はネットワークとを接続するためのインタフェースである。例えば、外部インタフェース909を介して受信される映像ストリーム又は音声ストリームが、デコーダ904により復号されてもよい。即ち、外部インタフェース909もまた、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送手段としての役割を有する。
 制御部910は、CPU(Central Processing Unit)などのプロセッサ、並びにRAM(Random Access Memory)及びROM(Read Only Memory)などのメモリを有する。メモリは、CPUにより実行されるプログラム、プログラムデータ、EPGデータ、及びネットワークを介して取得されるデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、テレビジョン装置900の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース911から入力される操作信号に応じて、テレビジョン装置900の動作を制御する。
 ユーザインタフェース911は、制御部910と接続される。ユーザインタフェース911は、例えば、ユーザがテレビジョン装置900を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース911は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部910へ出力する。
 バス912は、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、音声信号処理部907、外部インタフェース909及び制御部910を相互に接続する。
 このように構成されたテレビジョン装置900において、映像信号処理部905は、上述した実施形態に係る画像処理装置100の機能を有する。従って、テレビジョン装置900において、HDR映像を再生する際に、映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる不都合を解消し又は少なくとも軽減することができる。
   (2)第2の応用例
 図18は、上述した実施形態を適用した携帯電話機の概略的な構成の一例を示している。携帯電話機920は、アンテナ921、通信部922、音声コーデック923、スピーカ924、マイクロホン925、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931、操作部932、及びバス933を備える。
 アンテナ921は、通信部922に接続される。スピーカ924及びマイクロホン925は、音声コーデック923に接続される。操作部932は、制御部931に接続される。バス933は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、及び制御部931を相互に接続する。
 携帯電話機920は、音声通話モード、データ通信モード、撮影モード及びテレビ電話モードを含む様々な動作モードで、音声信号の送受信、電子メール又は画像データの送受信、画像の撮像、及びデータの記録などの動作を行う。
 音声通話モードにおいて、マイクロホン925により生成されるアナログ音声信号は、音声コーデック923に供給される。音声コーデック923は、アナログ音声信号を音声データへ変換し、変換された音声データをA/D変換し圧縮する。そして、音声コーデック923は、圧縮後の音声データを通信部922へ出力する。通信部922は、音声データを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号をアンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して音声データを生成し、生成した音声データを音声コーデック923へ出力する。音声コーデック923は、音声データを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 また、データ通信モードにおいて、例えば、制御部931は、操作部932を介するユーザによる操作に応じて、電子メールを構成する文字データを生成する。また、制御部931は、文字を表示部930に表示させる。また、制御部931は、操作部932を介するユーザからの送信指示に応じて電子メールデータを生成し、生成した電子メールデータを通信部922へ出力する。通信部922は、電子メールデータを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号をアンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して電子メールデータを復元し、復元した電子メールデータを制御部931へ出力する。制御部931は、表示部930に電子メールの内容を表示させると共に、電子メールデータを記録再生部929の記憶媒体に記憶させる。
 記録再生部929は、読み書き可能な任意の記憶媒体を有する。例えば、記憶媒体は、RAM又はフラッシュメモリなどの内蔵型の記憶媒体であってもよく、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USBメモリ、又はメモリカードなどの外部装着型の記憶媒体であってもよい。
 また、撮影モードにおいて、例えば、カメラ部926は、被写体を撮像して画像データを生成し、生成した画像データを画像処理部927へ出力する。画像処理部927は、カメラ部926から入力される画像データを符号化し、符号化ストリームを記録再生部929の記憶媒体に記憶させる。
 また、テレビ電話モードにおいて、例えば、多重分離部928は、画像処理部927により符号化された映像ストリームと、音声コーデック923から入力される音声ストリームとを多重化し、多重化したストリームを通信部922へ出力する。通信部922は、ストリームを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号をアンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。これら送信信号及び受信信号には、符号化ビットストリームが含まれ得る。そして、通信部922は、受信信号を復調及び復号してストリームを復元し、復元したストリームを多重分離部928へ出力する。多重分離部928は、入力されるストリームから映像ストリーム及び音声ストリームを分離し、映像ストリームを画像処理部927、音声ストリームを音声コーデック923へ出力する。画像処理部927は、映像ストリームを復号し、映像データを生成する。映像データは、表示部930に供給され、表示部930により一連の画像が表示される。音声コーデック923は、音声ストリームを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 このように構成された携帯電話機920において、画像処理部927は、上述した実施形態に係る画像処理装置100の機能を有する。従って、携帯電話機920において、HDR映像を再生する際に、映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる不都合を解消し又は少なくとも軽減することができる。
   (3)第3の応用例
 図19は、上述した実施形態を適用した記録再生装置の概略的な構成の一例を示している。記録再生装置940は、例えば、受信した放送番組の音声データ及び映像データを符号化して記録媒体に記録する。また、記録再生装置940は、例えば、他の装置から取得される音声データ及び映像データを符号化して記録媒体に記録してもよい。また、記録再生装置940は、例えば、ユーザの指示に応じて、記録媒体に記録されているデータをモニタ及びスピーカ上で再生する。このとき、記録再生装置940は、音声データ及び映像データを復号する。
 記録再生装置940は、チューナ941、外部インタフェース942、エンコーダ943、HDD(Hard Disk Drive)944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)948、制御部949、及びユーザインタフェース950を備える。
 チューナ941は、アンテナ(図示せず)を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ941は、復調により得られた符号化ビットストリームをセレクタ946へ出力する。即ち、チューナ941は、記録再生装置940における伝送手段としての役割を有する。
 外部インタフェース942は、記録再生装置940と外部機器又はネットワークとを接続するためのインタフェースである。外部インタフェース942は、例えば、IEEE1394インタフェース、ネットワークインタフェース、USBインタフェース、又はフラッシュメモリインタフェースなどであってよい。例えば、外部インタフェース942を介して受信される映像データ及び音声データは、エンコーダ943へ入力される。即ち、外部インタフェース942は、記録再生装置940における伝送手段としての役割を有する。
 エンコーダ943は、外部インタフェース942から入力される映像データ及び音声データが符号化されていない場合に、映像データ及び音声データを符号化する。そして、エンコーダ943は、符号化ビットストリームをセレクタ946へ出力する。
 HDD944は、映像及び音声などのコンテンツデータが圧縮された符号化ビットストリーム、各種プログラム及びその他のデータを内部のハードディスクに記録する。また、HDD944は、映像及び音声の再生時に、これらデータをハードディスクから読み出す。
 ディスクドライブ945は、装着されている記録媒体へのデータの記録及び読み出しを行う。ディスクドライブ945に装着される記録媒体は、例えばDVDディスク(DVD-Video、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等)又はBlu-ray(登録商標)ディスクなどであってよい。
 セレクタ946は、映像及び音声の記録時には、チューナ941又はエンコーダ943から入力される符号化ビットストリームを選択し、選択した符号化ビットストリームをHDD944又はディスクドライブ945へ出力する。また、セレクタ946は、映像及び音声の再生時には、HDD944又はディスクドライブ945から入力される符号化ビットストリームをデコーダ947へ出力する。
 デコーダ947は、符号化ビットストリームを復号し、映像データ及び音声データを生成する。そして、デコーダ947は、生成した映像データをOSD948へ出力する。また、デコーダ904は、生成した音声データを外部のスピーカへ出力する。
 OSD948は、デコーダ947から入力される映像データを再生し、映像を表示する。また、OSD948は、表示する映像に、例えばメニュー、ボタン又はカーソルなどのGUIの画像を重畳してもよい。
 制御部949は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、記録再生装置940の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース950から入力される操作信号に応じて、記録再生装置940の動作を制御する。
 ユーザインタフェース950は、制御部949と接続される。ユーザインタフェース950は、例えば、ユーザが記録再生装置940を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース950は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部949へ出力する。
 このように構成された記録再生装置940において、OSD948は、上述した実施形態に係る画像処理装置100の機能を有する。従って、記録再生装置940において、HDR映像を再生する際に、映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる不都合を解消し又は少なくとも軽減することができる。
   (4)第4の応用例
 図20は、上述した実施形態を適用した撮像装置の概略的な構成の一例を示している。撮影装置960は、被写体を撮像して画像を生成し、画像データを符号化して記録媒体に記録する。
 撮影装置960は、光学ブロック961、撮像部962、信号処理部963、画像処理部964、表示部965、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、制御部970、ユーザインタフェース971、及びバス972を備える。
 光学ブロック961は、撮像部962に接続される。撮像部962は、信号処理部963に接続される。表示部965は、画像処理部964に接続される。ユーザインタフェース971は、制御部970に接続される。バス972は、画像処理部964、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、及び制御部970を相互に接続する。
 光学ブロック961は、フォーカスレンズ及び絞り機構などを有する。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCD又はCMOSなどのイメージセンサを有し、撮像面に結像した光学像を光電変換によって電気信号としての画像信号に変換する。そして、撮像部962は、画像信号を信号処理部963へ出力する。
 信号処理部963は、撮像部962から入力される画像信号に対してニー補正、ガンマ補正、色補正などの種々のカメラ信号処理を行う。信号処理部963は、カメラ信号処理後の画像データを画像処理部964へ出力する。
 画像処理部964は、信号処理部963から入力される画像データを符号化し、符号化データを生成する。そして、画像処理部964は、生成した符号化データを外部インタフェース966又はメディアドライブ968へ出力する。また、画像処理部964は、外部インタフェース966又はメディアドライブ968から入力される符号化データを復号し、画像データを生成する。そして、画像処理部964は、生成した画像データを表示部965へ出力する。また、画像処理部964は、信号処理部963から入力される画像データを表示部965へ出力して画像を表示させてもよい。また、画像処理部964は、OSD969から取得される表示用データを、表示部965へ出力する画像に重畳してもよい。
 OSD969は、例えばメニュー、ボタン又はカーソルなどのGUIの画像を生成して、生成した画像を画像処理部964へ出力する。
 外部インタフェース966は、例えばUSB入出力端子として構成される。外部インタフェース966は、例えば、画像の印刷時に、撮影装置960とプリンタとを接続する。また、外部インタフェース966には、必要に応じてドライブが接続される。ドライブには、例えば、磁気ディスク又は光ディスクなどのリムーバブルメディアが装着され、リムーバブルメディアから読み出されるプログラムが、撮影装置960にインストールされ得る。さらに、外部インタフェース966は、LAN又はインターネットなどのネットワークに接続されるネットワークインタフェースとして構成されてもよい。即ち、外部インタフェース966は、撮影装置960における伝送手段としての役割を有する。
 メディアドライブ968に装着される記録媒体は、例えば、磁気ディスク、光磁気ディスク、光ディスク、又は半導体メモリなどの、読み書き可能な任意のリムーバブルメディアであってよい。また、メディアドライブ968に記録媒体が固定的に装着され、例えば、内蔵型ハードディスクドライブ又はSSD(Solid State Drive)のような非可搬性の記憶部が構成されてもよい。
 制御部970は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、撮影装置960の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース971から入力される操作信号に応じて、撮影装置960の動作を制御する。
 ユーザインタフェース971は、制御部970と接続される。ユーザインタフェース971は、例えば、ユーザが撮影装置960を操作するためのボタン及びスイッチなどを有する。ユーザインタフェース971は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部970へ出力する。
 このように構成された撮影装置960において、画像処理部964は、上述した実施形態に係る画像処理装置100の機能を有する。従って、撮影装置960において、HDR映像を再生する際に、映像信号のダイナミックレンジとディスプレイのピーク輝度との不一致に関わる不都合を解消し又は少なくとも軽減することができる。
 <7.まとめ>
 ここまで、図1~図20を用いて、本開示に係る技術の実施形態について詳細に説明した。上述した実施形態によれば、基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号が、表示用信号への変換のためにガンマ変換される。そのガンマ変換は、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、基準白色の表示輝度レベルが維持されるように実行される。従って、輝度のクリッピング(又は過剰に強いロールオフ)に起因する高輝度領域の情報の欠損(いわゆる白とび)の発生が回避されると共に、コンテンツの撮影又は制作の際に明るさの基準とされる基準白色の輝度を、コンテンツの表示の際にも適切に再現することが可能となる。
 ある実施例によれば、表示用信号により表現可能な最大輝度レベルをディスプレイのピーク輝度レベルに合わせるように決定される第1のガンマ値を用いて、基準白色の輝度レベルでの正規化後の信号がガンマ変換される。この場合、ガンマ変換によって基準白色の輝度レベルは変化しない。このような第1の変換法により、高輝度領域の情報の欠損が回避され、かつディスプレイのピーク輝度までのレンジを無駄なく使い切ることができる。
 ある実施例によれば、表示用信号により表現可能な最大輝度レベルをディスプレイのピーク輝度レベルに合わせるように決定されるゲイン値を用いて、基準白色の輝度レベルでの正規化後の信号が線形変換され、当該線形変換後の画像信号が、基準白色の表示輝度レベルを元の輝度レベルへと復元するように決定される第2のガンマ値を用いてガンマ変換される。この場合、基準白色の輝度レベルは、(演算の途中で変化はするものの)最終的には元のレベルの通り維持される。第2のガンマ値を用いたガンマ変換は、表示用信号により表現可能な最大輝度レベルを変化させないように実行され得る。ゲイン値を用いた線形変換及びダイナミックレンジの両端を固定したガンマ変換は、汎用的な演算機能として個々に既に実装されていることが多い。そのため、このような第2の変換法は、新たな演算機能の追加的な実装を要することなく、比較的低いコストで実現されることができる。第2の変換法は、画像信号を所定のシステムガンマ値を用いてガンマ変換した後に実行されてもよい。例えば、1.2というシステムガンマ値を用いることで、表示される映像における輝度の階調を、ITU-R BT.1886などの既存の仕様に基づく表示に近付けることができる。上述した第1の変換法と第2の変換法とが選択的に切り替えられてもよい。それにより、HDR映像の多様な表現をユーザに提供すること、及びディスプレイの特性に応じて最適な表現を選択することが可能となる。
 ある実施例によれば、基準白色の表示輝度レベルが維持される第1の動作モードと、基準白色の表示輝度レベルが維持されない第2の動作モードとの間で、動作モードが切り替えられる。これら動作モードが提供されることにより、基準白色の輝度をHDR映像の表示の際に再現することを優先するか否かをユーザ又はデバイスが適応的に選択することが可能となる。例えば、動作モードは、信号方式のタイプに基づいて選択されてもよい。この場合、例えば基準白色のレベルを基準として輝度レベルが相対的に表現されるHLG方式で画像信号が生成されているときにはその基準白色のレベルを維持する一方で、そうでないときには基準白色のレベルを維持しないといった切替えが可能である。HEVC方式で符号化された符号化ストリームから画像信号が復号される場合、信号方式のタイプは、例えばVUI(Video Usability Information)又はSEI(Supplemental Enhancement Information)に含まれる制御パラメータに基づいて判定され得る。動作モードは、ユーザ設定に基づいて選択されてもよい。例えば、撮影環境又はコンテンツ制作環境の明るさが再現されることを望むユーザは、第1の動作モードを選択するであろう。動作モードは、ディスプレイの性能としてのピーク輝度レベル又は表示環境の条件から自動的に設定されるピーク輝度レベルといった他の要因に基づいて選択されてもよい。
 第2の動作モードが選択された場合には、ゲイン値を用いた単純な線形変換が実行されてもよく、この場合、輝度のクリッピングに起因する高輝度領域の情報の欠損の発生が回避される。また、特にディスプレイのピーク輝度が低いケースではITU-R BT.1886に従ったSDR表示が行われてもよく、この場合、中輝度領域において視認性の良好な映像を得ることができる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果と共に、又は上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏し得る。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、前記基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換する変換部、
 を備える画像処理装置。
(2)
 前記画像信号は、前記基準白色の輝度レベルでの正規化後の信号であり、
 前記変換部は、第1のガンマ値を用いて前記画像信号をガンマ変換する、
 前記(1)に記載の画像処理装置。
(3)
 前記変換部は、前記表示用信号により表現可能な最大輝度レベルを前記ディスプレイの前記ピーク輝度レベルに合わせるように前記第1のガンマ値を決定する、前記(2)に記載の画像処理装置。
(4)
 前記画像信号は、前記基準白色の輝度レベルでの正規化後の信号であり、
 前記変換部は、前記画像信号をゲイン値を用いて線形変換し、前記基準白色の表示輝度レベルが元の輝度レベルへと復元されるように決定される第2のガンマ値を用いて前記線形変換後の画像信号をガンマ変換する、
 前記(1)に記載の画像処理装置。
(5)
 前記変換部は、前記表示用信号により表現可能な最大輝度レベルを前記ディスプレイの前記ピーク輝度レベルに合わせるように前記ゲイン値を決定する、前記(4)に記載の画像処理装置。
(6)
 前記変換部は、前記第2のガンマ値を用いたガンマ変換を、前記表示用信号により表現可能な最大輝度レベルを変化させないように実行する、前記(4)又は前記(5)に記載の画像処理装置。
(7)
 前記変換部は、前記画像信号を所定のシステムガンマ値を用いてガンマ変換した後に、前記線形変換及び前記第2のガンマ値を用いた前記ガンマ変換を実行する、前記(4)~(6)のいずれか1項に記載の画像処理装置。
(8)
 前記画像処理装置は、前記基準白色の表示輝度レベルが維持される第1の動作モード及び前記基準白色の表示輝度レベルが維持されない第2の動作モードのうち前記変換部が使用すべきモードを選択する制御部、をさらに備え、
 前記変換部は、前記制御部により前記第1の動作モードが選択された場合に、前記基準白色の表示輝度レベルが維持されるように、前記画像信号を前記表示用信号へと変換する、
 前記(1)~(7)のいずれか1項に記載の画像処理装置。
(9)
 前記制御部は、信号方式のタイプ、ユーザ設定、前記ディスプレイの属性及び表示環境の条件のうちの1つ以上に基づいて、前記第1の動作モード及び前記第2の動作モードのうちの前記1つを選択する、前記(8)に記載の画像処理装置。
(10)
 前記変換部は、
 前記画像信号を前記基準白色の表示輝度レベルが変化しないようにガンマ変換する第1の変換法と、
 前記画像信号をゲイン値を用いて線形変換し、前記基準白色の表示輝度レベルが元の輝度レベルへと復元されるように決定される第2のガンマ値を用いて前記線形変換後の画像信号をガンマ変換する第2の変換法と、
 を選択的に使用する、前記(1)~(9)のいずれか1項に記載の画像処理装置。
(11)
 前記変換部は、前記制御部により前記第2の動作モードが選択された場合に、前記表示用信号により表現可能な最大輝度レベルを前記ディスプレイの前記ピーク輝度レベルに合わせるように決定されるゲイン値を用いて前記画像信号を線形変換する、
 前記(8)又は前記(9)に記載の画像処理装置。
(12)
 前記変換部は、前記制御部により前記第2の動作モードが選択された場合に、ITU-R BT.1886に従って前記画像信号を前記表示用信号へと変換する、前記(8)又は前記(9)に記載の画像処理装置。
(13)
 前記信号方式は、基準白色よりも低い輝度レベルにおけるガンマ曲線と、基準白色よりも高い輝度レベルにおける対数曲線との組合せに基づくHLG(Hybrid Log Gamma)方式である、前記(1)~(12)のいずれか1項に記載の画像処理装置。
(14)
 前記画像信号は、HEVC(High Efficiency Video Coding)方式に従って符号化された符号化ストリームから復号され、
 前記符号化ストリームに関連付けられるSEI(Supplemental Enhancement Information)に含まれるパラメータに基づいて、前記画像信号について前記HLG方式が使用されたことが判定される、
 前記(13)に記載の画像処理装置。
(15)
 前記画像信号は、HEVC(High Efficiency Video Coding)方式に従って符号化された符号化ストリームを含み、
 前記符号化ストリームに関連付けられるVUI(Video Usability Information)に含まれるパラメータに基づいて、前記画像信号について前記HLG方式が使用されたことが判定される、
 前記(13)に記載の画像処理装置。
(16)
 前記符号化ストリームに字幕情報又はグラフィックス情報を含む補足的なストリームが関連付けられている場合に、当該補足的なストリームのコンテンツの最大輝度レベルは、前記基準白色の表示輝度レベルに合うように調整される、前記(14)又は前記(15)に記載の画像処理装置。
(17)
 画像処理装置により実行される画像処理方法であって、
 基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、前記基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換すること、
 を含む画像処理方法。
 10   撮影装置
 20   ネットワーク
 30   記録装置(HDR対応型)
 40   記録媒体
 45   再生装置(HDR非対応型)
 50   表示装置(HDR対応型)
 55   表示装置(HDR非対応型)
 100  画像処理装置
 110  画像取得部
 120  変換部
 130  制御部

Claims (17)

  1.  基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、前記基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換する変換部、
     を備える画像処理装置。
  2.  前記画像信号は、前記基準白色の輝度レベルでの正規化後の信号であり、
     前記変換部は、第1のガンマ値を用いて前記画像信号をガンマ変換する、
     請求項1に記載の画像処理装置。
  3.  前記変換部は、前記表示用信号により表現可能な最大輝度レベルを前記ディスプレイの前記ピーク輝度レベルに合わせるように前記第1のガンマ値を決定する、請求項2に記載の画像処理装置。
  4.  前記画像信号は、前記基準白色の輝度レベルでの正規化後の信号であり、
     前記変換部は、前記画像信号をゲイン値を用いて線形変換し、前記基準白色の表示輝度レベルが元の輝度レベルへと復元されるように決定される第2のガンマ値を用いて前記線形変換後の画像信号をガンマ変換する、
     請求項1に記載の画像処理装置。
  5.  前記変換部は、前記表示用信号により表現可能な最大輝度レベルを前記ディスプレイの前記ピーク輝度レベルに合わせるように前記ゲイン値を決定する、請求項4に記載の画像処理装置。
  6.  前記変換部は、前記第2のガンマ値を用いたガンマ変換を、前記表示用信号により表現可能な最大輝度レベルを変化させないように実行する、請求項4に記載の画像処理装置。
  7.  前記変換部は、前記画像信号を所定のシステムガンマ値を用いてガンマ変換した後に、前記線形変換及び前記第2のガンマ値を用いた前記ガンマ変換を実行する、請求項4に記載の画像処理装置。
  8.  前記画像処理装置は、前記基準白色の表示輝度レベルが維持される第1の動作モード及び前記基準白色の表示輝度レベルが維持されない第2の動作モードのうち前記変換部が使用すべきモードを選択する制御部、をさらに備え、
     前記変換部は、前記制御部により前記第1の動作モードが選択された場合に、前記基準白色の表示輝度レベルが維持されるように、前記画像信号を前記表示用信号へと変換する、
     請求項1に記載の画像処理装置。
  9.  前記制御部は、信号方式のタイプ、ユーザ設定、前記ディスプレイの属性及び表示環境の条件のうちの1つ以上に基づいて、前記第1の動作モード及び前記第2の動作モードのうちの前記1つを選択する、請求項8に記載の画像処理装置。
  10.  前記変換部は、
     前記画像信号を前記基準白色の表示輝度レベルが変化しないようにガンマ変換する第1の変換法と、
     前記画像信号をゲイン値を用いて線形変換し、前記基準白色の表示輝度レベルが元の輝度レベルへと復元されるように決定される第2のガンマ値を用いて前記線形変換後の画像信号をガンマ変換する第2の変換法と、
     を選択的に使用する、請求項1に記載の画像処理装置。
  11.  前記変換部は、前記制御部により前記第2の動作モードが選択された場合に、前記表示用信号により表現可能な最大輝度レベルを前記ディスプレイの前記ピーク輝度レベルに合わせるように決定されるゲイン値を用いて前記画像信号を線形変換する、
     請求項8に記載の画像処理装置。
  12.  前記変換部は、前記制御部により前記第2の動作モードが選択された場合に、ITU-R BT.1886に従って前記画像信号を前記表示用信号へと変換する、請求項8に記載の画像処理装置。
  13.  前記信号方式は、基準白色よりも低い輝度レベルにおけるガンマ曲線と、基準白色よりも高い輝度レベルにおける対数曲線との組合せに基づくHLG(Hybrid Log Gamma)方式である、請求項1に記載の画像処理装置。
  14.  前記画像信号は、HEVC(High Efficiency Video Coding)方式に従って符号化された符号化ストリームから復号され、
     前記符号化ストリームに関連付けられるSEI(Supplemental Enhancement Information)に含まれるパラメータに基づいて、前記画像信号について前記HLG方式が使用されたことが判定される、
     請求項13に記載の画像処理装置。
  15.  前記画像信号は、HEVC(High Efficiency Video Coding)方式に従って符号化された符号化ストリームを含み、
     前記符号化ストリームに関連付けられるVUI(Video Usability Information)に含まれるパラメータに基づいて、前記画像信号について前記HLG方式が使用されたことが判定される、
     請求項13に記載の画像処理装置。
  16.  前記符号化ストリームに字幕情報又はグラフィックス情報を含む補足的なストリームが関連付けられている場合に、当該補足的なストリームのコンテンツの最大輝度レベルは、前記基準白色の表示輝度レベルに合うように調整される、請求項14に記載の画像処理装置。
  17.  画像処理装置により実行される画像処理方法であって、
     基準白色の表示輝度レベルを固定的に扱う信号方式に基づく画像信号を、ディスプレイのピーク輝度レベルに基づいて決定されるパラメータを用いて、前記基準白色の表示輝度レベルが維持されるようにガンマ変換することにより、表示用信号へと変換すること、
     を含む画像処理方法。
PCT/JP2016/072691 2015-09-25 2016-08-02 画像処理装置及び画像処理方法 WO2017051612A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201680054234.1A CN108028036B (zh) 2015-09-25 2016-08-02 图像处理设备和图像处理方法
MX2018003360A MX2018003360A (es) 2015-09-25 2016-08-02 Aparato de procesamiento de imagenes y metodo de procesamiento de imagenes.
JP2017541465A JP6825568B2 (ja) 2015-09-25 2016-08-02 画像処理装置及び画像処理方法
EP16848400.4A EP3355300B1 (en) 2015-09-25 2016-08-02 Image processing device and image processing method
US15/759,686 US10638023B2 (en) 2015-09-25 2016-08-02 Image processing apparatus and image processing method
CA2999098A CA2999098A1 (en) 2015-09-25 2016-08-02 Image processing apparatus and image processing method
AU2016326942A AU2016326942B2 (en) 2015-09-25 2016-08-02 Image processing device and image processing method
HK18106869.5A HK1247369A1 (zh) 2015-09-25 2018-05-25 圖像處理設備和圖像處理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015188348 2015-09-25
JP2015-188348 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051612A1 true WO2017051612A1 (ja) 2017-03-30

Family

ID=58385969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072691 WO2017051612A1 (ja) 2015-09-25 2016-08-02 画像処理装置及び画像処理方法

Country Status (10)

Country Link
US (1) US10638023B2 (ja)
EP (1) EP3355300B1 (ja)
JP (1) JP6825568B2 (ja)
CN (1) CN108028036B (ja)
AU (1) AU2016326942B2 (ja)
CA (1) CA2999098A1 (ja)
HK (1) HK1247369A1 (ja)
MX (1) MX2018003360A (ja)
TW (1) TWI704551B (ja)
WO (1) WO2017051612A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047753A1 (ja) * 2016-09-09 2018-03-15 パナソニックIpマネジメント株式会社 表示装置および信号処理方法
JP2018195911A (ja) * 2017-05-15 2018-12-06 日本放送協会 映像信号変換装置、ダイナミックレンジ変換装置およびそれらのプログラム
WO2019044171A1 (ja) * 2017-08-28 2019-03-07 シャープ株式会社 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
JP2019103041A (ja) * 2017-12-05 2019-06-24 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置および画像処理方法
JP2019193025A (ja) * 2018-04-20 2019-10-31 日本放送協会 映像輝度変換装置およびそのプログラム
US10600163B2 (en) 2017-11-22 2020-03-24 Interdigital Vc Holdings, Inc. Method and device for reconstructing a display adapted HDR image
WO2020060186A1 (ko) * 2018-09-18 2020-03-26 엘지전자 주식회사 영상표시장치
US11722704B2 (en) 2018-12-21 2023-08-08 Interdigital Vc Holdings, Inc. Decoding an image

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917583B2 (en) * 2018-04-27 2021-02-09 Apple Inc. Standard and high dynamic range display systems and methods for high dynamic range displays
US20200045341A1 (en) * 2018-07-31 2020-02-06 Ati Technologies Ulc Effective electro-optical transfer function encoding for limited luminance range displays
US10964289B2 (en) * 2019-07-25 2021-03-30 Google Llc OLED display with different spatial gamma
JP7370762B2 (ja) * 2019-08-20 2023-10-30 キヤノン株式会社 撮像装置およびその制御方法
CN115946632B (zh) * 2023-01-10 2023-08-18 润芯微科技(江苏)有限公司 一种多屏显示的中控娱乐系统及显示方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215756A (ja) * 2005-02-02 2006-08-17 Dainippon Ink & Chem Inc 画像処理装置および画像処理方法ならびにそのプログラム
JP2007163979A (ja) * 2005-12-15 2007-06-28 Fujifilm Corp プロファイル作成装置、プロファイル作成プログラム、および画像出力装置
JP2012504259A (ja) * 2008-09-30 2012-02-16 ドルビー ラボラトリーズ ライセンシング コーポレイション 高ブライトネスで高ダイナミックレンジのディスプレイのための画像処理における適応ガンマの適用のためのシステムおよび方法
JP2014531821A (ja) * 2011-09-27 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ 画像のダイナミックレンジ変換のための装置及び方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100214634B1 (ko) * 1996-12-21 1999-08-02 구자홍 프로젝션 티브이의 b색 감마보정 회로
US7590299B2 (en) * 2004-06-10 2009-09-15 Samsung Electronics Co., Ltd. Increasing gamma accuracy in quantized systems
KR100748333B1 (ko) * 2006-11-30 2007-08-09 삼성에스디아이 주식회사 플라즈마 표시 패널의 구동장치 및 그 구동방법
US8803922B2 (en) * 2007-05-30 2014-08-12 Apple Inc. Methods and apparatuses for increasing the apparent brightness of a display
CN101329842B (zh) * 2007-06-22 2011-06-15 深圳创维-Rgb电子有限公司 一种能对显示屏进行gamma校正的液晶显示器及其制作方法
US8345038B2 (en) * 2007-10-30 2013-01-01 Sharp Laboratories Of America, Inc. Methods and systems for backlight modulation and brightness preservation
TWI401667B (zh) * 2008-05-23 2013-07-11 Innolux Corp 液晶顯示器加馬校正電路及方法
CN102177539B (zh) * 2008-10-14 2014-07-23 杜比实验室特许公司 用于处理信号的设备和方法
KR101330396B1 (ko) * 2010-06-25 2013-11-15 엘지디스플레이 주식회사 표시장치와 그의 콘트라스트 향상 방법
JP5744429B2 (ja) * 2010-07-16 2015-07-08 キヤノン株式会社 画像処理装置、画像処理方法、およびプログラム
WO2012012489A2 (en) * 2010-07-22 2012-01-26 Dolby Laboratories Licensing Corporation Display management server
US8743291B2 (en) * 2011-04-12 2014-06-03 Dolby Laboratories Licensing Corporation Quality assessment for images that have extended dynamic ranges or wide color gamuts
EP2819414A3 (en) * 2013-06-28 2015-02-25 Samsung Electronics Co., Ltd Image processing device and image processing method
CN105393525B (zh) * 2013-07-18 2019-04-12 皇家飞利浦有限公司 创建用于对hdr图像编码的代码映射函数的方法和装置以及使用这样的编码图像的方法和装置
KR101477505B1 (ko) * 2013-12-23 2015-01-07 이동현 하이 다이나믹 레인지 영상 형성 방법
CN104935911B (zh) * 2014-03-18 2017-07-21 华为技术有限公司 一种高动态范围图像合成的方法及装置
WO2017022513A1 (ja) * 2015-07-31 2017-02-09 ソニー株式会社 映像信号処理装置および映像信号処理方法、ならびに表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215756A (ja) * 2005-02-02 2006-08-17 Dainippon Ink & Chem Inc 画像処理装置および画像処理方法ならびにそのプログラム
JP2007163979A (ja) * 2005-12-15 2007-06-28 Fujifilm Corp プロファイル作成装置、プロファイル作成プログラム、および画像出力装置
JP2012504259A (ja) * 2008-09-30 2012-02-16 ドルビー ラボラトリーズ ライセンシング コーポレイション 高ブライトネスで高ダイナミックレンジのディスプレイのための画像処理における適応ガンマの適用のためのシステムおよび方法
JP2014531821A (ja) * 2011-09-27 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ 画像のダイナミックレンジ変換のための装置及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355300A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047753A1 (ja) * 2016-09-09 2018-03-15 パナソニックIpマネジメント株式会社 表示装置および信号処理方法
JP2018195911A (ja) * 2017-05-15 2018-12-06 日本放送協会 映像信号変換装置、ダイナミックレンジ変換装置およびそれらのプログラム
WO2019044171A1 (ja) * 2017-08-28 2019-03-07 シャープ株式会社 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
JP2019041329A (ja) * 2017-08-28 2019-03-14 シャープ株式会社 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体
US10600163B2 (en) 2017-11-22 2020-03-24 Interdigital Vc Holdings, Inc. Method and device for reconstructing a display adapted HDR image
JP2019103041A (ja) * 2017-12-05 2019-06-24 株式会社ソニー・インタラクティブエンタテインメント 画像処理装置および画像処理方法
US11094286B2 (en) 2017-12-05 2021-08-17 Sony Interactive Entertainment Inc. Image processing apparatus and image processing method
JP2019193025A (ja) * 2018-04-20 2019-10-31 日本放送協会 映像輝度変換装置およびそのプログラム
JP7045916B2 (ja) 2018-04-20 2022-04-01 日本放送協会 映像輝度変換装置およびそのプログラム
WO2020060186A1 (ko) * 2018-09-18 2020-03-26 엘지전자 주식회사 영상표시장치
US11532289B2 (en) 2018-09-18 2022-12-20 Lg Electronics Inc. Image display apparatus
US11722704B2 (en) 2018-12-21 2023-08-08 Interdigital Vc Holdings, Inc. Decoding an image

Also Published As

Publication number Publication date
TWI704551B (zh) 2020-09-11
US10638023B2 (en) 2020-04-28
JP6825568B2 (ja) 2021-02-03
CA2999098A1 (en) 2017-03-30
EP3355300A1 (en) 2018-08-01
MX2018003360A (es) 2018-05-30
TW201721627A (zh) 2017-06-16
CN108028036B (zh) 2021-01-29
AU2016326942B2 (en) 2019-10-10
JPWO2017051612A1 (ja) 2018-08-30
AU2016326942A1 (en) 2018-03-15
US20190045091A1 (en) 2019-02-07
EP3355300A4 (en) 2019-06-19
EP3355300B1 (en) 2021-09-29
CN108028036A (zh) 2018-05-11
HK1247369A1 (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
JP6825568B2 (ja) 画像処理装置及び画像処理方法
JP7065376B2 (ja) 表示装置、変換装置、表示方法、および、コンピュータプログラム
CN110213459B (zh) 显示方法和显示装置
US10009613B2 (en) Method, systems and apparatus for HDR to HDR inverse tone mapping
CN107203974B (zh) 扩展的高动态范围hdr到hdr色调映射的方法、装置和系统
EP3157251B1 (en) Playback method and playback apparatus
US10779009B2 (en) Image decoding device and method
AU2014335620A1 (en) Decoding device and decoding method, and coding device and coding method
KR20170115528A (ko) Hdr 화상을 sdr 화상으로 맵핑하기 위한 방법 및 디바이스 그리고 대응하는 sdr 대 hdr 맵핑 방법 및 디바이스
CN106133817B (zh) 图像处理装置、图像处理方法和程序
KR20160052459A (ko) 복호 장치 및 복호 방법, 부호화 장치, 및 부호화 방법
JP6213341B2 (ja) 画像処理装置、画像処理方法、およびプログラム
JP2007295022A (ja) 撮像装置と映像信号処理方法および映像信号処理プログラム
US20240013356A1 (en) Method for generating high dynamic range image, and image processing system
JP6868797B2 (ja) 変換方法及び変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541465

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016326942

Country of ref document: AU

Date of ref document: 20160802

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2999098

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003360

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018005243

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018005243

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180316