WO2017050100A1 - 一种频域扩频、解扩频方法及装置 - Google Patents

一种频域扩频、解扩频方法及装置 Download PDF

Info

Publication number
WO2017050100A1
WO2017050100A1 PCT/CN2016/097382 CN2016097382W WO2017050100A1 WO 2017050100 A1 WO2017050100 A1 WO 2017050100A1 CN 2016097382 W CN2016097382 W CN 2016097382W WO 2017050100 A1 WO2017050100 A1 WO 2017050100A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
orthogonal sequence
frequency domain
data
symbol
Prior art date
Application number
PCT/CN2016/097382
Other languages
English (en)
French (fr)
Inventor
高雪娟
郑方政
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to JP2018515879A priority Critical patent/JP6779286B2/ja
Priority to KR1020187011814A priority patent/KR102053154B1/ko
Priority to EP16847982.2A priority patent/EP3355479B1/en
Priority to US15/763,087 priority patent/US10798686B2/en
Publication of WO2017050100A1 publication Critical patent/WO2017050100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/698Orthogonal indexing scheme relating to spread spectrum techniques in general relating to Uplink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a frequency domain spread spectrum and despreading method and apparatus.
  • the new PUCCH format based on the physical uplink shared channel (PUSCH) structure can carry more bit coding and modulation symbols, and can theoretically support multi-bit ACK over 5 carrier aggregation. NACK feedback.
  • PUSCH physical uplink shared channel
  • the embodiment of the present invention provides a frequency domain spread spectrum and despreading method and device, which are used to implement uplink spreading of uplink control information carried on a PUCCH in a frequency domain.
  • the user equipment acquires indication information of an orthogonal sequence used by the physical uplink control channel PUCCH to be transmitted;
  • the user equipment performs frequency domain spreading on the uplink control information carried by the PUCCH according to the orthogonal sequence corresponding to the indication information of the orthogonal sequence;
  • the user equipment transmits the frequency domain-spread uplink control information on a frequency domain resource corresponding to the PUCCH.
  • the base station receives the PUCCH on a frequency domain resource corresponding to a physical uplink control channel PUCCH;
  • the base station performs frequency domain despreading on the uplink control information carried in the PUCCH by using an orthogonal sequence corresponding to the indication information of the orthogonal sequence.
  • An obtaining module configured to acquire indication information of an orthogonal sequence used for transmitting a physical uplink control channel PUCCH
  • a spreading module configured to perform frequency domain spreading on the uplink control information carried by the PUCCH according to the orthogonal sequence corresponding to the indication information of the orthogonal sequence
  • a transmission module configured to transmit, in the frequency domain resource corresponding to the PUCCH, the uplink control information after the frequency domain is spread.
  • a receiving module configured to receive the PUCCH on a frequency domain resource corresponding to a physical uplink control channel PUCCH
  • a determining module configured to determine indication information of an orthogonal sequence used by the PUCCH
  • the despreading module is configured to perform frequency domain despreading on the uplink control information carried in the PUCCH by using an orthogonal sequence corresponding to the indication information of the orthogonal sequence.
  • An embodiment of the present application provides a user equipment, including:
  • a processor for reading a program in the memory performing the following process:
  • a transceiver for receiving and transmitting data under the control of a processor.
  • An embodiment of the present application provides a base station, including:
  • a processor for reading a program in the memory performing the following process:
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the user equipment acquires the information of the orthogonal sequence used by the PUCCH, and performs frequency domain spreading on the uplink control information carried by the PUCCH according to the orthogonal sequence corresponding to the indication information of the orthogonal sequence, and
  • the uplink control information is transmitted on the frequency domain resource corresponding to the PUCCH, so that frequency domain spreading is implemented for the PUCCH, thereby increasing the number of users multiplexed in the PRB and reducing the PUCCH resource overhead.
  • FIG. 1 is a schematic diagram of a new PUCCH format for carrying feedback information of more than 5 carrier aggregations in the prior art
  • FIG. 2 is a schematic diagram of a frequency domain spread spectrum transmission process according to an embodiment of the present application.
  • 3a to 3c are schematic diagrams of frequency domain spread spectrum mapping in scenario 1 according to an embodiment of the present application.
  • 4a to 4b are schematic diagrams of frequency domain spread spectrum mapping in scenario 2 according to an embodiment of the present application.
  • 5a to 5d are schematic diagrams of frequency domain spread spectrum mapping in scenario 3 according to an embodiment of the present application.
  • 6a to 6d are schematic diagrams of frequency domain spread spectrum mapping in scenario 4 according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of resource allocation of a PUCCH for performing frequency domain spreading using orthogonal sequences of different lengths according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a frequency domain despreading transmission process according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a user equipment provided by the present application.
  • FIG. 10 is a schematic structural diagram of a user equipment according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a new PUCCH format, where Di represents an ith symbol sequence, and when a new PUCCH format is transmitted using only one PRB in the frequency domain, each Di includes 12 symbols, respectively mapped. On 12 subcarriers on a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the PUCCH On the assumption that only 1 PRB transmission PUCCH is occupied, and before the regular cycle The Cyclic Prefix (CP) and only one column of pilot symbols in one time slot, and in the case of Quadrature Phase-Shift Keying (QPSK) modulation, the PUCCH
  • the new format can carry 288-bit encoded information, ie 144 modulation symbols.
  • the number of carriers that the user equipment actually has scheduled is always Less than or equal to the number of configured carriers. Therefore, the number of ACK/NACK feedback bits of the user equipment in different configurations and different subframes is different; when the new PUCCH format is used to transmit multi-carrier periodic channel state information (CSI) Since the CSI only feeds back the activated carrier, the number of activated carriers may change after a period of time.
  • the number of feedback bits is different, so different configurations and periods in different subframes The number of CSI bits is also different.
  • the periodic CSI is not present in every subframe, and the periodic CSI is different according to the number of active carriers and the periodic CSI reporting mode.
  • the number of feedback bits is also different, so the different configuration conditions and the total number of UCI bits in different subframes are also different. For the above situation, 288 coded bit transmissions are always used.
  • the code rate is different, and the code rate may have large redundancy.
  • the code rate is 1/2
  • the code rate is 1/3
  • the 72-bit UCI has a code rate of 1/4.
  • the embodiment of the present application provides a frequency domain spreading scheme and a corresponding despreading scheme, which may perform frequency domain spreading on an orthogonal sequence corresponding to a symbol carrying data in a new PUCCH format, in the PUCCH.
  • the pilot information on the pilot-bearing symbols is cyclically shifted by a cyclic shift interval of ⁇ to support multiplexing of a plurality of user equipments within a PRB occupied by one PUCCH.
  • the length of the orthogonal sequence used to transmit the PUCCH is expressed as
  • M is the number of subcarriers occupied by one PRB, and M is a positive integer, for example, if one PRB occupies 12 subcarriers,
  • the value can be one of 1, 2, 3, 4, and 6.
  • the lengths of the orthogonal sequences corresponding to all or part of the SC-FDMA symbols used for transmitting the PUCCH in the same subframe may be the same or different.
  • the orthogonal sequence corresponding to the SC-FDMA symbol for transmitting data may have the following provisions :
  • orthogonal sequences corresponding to the SC-FDMA symbols used for transmitting data in the same time slot are the same, and the SC-FDMA symbols for transmitting data are different in the same time slot or in different time slots. Orthogonal sequences are different; or,
  • the orthogonal sequence may be a Walsh Code orthogonal sequence, a Discrete Fourier Transform (DFT) orthogonal sequence, or a Discrete Cosine Transform (DCT) orthogonal sequence.
  • DFT Discrete Fourier Transform
  • DCT Discrete Cosine Transform
  • the orthogonal sequence includes [+1 +1], [+1 -1], and the correspondence between the orthogonal sequences and the sequence index n oc can be as shown in Table 1;
  • the orthogonal sequence includes: [1 1 1], [1 e j2 ⁇ /3 e j4 ⁇ /3 ], [1 e j4 ⁇ /3 e j2 ⁇ /3 ], orthogonal sequences (Orthogonal sequences) and orthogonal sequence numbers (The correspondence of Sequence index n oc ) can be as shown in Table 2;
  • the orthogonal sequence includes: [+1 +1 +1 +1], [+1 -1 +1 -1], [+1 -1 +1], [+1 +1 -1 -1]
  • the correspondence between Orthogonal sequences and Sequence index n oc can be as shown in Table 3;
  • FIG. 2 is a schematic diagram of a frequency domain spread spectrum transmission process provided by an embodiment of the present application, where the process is performed on a user equipment side.
  • the process can include steps 201 through 203, wherein:
  • Step 201 The user equipment acquires indication information of an orthogonal sequence used for transmitting the PUCCH.
  • the PUCCH format may be a PUCCH format that defines UCI feedback information capable of carrying more than 5 carrier aggregation, such as a PUCCH new format based on the PUSCH structure (new PUCCH fomrat), or based on format3 The new PUCCH format of the structure.
  • the indication information for transmitting the orthogonal sequence of the PCCCH may be the number of the orthogonal sequence.
  • the orthogonal sequence used for transmitting the PUCCH may be the same in different ranges, and specifically may include one of the following cases:
  • the orthogonal sequence corresponding to the SC-FDMA symbol used for transmitting data in the same time slot is the same, and the orthogonal sequence corresponding to the SC-FDMA symbol used for transmitting data in different time slots is different.
  • the SC-FDMA symbol corresponding to the SC-FDMA symbol used for transmitting data in the odd time slot is positive.
  • the orthogonal sequence is different from the orthogonal sequence corresponding to the SC-FDMA symbol used for transmitting data in the even time slot; if the time slot numbers included in different subframes are the same, the odd time slots of different subframes are used in the odd time slot
  • the orthogonal sequence corresponding to the SC-FDMA symbol of the transmitted data may be the same, and the orthogonal sequence corresponding to the SC-FDMA symbol used for transmitting data in the even-numbered slots of different subframes may be the same; if included in different subframes
  • the slot numbers are different, and the orthogonal sequences corresponding to the SC-FDMA symbols used for transmitting data in the odd slots of different subframes are different, and the SC-FDMA symbols used for transmitting data in the even slots of different subframes are used.
  • the corresponding orthogonal sequences are also different.
  • the orthogonal sequences corresponding to the SC-FDMA symbols used for transmitting data in the same time slot are the same, and the SC-FDMA symbols for transmitting data are different in the same time slot or in different time slots.
  • the orthogonal sequence is different; in one subframe, two slots (one of which is an odd slot and the other is an even slot) and each slot contains 7 SC-FDMA symbols as an example, in the same subframe
  • the SC-FDMA numbers in the odd-numbered time slots and in the even-numbered time slots are all started from 0 to the end of 6th, and the SC-FDMA symbols for transmitting data in the odd-numbered time slots and in the even-numbered time slots are all i.
  • the orthogonal sequences are the same, and the orthogonal sequences corresponding to the SC-FDMA symbols for transmitting data numbered i and numbered j in any one slot are different. Since the SC-FDMA numbers in each subframe are identical, each subframe is like the above.
  • the orthogonal sequences corresponding to each SC-FDMA symbol used for transmitting data are different from each other, and in different subframes, if the slot number is used, the SC for transmitting data is included
  • the orthogonal sequences corresponding to the -FDMA symbols are different from each other; that is, taking one time slot in one subframe (one of which is an odd time slot and the other is an even time slot) as an example, in the same subframe, an odd time
  • the orthogonal sequences corresponding to each SC-FDMA symbol used for transmitting data in the slot are different from each other, even
  • the embodiment of the present application provides several notification manners for the numbering of the orthogonal sequence, which are listed as follows:
  • Notification method 1 Display notification by high-level signaling
  • the number of the orthogonal sequence is signaled by higher layer signaling, such as by Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the user equipment can obtain the number of the orthogonal sequence used for transmitting the PUCCH according to the received high layer signaling.
  • Notification method 2 Display notification by downlink control information
  • the number of the orthogonal sequence is notified by a bit field in the downlink control information, such as a Physical Downlink Shared Channel (PDCCH) or an enhanced physical downlink control channel (Enhanced PDCCH, EPDCCH).
  • Downlink Control Downlink Control
  • the specific bit field in the information, DCI) may carry the number of the orthogonal sequence or the indication information of the number.
  • the user equipment can obtain the number of the orthogonal sequence used for transmitting the PUCCH according to the bit field in the received downlink control information.
  • Notification method 3 Display notification by high-level signaling and downlink control information
  • a number set including at least two orthogonal sequences is pre-configured by the high layer signaling, and the number of the orthogonal sequence is notified by the bit field in the downlink control information to a number in the pre-configured number set.
  • Notification method 4 Implicit notification by channel resource number of PUCCH
  • the user equipment may determine the number of the orthogonal sequence used by the PUCCH according to the channel resource number of the PUCCH. That is, the network side does not directly notify the number of the orthogonal sequence, but is calculated by the user equipment according to the channel resource number of the PUCCH according to an agreed rule or algorithm.
  • the following embodiments of the application enumerate the following rules to determine the number of orthogonal sequences used by the PUCCH:
  • Rule 1 Determine the number of the orthogonal sequence used by the PUCCH in the subframe to be located according to at least the channel resource number of the PUCCH and the length of the orthogonal sequence used by the PUCCH.
  • the orthogonal sequence number is Indicates the channel resource number of n oc according to new PUCCH format Orthogonal sequence length determine. E.g, Where mod represents the remainder operation. This rule can be applied to the scenario where the orthogonal sequences corresponding to all SC-FDMA symbols used to transmit data are the same in one subframe.
  • Rule 2 determining the number of the orthogonal sequence used by the PUCCH in the slot in the subframe according to at least the channel resource number of the PUCCH, the length of the orthogonal sequence used by the PUCCH, and the number of the slot in which the PUCCH is located. .
  • the orthogonal sequence number Indicates the number n oc of the orthogonal sequence used in one slot, according to the channel resource number of the new PUCCH format Orthogonal sequence length And the number n s of the time slot is determined.
  • This rule can be applied to the following scenario: the sequence of the orthogonal sequence corresponding to the SC-FDMA symbol used for transmitting data in the slot of the same slot number is the same, and the slot of the different slot number is used for transmitting data.
  • the orthogonal sequences corresponding to the SC-FDMA symbols are different.
  • Rule 3 determining, according to at least a channel resource number of the PUCCH, a length of an orthogonal sequence used by the PUCCH, and a number of an SC-FDMA symbol used for transmitting the PUCCH, determining, in each slot in the subframe in which the PUCCH is located The number of the orthogonal sequence corresponding to the SC-FDMA symbol.
  • the orthogonal sequence number Indicates the number n oc of the orthogonal sequence corresponding to an SC-FDMA symbol, according to the channel resource number of the new PUCCH format Orthogonal sequence length And the number 1 of the SC-FDMA symbol is determined. This rule applies to scenarios in which different SC-FDMA symbols used to transmit data correspond to different orthogonal sequences in the same time slot.
  • Rule 4 determining, according to at least the channel resource number of the PUCCH, the length of the orthogonal sequence used by the PUCCH, the number of the slot in which the PUCCH is located, and the number of the SC-FDMA symbol used to transmit the PUCCH in the slot, determining the PUCCH at The number of the orthogonal sequence corresponding to the SC-FDMA symbol in the slot of the subframe in which the subframe is located.
  • the orthogonal sequence number Indicates the number n oc of the orthogonal sequence corresponding to one SC-FDMA symbol in one slot, according to the channel resource number of the new PUCCH format Orthogonal sequence length The number n s of the time slot and the number l of the SC-FDMA symbol in the time slot and the determination.
  • This rule can be applied to the scenario where the numbers of orthogonal sequences corresponding to SC-FDMA symbols in different time slots are different from each other and different SC-FDMAs for transmitting data in the same time slot.
  • the numbers of the orthogonal sequences corresponding to the symbols are different from each other.
  • the channel resource number of the PUCCH may be notified by the DCI.
  • the channel resource number of the PUCCH is indicated by using a specific bit field in the DCI.
  • the channel resource number of the PUCCH may also be notified by higher layer signaling, for example, using a high layer.
  • the specific bit field in the signaling indicates the channel resource number of the PUCCH.
  • the channel resource number of the PUCCH can also be jointly notified by the DCI and the high layer signaling.
  • the network side configures the channel resource number set of the PUCCH to the user equipment in advance through the high layer signaling.
  • the set includes at least two channel resource number groups, and each group includes at least one channel resource number, and the network side indicates to the user equipment, by using a specific bit field in the DCI, a channel resource number group in the set.
  • Step 202 The user equipment performs frequency domain spreading on the uplink control information carried by the PUCCH according to the orthogonal sequence corresponding to the indication information of the orthogonal sequence.
  • the obtained orthogonal sequence for performing frequency domain spreading can be expressed as:
  • M is the number of subcarriers occupied by one PRB
  • M is a positive integer.
  • one PRB occupies 12 subcarriers, so accordingly, It can take any one of 1, 2, 3, 4, and 6.
  • all or part of the orthogonal sequences corresponding to the SC-FDMA symbols used for transmitting the PUCCH in the same subframe have the same length.
  • the uplink control information carried by the PUCCH is modulated into a plurality of data symbols (the data symbols are baseband digital signals) in the baseband modulation process, and each data symbol is mapped to a resource on an SC-FDMA symbol in subsequent resource mapping.
  • the Resource Element RE
  • the uplink control information carried by the PUCCH in step 202 multiplying the data symbol with the corresponding orthogonal sequence for each data symbol of the PUCCH to obtain the spread data symbol Mapping the spread data symbols to an SC-FDMA symbol On the resource unit.
  • the orthogonal sequences corresponding to all SC-FDMA symbols are the same, before performing frequency domain spreading on one data symbol of the PUCCH, it is necessary to determine the SC-FDMA symbol corresponding to the data symbol, and use the SC.
  • the orthogonal sequence corresponding to the -FDMA symbol performs frequency domain spreading on the data symbol.
  • the orthogonal sequence length is Then the data symbol is mapped to the SC-FDMA symbol On the RE.
  • RE group for a RE group to which a data symbol is mapped (a data symbol is mapped to The REs are called an RE group.
  • the REs in the RE group can be continuously distributed in the frequency domain or discretely distributed in the frequency domain. If the REs in the RE group to which the data symbols are mapped are discretely distributed in the frequency domain, the intervals in the frequency domain between the adjacent two REs in the RE group may be the same or different.
  • an interval between the adjacent two REs in the frequency domain is the same in one RE group, the interval between adjacent REs in any one RE group in the frequency domain is adjacent to another RE group.
  • the intervals between the REs in the frequency domain are the same, or the interval between adjacent REs in at least one RE group is different from the interval between two adjacent REs in another RE group.
  • REs in different RE groups may be staggered or parallel distributed in the frequency domain (ie, the distribution of REs in different RE groups in the frequency domain is not interleaved).
  • This example shows the mapping situation within 1 PRB, which occupies 12 subcarriers in the frequency domain and 1 slot in the time domain.
  • a conventional Cyclic Prefix (CP) as a guard interval as an example, there are 7 SC-FDMA symbols in one time domain, and only one column of pilot symbols exists in one slot.
  • the REs in one SC-FDMA symbol are referred to as RE0 to RE11 in the order of frequency from small to large in the PRB.
  • the group data symbol Di includes six data symbols transmitted on the SC-FDMA symbols carrying data in one slot, respectively, if each data symbol d i,l included in each group of data symbols Di corresponds to If the orthogonal sequences are different, then each d i,l needs to perform frequency domain spreading using the orthogonal sequence corresponding to the d i, l , and map the spread data to the SC corresponding to the d i, l On the corresponding RE on the -FDMA symbol, where d i,l represents the data symbol transmitted on the SC-FDMA symbol corresponding to the SC-FDMA symbol number 1 contained in Di.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 2, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread to the first bearer data after being spread in the frequency domain of length 2.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D3 is spread in the frequency domain of length 2, and then mapped to the first
  • RE5 ⁇ on the SC-FDMA symbol carrying the data, and so on the first data-spreading data mapping on the SC-FDMA symbol is performed.
  • the second one included in D1 is included.
  • the data symbols transmitted on the SC-FDMA symbols carrying the data are spread in the frequency domain of length 2, and are mapped to ⁇ RE0, RE1 ⁇ on the SC-FDMA symbol of the second bearer data, which is included in D2.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data are mapped to the second bearer data after being spread in the frequency domain of length 2.
  • SC-FDMA On the ⁇ RE2, RE3 ⁇ on the number, the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D3 are spread in the frequency domain of length 2, and then mapped to the second bearer data.
  • RE5 ⁇ on the SC-FDMA symbol, and so on the spread spectrum data mapping on the second bearer SC-FDMA symbol is completed, and the SC-FDMA symbol of each bearer data is further deduced by analogy.
  • Spread spectrum data mapping It can be seen that the two REs to which one data symbol is mapped are consecutive in the frequency domain, and the RE groups to which different data symbols are mapped are not interleaved (ie, parallel) in the frequency domain.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 2, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread to the first bearer data after being spread in the frequency domain of length 2.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D3 is spread in the frequency domain of length 2, and then mapped to the first
  • RE8 ⁇ on the SC-FDMA symbol carrying the data, and so on the first data-spreading data mapping on the SC-FDMA symbol is performed.
  • the second one included in D1 is included.
  • the data symbols transmitted on the SC-FDMA symbols carrying the data are spread in the frequency domain of length 2, and are mapped to ⁇ RE0, RE6 ⁇ on the SC-FDMA symbol of the second bearer data, which is included in D2.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data are mapped to the second bearer data after being spread in the frequency domain of length 2.
  • the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D3 is spread in the frequency domain of length 2, and then mapped to the first
  • the spread spectrum data mapping on the second bearer SC-FDMA symbol is completed, and further, each of the bearer data is completed by analogy.
  • the data symbols transmitted on the SC-FDMA symbol are corresponding to those in the orthogonal sequence.
  • the orthogonal codes are multiplied and mapped to corresponding REs on the SC-FDMA symbol; when a resource block (Resource Block, RB) (12 subcarriers) is occupied in the frequency domain on a SC-FDMA symbol carrying data
  • RB Resource Block
  • the orthogonal sequence may also be defined as shown in Table 5 below, where n oc is an orthogonal sequence number, and N sc RB is the number of subcarriers included in one RB, for example 12.
  • n oc is an orthogonal sequence number
  • N sc RB is the number of subcarriers included in one RB, for example 12.
  • the i-th (i is a positive integer) data symbols of the 6 data symbols transmitted on the SC-FDMA symbol may be compared with the i-th and i-th 6th orthogonal codes in the corresponding orthogonal sequence. Multiply, mapped to the i-th and i-th +RE REs on the SC-FDMA symbol, respectively.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 2, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread to the first bearer data after frequency domain spread of length 2.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D3 is spread in the frequency domain of length 2, and then mapped to the first
  • RE9 ⁇ on the SC-FDMA symbol carrying the data, and so on the first data-spreading data mapping on the SC-FDMA symbol is performed.
  • the second one included in D1 is included.
  • the data symbols transmitted on the SC-FDMA symbols carrying the data are spread in the frequency domain of length 2, and are mapped to ⁇ RE0, RE11 ⁇ on the SC-FDMA symbol of the second bearer data, which is included in D2.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data are spread in the frequency domain of length 2, and are mapped to the second bearer number.
  • the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D3 is spread in the frequency domain of length 2, and then mapped to
  • the ⁇ RE2 RE9 ⁇ on the SC-FDMA symbol of the second bearer data, and so on, the spread spectrum data mapping on the second bearer SC-FDMA symbol is completed, and further, each bearer data is completed by analogy.
  • This example shows the mapping situation within 1 PRB, which occupies 12 subcarriers in the frequency domain, in the time domain. Take up 1 slot. Taking a conventional CP as a guard interval as an example, there are 7 SC-FDMA symbols in one time domain, and only one column of pilot symbols exists in one slot. For convenience of description, the REs in one SC-FDMA symbol are referred to as RE0 to RE11 in the order of frequency from small to large in the PRB.
  • each set of data symbols Di includes six data symbols transmitted on the SC-FDMA symbols carrying data in one slot, respectively, if each data symbol d i,l included in each group of data symbols Di If the corresponding orthogonal sequence is different, then each d i,1 needs to perform frequency domain spreading using the orthogonal sequence corresponding to the d i, l respectively, and map the spread data to the d i, l corresponding On the corresponding RE on the SC-FDMA symbol, where d i,l represents the data symbol transmitted in the Di corresponding to the SC-FDMA symbol of the SC-FDMA symbol number 1.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 3, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 3, and is mapped to the first one.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D3 is spread in the frequency domain of length 3.
  • the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D2 is spread in the frequency domain of length 3, and is mapped to the first On the ⁇ RE3, RE4, RE5 ⁇ of the two SC-FDMA symbols carrying the data, the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D3 are subjected to frequency domain spreading with a length of three. Then, it is mapped to ⁇ RE6, RE7, RE8 ⁇ on the SC-FDMA symbol of the second bearer data, and so on, and the data mapping after spreading on the second bearer SC-FDMA symbol is completed, and further Analogously, the spread-spectrum data mapping on each SC-FDMA symbol carrying data is completed. It can be seen that the three REs to which one data symbol is mapped are consecutive in the frequency domain, and the RE groups to which different data symbols are mapped are not interleaved (ie, parallel) in the frequency domain.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 3, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the first SC-FDMA symbol carrying the data contained in D2 is spread in the frequency domain of length 3, and is mapped to the first one.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D3 passes through the frequency domain of length 3.
  • the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D1 is spread in the frequency domain of length 3, and then mapped to the SC-FDMA symbol of the second bearer data.
  • RE0, RE4, RE8 ⁇ the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D2 are spread in the frequency domain of length 3, and then mapped to the SC of the second bearer data.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D3 are spread in the frequency domain of length 3, and then mapped to the first
  • the spread data mapping on the second bearer SC-FDMA symbol is completed, and further, each bearer is completed by analogy.
  • Spread-spectrum data mapping on SC-FDMA symbols of data It can be seen that the three REs to which one data symbol is mapped are discrete in the frequency domain, and the interval between two adjacent REs of the three REs to which each data symbol is mapped is 4 REs in the frequency domain, which is different.
  • the RE groups to which the data symbols are mapped are interleaved in the frequency domain.
  • This example shows the mapping situation within 1 PRB, which occupies 12 subcarriers in the frequency domain and 1 slot in the time domain.
  • a conventional CP as a guard interval as an example, there are 7 SC-FDMA symbols in one time domain, and only one column of pilot symbols exists in one slot.
  • the REs in one SC-FDMA symbol are referred to as RE0 to RE11 in the order of frequency from small to large in the PRB.
  • the orthogonal sequence [w1, w2, w3, w4] is used to perform frequency domain spreading on the three sets of data symbols of the PUCCH (shown as D1 to D3 in the figure), and resource mapping is performed on the spread data symbols.
  • each set of data symbols Di contains 6 data symbols transmitted on SC-FDMA symbols carrying data in one slot, respectively, if each data symbol d i included in each set of data symbols Di If the orthogonal sequence corresponding to l is different, then each d i,l needs to perform frequency domain spreading using the orthogonal sequence corresponding to the d i, l , and map the spread data to the d i, l On the corresponding RE on the corresponding SC-FDMA symbol, where d i,l represents the data symbol transmitted in the Di corresponding to the SC-FDMA symbol with the SC-FDMA symbol number l.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 4, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 4, and is mapped to the first
  • RE5, RE6, RE7 ⁇ on the SC-FDMA symbol carrying the data the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D3 passes through the frequency domain of length 4.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D3 are spread in the frequency domain of length 4, and are mapped to the second.
  • RE9, RE10, RE11 ⁇ on the SC-FDMA symbol carrying the data the data mapping after spreading on the second bearer SC-FDMA symbol is completed, and further, each of the bearer data is completed by analogy.
  • Spread-spectrum data mapping on SC-FDMA symbols It can be seen that the four REs to which one data symbol is mapped are consecutive in the frequency domain, and the RE groups to which different data symbols are mapped are not interleaved (ie, parallel) in the frequency domain.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 4, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 4, and is mapped to the first
  • the data symbol transmitted on the first SC-FDMA symbol carrying the data contained in D3 passes through the frequency domain of length 4.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D1 are spread in the frequency domain of length 4, and then mapped to the SC-FDMA symbol of the second bearer data.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D2 are spread in the frequency domain of length 4, and are On the ⁇ RE1, RE4, RE7, RE10 ⁇ mapped to the SC-FDMA symbol of the second bearer data, the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D3 has a length of 4 After frequency domain spreading, it is mapped to ⁇ RE2, RE5, RE8, RE11 ⁇ on the SC-FDMA symbol of the second bearer data, and the data mapping after spreading on the second bearer SC-FDMA symbol is completed. Further derivation, the spread-spectrum data mapping on each SC-FDMA symbol carrying data is completed.
  • the four REs to which one data symbol is mapped are discrete in the frequency domain, and the interval between two adjacent REs of the four REs to which each data symbol is mapped is 3 REs in the frequency domain, which is different.
  • the RE groups to which the data symbols are mapped are interleaved in the frequency domain.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 4, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 4, and is mapped to the first
  • the length of the data symbol transmitted on the SC-FDMA symbol of the first bearer data contained in D3 on ⁇ RE2, RE3, RE8, RE9 ⁇ on the SC-FDMA symbol carrying the data After frequency domain spreading of 4, it is mapped to ⁇ RE4, RE5, RE10, RE11 ⁇ on the SC-FDMA symbol of the first bearer data, and the spread of the first bearer on the SC-FDMA symbol is completed.
  • Data mapping, and so on, the data symbols transmitted on the SC-FDMA symbols of the second bearer data included in D1 are spread in the frequency domain of length 4, and then mapped to the SC- of the second bearer data.
  • the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D2 is spread in the frequency domain of length 4, and then mapped to
  • the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D3 passes through a frequency of length 4.
  • the domain After the domain is spread, it is mapped to ⁇ RE4, RE5, RE10, RE11 ⁇ on the SC-FDMA symbol of the second bearer data, and the data mapping after spreading on the second bearer SC-FDMA symbol is completed, and further By analogy, the spread-spectrum data mapping on each SC-FDMA symbol carrying the data is completed.
  • the four REs to which one data symbol is mapped are discrete in the frequency domain, and the adjacent two REs of the four REs to which each data symbol is mapped are not equally spaced in the frequency domain, and different data symbols are The RE groups mapped to are interleaved in the frequency domain.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 4, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 4, and is mapped to the first
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D3 passes through the frequency domain of length 4.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D1 are spread in the frequency domain of length 4, and then mapped to the SC-FDMA symbol of the second bearer data.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D2 are spread in the frequency domain of length 4,
  • the data symbol transmitted on the SC-FDMA symbol of the second bearer data included in D3 has a length of 4
  • the spread data mapping on the second bearer SC-FDMA symbol is completed. Further derivation, the spread-spectrum data mapping on each SC-FDMA symbol carrying data is completed. It can be seen that the four REs to which one data symbol is mapped may be discrete or continuous in the frequency domain, and the RE groups to which different data symbols are mapped are interleaved in the frequency domain.
  • This example shows the mapping situation within 1 PRB, which occupies 12 subcarriers in the frequency domain and 1 slot in the time domain.
  • a conventional CP as a guard interval as an example, there are 7 SC-FDMA symbols in one time domain, and There is only one column of pilot symbols for a time slot.
  • the REs in one SC-FDMA symbol are referred to as RE0 to RE11 in the order of frequency from small to large in the PRB.
  • the orthogonal sequence [w1, w2, w3, w4, w5, w6] is used to perform frequency domain spreading on the two sets of data symbols of the PUCCH (shown as D1 to D2 in the figure), and the spread spectrum data is used.
  • the symbol performs resource mapping; wherein each set of data symbols Di includes 6 data symbols transmitted on SC-FDMA symbols carrying data in one slot, respectively, if each of the data symbols Di included in each group If the orthogonal sequences corresponding to the data symbols d i, l are different, then each d i, l needs to perform frequency domain spreading using the orthogonal sequence corresponding to the d i, l respectively, and map the spread data to the d i, corresponding to the RE on the SC-FDMA symbols corresponding to l, where d i, l indicate corresponding Di included in the SC-FDMA symbol number transmitted data symbol on the symbol l SC-FDMA.
  • the data symbols transmitted on the first SC-FDMA symbol carrying data are included in the frequency domain spread spectrum of length 6 and mapped to the first SC-FDMA carrying data.
  • the symbols ⁇ RE0, RE1, RE2, RE3, RE4, RE5 ⁇ the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D2 are spread in the frequency domain of length 6.
  • the spread data mapping on the first bearer SC-FDMA symbol is completed.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D1 are spread in the frequency domain of length 6, and then mapped to the SC-FDMA symbol of the second bearer data.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D2 are spread in the frequency domain of length 6, and are mapped to the first
  • the data mapping after spreading on the second bearer SC-FDMA symbol is completed, and so on.
  • a spread-spectrum data map on each SC-FDMA symbol carrying data is completed. It can be seen that the six REs to which one data symbol is mapped are consecutive in the frequency domain, and the RE groups to which different data symbols are mapped are not interleaved (ie, parallel) in the frequency domain.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 6, and are mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 6.
  • the spread data mapping on the first bearer SC-FDMA symbol is completed.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D1 are spread in the frequency domain of length 6, and then mapped to the SC-FDMA symbol of the second bearer data.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D2 are spread in the frequency domain of length 6, and are mapped to the first ⁇ RE3, RE4, RE5 on 2 SC-FDMA symbols carrying data.
  • the spread data mapping on the second bearer SC-FDMA symbol is completed, and further, the spread data mapping on the SC-FDMA symbol of each bearer data is completed. It can be seen that the six REs to which one data symbol is mapped are discrete in the frequency domain, and the RE groups to which different data symbols are mapped are interleaved in the frequency domain.
  • the data symbols transmitted on the first SC-FDMA symbol carrying data are included in the frequency domain spread spectrum of length 6 and mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 6.
  • RE3, RE6, RE7, RE10, RE11 ⁇ on the SC-FDMA symbol of the first bearer data the spread data mapping on the first bearer SC-FDMA symbol is completed.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D1 are spread in the frequency domain of length 6, and then mapped to the SC-FDMA symbol of the second bearer data.
  • RE0, RE1, RE4, RE5, RE8, RE9 ⁇ the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D2 are mapped to the first stage by frequency domain spread of length 6.
  • RE3, RE6, RE7, RE10, RE11 ⁇ on the two SC-FDMA symbols carrying the data, the data mapping after spreading on the second bearer SC-FDMA symbol is completed, and so on.
  • a spread-spectrum data map on each SC-FDMA symbol carrying data is completed. It can be seen that the six REs to which one data symbol is mapped are discrete in the frequency domain, and the RE groups to which different data symbols are mapped are interleaved in the frequency domain.
  • the data symbols transmitted on the SC-FDMA symbol of the first bearer data included in D1 are spread in the frequency domain of length 6, and then mapped to the first SC-FDMA carrying data.
  • the data symbol transmitted on the SC-FDMA symbol of the first bearer data included in D2 is spread in the frequency domain of length 6.
  • the spread data mapping on the first bearer SC-FDMA symbol is completed.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D1 are spread in the frequency domain of length 6, and then mapped to the SC-FDMA symbol of the second bearer data.
  • the data symbols transmitted on the SC-FDMA symbol of the second bearer data included in D2 are spread in the frequency domain of length 6, and are mapped to the first
  • the ⁇ RE3, RE4, RE5, RE6, RE7, RE8 ⁇ on the SC-FDMA symbols carrying the data the data mapping after spreading on the second bearer SC-FDMA symbol is completed, and so on.
  • a spread-spectrum data map on each SC-FDMA symbol carrying data is completed. It can be seen that the six REs to which one data symbol is mapped may be consecutive or discrete in the frequency domain, and the RE groups to which different data symbols are mapped are interleaved in the frequency domain.
  • the mapping result may include the following:
  • each PRB may be the same as the PRB situation, or it may be considered to spread the REs in different PRBs as a group across the PRB;
  • the second time slot (such as an even time slot) is in the same frequency domain as the first time slot (such as an odd time slot), performing time domain frequency hopping
  • the second time slot and the first time slot are respectively located in different frequency domain positions;
  • each time slot may contain more than one column of pilots, wherein only the number of SC-FDMA symbols carrying the data is changed;
  • the number of SC-FDMA symbols carrying data in each slot is different from the above scenarios 1 to 4, for example, SC-FDMA symbols carrying data in one slot when only one column of RSs is included The number is five.
  • Step 203 The user equipment transmits the frequency domain spread spectrum uplink control information on the frequency domain resource corresponding to the PUCCH.
  • the radio frequency signal is modulated for the resource mapping result in step 202, and the radio frequency signal is obtained and transmitted, so that the frequency domain spread spectrum uplink control information is transmitted on the frequency domain resource corresponding to the PUCCH.
  • the frequency domain resources corresponding to the PUCCH may be pre-configured through high-layer signaling, such as by RRC signaling, or may be notified through a bit field in the downlink control information, or may be sent through high-level signaling and downlink. The way to control the combination of information is notified.
  • the network side may pre-use the length of the network through high-layer signaling (such as RRC signaling).
  • the frequency domain resource corresponding to the PCCCH is configured to the user equipment when the orthogonal sequence is used for frequency domain spreading, or the network side may also notify the user equipment to use the current length by using the bit field in the DCI.
  • the orthogonal sequence performs the frequency domain resource corresponding to the PUCCH in the frequency domain spreading, or the high layer signaling pre-configures a frequency domain resource set, which includes at least two sets of different frequency domain resources, and the bit field indication in the downlink control information
  • One set of frequency domain resources is provided to the user equipment.
  • the user equipment can determine the frequency domain resource for transmitting the PUCCH by using the indication information notified in the foregoing manner.
  • the indication information of the frequency domain resource corresponding to the PUCCH may include: the number of the PRB, the number of the PRB (the number of the PRB may identify the location of the PRB in the system bandwidth), and one or more of the channel resource numbers of the PUCCH.
  • the indication information of the frequency domain resource corresponding to the PUCCH includes the channel resource number of the PUCCH
  • the user equipment may determine the number of the PRB corresponding to the PUCCH according to the channel resource number of the PUCCH. That is, the number of the PRB corresponding to the PUCCH may be determined according to the channel resource number of the PUCCH.
  • the number of the PRB Indicates the channel resource number of n PRB according to new PUCCH format Orthogonal sequence length determine.
  • the number of the PRB corresponding to the PUCCH can be determined according to the following formula:
  • n PRB is the number of the PRB; Indicates rounding down; For different Corresponding PRB starting position (calculated from the low frequency side), the value can be pre-configured by higher layer signaling; Is the length of the orthogonal sequence; The number of uplink PRBs;
  • the number of the PRB corresponding to the PUCCH may be determined by a subordinate formula:
  • n PRB is the number of the PRB; Indicates rounding down; Is the length of the orthogonal sequence; The number of uplink PRBs; that is, at this time, the current indication is considered Is from the first PRB calculator and assumes that each PRB contains the current Calculated by the resource, therefore, directly based on the value
  • the numerical relationship can be used to get the current PRB number.
  • the PUCCHs that use the orthogonal sequences of different lengths for frequency domain spreading are configured to be transmitted on different PRBs or configured to be multiplexed and transmitted on the same PRB, as shown in FIG. 7.
  • SF denotes an orthogonal sequence
  • SF 2 denotes an orthogonal sequence length of 2, and so on.
  • the orthogonal sequence of the PUCCH for frequency domain spreading can be configured to be multiplexed in the same PRB, because Orthogonal sequence The orthogonal sequences are also orthogonal.
  • Figure 7 shows the use of different Schematic diagram of resource allocation of PUCCH in frequency domain spread spectrum by orthogonal sequence.
  • the method further includes the steps of: determining a set of candidate cyclic shift values according to a cyclic shift value interval ⁇ , and selecting a cyclic shift value from the set, based on the cyclic shift
  • the value generates a pilot sequence, that is, cyclically shifts the pilot on the symbol carrying the pilot in the PUCCH, and the value of ⁇ meets the following constraints:
  • Nsc is the number of subcarriers occupied by the PUCCH in the frequency domain, Representing the length of the orthogonal sequence;
  • may specifically be one of a plurality of values pre-configured by the higher layer signaling that satisfy the above conditions, based on which a set of cyclic shift values may be determined.
  • the cyclic shift value may be notified by higher layer signaling and/or DCI, for example, the index value (number) of the cyclic shift value may be notified by higher layer signaling or DCI, or a set of cyclic shift values may be pre-configured by high layer signaling.
  • the DCI notifies a value in the set to the user equipment, or determines an index value of the cyclic shift value corresponding thereto according to the number of the orthogonal sequence; and then, according to the index information, a correspondence between the predetermined index value and the cyclic shift value The specific cyclic shift value is obtained in the set.
  • the number of cyclic shift values and Correlation, the interval between each cyclic displacement value is ⁇ .
  • Table 6 shows the correspondence between the number n oc of an orthogonal sequence and the cyclic shift value or the cyclic shift so the value n cs .
  • the cyclic shift interval ⁇ may be 6, and the candidate set of cyclic shifts may be ⁇ 1, 7 ⁇ , or ⁇ 2, 8 ⁇ , or ⁇ 3, 9 ⁇ , or ⁇ 4, 10 ⁇ , or ⁇ 5, 11 ⁇ , that is, the interval between different cyclic shift values is 6;
  • the cyclic shift interval ⁇ may be 4, and the candidate set of cyclic shifts may be ⁇ 1, 5, 9 ⁇ , or ⁇ 2, 6, 10 ⁇ , or ⁇ 3, 7, 11 ⁇ , that is, satisfy different cyclic shifts.
  • the interval between values is 4;
  • the cyclic shift interval ⁇ may be 3, and the cyclic shift sequence may be ⁇ 1, 4, 7, 10 ⁇ , or ⁇ 2, 5, 8, 11 ⁇ , that is, the interval between different cyclic shift values is 3 Yes;
  • the cyclic shift interval ⁇ may be 2, and the cyclic shift sequence may be ⁇ 1, 3, 5, 7, 9, 11 ⁇ , that is, the interval between different cyclic shift values is 2.
  • the user equipment acquires information about the orthogonal sequence used by the PUCCH, and performs uplink control information carried by the PICCH according to the orthogonal sequence corresponding to the indication information of the orthogonal sequence.
  • Frequency domain spreading is performed, and the uplink control information is transmitted on the frequency domain resource corresponding to the PUCCH, so that frequency domain spreading is implemented for the PUCCH, thereby increasing the number of users multiplexed in the PRB and reducing the PUCCH resource overhead.
  • the embodiment of the present application is applicable to performing frequency domain spreading on a new format of a PUCCH (new PDCCH format).
  • the frequency domain spreading according to the embodiment of the present application has the advantage of time domain spreading. It is possible to define the same spreading scheme for the normal PUCCH and the shortened PUCCH as well as the regular CP and the extended CP, instead of the time domain spreading method, the length of the orthogonal sequence needs to be changed according to the change of the SC-FDMA symbol number of the bearer data, and avoid Different time domain orthogonal sequence lengths are used in one time slot, thereby limiting the multiplexing capacity. For example, the length of the orthogonal sequence used in PUCCH is In this case, the embodiment of the present application can implement multiplexing transmission in a PRB occupied by one PUCCH. User devices.
  • FIG. 8 is a schematic diagram of a frequency domain despreading process provided by an embodiment of the present application, where the process is implemented on a base station side.
  • the despreading process can be considered as the inverse of the spreading process shown in FIG. 2.
  • the process can include the following steps 801-803, wherein:
  • Step 801 The base station receives the PUCCH on a frequency domain resource corresponding to the PUCCH.
  • Step 802 The base station determines indication information of an orthogonal sequence used by the PUCCH.
  • Step 803 The base station performs frequency domain despreading on the uplink control information carried in the PUCCH by using an orthogonal sequence corresponding to the indication information of the orthogonal sequence.
  • the despreading process on the base station side is the inverse of the spreading process on the user equipment side. For example, for each symbol of the single carrier frequency division multiple access SC-FDMA symbol occupied by the PUCCH except for the symbol of the transmission reference signal, on one SC-FDMA symbol On RE Data symbols and lengths are The conjugate transposed sequences of the orthogonal sequences are multiplied to obtain a despread data modulation symbol.
  • the REs of the RE group to which the data symbols are mapped are continuously distributed or discretely distributed in the frequency domain; and/or the REs in different RE groups to which different data symbols are mapped are parallelly distributed or interleaved in the frequency domain. distributed.
  • step 803 may be: for each SC-FDMA symbol of the bearer data occupied by the PUCCH, the spread data symbol received on the corresponding RE of the SC-FDMA symbol, and The conjugate transposed sequences of the corresponding orthogonal sequences are multiplied to obtain data symbols transmitted on the SC-FDMA symbols after despreading.
  • the length of the corresponding orthogonal sequence is 12, and the corresponding orthogonal sequence is [+1, +1, +1, +1, +1, +1, +1, + 1,+1,+1,+1] or [+1,+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1,-1],
  • the conjugate transpose of the code is multiplied to obtain the i-th data symbol of the six data symbols transmitted on the SC-FDMA symbol after despreading.
  • the base station may further receive the pilot of the PUCCH according to the cyclic shift value.
  • the cyclic shift value is one of a plurality of values determined according to a cyclic shift interval ⁇ , and the cyclic shift interval ⁇ satisfies: Nsc is the number of subcarriers occupied by the PUCCH in the frequency domain, Is the length of the orthogonal sequence.
  • the base station may notify the user equipment of the cyclic shift value by using high layer signaling and/or DCI.
  • the base station may further notify the user equipment of the number of the orthogonal sequence used for transmitting the PUCCH by using the bit field in the high layer signaling and/or the DCI, so that the user equipment performs the uplink carried on the PUCCH according to the corresponding orthogonal sequence.
  • the control information is frequency domain spread spectrum.
  • the base station may also notify the user equipment of the channel resource number of the PUCCH by using the high layer signaling and/or the DCI, so that the user equipment determines the number of the orthogonal sequence used by the PUCCH according to the channel resource of the PUCCH. .
  • the notification manner of the channel resource number of the PUCCH refer to the foregoing embodiment, and details are not described herein again.
  • the base station may further notify the user equipment of the indication information of the frequency domain resource corresponding to the PUCCH by using the high layer signaling and/or the DCI, so that the user equipment transmits the uplink control information carried by the PUCCH on the corresponding frequency domain resource.
  • the indication information of the frequency domain resource corresponding to the PUCCH may include one or more of a number of PRBs, a number of PRBs, and a channel resource number of a PUCCH.
  • the embodiment of the present application further provides a schematic structural diagram of a user equipment, where the user equipment can perform the foregoing frequency domain spread spectrum transmission process.
  • the user equipment may include: an obtaining module 901, a spreading module 902, and a transmission module 903, where:
  • An obtaining module 901 configured to acquire indication information of an orthogonal sequence used for transmitting a PUCCH
  • the spreading module 902 is configured to perform frequency domain spreading on the uplink control information carried by the PUCCH according to the orthogonal sequence corresponding to the indication information of the orthogonal sequence.
  • the transmission module 903 is configured to transmit the frequency domain-spread uplink control information on the frequency domain resource corresponding to the PUCCH.
  • the obtaining module 901 is specifically configured to: obtain, according to the received high layer signaling and/or a bit field in the DCI, a number of an orthogonal sequence used for transmitting the PUCCH; or, according to the channel resource number of the PUCCH, Determining the number of orthogonal sequences used by the PUCCH, wherein the channel resource number of the PUCCH is notified by higher layer signaling and/or a bit field in the DCI.
  • the obtaining module 901 may be specifically configured to: determine, according to at least a channel resource number of the PUCCH and a length of the orthogonal sequence, a number of an orthogonal sequence used by the PUCCH in a subframe; or, according to at least Determining, by the channel resource number of the PUCCH, the length of the orthogonal sequence, and the number of the slot in which the PUCCH is located, determining the number of the orthogonal sequence used by the PUCCH in the slot in the subframe; or, at least Determining, according to a channel resource number of the PUCCH, a length of the orthogonal sequence, and a number of an SC-FDMA symbol used to transmit the PUCCH, the SCC in each slot in a subframe in which the PUCCH is located a number of the orthogonal sequence corresponding to the FDMA symbol; or, at least according to the channel resource number of the PUCCH, the length of the orthogonal sequence, the number of the time slot in which the PUCCH is
  • the spreading module 902 is specifically configured to: for each data symbol of the PUCCH, multiply the data symbol by a corresponding orthogonal sequence to obtain a spread data symbol, and the spread data symbol Mapping to a set of resource elements RE on an SC-FDMA symbol, the RE group contains RE, Is the length of the orthogonal sequence.
  • the REs of the RE group to which the data symbols are mapped are continuously distributed or discretely distributed in the frequency domain; and/or the REs in different RE groups to which different data symbols are mapped are parallelly distributed or interleaved in the frequency domain. distributed.
  • the indication information of the frequency domain resource corresponding to the PUCCH is notified by high layer signaling and/or by a bit field in the DCI.
  • the indication information of the frequency domain resource corresponding to the PUCCH includes one or more of a quantity of a physical resource block PRB, a number of a PRB, and a channel resource number of a PUCCH.
  • the indication information of the frequency domain resource corresponding to the PUCCH includes the channel resource number of the PUCCH
  • the number of the PRB corresponding to the PUCCH is determined according to the channel resource number of the PUCCH.
  • the transmission module 903 is further configured to: cyclically shift a pilot of the PUCCH according to a cyclic shift value; wherein the cyclic shift value is one of a plurality of values determined according to a cyclic shift interval ⁇ ,
  • the cyclic shift interval ⁇ satisfies: Nsc is the number of subcarriers occupied by the PUCCH in the frequency domain, Is the length of the orthogonal sequence.
  • the cyclic shift value is determined by higher layer signaling and/or DCI, or according to the number of the orthogonal sequence.
  • the spread spectrum module 902 is specifically configured to:
  • the length of the corresponding orthogonal sequence is 12, and the corresponding orthogonal sequence is [+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1] or [+1, +1, +1, +1, +1, +1, +1, +1, -1, -1, -1, -1, -1, -1], will
  • the i-th data symbol of the six data symbols transmitted on the SC-FDMA symbol is multiplied by the i-th and i-th sixth orthogonal codes in the corresponding orthogonal sequence, and mapped to the On the i-th and i-th + 6th REs on the SC-FDMA symbol.
  • the embodiment of the present application further provides a schematic structural diagram of a user equipment.
  • the user equipment provided by the embodiment of the present application may include: a processor 1001, a memory 1002, a transceiver 1003, and a bus interface.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 in performing operations.
  • the transceiver 1003 is configured to receive and transmit data under the control of the processor 1001.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1001 and various circuits of memory represented by memory 1002.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1003 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 in performing operations.
  • the frequency domain spread spectrum transmission procedure on the user equipment side disclosed in the embodiment of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • each step of the frequency domain spread spectrum transmission process may be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in a form of software.
  • the processor 1001 can be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component, which can be implemented or executed in the embodiment of the present application.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the disclosed method can be directly embodied by the completion of the hardware processor or by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002 and completes the steps of the frequency domain spread spectrum transmission process in combination with its hardware.
  • the processor 1001 is configured to read a program in the memory 1002 and perform the following process:
  • the embodiment of the present application further provides a schematic structural diagram of a base station.
  • the base station and the base station can implement the aforementioned frequency domain despreading process.
  • the base station may include: a receiving module 1101, a determining module 1102, a despreading module 1103, and further, a notification module 1104, where:
  • the receiving module 1101 is configured to receive the PUCCH on a frequency domain resource corresponding to the PUCCH;
  • a determining module 1102 configured to determine indication information of an orthogonal sequence used by the PUCCH
  • the despreading module 1103 is configured to perform frequency domain despreading on the uplink control information carried in the PUCCH by using an orthogonal sequence corresponding to the indication information of the orthogonal sequence.
  • the notification module 1104 is configured to notify the user equipment of the number of the orthogonal sequence used for transmitting the PUCCH by using the bit field in the high layer signaling and/or the DCI; or notify the user equipment by using high layer signaling and/or DCI.
  • a channel resource number of the PUCCH such that the user equipment determines a number of an orthogonal sequence used by the PUCCH according to a channel resource of the PUCCH.
  • the despreading module 1103 is specifically configured to: for each symbol except the symbol of the transmission reference signal in the SC-FDMA symbol occupied by the PUCCH, on the symbol On the resource unit RE Data symbols, with a length of The conjugate transposed sequences of the orthogonal sequences are multiplied to obtain despread data modulation symbols.
  • the REs of the RE group to which the data symbols are mapped are continuously distributed or discretely distributed in the frequency domain; and/or the REs in different RE groups to which different data symbols are mapped are parallelly distributed or interleaved in the frequency domain. distributed.
  • the notification module 1104 is further configured to notify the user equipment of the indication information of the frequency domain resource corresponding to the PUCCH by using the high layer signaling and/or the DCI.
  • the indication information of the frequency domain resource corresponding to the PUCCH includes One or more of the number of PRBs, the number of PRBs, and the channel resource number of the PUCCH.
  • the receiving module 1101 is further configured to: receive a pilot of the PUCCH according to a cyclic shift value; wherein the cyclic shift value is one of a plurality of values determined according to a cyclic shift interval ⁇ , the cyclic shift The interval ⁇ is satisfied: Nsc is the number of subcarriers occupied by the PUCCH in the frequency domain, Is the length of the orthogonal sequence.
  • the notification module 1104 is further configured to notify the user equipment of the cyclic shift value by high layer signaling and/or DCI.
  • despreading module 1103 is specifically configured to:
  • the spread data symbol received on the corresponding RE of the SC-FDMA symbol is conjugated with the corresponding orthogonal sequence
  • the transposed sequences are multiplied to obtain data symbols transmitted on the SC-FDMA symbols after despreading.
  • the length of the corresponding orthogonal sequence is 12, and the corresponding orthogonal sequence is [+1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1, +1] or [+1, +1, +1, +1, +1, +1, +1, -1, -1, -1, -1, -1, -1], will a spread data symbol received on the ith and i+6th REs on the SC-FDMA symbol, and an i-th and i-th + 6th orthogonal code in the corresponding orthogonal sequence
  • the conjugate transpose is multiplied to obtain the i-th data symbol of the six data symbols transmitted on the SC-FDMA symbol after despreading.
  • the embodiment of the present application further provides a schematic structural diagram of a base station.
  • the base station may include: a processor 1201, a memory 1202, a transceiver 1203, and a bus interface.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1202 can store data used by the processor 1201 in performing operations.
  • the transceiver 1203 is configured to receive and transmit data under the control of the processor 1201.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1201 and various circuits of memory represented by memory 1202.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1203 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1202 can store data used by the processor 1201 in performing operations.
  • the frequency domain despreading transmission flow of the base station side disclosed in the embodiment of the present application may be applied to the processor 1201 or implemented by the processor 1201. In the implementation process, each step of the frequency domain despreading transmission process may pass through the processor 1201.
  • the integrated logic of the hardware or the instruction in the form of software is completed.
  • the processor 1201 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or a transistor logic device, and a discrete hardware component, which may be implemented or executed in the embodiment of the present application.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1202, and the processor 1201 reads the information in the memory 1202 and completes the steps of the frequency domain spread spectrum transmission process in conjunction with its hardware.
  • the processor 1201 is configured to read a program in the memory 1202 and perform the following process:
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种频域扩频方法、解扩频方法及装置。本申请实施例中,用户设备获取传输物理上行控制信道(PUCCH)所使用的正交序列的指示信息;所述用户设备根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;所述用户设备在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息。本申请可实现对PUCCH上承载的上行控制信息进行扩频。

Description

一种频域扩频、解扩频方法及装置
本申请要求在2015年9月25日提交中国专利局、申请号为201510624978.X、申请名称为“一种频域扩频、解扩频方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种频域扩频、解扩频方法及装置。
背景技术
在长期演进增强(Long Term Evolution-Advanced,LTE-A)版本13(Release 13,简称Rel 13)载波聚合(Carrier Aggregation,CA)系统中,支持最多32载波聚合。随着聚合载波数量的增加,终端反馈肯定确认(ACKnowledgement,ACK)/否定确认(Non-ACKnowledgement,NACK)的数量也将明显增加。因此目前提出了容量更大的物理上行控制信道(Physical Uplink Control Channel,PUCCH)新格式,用来承载更多的上行控制信息(Uplink Control Information,UCI)。
基于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)结构的PUCCH新格式(new PUCCH format),可以承载更多的比特编码和调制符号,理论上可以支持超过5个载波聚合时的多比特ACK/NACK反馈。
但是,如何对new PUCCH format的PUCCH进行扩频来增加在物理资源块(Physical Resource Block,PRB)内复用的用户数量,减少PUCCH资源开销,目前尚未有解决方案。
发明内容
本申请实施例提供一种频域扩频、解扩频方法及装置,用以实现在频域对PUCCH上承载的上行控制信息进行扩频。
本申请实施例提供的频域扩频传输方法,包括:
用户设备获取传输物理上行控制信道PUCCH所使用的正交序列的指示信息;
所述用户设备根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
所述用户设备在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息。
本申请实施例提供的频域解扩频方法,包括:
基站在物理上行控制信道PUCCH所对应的频域资源上接收所述PUCCH;
所述基站确定所述PUCCH所使用的正交序列的指示信息;
所述基站使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频。
本申请实施例提供的用户设备,包括:
获取模块,用于获取传输物理上行控制信道PUCCH所使用的正交序列的指示信息;
扩频模块,用于根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
传输模块,用于在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息。
本申请实施例提供的基站,包括:
接收模块,用于在物理上行控制信道PUCCH所对应的频域资源上接收所述PUCCH;
确定模块,用于确定所述PUCCH所使用的正交序列的指示信息;
解扩频模块,用于使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频。
本申请实施例提供一种用户设备,包括:
处理器,用于读取存储器中的程序,执行下列过程:
获取传输物理上行控制信道PUCCH所使用的正交序列的指示信息;
根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
通过收发机在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息;
收发机,用于在处理器的控制下接收和发送数据。
本申请实施例提供一种基站,包括:
处理器,用于读取存储器中的程序,执行下列过程:
通过收发机在物理上行控制信道PUCCH所对应的频域资源上接收所述PUCCH;
确定所述PUCCH所使用的正交序列的指示信息;
使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频;
收发机,用于在处理器的控制下接收和发送数据。
本申请的上述实施例中,用户设备获取PUCCH所使用的正交序列的信息,根据该正交序列的指示信息所对应的正交序列对PUCCH所承载的上行控制信息进行频域扩频,并在该PUCCH对应的频域资源上传输该上行控制信息,从而针对PUCCH实现频域扩频,进而增加在PRB内复用的用户数量,减少PUCCH资源开销。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中承载超过5载波聚合的反馈信息的PUCCH新格式示意图;
图2为本申请实施例提供的频域扩频传输流程示意图;
图3a至图3c为本申请实施例场景1下的频域扩频映射示意图;
图4a至图4b为本申请实施例场景2下的频域扩频映射示意图;
图5a至图5d为本申请实施例场景3下的频域扩频映射示意图;
图6a至图6d为本申请实施例场景4下的频域扩频映射示意图;
图7为本申请实施例中使用不同长度的正交序列进行频域扩频的PUCCH的资源分配示意图;
图8为本申请实施例提供的频域解扩频传输流程示意图;
图9为本申请提供的用户设备的结构示意图;
图10为本申请另一实施例提供的用户设备的结构示意图;
图11为本申请实施例提供的基站的结构示意图;
图12为本申请另一实施例提供的基站的结构示意图。
具体实施方式
如背景技术中所述,早期版本中定义的传输ACK/NACK的PUCCH格式(format)已经不能支持传输更多ACK/NACK反馈比特的需求,因此出现了容量更大的PUCCH新格式。图1示出了一种PUCCH新格式的结构示意图,其中,其中Di表示第i个符号序列,当PUCCH新格式在频域仅使用1个PRB传输时,每个Di包含12个符号,分别映射在一个单载波-频分多址接入(Single Carrier-Frequency Division Multiple Access,SC-FDMA)符号上的12个子载波上。在假设仅占用1个PRB传输PUCCH的基础上,且在常规循环前 缀(Cyclic Prefix,CP)且一个时隙仅存在一列导频符号,且使用正交相移键控/四相相移键控(Quadrature Phase-Shift Keying,QPSK)调制方式的情况下,该PUCCH新格式可以承载288比特编码后信息,即144个调制符号。
考虑到用户设备并不总是聚合32个载波之多,且用户设备使用单传输块(Transport Block,TB)或多TB传输模式也可以发生变化,另外,用户设备实际存在调度的载波数总是小于或等于配置载波数,因此,用户设备在不同配置情况和不同子帧中的ACK/NACK反馈比特数不同;当PUCCH新格式用于传输多载波周期信道状态信息(Channel State Information,CSI)时,由于CSI仅对激活载波进行反馈,而激活载波数可以在一段时间后发生变化,另外,根据周期CSI的上报模式不同,其反馈比特数也不同,因此不同配置情况和不同子帧中的周期CSI比特数也不同;当支持ACK/NACK与周期CSI同时使用PUCCH新格式传输时,由于周期CSI并不是在每个子帧中都存在,且根据激活载波数和周期CSI的上报模式不同,周期CSI反馈比特数也不同,因此不同配置情况和不同子帧中的UCI总比特数也不同。针对上述情况总是使用288个编码比特传输,对于不同的ACK/NACK反馈比特数或不同的UCI反馈比特数,码率不同,码率可能存在较大冗余。例如,对144比特UCI(可能为ACK/NACK或者周期CSI或者ACK/NACK与周期CSI的总比特数),其码率为1/2,对于96比特UCI,其码率为1/3,对于72比特UCI,其码率为1/4;当码率较小时,已经超过了传输性能的需求,产生编码冗余传输,降低了传输效率。
目前如何支持超过5个载波聚合时的多比特ACK/NACK反馈还没有明确方案。从提高在一个PRB中的用户复用容量角度,如果在时域进行扩频传输,由于常规CP和扩展CP,以及normal PUCCH format和截短(shortened)PUCCH format(即最后一个符号预留给SRS,不传输数据;其中,SRS为Sounding Reference Signal的英文简称,即探测参考信号)所包含的承载数据的符号数不同,不能使用统一的时域扩频设计。而PUCCH新格式在频域上可用的RE数固定,可以实现统一的扩频方案。
基于上述考虑,本申请实施例提供了一种频域扩频方案以及相应的解扩频方案,可以针对PUCCH新格式中承载数据的符号所对应的正交序列进行频域扩频,对PUCCH中承载导频的符号上的导频信息进行循环移位间隔为Δ的循环移位,以支持在一个PUCCH所占用的PRB内复用传输多个用户设备。
下面首先对本申请实施例中的正交序列进行如下介绍。
(一)正交序列的长度
用于传输PUCCH所使用的正交序列的长度表示为
Figure PCTCN2016097382-appb-000001
优选地,
Figure PCTCN2016097382-appb-000002
为能够被M整除的正整数,M为一个PRB占用的子载波的数量,M为正整数,比如在一个PRB占用12个子载波的情况下,
Figure PCTCN2016097382-appb-000003
的取值可以是1,2,3,4,6中的一种。
其中,同一个子帧中,所有或部分用于传输PUCCH的SC-FDMA符号所对应的正交序列的长度可以相同也可以不同。
(二)正交序列与SC-FDMA符号的关系
优选地,用于传输数据的SC-FDMA符号所对应的正交序列(用于传输数据的SC-FDMA符号是相对于用于传输参考信号的SC-FDMA符号而言的),可以具有如下规定:
-同一个子帧中用于传输数据的所有SC-FDMA符号所对应的正交序列相同;或者,
-同一个时隙中用于传输数据的不同SC-FDMA符号所对应的正交序列相同,不同时隙中用于传输数据的SC-FDMA符号所对应的正交序列不同;或者,
-不同时隙中编号相同的用于传输数据的SC-FDMA符号所对应的正交序列相同,同一个时隙或者不同时隙中的编号不同的用于传输数据的SC-FDMA符号所对应的正交序列不同;或者,
-同一个子帧中每个用于传输PUCCH的SC-FDMA符号所对应的正交序列彼此互不相同。
(三)正交序列的类型
本申请实施例中,正交序列可以是沃什码(Walsh Code)正交序列、离散傅利叶变换(Discrete Fourier Transform,DFT)正交序列、离散余弦变换(Discrete Cosine Transform,DCT)正交序列中的一种或多种。不排除还可以采用其他正交序列。
下面给出了几种
Figure PCTCN2016097382-appb-000004
不同取值情况下,正交序列的示例:
-当时,正交序列为[1];或者,当
Figure PCTCN2016097382-appb-000006
时,定义为不进行频域扩频;
-当
Figure PCTCN2016097382-appb-000007
时,正交序列包括[+1 +1]、[+1 -1],正交序列(Orthogonal sequences)与正交序列编号(Sequence index noc)的对应关系可如表1所示;
表1:
Figure PCTCN2016097382-appb-000008
时的正交序列
Figure PCTCN2016097382-appb-000009
Figure PCTCN2016097382-appb-000010
-当
Figure PCTCN2016097382-appb-000011
时,正交序列包括:[1 1 1]、[1 ej2π/3 ej4π/3]、[1 ej4π/3 ej2π/3],正交序列(Orthogonal sequences)与正交序列编号(Sequence index noc)的对应关系可如表2所示;
表2:
Figure PCTCN2016097382-appb-000012
时的正交序列
Figure PCTCN2016097382-appb-000013
Figure PCTCN2016097382-appb-000014
-当
Figure PCTCN2016097382-appb-000015
时,正交序列包括:[+1 +1 +1 +1]、[+1 -1 +1 -1]、[+1 -1 -1 +1]、[+1 +1 -1 -1],正交序列(Orthogonal sequences)与正交序列编号(Sequence index noc)的对应关系可如表3所示;
表3:
Figure PCTCN2016097382-appb-000016
时的正交序列
Figure PCTCN2016097382-appb-000017
Figure PCTCN2016097382-appb-000018
Figure PCTCN2016097382-appb-000019
-当
Figure PCTCN2016097382-appb-000020
时,正交序列包括:[1 1 1 1 1 1]、[1 ejπ/3 ej2π/3 -1 ej4π/3 ej5π/3]、[1 ej2π/3 ej4π/3 1 ej2π/3 ej4π/3]、[1 -1 1 -1 1 -1]、[1 ej4π/3 ej2π/3 1 ej4π/3 ej2π/3]、[1 ej5π/3 ej4π/3 -1 ej2π/3 ejπ/3],正交序列(Orthogonal sequences)与正交序列编号(Sequence index noc)的对应关系可如表4所示;
表4:
Figure PCTCN2016097382-appb-000021
时的正交序列
Figure PCTCN2016097382-appb-000022
Figure PCTCN2016097382-appb-000023
需要说明的是,上述表1至表4所示的对应关系仅为示例,不排除其他对应关系的情况,例如改变对应顺序等。
下面结合附图,对本申请实施例提供的频域扩频传输流程进行详细描述。
参见图2,为本申请实施例提供的频域扩频传输流程示意图,该流程在用户设备侧执行。
如图所示,该流程可包括步骤201至步骤203,其中:
步骤201:用户设备获取传输PUCCH所使用的正交序列的指示信息。
其中,该PUCCH格式可以是定义能够承载超过5载波聚合的UCI反馈信息的PUCCH格式,例如基于PUSCH结构的PUCCH新格式(new PUCCH fomrat),或者基于format3 结构的PUCCH新格式。
传输PCCCH的正交序列的指示信息可以是该正交序列的编号。
传输PUCCH所使用的正交序列,可在不同范围内相同,具体来说,可包括以下情况中的一种:
-同一个子帧中用于传输数据的所有SC-FDMA符号所对应的正交序列相同。
-同一个时隙中用于传输数据的SC-FDMA符号所对应的正交序列的编号相同,不同时隙中用于传输数据的SC-FDMA符号所对应的正交序列不同。以一个子帧内包含两个时隙(其中一个为奇数时隙,另一个为偶数时隙)为例,同一个子帧中,奇数时隙内用于传输数据的SC-FDMA符号所对应的正交序列,与偶数时隙内用于传输数据的SC-FDMA符号所对应的正交序列不相同;如果不同子帧中所包含的时隙编号相同,则不同子帧的奇数时隙内用于传输数据的SC-FDMA符号所对应的正交序列可以相同,不同子帧的偶数时隙内用于传输数据的SC-FDMA符号所对应的正交序列也可以相同;如果不同子帧中所包含的时隙编号不同,则不同子帧的奇数时隙内用于传输数据的SC-FDMA符号所对应的正交序列不同,不同子帧的偶数时隙内用于传输数据的SC-FDMA符号所对应的正交序列也不同。
-不同时隙中编号相同的用于传输数据的SC-FDMA符号所对应的正交序列相同,同一个时隙或者不同时隙中的编号不同的用于传输数据的SC-FDMA符号所对应的正交序列不同;以一个子帧中包含两个时隙(其中一个为奇数时隙,另一个为偶数时隙)且每个时隙中包含7个SC-FDMA符号为例,同一个子帧中,奇数时隙内和偶数时隙内的SC-FDMA编号都是从0开始到6结束,则奇数时隙内和偶数时隙内编号都为i的用于传输数据的SC-FDMA符号所对应的正交序列相同,任意一个时隙内编号为i和编号为j的用于传输数据的SC-FDMA符号所对应的正交序列不相同。由于每个子帧中的SC-FDMA编号是一致的,因此每个子帧中都如同上述方式。
-在同一个子帧中,每个用于传输数据的SC-FDMA符号所对应的正交序列彼此互不相同,不同子帧中,如果时隙编号,则其所包含的用于传输数据的SC-FDMA符号所对应的正交序列彼此互不相同;即以一个子帧内包含两个时隙(其中一个为奇数时隙,另一个为偶数时隙)为例,同一个子帧中,奇数时隙内的每个用于传输数据的SC-FDMA符号所对应的正交序列彼此互不相同,偶数时 隙内的每个用于传输数据的SC-FDMA符号所对应的正交序列彼此互不相同,且奇数时隙和偶数时隙的用于传输数据的SC-FDMA符号所对应的正交序列彼此互不相同;如果不同子帧中所包含的时隙编号相同,则这两个子帧的正交序列确定方式相同,如果不同子帧中所包含的时隙编号不同,则不同子帧中的SC-FDMA符号所对应的正交序列彼此互不相同。
以该正交序列的指示信息为该正交序列的编号为例,本申请实施例给出了几种该正交序列的编号的通知方式,列举如下:
通知方式1:由高层信令显示通知
该正交序列的编号由高层信令,如由无线资源控制(Radio Resourse Control,RRC)信令通知。相应地,用户设备可根据接收到的高层信令获取传输PUCCH所使用的正交序列的编号。
通知方式2:由下行控制信息显示通知
该正交序列的编号由下行控制信息中的比特域通知,比如物理下行控制信道(Physical Downlink Shared Channel,PDCCH)或增强物理下行控制信道(Enhanced PDCCH,EPDCCH)所承载的下行控制信息(Downlink Control Information,DCI)中的特定比特域中可承载该正交序列的编号或该编号的指示信息。相应地,用户设备可根据接收到的下行控制信息中的比特域获取传输PUCCH所使用的正交序列的编号。
通知方式3:由高层信令和下行控制信息显示通知
由高层信令预先配置一个包含至少两个正交序列的编号的编号集合,该正交序列的编号由下行控制信息中的比特域通知该预先配置的编号集合中的一个编号。
通知方式4:由PUCCH的信道资源编号隐式通知
该种方式中,用户设备可根据PUCCH的信道资源编号,确定该PUCCH所使用的正交序列的编号。即,网络侧并不直接通知该正交序列的编号,而是由用户设备根据PUCCH的信道资源编号,按照约定的规则或算法计算得到。本申请实施例列举出了以下几种规则来确定PUCCH所使用的正交序列的编号:
规则1:至少根据PUCCH的信道资源编号以及该PUCCH所使用的正交序列的长度,确定该PUCCH在所在子帧内所使用的正交序列的编号。
具体地,正交序列编号为
Figure PCTCN2016097382-appb-000024
表示noc根据new PUCCH format的信道资源编号
Figure PCTCN2016097382-appb-000025
以及正交序列长度
Figure PCTCN2016097382-appb-000026
确定。例如,
Figure PCTCN2016097382-appb-000027
其中mod表示取余数操作。这种规则可适用于以下场景:在一个子帧中,用于传输数据的 所有SC-FDMA符号所对应的正交序列的编号相同。
规则2:至少根据PUCCH的信道资源编号、该PUCCH所使用的正交序列的长度以及该PUCCH所在时隙的编号,确定该PUCCH在所在子帧内的该时隙所使用的正交序列的编号。
具体地,正交序列编号
Figure PCTCN2016097382-appb-000028
表示在一个时隙所使用的正交序列的编号noc,根据new PUCCH format的信道资源编号
Figure PCTCN2016097382-appb-000029
正交序列长度
Figure PCTCN2016097382-appb-000030
以及该时隙的编号ns确定。这种规则可适用于以下场景:同一个时隙编号的时隙中用于传输数据的SC-FDMA符号所对应的正交序列的编号相同,不同时隙编号的时隙中用于传输数据的SC-FDMA符号所对应的正交序列不同。
规则3:至少根据PUCCH的信道资源编号、该PUCCH所使用的正交序列的长度以及用于传输该PUCCH的SC-FDMA符号的编号,确定该PUCCH在所在子帧内的每个时隙中的该SC-FDMA符号上所对应的正交序列的编号。
具体地,正交序列编号
Figure PCTCN2016097382-appb-000031
表示在一个SC-FDMA符号上所对应的正交序列的编号noc,根据new PUCCH format的信道资源编号
Figure PCTCN2016097382-appb-000032
正交序列长度
Figure PCTCN2016097382-appb-000033
以及该SC-FDMA符号的编号l确定。这种规则适用于同一个时隙中,用于传输数据的不同SC-FDMA符号对应不同的正交序列的场景。
规则4:至少根据PUCCH的信道资源编号、该PUCCH所使用的正交序列的长度、该PUCCH所在时隙的编号以及该时隙中用于传输PUCCH的SC-FDMA符号的编号,确定该PUCCH在所在子帧的该时隙内的该SC-FDMA符号上所对应的正交序列的编号。
具体地,正交序列编号
Figure PCTCN2016097382-appb-000034
表示在一个时隙内的一个SC-FDMA符号上所对应的正交序列的编号noc,根据new PUCCH format的信道资源编号
Figure PCTCN2016097382-appb-000035
正交序列长度
Figure PCTCN2016097382-appb-000036
该时隙的编号ns以及该时隙中的该SC-FDMA符号的编号l以及确定。这种规则可适用于以下场景:每个编号不同的时隙中的SC-FDMA符号所对应的正交序列的编号彼此互不相同且同一个时隙中的用于传输数据的不同SC-FDMA符号所对应的正交序列的编号彼此互不相同。
其中,PUCCH的信道资源编号可由DCI通知,比如,使用DCI中的特定比特域指示PUCCH的信道资源编号;PUCCH的信道资源编号也可由高层信令通知,比如,使用高层 信令中的特定比特域指示PUCCH的信道资源编号;PUCCH的信道资源编号也可由DCI和高层信令联合通知,比如,网络侧通过高层信令预先向用户设备配置PUCCH的信道资源编号集合,该集合中至少包括2个信道资源编号组,每组中至少包括1个信道资源编号,网络侧再通过DCI中的特定比特域向该用户设备指示该集合中的一个信道资源编号组。
步骤202:用户设备根据所述正交序列的指示信息所对应的正交序列对所述PUCCH所承载的上行控制信息进行频域扩频。
该步骤中,获取到的用于进行频域扩频的正交序列可表示为:
Figure PCTCN2016097382-appb-000037
其中,
Figure PCTCN2016097382-appb-000038
表示该正交序列的长度,即该正交序列中所包含的正交码的个数,比如,上述正交序列中,
Figure PCTCN2016097382-appb-000039
分别表示不同的正交码。
Figure PCTCN2016097382-appb-000040
为能够被M整除的正整数,M为一个PRB占用的子载波的数量,M为正整数。通常,一个PRB占用12个子载波,因此相应地,
Figure PCTCN2016097382-appb-000041
可以取值为1、2、3、4、6中的任意一个。进一步地,同一个子帧中的所有或部分用于传输PUCCH的SC-FDMA符号对应的正交序列的长度相同。
PUCCH所承载的上行控制信息,在基带调制过程中被调制为多个数据符号(该数据符号是基带数字信号),每个数据符号在后续资源映射时被映射到一个SC-FDMA符号上的资源单元(Resource Element,RE)上。相应地,在步骤202中对PUCCH所承载的上行控制信息进行频域扩频时,对于PUCCH的每个数据符号,将该数据符号与对应的正交序列相乘,得到扩频后的数据符号,将扩频后的数据符号映射到一个SC-FDMA符号上的
Figure PCTCN2016097382-appb-000042
个资源单元上。其中,除了所有SC-FDMA符号所对应的正交序列均相同的情况以外,在对PUCCH的一个数据符号进行频域扩频之前,需要确定该数据符号所对应的SC-FDMA符号,使用该SC-FDMA符号所对应的正交序列对该数据符号进行频域扩频。
如前所述,如果PUCCH的一个数据符号被映射到SC-FDMA符号所对应的正交序列长度为
Figure PCTCN2016097382-appb-000043
则该数据符号被映射到该SC-FDMA符号的
Figure PCTCN2016097382-appb-000044
个RE上。
进一步地,对于一个数据符号被映射到的RE组(一个数据符号映射到的
Figure PCTCN2016097382-appb-000045
个RE称为一个RE组),该RE组中RE可以在频域上连续分布,也可以在频域上离散分布。如果一个数据符号被映射到的RE组内的RE在频域上离散分布,则该RE组内相邻2个RE之间在频域上的间隔可以相同也可以不同。
进一步地,若一个RE组内,若相邻2个RE之间在频域上的间隔相同,则任意一个RE组内相邻RE之间在频域上的间隔与另一个RE组内相邻RE之间在频域上的间隔相同,或者至少有一个RE组内相邻连个RE之间的间隔与另一个RE组内相邻两个RE之间的间隔不同。
进一步地,对于不同数据符号被映射到的RE组,不同RE组中的RE在频域上可以交错分布或平行分布(即不同RE组内的RE在频域上的分布没有交错)。
下面分别以
Figure PCTCN2016097382-appb-000046
为2、3、4、6为例,并结合附图对PUCCH的数据符号的频域扩频映射情况进行描述。
场景1:
Figure PCTCN2016097382-appb-000047
时的频域扩频示例
该示例示出了1个PRB内的映射情况,该PRB在频域上占用12个子载波、在时域上占用1个时隙。以使用常规循环前缀(Cyclic Prefix,CP)作为保护间隔为例,1个时域内有7个SC-FDMA符号,且一个时隙仅存在一列导频符号。为描述方便,将该PRB中按照频率从小到大的顺序,将一个SC-FDMA符号中的RE称为RE0至RE11。
该示例中,分别使用正交序列[w1,w2]对PUCCH的6组数据符号(图中表示为D1至D6)进行频域扩频,对扩频后的数据符号进行资源映射;其中,每组数据符号Di包含了6个分别在一个时隙中的6个承载数据的SC-FDMA符号上传输的数据符号,如果每组数据符号Di中所包含的每个数据符号di,l所对应的正交序列不同,则对每个di,l需要分别使用该di,l对应的正交序列进行频域扩频,并将扩频后的数据映射到该di,l对应的SC-FDMA符号上的对应RE上,其中di,l表示Di中所包含的对应在SC-FDMA符号编号为l的SC-FDMA符号上传输的数据符号。
如图3a所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE3}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE4,RE5}上,以此类推完成第一个承载SC-FDMA符号上的扩频后的数据映射,同理,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符 号上的{RE2,RE3}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE4,RE5}上,以此类推完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的2个RE在频域上连续,不同数据符号被映射到的RE组在频域上没有交错(即平行)。
如图3b所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE6}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE1,RE7}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE8}上,以此类推完成第一个承载SC-FDMA符号上的扩频后的数据映射,同理,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE6}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE1,RE7}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE2,RE8}上,以此类推完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的2个RE在频域上离散,且不同数据符号被映射到的2个RE之间在频域上的间隔均为6个RE,不同数据符号被映射到的RE组在频域上交错。
如图3b所示,作为另一种实现方式,对于以PUCCH所占用的每一个承载数据的SC-FDMA符号,将在该SC-FDMA符号上传输的数据符号,与正交序列中的对应的正交码相乘,映射到该SC-FDMA符号上的对应的RE上;一个承载数据的SC-FDMA符号上在频域上占用一个资源块(Resource Block,RB)(12个子载波)传输时,其在频域范围内的整个正交序列可以表示为长度为12的正交序列[w1,w1,w1,w1,w1,w1,w2,w2,w2,w2,w2,w2],即按照一个RB中子载波从低到高或频域资源从低频到高频顺序排列每个RE上的对应正交码,其中,如表2所示,当长度
Figure PCTCN2016097382-appb-000048
的正交序列为[+1,+1]时,即表示w1=+1,w2=+1,则上述长度为12的正交序列可以为 [+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1],当长度
Figure PCTCN2016097382-appb-000049
的正交序列为[+1,-1]时,即表示w1=+1,w2=-1,则上述长度为12的正交序列可以为[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1]。因此,当使用长度
Figure PCTCN2016097382-appb-000050
的正交序列进行频域扩频传输时,正交序列还可以被定义为如下表5所示,其中noc为正交序列编号,Nsc RB为一个RB中包含的子载波个数,例如12。这里,可以将在SC-FDMA符号上传输的6个数据符号中的第i(i为正整数)个数据符号,与对应的正交序列中的第i和第i+6个正交码相乘,分别映射到SC-FDMA符号上的第i和第i+6个RE上。
表5:正交序列
Figure PCTCN2016097382-appb-000051
如图3c所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE11}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE1,RE10}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE9}上,以此类推完成第一个承载SC-FDMA符号上的扩频后的数据映射,同理,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE11}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE1,RE10}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为2的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE2,RE9}上,以此类推完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的2个RE在频域上离散,且不同数据符号被映射到的2个RE之间在频域上的间隔不相等,不同数据符号被映射到的RE组在频域上交错。
场景2:
Figure PCTCN2016097382-appb-000052
时的频域扩频示例
该示例示出了1个PRB内的映射情况,该PRB在频域上占用12个子载波、在时域上 占用1个时隙。以使用常规CP作为保护间隔为例,1个时域内有7个SC-FDMA符号,且一个时隙仅存在一列导频符号。为描述方便,将该PRB中按照频率从小到大的顺序,将一个SC-FDMA符号中的RE称为RE0至RE11。
该示例中,分别使用正交序列[w1,w2,w3]对PUCCH的4组数据符号(图中表示为D1至D4)进行频域扩频,对扩频后的数据符号进行资源映射;其中,每组数据符号Di包含了6个分别在一个时隙中的6个承载数据的SC-FDMA符号上传输的数据符号,如果每组数据符号Di中所包含的每个数据符号di,l所对应的正交序列不同,则对每个di,l需要分别使用该di,l对应的正交序列进行频域扩频,并将扩频后的数据映射到该di,l对应的SC-FDMA符号上的对应RE上,其中di,l表示Di中所包含的对应在SC-FDMA符号编号为l的SC-FDMA符号上传输的数据符号。
如图4a所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE2}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE3,RE4,RE5}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE6,RE7,RE8}上,以此类推完成第一个承载SC-FDMA符号上的扩频后的数据映射,同理,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE2}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE3,RE4,RE5}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE6,RE7,RE8}上,以此类推完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的3个RE在频域上连续,不同数据符号被映射到的RE组在频域上没有交错(即平行)。
如图4b所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE4,RE8}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE1,RE5,RE9}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域 扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE6,RE10}上,以此类推完成第一个承载SC-FDMA符号上的扩频后的数据映射,同理,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE4,RE8}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE1,RE5,RE9}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为3的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE2,RE6,RE10}上,以此类推完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的3个RE在频域上离散,每个数据符号被映射到的3个RE中相邻两个RE在频域上的间隔均为4个RE,不同数据符号被映射到的RE组在频域上交错。
场景3:
Figure PCTCN2016097382-appb-000053
时的频域扩频示例
该示例示出了1个PRB内的映射情况,该PRB在频域上占用12个子载波、在时域上占用1个时隙。以使用常规CP作为保护间隔为例,1个时域内有7个SC-FDMA符号,且一个时隙仅存在一列导频符号。为描述方便,将该PRB中按照频率从小到大的顺序,将一个SC-FDMA符号中的RE称为RE0至RE11。
该示例中,分别使用正交序列[w1,w2,w3,w4]对PUCCH的3组数据符号(图中表示为D1至D3)进行频域扩频,对扩频后的数据符号进行资源映射;其中,每组数据符号Di包含了6个分别在一个时隙中的6个承载数据的SC-FDMA符号上传输的数据符号,如果每组数据符号Di中所包含的每个数据符号di,l所对应的正交序列不同,则对每个di,l需要分别使用该di,l对应的正交序列进行频域扩频,并将扩频后的数据映射到该di,l对应的SC-FDMA符号上的对应RE上,其中di,l表示Di中所包含的对应在SC-FDMA符号编号为l的SC-FDMA符号上传输的数据符号。
如图5a所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE3}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE4,RE5,RE6,RE7}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE8,RE9,RE10,RE11}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,以此类推,D1中所包 含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE3}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE4,RE5,RE6,RE7}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE8,RE9,RE10,RE11}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的4个RE在频域上连续,不同数据符号被映射到的RE组在频域上没有交错(即平行)。
如图5b所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE3,RE6,RE9}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE1,RE4,RE7,RE10}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE5,RE8,RE11}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,以此类推,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE3,RE6,RE9}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE1,RE4,RE7,RE10}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE2,RE5,RE8,RE11}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的4个RE在频域上离散,每个数据符号被映射到的4个RE中相邻两个RE在频域上的间隔均为3个RE,不同数据符号被映射到的RE组在频域上交错。
如图5c所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE6,RE7}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE3,RE8,RE9}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度 为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE4,RE5,RE10,RE11}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,以此类推,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE6,RE7}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE2,RE3,RE8,RE9}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE4,RE5,RE10,RE11}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的4个RE在频域上离散,每个数据符号被映射到的4个RE中相邻两个RE在频域上的间隔不相等,不同数据符号被映射到的RE组在频域上交错。
如图5d所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE10,RE11}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE3,RE8,RE9}上,D3中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE4,RE5,RE6,RE7}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,以此类推,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE10,RE11}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE2,RE3,RE8,RE9}上,D3中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为4的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE4,RE5,RE6,RE7}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的4个RE在频域上可以离散也可以连续,不同数据符号被映射到的RE组在频域上交错。
场景4:
Figure PCTCN2016097382-appb-000054
时的频域扩频示例
该示例示出了1个PRB内的映射情况,该PRB在频域上占用12个子载波、在时域上占用1个时隙。以使用常规CP作为保护间隔为例,1个时域内有7个SC-FDMA符号,且 一个时隙仅存在一列导频符号。为描述方便,将该PRB中按照频率从小到大的顺序,将一个SC-FDMA符号中的RE称为RE0至RE11。
该示例中,分别使用正交序列[w1,w2,w3,w4,w5,w6]对PUCCH的2组数据符号(图中表示为D1至D2)进行频域扩频,对扩频后的数据符号进行资源映射;其中,每组数据符号Di包含了6个分别在一个时隙中的6个承载数据的SC-FDMA符号上传输的数据符号,如果每组数据符号Di中所包含的每个数据符号di,l所对应的正交序列不同,则对每个di,l需要分别使用该di,l对应的正交序列进行频域扩频,并将扩频后的数据映射到该di,l对应的SC-FDMA符号上的对应RE上,其中di,l表示Di中所包含的对应在SC-FDMA符号编号为l的SC-FDMA符号上传输的数据符号。
如图6a所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE3,RE4,RE5}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE6,RE7,RE8,RE9,RE10,RE11}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,以此类推,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE3,RE4,RE5}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE6,RE7,RE8,RE9,RE10,RE11}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的6个RE在频域上连续,不同数据符号被映射到的RE组在频域上没有交错(即平行)。
如图6b所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE6,RE7,RE8}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE3,RE4,RE5,RE9,RE10,RE11}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,依此类推,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE6,RE7,RE8}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE3,RE4,RE5, RE9,RE10,RE11}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的6个RE在频域上离散,不同数据符号被映射到的RE组在频域上交错。
如图6c所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE4,RE5,RE8,RE9}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE2,RE3,RE6,RE7,RE10,RE11}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,以此类推,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE4,RE5,RE8,RE9}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE2,RE3,RE6,RE7,RE10,RE11}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的6个RE在频域上离散,不同数据符号被映射到的RE组在频域上交错。
如图6d所示,D1中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE9,RE10,RE11}上,D2中所包含的在第一个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第一个承载数据的SC-FDMA符号上的{RE3,RE4,RE5,RE6,RE7,RE8}上,完成第一个承载SC-FDMA符号上的扩频后的数据映射,以此类推,D1中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE0,RE1,RE2,RE9,RE10,RE11}上,D2中所包含的在第2个承载数据的SC-FDMA符号上传输的数据符号经过长度为6的频域扩频后,被映射到第2个承载数据的SC-FDMA符号上的{RE3,RE4,RE5,RE6,RE7,RE8}上,完成第2个承载SC-FDMA符号上的扩频后的数据映射,进一步以此类推,完成每个承载数据的SC-FDMA符号上的扩频后的数据映射。可以看出,一个数据符号被映射到的6个RE在频域上可以连续也可以离散,不同数据符号被映射到的RE组在频域上交错。
上述场景1至场景4中,虽然仅描述了PUCCH在一个PRB内的映射情况,但该原理可以应用到PUCCH映射到多个PRB的情况。如果PUCCH被映射到多个PRB,则映射结果可包括以下几种:
-每个PRB中的映射情况可以同一个PRB情况,或者也可以考虑跨PRB将不同PRB内的RE作为一组进行扩频;
-不进行时隙间跳频,比如在一个子帧内,第二时隙(比如偶数时隙)在频域上与第一时隙(比如奇数时隙)的位置相同,进行时域跳频时第二时隙与第一时隙分别位于不同频域位置;
-每个时隙可以包含多于一列导频,其中只是改变了承载数据的SC-FDMA符号数;
-使用扩展CP下,每个时隙中的承载数据的SC-FDMA符号的数量,与上述场景1至4不同,例如仅包含1列RS时,一个时隙中的承载数据的SC-FDMA符号数为5个。
步骤203:用户设备在PUCCH所对应的频域资源上传输频域扩频后的上行控制信息。
该步骤中,可针对对步骤202中的资源映射结果进行射频信号调制,得到射频信号并发送,从而在PUCCH所对应的频域资源上传输频域扩频后的上行控制信息。
在一些实施例中,PUCCH所对应的频域资源,可通过高层信令预先配置,比如通过RRC信令配置,也可以通过下行控制信息中的比特域进行通知,也可以通过高层信令与下行控制信息结合的方式通知。具体来说,网络侧可通过高层信令(如RRC信令)预先将使用长度为
Figure PCTCN2016097382-appb-000055
的正交序列进行频域扩频时PCCCH所对应的频域资源配置给用户设备,或者,网络侧也可以通过DCI中的比特域通知用户设备使用当前长度为
Figure PCTCN2016097382-appb-000056
的正交序列进行频域扩频时PUCCH所对应的频域资源,或者,高层信令预先配置一个频域资源集合,其中包括至少两组不同的频域资源,下行控制信息中的比特域指示其中一组频域资源给用户设备。相应地,用户设备可通过上述方式通知的指示信息,确定传输PUCCH的频域资源。
其中,PUCCH所对应的频域资源的指示信息,可包括:PRB的数量、PRB的编号(PRB的编号可以标识该PRB在系统带宽中的位置)、PUCCH的信道资源编号中的一种或多种。进一步地,如果PUCCH所对应的频域资源的指示信息中包括PUCCH的信道资源编号,则用户设备可根据该PUCCH的信道资源编号确定出该PUCCH所对应的PRB的编号。即,PUCCH所对应的PRB的编号可根据该PUCCH的信道资源编号确定。
具体地,PRB的编号
Figure PCTCN2016097382-appb-000057
表示nPRB根据new PUCCH format的信道资源编号
Figure PCTCN2016097382-appb-000058
以及正交序列长度
Figure PCTCN2016097382-appb-000059
确定。例如,在支持PUCCH跳频传输 时,优选地,可根据以下公式确定PUCCH所对应的PRB的编号:
Figure PCTCN2016097382-appb-000060
其中,nPRB为PRB的编号;
Figure PCTCN2016097382-appb-000061
Figure PCTCN2016097382-appb-000062
表示向下取整;
Figure PCTCN2016097382-appb-000063
为不同
Figure PCTCN2016097382-appb-000064
所对应的PRB起始位置(从低频侧计算的),该值可由高层信令预先配置;
Figure PCTCN2016097382-appb-000065
为正交序列的长度;
Figure PCTCN2016097382-appb-000066
为上行PRB的数量;
或者也可以通过下属公式确定PUCCH所对应的PRB的编号:
Figure PCTCN2016097382-appb-000067
其中,nPRB为PRB的编号;
Figure PCTCN2016097382-appb-000068
Figure PCTCN2016097382-appb-000069
表示向下取整;
Figure PCTCN2016097382-appb-000070
为正交序列的长度;
Figure PCTCN2016097382-appb-000071
为上行PRB的数量;即此时,认为当前指示的
Figure PCTCN2016097382-appb-000072
是从第一个PRB计算器的,并且假设每个PRB中都包含当前的
Figure PCTCN2016097382-appb-000073
个资源计算得到的,因此,直接根据该值与
Figure PCTCN2016097382-appb-000074
的数值关系,即可得到当前的PRB编号。
优选地,使用不同长度的正交序列进行频域扩频的PUCCH,被配置在不同的PRB上传输,或者配置在相同的PRB上复用传输,如图7所示。图7中,SF表示正交序列,SF=2表示正交序列长度为2,以此类推。比如,使用
Figure PCTCN2016097382-appb-000075
Figure PCTCN2016097382-appb-000076
的正交序列进行频域扩频的PUCCH,可以配置在相同PRB中复用传输,这是因为
Figure PCTCN2016097382-appb-000077
的正交序列与
Figure PCTCN2016097382-appb-000078
的正交序列也是正交的。图7示出了使用不同
Figure PCTCN2016097382-appb-000079
的正交序列进行频域扩频的PUCCH的资源分配示意图。
进一步地,在上述各实施例的基础上,还包括以下步骤:根据循环位移值间隔Δ确定 候选的循环移位值的集合,并从该集合中选择一个循环移位值,基于该循环移位值产生导频序列,即对PUCCH中承载导频的符号上的导频进行循环移位,Δ的取值符合以下约束:
Figure PCTCN2016097382-appb-000080
其中,Nsc为PUCCH在频域上所占用的子载波数,
Figure PCTCN2016097382-appb-000081
表示正交序列的长度;Δ具体可以为高层信令预先配置的满足上述条件的多个值中的一个值,基于该值可以确定一组循环移位值。
其中,循环移位值可通过高层信令和/或DCI通知,比如,可通过高层信令或DCI通知循环位移值的索引值(编号),或者高层信令预先配置一个循环移位值的集合,DCI通知该集合中的一个值给用户设备,或者根据正交序列的编号确定与之对应的循环移值的索引值;然后根据该索引信息在预定的索引值与循环移位值的对应关系集合中得到具体的循环移位值。
循环移位值的数量与
Figure PCTCN2016097382-appb-000082
相关,每个循环位移值间的间隔为Δ。表6示出了一种正交序列的编号noc与循环移位值或者循环移位所以值ncs之间的对应关系。
表6:noc与循环移位之间的对应关系
Figure PCTCN2016097382-appb-000083
当然表6仅为一种示例,noc与循环移位之间的对应关系不限于表6所示,只要满足上述约束的循环位移值都应在本申请的保护范围内。例如,
Figure PCTCN2016097382-appb-000084
时,循环移位间隔Δ可以为6,循环位移的候选集合可以为{1,7},或者{2,8},或者{3,9},或者{4,10},或者{5,11},即满足不同循环移位值之间的间隔为6即可;
Figure PCTCN2016097382-appb-000085
时,循环移位间隔Δ可 以为4,循环位移的候选集合可以为{1,5,9},或者{2,6,10},或者{3,7,11},即满足不同循环移位值之间的间隔为4即可;
Figure PCTCN2016097382-appb-000086
时,循环移位间隔Δ可以为3,循环位移序列可以为{1,4,7,10},或者{2,5,8,11},即满足不同循环移位值之间的间隔为3即可;
Figure PCTCN2016097382-appb-000087
时,循环移位间隔Δ可以为2,循环位移序列可以为{1,3,5,7,9,11},即满足不同循环移位值之间的间隔为2即可。
通过以上描述可以看出,本申请的上述实施例中,用户设备获取PUCCH所使用的正交序列的信息,根据该正交序列的指示信息所对应的正交序列对PICCH所承载的上行控制信息进行频域扩频,并在该PUCCH对应的频域资源上传输该上行控制信息,从而针对PUCCH实现频域扩频,进而增加在PRB内复用的用户数量,减少PUCCH资源开销。
进一步地,本申请实施例可适用于对新格式的PUCCH(new PDCCH format)进行频域扩频,此种情况下,由于本申请实施例进行频域扩频,相对于时域扩频的好处在于可以对normal PUCCH和shortened PUCCH以及常规CP和扩展CP定义相同的扩频方案,而不是时域扩频的方式需要根据承载数据的SC-FDMA符号数变化而改变正交序列的长度,避免在一个时隙中使用不同的时域正交序列长度,从而限制了复用容量。比如,在PUCCH所使用的正交序列的长度为
Figure PCTCN2016097382-appb-000088
的情况下,本申请实施例可以实现在一个PUCCH所占用的PRB内复用传输
Figure PCTCN2016097382-appb-000089
个用户设备。
参见图8,为本申请实施例提供的频域解扩频流程示意图,该流程在基站侧实现。该解扩频流程可以认为是图2所示的扩频流程的逆过程。
如图所示,该流程可包括如下步骤801~803,其中:
步骤801:基站在PUCCH所对应的频域资源上接收所述PUCCH。
步骤802:基站确定所述PUCCH所使用的正交序列的指示信息。
步骤803:基站使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频。
基站侧的解扩频过程是用户设备侧的扩频过程的逆过程。例如,对于所述PUCCH占用的单载波频分多址SC-FDMA符号中除传输参考信号的符号以外的每个符号,一个SC-FDMA符号上的
Figure PCTCN2016097382-appb-000090
个RE上的
Figure PCTCN2016097382-appb-000091
个数据符号与长度为
Figure PCTCN2016097382-appb-000092
的正交序列的共轭转置序列相乘,得到一个解扩频后的数据调制符号。
其中,一个数据符号被映射到的RE组的RE,在频域上连续分布或离散分布;和/或,不同数据符号被映射到的不同RE组内的RE,在频域上平行分布或交错分布。
这里,步骤803的执行过程可以为:对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA符号的对应RE上接收到的扩频后的数据符号,与所述对应的正交序列的共轭转置序列相乘,得到解扩频后的所述SC-FDMA符号上传输的数据符号。
可选地,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],将在所述SC-FDMA符号上的第i和第i+6个RE上接收到的扩频后的数据符号,与所述对应的正交序列中的第i和第i+6个正交码的共轭转置相乘,得到解扩频后的所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号。
进一步地,基站还可以根据循环位移值接收PUCCH的导频。其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
Figure PCTCN2016097382-appb-000093
Nsc为所述PUCCH在频域上所占用的子载波数,
Figure PCTCN2016097382-appb-000094
为所述正交序列的长度。进一步地,基站可以通过高层信令和/或DCI向用户设备通知该循环移位值。
进一步地,基站还可通过高层信令和/或DCI中的比特域,向用户设备通知传输PUCCH所使用的正交序列的编号,以使用户设备根据对应的正交序列对PUCCH上承载的上行控制信息进行频域扩频。其中,正交序列的编号的通知方式可参见前述实施例,在此不再赘述。
进一步地,基站也可以通过高层信令和/或DCI向用户设备通知所述PUCCH的信道资源编号,以使所述用户设备根据所述PUCCH的信道资源编确定PUCCH所使用的正交序列的编号。其中,PUCCH的信道资源编号的通知方式可参见前述实施例,在此不再赘述。
进一步地,基站还可以通过高层信令和/或DCI向用户设备通知PUCCH所对应的频域资源的指示信息,以使用户设备在相应的频域资源上传输PUCCH所承载的上行控制信息。其中,所述PUCCH所对应的频域资源的指示信息可包括PRB的数量、PRB的编号、PUCCH的信道资源编号中的一种或多种。
基于相同的技术构思,本申请实施例还提供了一种用户设备的结构示意图,该用户设备可执行前述频域扩频传输流程。
如图9所示,该用户设备可包括:获取模块901、扩频模块902、传输模块903,其中:
获取模块901,用于获取传输PUCCH所使用的正交序列的指示信息;
扩频模块902,用于根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
传输模块903,用于在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息。
优选地,获取模块901可具体用于:根据接收到的高层信令和/或DCI中的比特域,获取传输PUCCH所使用的正交序列的编号;或者,根据所述PUCCH的信道资源编号,确定所述PUCCH所使用的正交序列的编号,其中,所述PUCCH的信道资源编号由高层信令和/或DCI中的比特域通知。
其中,获取模块901可具体用于:至少根据所述PUCCH的信道资源编号以及所述正交序列的长度,确定所述PUCCH在所在子帧内所使用的正交序列的编号;或者,至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及所述PUCCH所在时隙的编号,确定所述PUCCH在所在子帧内的该时隙所使用的正交序列的编号;或者,至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及用于传输所述PUCCH的SC-FDMA符号的编号,确定所述PUCCH在所在子帧内的每个时隙中的该SC-FDMA符号上所对应的正交序列的编号;或者,至少根据所述PUCCH的信道资源编号、所述正交序列的长度、所述PUCCH所在时隙的编号以及该时隙中用于传输PUCCH的SC-FDMA符号的编号,确定所述PUCCH在所在子帧的该时隙内的该SC-FDMA符号上所对应的正交序列的编号。
优选地,扩频模块902可具体用于:对于所述PUCCH的每个数据符号,将该数据符号与对应的正交序列相乘,得到扩频后的数据符号,将扩频后的数据符号映射到一个SC-FDMA符号上的一组资源单元RE上,该RE组中包含
Figure PCTCN2016097382-appb-000095
个RE,
Figure PCTCN2016097382-appb-000096
为正交序列的长度。
其中,一个数据符号被映射到的RE组的RE,在频域上连续分布或离散分布;和/或,不同数据符号被映射到的不同RE组内的RE,在频域上平行分布或交错分布。
优选地,所述PUCCH所对应的频域资源的指示信息,通过高层信令通知和/或通过DCI中的比特域进行通知。
优选地,所述PUCCH所对应的频域资源的指示信息,包括物理资源块PRB的数量、PRB的编号、PUCCH的信道资源编号中的一种或多种。
其中,若所述PUCCH所对应的频域资源的指示信息中包括PUCCH的信道资源编号,则所述PUCCH所对应的PRB的编号根据所述PUCCH的信道资源编号确定。
优选地,传输模块903可还用于:根据循环移位值对所述PUCCH的导频进行循环位移;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位 间隔Δ满足:
Figure PCTCN2016097382-appb-000097
Nsc为所述PUCCH在频域上所占用的子载波数,
Figure PCTCN2016097382-appb-000098
为所述正交序列的长度。
优选地,所述循环移位值通过高层信令和/或DCI通知,或者根据所述正交序列的编号确定。
优选地,所述扩频模块902具体用于:
对于所述PUCCH所占用的每一个承载数据的单载波-频分多址接入SC-FDMA符号,将在所述SC-FDMA符号上传输的数据符号,与所述对应的正交序列中的正交码相乘,映射到所述SC-FDMA符号上的对应的RE上。
优选地,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],将在所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号,与所述对应的正交序列中的第i和第i+6个正交码相乘,分别映射到所述SC-FDMA符号上的第i和第i+6个RE上。
基于相同的技术构思,本申请实施例还提供了一种用户设备的结构示意图。
如图10所示,本申请实施例提供的用户设备可包括:处理器1001、存储器1002、收发机1003以及总线接口。
处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。收发机1003用于在处理器1001的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1002代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1003可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。
本申请实施例揭示的用户设备侧的频域扩频传输流程,可以应用于处理器1001中,或者由处理器1001实现。在实现过程中,频域扩频传输流程的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1001可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例 所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件完成频域扩频传输流程的步骤。
具体地,处理器1001,用于读取存储器1002中的程序,执行下列过程:
获取传输PUCCH所使用的正交序列的指示信息;
根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息。
该流程的具体实现方式可参见前述实施例,在此不再赘述。
基于相同的技术构思,本申请实施例还提供了一种基站的结构示意图。噶及基站可实现前述的频域解扩频流程。
如图11所示,该基站可包括:接收模块1101、确定模块1102、解扩频模块1103,进一步地,还可包括通知模块1104,其中:
接收模块1101,用于在PUCCH所对应的频域资源上接收所述PUCCH;
确定模块1102,用于确定所述PUCCH所使用的正交序列的指示信息;
解扩频模块1103,用于使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频。
进一步地,通知模块1104可用于通过高层信令和/或DCI中的比特域,向用户设备通知传输PUCCH所使用的正交序列的编号;或者,通过高层信令和/或DCI向用户设备通知所述PUCCH的信道资源编号,以使所述用户设备根据所述PUCCH的信道资源编确定所述PUCCH所使用的正交序列的编号。
优选地,解扩频模块1103可具体用于:对于所述PUCCH占用的SC-FDMA符号中除传输参考信号的符号以外的每个符号,将该符号上的
Figure PCTCN2016097382-appb-000099
个资源单元RE上的
Figure PCTCN2016097382-appb-000100
个数据符号,与长度为
Figure PCTCN2016097382-appb-000101
的正交序列的共轭转置序列相乘,得到解扩频后的数据调制符号。其中,一个数据符号被映射到的RE组的RE,在频域上连续分布或离散分布;和/或,不同数据符号被映射到的不同RE组内的RE,在频域上平行分布或交错分布。
进一步地,通知模块1104还用于通过高层信令和/或DCI向用户设备通知所述PUCCH所对应的频域资源的指示信息。其中,所述PUCCH所对应的频域资源的指示信息,包括 PRB的数量、PRB的编号、PUCCH的信道资源编号中的一种或多种。
进一步地,接收模块1101还可用于:根据循环位移值接收所述PUCCH的导频;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
Figure PCTCN2016097382-appb-000102
Nsc为所述PUCCH在频域上所占用的子载波数,
Figure PCTCN2016097382-appb-000103
为所述正交序列的长度。
进一步地,通知模块1104还可用于通过高层信令和/或DCI向用户设备通知所述循环移位值。
进一步地,所述解扩频模块1103具体用于:
对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA符号的对应RE上接收到的扩频后的数据符号,与所述对应的正交序列的共轭转置序列相乘,得到解扩频后的所述SC-FDMA符号上传输的数据符号。
进一步地,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],将在所述SC-FDMA符号上的第i和第i+6个RE上接收到的扩频后的数据符号,与所述对应的正交序列中的第i和第i+6个正交码的共轭转置相乘,得到解扩频后的所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号。
基于相同的技术构思,本申请实施例还提供了一种基站的结构示意图。
如图12所示,本申请实施例提供的基站可包括:处理器1201、存储器1202、收发机1203以及总线接口。
处理器1201负责管理总线架构和通常的处理,存储器1202可以存储处理器1201在执行操作时所使用的数据。收发机1203用于在处理器1201的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1202代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1203可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1201负责管理总线架构和通常的处理,存储器1202可以存储处理器1201在执行操作时所使用的数据。
本申请实施例揭示的基站侧的频域解扩频传输流程,可以应用于处理器1201中,或者由处理器1201实现。在实现过程中,频域解扩频传输流程的各步骤可以通过处理器1201 中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1201可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1202,处理器1201读取存储器1202中的信息,结合其硬件完成频域扩频传输流程的步骤。
具体地,处理器1201,用于读取存储器1202中的程序,执行下列过程:
在PUCCH所对应的频域资源上接收所述PUCCH;
确定所述PUCCH所使用的正交序列的指示信息;
使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频。
该流程的具体实现方式可参见前述实施例,在此不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (65)

  1. 一种频域扩频传输方法,其特征在于,包括:
    用户设备获取传输物理上行控制信道PUCCH所使用的正交序列的指示信息;
    所述用户设备根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
    所述用户设备在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息。
  2. 如权利要求1所述的方法,其特征在于,所述获取传输PUCCH所使用的正交序列的指示信息,包括:
    根据接收到的高层信令和/或下行控制信息DCI中的比特域,获取传输PUCCH所使用的正交序列的编号;或者,
    根据所述PUCCH的信道资源编号,确定所述PUCCH所使用的正交序列的编号,其中,所述PUCCH的信道资源编号由高层信令和/或DCI中的比特域通知。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述PUCCH的信道资源编号,确定所述PUCCH所使用的正交序列的编号,包括:
    至少根据所述PUCCH的信道资源编号以及所述正交序列的长度,确定所述PUCCH在所在子帧内所使用的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及所述PUCCH所在时隙的编号,确定所述PUCCH在所在子帧内的该时隙所使用的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及用于传输所述PUCCH的单载波频分多址SC-FDMA符号的编号,确定所述PUCCH在所在子帧内的每个时隙中的该SC-FDMA符号上所对应的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度、所述PUCCH所在时隙的编号以及该时隙中用于传输PUCCH的SC-FDMA符号的编号,确定所述PUCCH在所在子帧的该时隙内的该SC-FDMA符号上所对应的正交序列的编号。
  4. 如权利要求1所述的方法,其特征在于,对所述PUCCH所承载的上行控制信息进行频域扩频,包括:
    对于所述PUCCH的每个数据符号,将该数据符号与对应的正交序列相乘,得到扩频后的数据符号,将扩频后的数据符号映射到一个SC-FDMA符号上的一组资源单元RE上,该RE组中包含
    Figure PCTCN2016097382-appb-100001
    个RE,
    Figure PCTCN2016097382-appb-100002
    为正交序列的长度。
  5. 如权利要求4所述的方法,其特征在于,一个数据符号被映射到的RE组的RE,在频域上连续分布或离散分布;和/或
    不同数据符号被映射到的不同RE组内的RE,在频域上平行分布或交错分布。
  6. 如权利要求1所述的方法,其特征在于,所述PUCCH所对应的频域资源的指示信息,通过高层信令通知和/或通过DCI中的比特域进行通知。
  7. 如权利要求1所述的方法,其特征在于,所述PUCCH所对应的频域资源的指示信息,包括物理资源块PRB的数量、PRB的编号、PUCCH的信道资源编号中的一种或多种。
  8. 如权利要求7所述的方法,其特征在于,若所述PUCCH所对应的频域资源的指示信息中包括PUCCH的信道资源编号,则所述PUCCH所对应的PRB的编号根据所述PUCCH的信道资源编号确定。
  9. 如权利要求1所述的方法,其特征在于,还包括:
    根据循环移位值对所述PUCCH的导频进行循环位移;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
    Figure PCTCN2016097382-appb-100003
    Nsc为所述PUCCH在频域上所占用的子载波数,
    Figure PCTCN2016097382-appb-100004
    为所述正交序列的长度。
  10. 如权利要求9所述的方法,其特征在于,所述循环移位值通过高层信令和/或DCI通知,或者根据所述正交序列的编号确定。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述正交序列的长度为能够被M整除的正整数,M为一个物理资源块PRB占用的子载波的数量,M为正整数。
  12. 如权利要求1至10中任一项所述的方法,其特征在于,所述正交序列为沃什码正交序列、离散傅利叶变换正交序列、离散余弦变换正交序列中的一种或多种。
  13. 如权利要求1所述的方法,其特征在于,对所述PUCCH所承载的上行控制信息进行频域扩频,包括:
    对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA符号上传输的数据符号,与所述对应的正交序列中的对应的正交码相乘,映射到所述SC-FDMA符号上的对应的RE上。
  14. 如权利要求13所述的方法,其特征在于,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],将在所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号,与所述对应的正交序列中的第i和第i+6个正交码相乘,分别映射到所述 SC-FDMA符号上的第i和第i+6个RE上。
  15. 一种频域解扩频方法,其特征在于,包括:
    基站在物理上行控制信道PUCCH所对应的频域资源上接收所述PUCCH;
    所述基站确定所述PUCCH所使用的正交序列的指示信息;
    所述基站使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频。
  16. 如权利要求15所述的方法,其特征在于,还包括:
    所述基站通过高层信令和/或下行控制信息DCI中的比特域,向用户设备通知传输PUCCH所使用的正交序列的编号;或者,
    所述基站通过高层信令和/或DCI向用户设备通知所述PUCCH的信道资源编号,以使所述用户设备根据所述PUCCH的信道资源编确定所述PUCCH所使用的正交序列的编号。
  17. 如权利要求15所述的方法,其特征在于,对所述PUCCH所承载的上行控制信息进行频域解扩频,包括:
    对于所述PUCCH占用的单载波频分多址SC-FDMA符号中除传输参考信号的符号以外的每个符号,将该符号上的
    Figure PCTCN2016097382-appb-100005
    个资源单元RE上的
    Figure PCTCN2016097382-appb-100006
    个数据符号,与长度为
    Figure PCTCN2016097382-appb-100007
    的正交序列的共轭转置序列相乘,得到解扩频后的数据调制符号。
  18. 如权利要求17所述的方法,其特征在于,一个数据符号被映射到的RE组的RE,在频域上连续分布或离散分布;和/或
    不同数据符号被映射到的不同RE组内的RE,在频域上平行分布或交错分布。
  19. 如权利要求15所述的方法,其特征在于,还包括:
    所述基站通过高层信令和/或DCI向用户设备通知所述PUCCH所对应的频域资源的指示信息。
  20. 如权利要求15所述的方法,其特征在于,所述PUCCH所对应的频域资源的指示信息,包括物理资源块PRB的数量、PRB的编号、PUCCH的信道资源编号中的一种或多种。
  21. 如权利要求15所述的方法,其特征在于,还包括:
    所述基站根据循环位移值接收所述PUCCH的导频;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
    Figure PCTCN2016097382-appb-100008
    Nsc 为所述PUCCH在频域上所占用的子载波数,
    Figure PCTCN2016097382-appb-100009
    为所述正交序列的长度。
  22. 如权利要求21所述的方法,其特征在于,还包括:
    所述基站通过高层信令和/或DCI向用户设备通知所述循环移位值。
  23. 如权利要求15至22中任一项所述的方法,其特征在于,所述正交序列的长度为能够被M整除的正整数,M为一个物理资源块PRB占用的子载波的数量,M为正整数。
  24. 如权利要求15至22中任一项所述的方法,其特征在于,所述正交序列为沃什码正交序列、离散傅利叶变换正交序列、离散余弦变换正交序列中的一种或多种。
  25. 如权利要求15所述的方法,其特征在于,对所述PUCCH中所承载的上行控制信息进行频域解扩频,包括:
    对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA符号的对应RE上接收到的扩频后的数据符号,与所述对应的正交序列的共轭转置序列相乘,得到解扩频后的所述SC-FDMA符号上传输的数据符号。
  26. 如权利要求25所述的方法,其特征在于,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],将在所述SC-FDMA符号上的第i和第i+6个RE上接收到的扩频后的数据符号,与所述对应的正交序列中的第i和第i+6个正交码的共轭转置相乘,得到解扩频后的所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号。
  27. 一种用户设备,其特征在于,包括:
    获取模块,用于获取传输物理上行控制信道PUCCH所使用的正交序列的指示信息;
    扩频模块,用于根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
    传输模块,用于在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息。
  28. 如权利要求27所述的用户设备,其特征在于,所述获取模块具体用于:
    根据接收到的高层信令和/或下行控制信息DCI中的比特域,获取传输PUCCH所使用的正交序列的编号;或者,
    根据所述PUCCH的信道资源编号,确定所述PUCCH所使用的正交序列的编号,其中,所述PUCCH的信道资源编号由高层信令和/或DCI中的比特域通知。
  29. 如权利要求28所述的用户设备,其特征在于,所述获取模块具体用于:
    至少根据所述PUCCH的信道资源编号以及所述正交序列的长度,确定所述PUCCH在所在子帧内所使用的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及所述PUCCH所在时隙的编号,确定所述PUCCH在所在子帧内的该时隙所使用的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及用于传输所述PUCCH的单载波频分多址SC-FDMA符号的编号,确定所述PUCCH在所在子帧内的每个时隙中的该SC-FDMA符号上所对应的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度、所述PUCCH所在时隙的编号以及该时隙中用于传输PUCCH的SC-FDMA符号的编号,确定所述PUCCH在所在子帧的该时隙内的该SC-FDMA符号上所对应的正交序列的编号。
  30. 如权利要求27所述的用户设备,其特征在于,所述扩频模块具体用于:
    对于所述PUCCH的每个数据符号,将该数据符号与对应的正交序列相乘,得到扩频后的数据符号,将扩频后的数据符号映射到一个SC-FDMA符号上的一组资源单元RE上,该RE组中包含
    Figure PCTCN2016097382-appb-100010
    个RE,
    Figure PCTCN2016097382-appb-100011
    为正交序列的长度。
  31. 如权利要求30所述的用户设备,其特征在于,一个数据符号被映射到的RE组的RE,在频域上连续分布或离散分布;和/或
    不同数据符号被映射到的不同RE组内的RE,在频域上平行分布或交错分布。
  32. 如权利要求27所述的用户设备,其特征在于,所述PUCCH所对应的频域资源的指示信息,通过高层信令通知和/或通过DCI中的比特域进行通知。
  33. 如权利要求27所述的用户设备,其特征在于,所述PUCCH所对应的频域资源的指示信息,包括物理资源块PRB的数量、PRB的编号、PUCCH的信道资源编号中的一种或多种。
  34. 如权利要求33所述的用户设备,其特征在于,若所述PUCCH所对应的频域资源的指示信息中包括PUCCH的信道资源编号,则所述PUCCH所对应的PRB的编号根据所述PUCCH的信道资源编号确定。
  35. 如权利要求27所述的用户设备,其特征在于,所述传输模块还用于:
    根据循环移位值对所述PUCCH的导频进行循环位移;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
    Figure PCTCN2016097382-appb-100012
    Nsc为所述PUCCH在频域上所占用的子载波数,
    Figure PCTCN2016097382-appb-100013
    为所述正交序列的长度。
  36. 如权利要求35所述的用户设备,其特征在于,所述循环移位值通过高层信令和/或DCI通知,或者根据所述正交序列的编号确定。
  37. 如权利要求27至36中任一项所述的用户设备,其特征在于,所述正交序列的长度为能够被M整除的正整数,M为一个物理资源块PRB占用的子载波的数量,M为正整数。
  38. 如权利要求27至36中任一项所述的用户设备,其特征在于,所述正交序列为沃什码正交序列、离散傅利叶变换正交序列、离散余弦变换正交序列中的一种或多种。
  39. 如权利要求27所述的用户设备,其特征在于,所述扩频模块具体用于:
    对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA符号上传输的数据符号,与所述对应的正交序列中的对应的正交码相乘,映射到所述SC-FDMA符号上的对应的RE上。
  40. 如权利要求39所述的用户设备,其特征在于,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],将在所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号,与所述对应的正交序列中的第i和第i+6个正交码相乘,分别映射到所述SC-FDMA符号上的第i和第i+6个RE上。
  41. 一种基站,其特征在于,包括:
    接收模块,用于在物理上行控制信道PUCCH所对应的频域资源上接收所述PUCCH;
    确定模块,用于确定所述PUCCH所使用的正交序列的指示信息;
    解扩频模块,用于使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频。
  42. 如权利要求41所述的基站,其特征在于,还包括:
    通知模块,用于通过高层信令和/或下行控制信息DCI中的比特域,向用户设备通知传输PUCCH所使用的正交序列的编号;或者,
    通过高层信令和/或DCI向用户设备通知所述PUCCH的信道资源编号,以使所述用户设备根据所述PUCCH的信道资源编确定所述PUCCH所使用的正交序列的编号。
  43. 如权利要求41所述的基站,其特征在于,所述解扩频模块具体用于:
    对于所述PUCCH占用的单载波频分多址SC-FDMA符号中除传输参考信号的符号以外的每个符号,将该符号上的
    Figure PCTCN2016097382-appb-100014
    个资源单元RE上的
    Figure PCTCN2016097382-appb-100015
    个数据符号,与长度为
    Figure PCTCN2016097382-appb-100016
    的正交序列的共轭转置序列相乘,得到解扩频后的数据调制符号。
  44. 如权利要求41所述的基站,其特征在于,所述解扩频模块具体用于:
    对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA 符号的对应RE上接收到的扩频后的数据符号,与所述对应的正交序列的共轭转置序列相乘,得到解扩频后的所述SC-FDMA符号上传输的数据符号。
  45. 如权利要求44所述的基站,其特征在于,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],将在所述SC-FDMA符号上的第i和第i+6个RE上接收到的扩频后的数据符号,与所述对应的正交序列中的第i和第i+6个正交码的共轭转置相乘,得到解扩频后的所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号。
  46. 如权利要求43所述的基站,其特征在于,一个数据符号被映射到的RE组的RE,在频域上连续分布或离散分布;和/或
    不同数据符号被映射到的不同RE组内的RE,在频域上平行分布或交错分布。
  47. 如权利要求41所述的基站,其特征在于,还包括:
    通知模块,用于通过高层信令和/或DCI向用户设备通知所述PUCCH所对应的频域资源的指示信息。
  48. 如权利要求41所述的基站,其特征在于,所述PUCCH所对应的频域资源的指示信息,包括物理资源块PRB的数量、PRB的编号、PUCCH的信道资源编号中的一种或多种。
  49. 如权利要求41所述的基站,其特征在于,所述接收模块还用于:
    根据循环位移值接收所述PUCCH的导频;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
    Figure PCTCN2016097382-appb-100017
    Nsc为所述PUCCH在频域上所占用的子载波数,
    Figure PCTCN2016097382-appb-100018
    为所述正交序列的长度。
  50. 如权利要求49所述的基站,其特征在于,还包括:
    通知模块,用于通过高层信令和/或DCI向用户设备通知所述循环移位值。
  51. 如权利要求41至49中任一项所述的基站,其特征在于,所述正交序列的长度为能够被M整除的正整数,M为一个物理资源块PRB占用的子载波的数量,M为正整数。
  52. 如权利要求41至49中任一项所述的基站,其特征在于,所述正交序列为沃什码正交序列、离散傅利叶变换正交序列、离散余弦变换正交序列中的一种或多种。
  53. 一种用户设备,其特征在于,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    获取传输物理上行控制信道PUCCH所使用的正交序列的指示信息;
    根据所述正交序列的指示信息所对应的正交序列,对所述PUCCH所承载的上行控制信息进行频域扩频;
    通过收发机在所述PUCCH所对应的频域资源上传输所述频域扩频后的上行控制信息;
    收发机,用于在处理器的控制下接收和发送数据。
  54. 如权利要求53所述的用户设备,其特征在于,所述处理器具体用于:
    根据通过收发机接收到的高层信令和/或下行控制信息DCI中的比特域,获取传输PUCCH所使用的正交序列的编号;或者,
    根据所述PUCCH的信道资源编号,确定所述PUCCH所使用的正交序列的编号,其中,所述PUCCH的信道资源编号由高层信令和/或DCI中的比特域通知。
  55. 如权利要求54所述的用户设备,其特征在于,所述处理器具体用于:
    至少根据所述PUCCH的信道资源编号以及所述正交序列的长度,确定所述PUCCH在所在子帧内所使用的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及所述PUCCH所在时隙的编号,确定所述PUCCH在所在子帧内的该时隙所使用的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度以及用于传输所述PUCCH的单载波频分多址SC-FDMA符号的编号,确定所述PUCCH在所在子帧内的每个时隙中的该SC-FDMA符号上所对应的正交序列的编号;或者,
    至少根据所述PUCCH的信道资源编号、所述正交序列的长度、所述PUCCH所在时隙的编号以及该时隙中用于传输PUCCH的SC-FDMA符号的编号,确定所述PUCCH在所在子帧的该时隙内的该SC-FDMA符号上所对应的正交序列的编号。
  56. 如权利要求53所述的用户设备,其特征在于,所述处理器具体用于:
    对于所述PUCCH的每个数据符号,将该数据符号与对应的正交序列相乘,得到扩频后的数据符号,将扩频后的数据符号映射到一个SC-FDMA符号上的一组资源单元RE上,该RE组中包含
    Figure PCTCN2016097382-appb-100019
    个RE,
    Figure PCTCN2016097382-appb-100020
    为正交序列的长度。
  57. 如权利要求53所述的用户设备,其特征在于,所述处理器还用于:
    根据循环移位值对所述PUCCH的导频进行循环位移;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
    Figure PCTCN2016097382-appb-100021
    Nsc为所述PUCCH在频域上所占用的子载波数,
    Figure PCTCN2016097382-appb-100022
    为所述正交序列的长度。
  58. 如权利要求53所述的用户设备,其特征在于,所述处理器具体用于:
    对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA符号上传输的数据符号,与所述对应的正交序列中的对应的正交码相乘,映射到所述SC-FDMA符号上的对应的RE上。
  59. 如权利要求58所述的用户设备,其特征在于,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],所述处理器具体用于:将在所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号,与所述对应的正交序列中的第i和第i+6个正交码相乘,分别映射到所述SC-FDMA符号上的第i和第i+6个RE上。
  60. 一种基站,其特征在于,包括:
    处理器,用于读取存储器中的程序,执行下列过程:
    通过收发机在物理上行控制信道PUCCH所对应的频域资源上接收所述PUCCH;
    确定所述PUCCH所使用的正交序列的指示信息;
    使用所述正交序列的指示信息所对应的正交序列,对所述PUCCH中所承载的上行控制信息进行频域解扩频;
    收发机,用于在处理器的控制下接收和发送数据。
  61. 如权利要求60所述的基站,其特征在于,所述收发机还用于:
    通过高层信令和/或下行控制信息DCI中的比特域,向用户设备通知传输PUCCH所使用的正交序列的编号;或者,
    通过高层信令和/或DCI向用户设备通知所述PUCCH的信道资源编号,以使所述用户设备根据所述PUCCH的信道资源编确定所述PUCCH所使用的正交序列的编号。
  62. 如权利要求60所述的基站,其特征在于,所述处理器具体用于:
    对于所述PUCCH占用的单载波频分多址SC-FDMA符号中除传输参考信号的符号以外的每个符号,将该符号上的
    Figure PCTCN2016097382-appb-100023
    个资源单元RE上的
    Figure PCTCN2016097382-appb-100024
    个数据符号,与长度为
    Figure PCTCN2016097382-appb-100025
    的正交序列的共轭转置序列相乘,得到解扩频后的数据调制符号。
  63. 如权利要求60所述的基站,其特征在于,所述收发机还用于:
    根据循环位移值接收所述PUCCH的导频;其中,所述循环位移值为根据循环移位间隔Δ确定的多个值中的一个,所述循环移位间隔Δ满足:
    Figure PCTCN2016097382-appb-100026
    Nsc为所述 PUCCH在频域上所占用的子载波数,
    Figure PCTCN2016097382-appb-100027
    为所述正交序列的长度。
  64. 如权利要求60所述的基站,其特征在于,所述处理器具体用于:
    对于所述PUCCH所占用的每一个承载数据的SC-FDMA符号,将在所述SC-FDMA符号的对应RE上接收到的扩频后的数据符号,与所述对应的正交序列的共轭转置序列相乘,得到解扩频后的所述SC-FDMA符号上传输的数据符号。
  65. 如权利要求64所述的基站,其特征在于,所述对应的正交序列的长度为12,所述对应的正交序列为[+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1,+1]或[+1,+1,+1,+1,+1,+1,-1,-1,-1,-1,-1,-1],所述处理器具体用于:将在所述SC-FDMA符号上的第i和第i+6个RE上接收到的扩频后的数据符号,与所述对应的正交序列中的第i和第i+6个正交码的共轭转置相乘,得到解扩频后的所述SC-FDMA符号上传输的6个数据符号中的第i个数据符号。
PCT/CN2016/097382 2015-09-25 2016-08-30 一种频域扩频、解扩频方法及装置 WO2017050100A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018515879A JP6779286B2 (ja) 2015-09-25 2016-08-30 周波数ドメインにおける拡散・拡散解消方法及び装置
KR1020187011814A KR102053154B1 (ko) 2015-09-25 2016-08-30 주파수 영역에서의 대역 확산, 역확산 방법 및 장치
EP16847982.2A EP3355479B1 (en) 2015-09-25 2016-08-30 Frequency domain spreading and de-spreading method and apparatus
US15/763,087 US10798686B2 (en) 2015-09-25 2016-08-30 Frequency domain spreading and de-spreading method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510624978.XA CN106559101B (zh) 2015-09-25 2015-09-25 一种频域扩频、解扩频方法及装置
CN201510624978.X 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017050100A1 true WO2017050100A1 (zh) 2017-03-30

Family

ID=58385565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097382 WO2017050100A1 (zh) 2015-09-25 2016-08-30 一种频域扩频、解扩频方法及装置

Country Status (6)

Country Link
US (1) US10798686B2 (zh)
EP (1) EP3355479B1 (zh)
JP (1) JP6779286B2 (zh)
KR (1) KR102053154B1 (zh)
CN (1) CN106559101B (zh)
WO (1) WO2017050100A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018093325A1 (en) 2016-11-17 2018-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Numerology-dependent downlink control channel mapping
US10721038B2 (en) * 2016-11-22 2020-07-21 Samsung Electronics Co., Ltd. Method and apparatus for channel estimation and data decoding in wireless communication system
BR112019015856A2 (pt) * 2017-02-01 2020-04-14 Guangdong Oppo Mobile Telecommunications Corp Ltd método de comunicação, dispositivo de rede e terminal
KR102288629B1 (ko) * 2017-05-04 2021-08-11 삼성전자 주식회사 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
CN108811118A (zh) * 2017-05-05 2018-11-13 深圳市中兴微电子技术有限公司 长pucch的资源调度、传输方法及装置、设备及存储介质
CN109152015B (zh) * 2017-06-16 2021-12-31 华为技术有限公司 通信方法、基站和终端设备
CN109152014B (zh) * 2017-06-16 2021-10-22 大唐移动通信设备有限公司 一种上行控制信道传输方法、终端、基站及装置
CN109391425B (zh) 2017-08-11 2020-10-16 电信科学技术研究院 一种信息的传输方法、终端及基站
WO2019128465A1 (zh) * 2017-12-27 2019-07-04 西安科锐盛创新科技有限公司 一种cdma系统信道扩频装置、方法及移动通信系统
CN110011692A (zh) * 2017-12-29 2019-07-12 株式会社Ntt都科摩 一种扩频通信方法、用户设备和基站
US11902918B2 (en) * 2018-11-02 2024-02-13 Lg Electronics Inc. Method for transmitting and receiving signals in wireless communication system, and device supporting same
CN116264867A (zh) * 2020-11-19 2023-06-16 Oppo广东移动通信有限公司 控制信道的传输及接收方法、装置、通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330367A (zh) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 物理上行应答信道的配置方法及该信道上的信号发送方法
CN102025442A (zh) * 2009-09-23 2011-04-20 大唐移动通信设备有限公司 一种多用户终端信道质量指示信息的传输方法及装置
WO2011132987A2 (ko) * 2010-04-22 2011-10-27 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN103178926A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 传输控制信息的方法、用户设备和基站

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363744B1 (ko) * 2007-07-13 2014-02-21 삼성전자주식회사 무선통신 시스템에서 상향링크 제어 채널의 송수신 장치 및방법
ES2335634B1 (es) * 2008-01-24 2011-02-10 Vicente Diaz Fuente Metodo y aparato de codificacion y decodificacion para la reduccion de las interferencias en sistemas de transmision de señales simultaneasy usuarios multiples.
WO2010143419A1 (ja) * 2009-06-09 2010-12-16 パナソニック株式会社 端末装置及び信号多重制御方法
CA2775479C (en) * 2009-09-27 2017-02-28 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
CN102014509B (zh) * 2009-09-29 2013-06-12 电信科学技术研究院 一种调度终端反馈信道信息的方法及装置
US8331478B2 (en) * 2010-01-08 2012-12-11 Research In Motion Limited Transmit diversity using low code rate spatial multiplexing
KR101730369B1 (ko) 2010-01-17 2017-04-26 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
EP2360866A1 (en) * 2010-02-12 2011-08-24 Panasonic Corporation Component carrier activation and deactivation using resource assignments
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
KR101829831B1 (ko) * 2010-05-06 2018-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US8923223B2 (en) * 2010-08-16 2014-12-30 Qualcomm Incorporated Physical uplink control channel resource allocation for multiple component carriers
CA2808860C (en) 2010-08-20 2018-04-24 Telefonaktiebolaget L M Ericsson (Publ) Arrangement and method for identifying pucch format 3 resources
CN102065054B (zh) * 2011-01-06 2014-06-04 大唐移动通信设备有限公司 一种加扰传输方法及其装置
CN105227266B (zh) * 2012-01-12 2019-06-14 华为技术有限公司 传输上行控制信息的方法、用户设备和基站
CN105557046B (zh) * 2014-01-24 2019-07-19 华为技术有限公司 导频信号的传输方法及装置
WO2015170435A1 (ja) * 2014-05-09 2015-11-12 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、基地局、送信方法及び受信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330367A (zh) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 物理上行应答信道的配置方法及该信道上的信号发送方法
CN102025442A (zh) * 2009-09-23 2011-04-20 大唐移动通信设备有限公司 一种多用户终端信道质量指示信息的传输方法及装置
WO2011132987A2 (ko) * 2010-04-22 2011-10-27 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN103178926A (zh) * 2011-12-21 2013-06-26 华为技术有限公司 传输控制信息的方法、用户设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355479A4 *

Also Published As

Publication number Publication date
CN106559101B (zh) 2019-12-10
KR20180059873A (ko) 2018-06-05
EP3355479A1 (en) 2018-08-01
CN106559101A (zh) 2017-04-05
JP2018528722A (ja) 2018-09-27
JP6779286B2 (ja) 2020-11-04
EP3355479B1 (en) 2023-04-05
US20180279294A1 (en) 2018-09-27
EP3355479A4 (en) 2018-10-17
US10798686B2 (en) 2020-10-06
KR102053154B1 (ko) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2017050100A1 (zh) 一种频域扩频、解扩频方法及装置
EP3355506B1 (en) Pucch-based uplink control information transmission method and apparatus
CN102714584B (zh) 用户设备及其确定用于发送确认信号的资源的方法
US20190053218A1 (en) Method for transmitting and receiving uplink control information in mobile communication system, and apparatus for the same
JP4913901B2 (ja) 無線通信システムにおけるackchリソース割当方法及び装置
CN103404063B (zh) 在无线通信系统中发射接收确认的方法和装置
US8483203B2 (en) Techniques for formatting signals for transmission using a wireless network
US9363811B2 (en) Mobile communication system, base station apparatus, mobile station apparatus, mobile communication method, and integrated circuit
RU2507719C2 (ru) Терминал пользователя, базовая станция и способ связи в системе мобильной связи
JP5068699B2 (ja) 基地局装置及び方法
CN104871471A (zh) 在无线通信系统中发送ack/nack的方法和设备
WO2017008562A1 (zh) 在上行控制信道上发送信号的方法和装置
CN104579604A (zh) 多小区时分双工通信系统中用于确认信号传输的索引资源
CN106027204A (zh) 在无线通信系统中发射控制信息的方法和设备
EP3667984B1 (en) Information transmission method, terminal and base station
WO2016127409A1 (zh) 传输上行控制信息的方法、用户设备和接入网设备
US11863472B2 (en) Method for transmitting uplink channel in wireless communication system, and device therefor
WO2019096135A1 (zh) 信息发送方法、装置、处理器及存储介质
US20230337241A1 (en) Resource mapping method and apparatus and device
EP2787679A2 (en) Methods and apparatus for resource element mapping
WO2021029125A1 (ja) 端末、基地局、送信方法及び受信方法
JP5249454B2 (ja) ユーザ装置
WO2017194572A1 (en) Scalable spucch design for low latency lte operation
Wang et al. CM reduction of uplink RS for aggregated carriers in LTE-advanced

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763087

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018515879

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011814

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016847982

Country of ref document: EP