WO2017049783A1 - 一种泥质软岩的硅溶胶慢渗加固方法 - Google Patents

一种泥质软岩的硅溶胶慢渗加固方法 Download PDF

Info

Publication number
WO2017049783A1
WO2017049783A1 PCT/CN2015/098037 CN2015098037W WO2017049783A1 WO 2017049783 A1 WO2017049783 A1 WO 2017049783A1 CN 2015098037 W CN2015098037 W CN 2015098037W WO 2017049783 A1 WO2017049783 A1 WO 2017049783A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica sol
grouting
rock
soft rock
grouting pressure
Prior art date
Application number
PCT/CN2015/098037
Other languages
English (en)
French (fr)
Inventor
张农
潘东江
谢正正
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2015383065A priority Critical patent/AU2015383065B1/en
Publication of WO2017049783A1 publication Critical patent/WO2017049783A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor

Definitions

  • the invention relates to a silica sol slow-reinforcing reinforcement method for mud soft rock, which is suitable for underground support engineering such as coal mine mud rock roadway and diverticulum.
  • the clay soft rock is mainly composed of clay minerals, with small pores, very weak water permeability, high capillary rise height, low strength and easy weathering.
  • the water softening coefficient is as high as 0.10 ⁇ 0.50, which is extremely sensitive to mining and excavation disturbance. .
  • This series of physical and mechanical properties promotes the formation of typical soft rock characteristics of argillaceous soft rock under low stress conditions, and the excavation and maintenance of coal mine roadway becomes extremely difficult.
  • the surrounding pressure is comprehensive, which is often pre-excavation and repair, which greatly reduces the normal lane-forming speed, resulting in the normal mining succession of the mine, directly affecting the safe and efficient production of coal mines.
  • coal mines generally use cement, water glass and high-molecular organic materials to grout mudstones, of which cement is the most commonly used grouting reinforcement material.
  • the minimum allowable width of the cement slurry (superfine cement) is about 0.1 mm.
  • the argillaceous soft rock is a natural fracture-matrix dual porosity medium.
  • the average pore size and the dominant pore diameter of the matrix system are both nanometer, which means that the cement slurry has little effect on the matrix system, only the crack system can be closed, and the cement slurry is solid.
  • the micropores of the knot itself are also developed, and the micropore pore size of the mudstone matrix is substantially the same order of magnitude. Water glass and high molecular organic materials can be better than cement slurry, but they still have little effect on the matrix system.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a slow osmosis reinforcement method for silica sol of argillaceous soft rock; the method performs high-density grouting on argillaceous soft rock to alleviate the safety hazard caused by micro-pore To solve the problem of large deformation support for softening rheology.
  • a method for realizing the present invention relates to a silica sol slow osmosis strengthening method for argillaceous soft rock, and the specific steps are as follows:
  • the grouting hole Before the muddy, the grouting hole is constructed, the hole depth is 1.5 ⁇ 2.5m, and the row spacing is 1-2m; the grouting pipe is installed and sealed, and the silica sol is injected; when the grouting pressure reaches 1-2MPa, the voltage is regulated. After 3 to 5 minutes, the grouting pressure is reduced, and the silica sol is rapidly filled and reinforced by the grouting pressure;
  • the present invention proposes to inject nano-scale slurry silica sol before muddy, and the grouting pressure is utilized in the early stage.
  • the micro-fracture system of the mudstone is rapidly filled, and the capillary force is used to diffuse and diffuse slowly in the mudstone for a long time.
  • Silica sol belongs to nano-scale slurry, with particle size of 8-20nm, low viscosity and high injectability. It provides capillary penetration and diffusion power by capillary force. It can effectively seal and strengthen mud softness through long-term slow penetration and diffusion.
  • the rock nano-scale matrix system solves the matrix system that cannot be processed by conventional grouting, and realizes "tight, wide and deep" penetration.
  • Silica sol has a certain binding force and continues to increase with age, further improving the long-term strength of mudstone.
  • Fig. 1 is a cross-sectional view showing a solution of a silica sol slow osmosis reinforcement in a shale soft rock roadway of the present invention.
  • Embodiment 1 The method for slow osmosis strengthening of silica sol of argillaceous soft rock of the present invention, the specific steps are as follows:
  • a rectangular section roadway, width ⁇ height 4.6 ⁇ 3.6m, the roof is siltstone, rich in fissure water; the basal and floor are mudstone, cemented, microporous development.
  • the grouting hole 1 is constructed in the slab and the bottom plate, the hole depth is 2m, and the row spacing is 1.5m; the grouting pipe 2 is installed and sealed, and the silica sol is injected; when the grouting pressure reaches 1.5MPa, the voltage is regulated for 5min. After reducing the grouting pressure, the silica sol is rapidly filled and reinforced by the grouting pressure;
  • the grouting pressure is reduced to 0.5 MPa, the grouting is stopped after 90 min of voltage regulation.
  • the silica sol slowly diffuses into the micro-cracks of the rock mass to form a high-density solid, and the surrounding rock is completed.
  • the field shows that the slow osmosis grouting reinforcement of silica sol can control the softening rheology of argillaceous soft rock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Road Paving Structures (AREA)

Abstract

一种泥质软岩的硅溶胶慢渗加固方法,包括以下步骤:a、评估巷道围岩岩性变化、孔隙发育特征以及水文地质情况,确定注浆孔(1)参数和硅溶胶配比;b、在泥化前施工注浆孔(1);安设注浆管(2)并封孔,注入硅溶胶;期间在注浆压力的驱动下,硅溶胶快速填充加固宏观裂隙;c、当注浆压力降低到一定值,长时间维持低压,期间在毛细力的驱动下,硅溶胶缓慢扩散进入岩体微裂隙,形成高密实加固体,完成加固围岩。该方法不仅填充了宏观裂隙,而且封闭了泥岩基质中水分子、空气分子微通道,显著阻碍了吸附、溶解、风化等微观作用,提高了泥岩微观结构密实度、整体性,降低了渗透性,增加了岩体抗变形能力和耐久性能。

Description

一种泥质软岩的硅溶胶慢渗加固方法 技术领域
本发明涉及一种泥质软岩的硅溶胶慢渗加固方法,适用于煤矿泥岩巷道、硐室等地下支护工程。
背景技术
泥质软岩组分以粘土矿物为主,孔隙很小,透水性极弱,毛细上升高度较高,强度较低,易风化,遇水软化系数高达0.10~0.50,对开采、掘进扰动极为敏感。这一系列物理力学性质促使泥质软岩在低应力条件下也表现出典型的软岩特征,煤矿巷道的开挖与维护变得极为困难。在围岩压力与裂隙水的耦合作用下,四周全面来压,往往是前掘后修,极大降低正常成巷速度,造成矿井正常采掘接替紧张,直接影响煤矿安全高效生产。
目前煤矿一般采用水泥类、水玻璃类和高分子有机材料等注浆治理泥岩,其中水泥类是最常用的注浆加固材料。根据裂隙或孔隙宽度应大于注浆材料最大粒径的3倍以上的原则,以及大量实验研究,水泥浆(超细水泥)的最小可注宽度在0.1㎜左右。但泥质软岩是天然的裂隙-基质双重孔隙度介质,其中基质系统平均孔径和优势孔径均在纳米级,意味着水泥浆对基质系统几乎没有作用,仅能封闭裂缝系统,而且水泥浆固结体本身微孔隙也发育,和泥岩基质的微孔隙孔径基本上在同一个数量级。水玻璃类、高分子有机材料可注性优于水泥浆,但也仍对基质系统作用很小。
泥岩孔隙率越高、微孔隙越发育,相界面越大,表面自由能也越高,对水的吸附作用也愈强,风化作用也愈显著,使水泥等注浆加固岩体又逐步软化崩解、强度弱化。所以泥质软岩大变形最根本的问题是基质微孔隙的封闭加固,但现有注浆加固技术并不能解决该问题。
发明内容
技术问题:本发明的目的是克服已有技术的不足,提供一种泥质软岩的硅溶胶慢渗加固方法;该方法对泥质软岩进行高密实注浆,缓解微孔隙引起的安全隐患,解决软化流变的大变形支护难题。
技术方案:实现本发明的目的一种泥质软岩的硅溶胶慢渗加固方法,具体步骤如下:
a、评估巷道围岩岩性变化、孔隙发育特征以及水文地质情况,确定注浆孔参数和硅溶胶配比。
b、在泥化前施工注浆孔,孔深1.5~2.5m,间排距1~2m;安设注浆管并封孔,注入硅溶胶;当注浆压力达到1~2MPa时,稳压3~5min后降低注浆压力,期间在注浆压力的驱动下,硅溶胶快速填充加固宏观裂隙;
c、当注浆压力降低到0.2~1MPa时,稳压30~180min后停止注浆,期间在毛细力的驱动下,硅溶胶缓慢扩散进入岩体微裂隙,形成高密实加固体,完成加固围岩。
有益效果:考虑到泥岩的裂隙-基质双重孔隙度介质微结构特征,以及常规注浆无法处理的泥岩基质系统,本发明提出在泥化前注入纳米级浆材硅溶胶,前期利用注浆压力在泥岩宏观裂隙系统快速填充,后期利用毛细力在泥岩中长时间缓慢渗透扩散。
由于采用了上述技术方案,具备以下优点:
1)硅溶胶属于纳米级浆材,粒径在8~20nm,黏度低,可注性非常高,利用毛细力提供浆材渗透扩散动力,通过长时间缓慢渗透扩散,可以有效封闭加固泥质软岩纳米级基质系统,从而解决常规注浆无法处理的基质系统,实现“密、广、深”式渗透。
2)极大封闭了泥质软岩基质中水分子、空气分子微通道,显著阻碍了吸附、溶解、风化等微观作用,从而在根本上解决了泥质软岩的物化膨胀问题,如分子膨胀、胶体膨胀、毛细膨胀。
3)大幅度提高泥岩微观结构密实度、整体性,进一步降低渗透性,增加岩体抗变形能力和耐久性能。
4)硅溶胶具备一定的粘结力,并随龄期不断提升,进一步提高泥岩的长期强度。
附图说明
图1是本发明的泥质软岩巷道的硅溶胶慢渗加固方案剖视图。
图中:1-注浆孔;2-注浆管。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
实施例1:本发明的泥质软岩的硅溶胶慢渗加固方法,具体步骤如下:
某矩形断面巷道,宽×高=4.6×3.6m,顶板为粉砂岩,富含裂隙水;帮部、底板为泥岩,遇水泥化,微孔隙发育。为控制巷道大变形,采用硅溶胶注浆,硅溶胶A料:B料=4:1。
泥化前在帮部和底板施工注浆孔1,孔深2m,间排距1.5m;安设注浆管2并封孔,注入硅溶胶;当注浆压力达到1.5MPa时,稳压5min后降低注浆压力,期间在注浆压力的驱动下,硅溶胶快速填充加固宏观裂隙;
当注浆压力降低到0.5MPa时,稳压90min后停止注浆,期间在毛细力的驱动下,硅溶胶缓慢扩散进入岩体微裂隙,形成高密实加固体,完成加固围岩。
现场表明,硅溶胶慢渗注浆加固能够很好地控制泥质软岩的软化流变。

Claims (1)

  1. 一种泥质软岩的硅溶胶慢渗加固方法,其特征在于:硅溶胶慢渗加固方法,具体步骤如下:
    a、评估巷道围岩岩性变化、孔隙发育特征以及水文地质情况,确定注浆孔(1)参数和硅溶胶配比;
    b、在泥化前施工注浆孔(1),孔深1.5~2.5m,间排距1~2m;安设注浆管(2)并封孔,注入硅溶胶;当注浆压力达到1~2MPa时,稳压3~5min后降低注浆压力,期间在注浆压力的驱动下,硅溶胶快速填充加固宏观裂隙;
    c、当注浆压力降低到0.2~1MPa时,稳压30~180min后停止注浆,期间在毛细力的驱动下,硅溶胶缓慢扩散进入岩体微裂隙,形成高密实加固体,完成加固围岩。
PCT/CN2015/098037 2015-09-21 2015-12-21 一种泥质软岩的硅溶胶慢渗加固方法 WO2017049783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015383065A AU2015383065B1 (en) 2015-09-21 2015-12-21 Silica sol slow infiltration reinforcement method for argillaceous soft rocks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510603025.5A CN105201528B (zh) 2015-09-21 2015-09-21 一种泥质软岩的硅溶胶慢渗加固方法
CN201510603025.5 2015-09-21

Publications (1)

Publication Number Publication Date
WO2017049783A1 true WO2017049783A1 (zh) 2017-03-30

Family

ID=54949441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098037 WO2017049783A1 (zh) 2015-09-21 2015-12-21 一种泥质软岩的硅溶胶慢渗加固方法

Country Status (2)

Country Link
CN (1) CN105201528B (zh)
WO (1) WO2017049783A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108536942A (zh) * 2018-03-29 2018-09-14 西南石油大学 一种软岩隧道开挖面变形计算方法
CN110516344A (zh) * 2019-08-23 2019-11-29 郑州大学 临坡面岩体竖向裂隙注浆设计方法
CN111980674A (zh) * 2020-08-31 2020-11-24 中铁十六局集团有限公司 一种隧道超前帷幕注浆工艺及综合检查评定方法
CN114436585A (zh) * 2022-01-05 2022-05-06 中国矿业大学 一种低渗抗分散岩石渗透改性材料

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837237B (zh) * 2016-07-18 2019-10-01 重庆交通大学 一种含弱结构体煤岩层固化成孔方法
CN106703007B (zh) * 2016-11-25 2018-08-03 浙江科技学院(浙江中德科技促进中心) 可液化砂土中防止盾构机下沉的硅溶胶加固装置及其方法
CN107237651B (zh) * 2017-06-23 2019-10-01 中国矿业大学 一种煤矿地下水库及水库坝体的多层次注浆防渗加固方法
CN107083977B (zh) * 2017-06-23 2019-05-14 中国矿业大学 一种泥质软岩巷道分区多粒度的注浆加固方法
CN112096112A (zh) * 2020-09-11 2020-12-18 西安建筑科技大学 一种硅溶胶渗浆加固的古建筑砖墙及其加固施工工艺
CN112979343B (zh) * 2021-03-03 2023-10-20 青岛经济技术开发区海尔热水器有限公司 一种岩石材料的活化方法及水体矿化岩石

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129991A (en) * 1977-10-28 1978-12-19 Karl Schaden Method of producing a concrete lined tunnel or other underground excavation
DE3227251A1 (de) * 1982-07-21 1984-01-26 Tunnel Ausbau Technik GmbH, 8036 Herrsching Mit bewehrungsboegen versehene beton-tunnelauskleidung
CN102322273A (zh) * 2011-05-20 2012-01-18 中国矿业大学 一种巷道底板锚注一体化加固方法
CN103590840A (zh) * 2013-11-29 2014-02-19 王威 一种底板注浆方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1542907A1 (de) * 1951-01-28 1970-04-16 Henkel & Cie Gmbh Verfahren zur Bodenverbesserung
GB1294131A (en) * 1969-01-01 1972-10-25 Borden Chemical Company Uk Ltd Improvements in or relating to the grouting of soils
JPS5674179A (en) * 1979-11-22 1981-06-19 Shimoda Gijutsu Kenkyusho:Kk Back-filling process
EP0530600A1 (de) * 1991-08-28 1993-03-10 Sika AG, vorm. Kaspar Winkler & Co. Mittel für die Verfestigung von Fels, Lockergestein, porösen natürlichen und künstlichen Steinen sowie Böden und Verfahren zur Verfestigung unter Verwendung dieses Mittels
DE19856729A1 (de) * 1998-12-09 2000-06-15 Cognis Deutschland Gmbh Repairlösung zur Abdichtung von Bohrlöchern
KR100475416B1 (ko) * 2002-01-29 2005-03-10 정종주 강관 보강 마이크로 실리카 그라우팅 공법
KR101084636B1 (ko) * 2009-03-06 2011-11-17 (주)지중공영 실리카 졸 그라우팅 약액을 지반 내에 주입하기 위한 다중관 약액 주입 장치 및 이를 이용한 약액 주입 공법
CN104674800A (zh) * 2014-12-31 2015-06-03 云南建工基础工程有限责任公司 一种采用复合固化剂的高压旋喷桩在泥炭质土层中的成桩方法
CN104712288B (zh) * 2015-02-05 2017-07-04 中国矿业大学 泥质胶结软弱岩土体高能气体致裂注浆方法
CN104775448A (zh) * 2015-03-30 2015-07-15 朱奎 软土地区地下室施工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129991A (en) * 1977-10-28 1978-12-19 Karl Schaden Method of producing a concrete lined tunnel or other underground excavation
DE3227251A1 (de) * 1982-07-21 1984-01-26 Tunnel Ausbau Technik GmbH, 8036 Herrsching Mit bewehrungsboegen versehene beton-tunnelauskleidung
CN102322273A (zh) * 2011-05-20 2012-01-18 中国矿业大学 一种巷道底板锚注一体化加固方法
CN103590840A (zh) * 2013-11-29 2014-02-19 王威 一种底板注浆方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108536942A (zh) * 2018-03-29 2018-09-14 西南石油大学 一种软岩隧道开挖面变形计算方法
CN108536942B (zh) * 2018-03-29 2022-04-08 西南石油大学 一种软岩隧道开挖面变形计算方法
CN110516344A (zh) * 2019-08-23 2019-11-29 郑州大学 临坡面岩体竖向裂隙注浆设计方法
CN110516344B (zh) * 2019-08-23 2023-05-12 郑州大学 临坡面岩体竖向裂隙注浆设计方法
CN111980674A (zh) * 2020-08-31 2020-11-24 中铁十六局集团有限公司 一种隧道超前帷幕注浆工艺及综合检查评定方法
CN114436585A (zh) * 2022-01-05 2022-05-06 中国矿业大学 一种低渗抗分散岩石渗透改性材料

Also Published As

Publication number Publication date
CN105201528A (zh) 2015-12-30
CN105201528B (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
WO2017049783A1 (zh) 一种泥质软岩的硅溶胶慢渗加固方法
WO2018233149A1 (zh) 一种泥质软岩巷道分区多粒度的注浆加固方法
CN107237651B (zh) 一种煤矿地下水库及水库坝体的多层次注浆防渗加固方法
CN102121395B (zh) 低渗透单一煤层瓦斯综合治理一体化的方法
CN106351662B (zh) 分隔式分段注浆加固方法、施工方法及应用
AU2016231635B2 (en) A method of improving the wetted radius of high pressure water injection of lowly permeable coal seams through sublevel presplitting
CN105062442B (zh) 一种稠油热采封窜剂、封窜剂浆液及其制备方法,稠油热采调剖封窜方法
CN102425439B (zh) 预置钢绞线双向分阶段张拉的锚索加固方法
CN202560157U (zh) 注浆装置
CN106884655B (zh) 一种沿空掘巷煤柱双向加固方法
CN102900446B (zh) 碎裂介质向下套管成孔及锚注分步加固方法
CN102322273A (zh) 一种巷道底板锚注一体化加固方法
CN110359898A (zh) 一种裂缝性储层预撑裂缝堵漏材料选择方法
CN109681262A (zh) 一种提高破碎煤体中瓦斯钻孔抽采浓度的方法
CN103742172B (zh) 一种底板注浆封堵硫化氢突水点的方法
CN112267884B (zh) 一种基于复合纳米注浆封闭的留小煤柱沿空掘巷施工方法
CN104314540A (zh) 一种注蒸汽油藏防治汽窜方法
CN104653137A (zh) 一种套变井整形修复工艺方法
CN105003294B (zh) 一种基于水热耦合压裂煤体石门揭煤方法
CN106640139B (zh) 一种自溶解注浆加固设备
CN109578058A (zh) 一种通过辅助钻孔提高抽采钻孔瓦斯抽采浓度的方法
CN109555536B (zh) 一种分层分序多浆液联合减压截断注浆控制方法及系统
CN114959317B (zh) 一种强化离子型稀土原地浸出渗流过程的装置及方法
CN103541679B (zh) 煤矿井下水力压裂钻孔组合式封孔方法
CN114991774A (zh) 破碎安山质玄武岩地层地面分段下行式注浆方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2015383065

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904658

Country of ref document: EP

Kind code of ref document: A1