WO2018233149A1 - 一种泥质软岩巷道分区多粒度的注浆加固方法 - Google Patents
一种泥质软岩巷道分区多粒度的注浆加固方法 Download PDFInfo
- Publication number
- WO2018233149A1 WO2018233149A1 PCT/CN2017/105793 CN2017105793W WO2018233149A1 WO 2018233149 A1 WO2018233149 A1 WO 2018233149A1 CN 2017105793 W CN2017105793 W CN 2017105793W WO 2018233149 A1 WO2018233149 A1 WO 2018233149A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grouting
- roadway
- deep
- shallow
- rock
- Prior art date
Links
- 239000011435 rock Substances 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000002787 reinforcement Effects 0.000 title claims abstract description 24
- 238000005192 partition Methods 0.000 title claims abstract description 10
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000004567 concrete Substances 0.000 claims abstract description 32
- 238000007789 sealing Methods 0.000 claims abstract description 16
- 238000005553 drilling Methods 0.000 claims abstract description 13
- 238000004873 anchoring Methods 0.000 claims abstract description 8
- 239000007921 spray Substances 0.000 claims abstract description 8
- 239000002002 slurry Substances 0.000 claims description 35
- 239000004568 cement Substances 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 13
- 238000011161 development Methods 0.000 claims description 12
- 238000009412 basement excavation Methods 0.000 claims description 10
- 230000035515 penetration Effects 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 239000011378 shotcrete Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 208000008918 voyeurism Diseases 0.000 claims description 3
- 238000000638 solvent extraction Methods 0.000 claims 2
- 238000010276 construction Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 14
- 238000000518 rheometry Methods 0.000 abstract description 5
- 239000007787 solid Substances 0.000 abstract description 4
- 230000005641 tunneling Effects 0.000 abstract 1
- 206010017076 Fracture Diseases 0.000 description 10
- 208000010392 Bone Fractures Diseases 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 239000011440 grout Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 244000144985 peep Species 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 241000537371 Fraxinus caroliniana Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 235000010891 Ptelea trifoliata Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/10—Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/38—Waterproofing; Heat insulating; Soundproofing; Electric insulating
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/001—Improving soil or rock, e.g. by freezing; Injections
- E21D9/002—Injection methods characterised by the chemical composition used
Definitions
- the invention relates to a grouting reinforcement method, which is suitable for a multi-granular grouting reinforcement method for a shale soft rock roadway partition used in underground mine roadway support.
- Muddy soft rock roadway is a composite surrounding rock roadway with high stress, jointing, water swelling and softening, etc., especially the physical characteristics of water swelling, which is called one of the "cancer" of underground engineering, which will lead to Large deformation and damage of the surrounding rock of the roadway caused even catastrophic engineering accidents.
- the complexity of the stress state of the muddy soft rock roadway and the variability of the water conditions determine its complex deformation mechanism. In the control method, it is a practical feature that it is difficult to effectively manage a single protection method.
- the radial direction along the roadway can be divided into: complete seepage zone, directional seepage zone, seepage shielding zone, and original rock seepage zone.
- complete seepage zone the support problems of soft rock roadway are mostly closed by cement grouting.
- the most effective area of grouting grout is the complete seepage area.
- the area is located in the surface crushing zone of the roadway.
- the thickness is generally 0.4-2.0m.
- the surrounding rock fissure is fully developed. It is similar to the permeability of the hoop, and is in the order of magnitude. It basically achieves the same-flow seepage and can see through the omnidirectional flow.
- the seepage channel after entering the deep part is mainly the primary fissure surface and the structural plane. Due to the directionality of the original structural plane of the layered rock mass, the seepage characteristics of the interval are strongly oriented. It is called a directional seepage zone, and the slurry seepage in this area is mainly dominated by large-fracture seepage, which is vein-like diffusion. As the distance from the surface of the roadway continues to increase, due to the stress concentration and high confining pressure constraints, the crack opening is reduced by compression, blocking the slurry seepage channel. Although the microscopic and meso-fractures are developed, the cement slurry is considered.
- the cement slurry reinforcement method can effectively seal the crack system and reinforce the surrounding rock in the shallow fracture zone, but the cement slurry has little effect on the microporosity and meso-fracture developed in the deep tunnel seepage zone of the roadway surrounding rock.
- the slow osmosis strengthening method of silica sol can greatly close the microporous cracks in the deep soft rock matrix, and the sealing effect is better, but the silica sol has insufficient cohesive force and the reinforcing effect is not satisfactory. Therefore, the existing methods have certain shortcomings and shortcomings.
- the object of the present invention is to overcome the deficiencies of the prior art, and to provide a multi-granular grouting reinforcement method for a shale soft rock roadway partition with simple steps, low implementation cost and good supporting effect.
- the multi-granular grouting reinforcement method for the argillaceous soft rock roadway of the present invention evaluates the corresponding geological state according to the geological information of the specific roadway, and designs in the roadway according to the assessed geological state. Drilling points for shallow grouting holes and deep grouting holes, along with roadway excavation, anchoring the surrounding of the roadway and setting up concrete and silica sol sprayed layers; constructing shallow grouting holes and sealing holes on the gangs and top floors of the roadway Grouting, deep injection of grouting holes and sealing grouting at the pre-designed deep-injection hole drilling point, so as to effectively close and reinforce to the deep original rock area.
- the drilling points of the shallow grouting holes and the deep grouting holes are designed on the side walls and the bottom plate of the roadway;
- shallow grouting holes shall be constructed in the shallow grouting holes of the pre-designed shallow grouting holes on the gang and the top floor of the roadway, and grouting equipment shall be used to inject cement into the shallow grouting holes through the grouting pipe. Slurry and sealing, driven by the grouting pressure of the cement slurry, the cement slurry diffuses and fills the shallow cracks of the mudstone through the shallow grouting hole to close the surrounding rock of the shallow broken area;
- a deep grouting hole is constructed in the pre-designed deep grouting hole drilling point on the gang section and the top floor of the roadway, and the deep grouting hole is passed through the grouting pipe through the grouting device.
- the silica sol is injected and sealed. Under the driving of the capillary force, the silica sol is slowly infiltrated into the deep pore system pores of the soft rock roadway through the deep grouting hole, thereby being closed and strengthened to the deep original rock area.
- the thickness of the rock face sprayed concrete layer around the roadway is 80 mm to 120 mm; the thickness of the silica sol layer sprayed on the concrete stop layer is 2 mm to 5 mm.
- the shallow grouting hole depth applied in the gang section and the top floor of the roadway is 2.0m ⁇ 2.5m, and passes through the complete seepage area of the rock layer until the directional seepage zone, and the grouting pressure is increased to 1 ⁇ 2MPa during the grouting process. After 15 to 20 minutes of pressure regulation, the grouting is stopped and the hole is sealed.
- the depth of the deep grouting hole constructed on the gang of the roadway and the top floor is 4m-6m, and the deep grouting hole passes through the complete seepage zone, the directional seepage zone and the seepage shielding zone of the rock formation until the original rock seepage zone, note
- the slurry process improves the grouting pressure of the silicon-injected sol to 0.2-0.8 MPa and then stabilizes the grouting and sealing after 60-180 min.
- the penetration distance between the two deep grouting holes or between the two shallow grouting holes should be intersected.
- the crossover coefficient is selected to be 0.65-0.8, and according to the site lithology, the holes.
- the development of the fracture, as well as the actual observation of the penetration distance, the parameters of the inter-displacement, the depth of the shallow grouting hole and the deep grouting hole are determined according to the range of the crushing zone peeping from the borehole peep.
- the installation angles of the shallow grouting holes arranged at the top and bottom of the gang and the deep grouting holes of the bottom are 15° with the horizontal direction, and the deep grouting holes and shallow grouting holes arranged at the two corners of the top plate are installed at an angle and a vertical
- the angle of the straight direction is 15°, and the other grouting holes are vertically punched.
- This application forms a concrete slurry layer by spraying concrete on the rock face around the roadway, effectively sealing the large cracks on the rock surface, and repeatedly spraying the nano-scale silica sol layer on the concrete slurry layer to quickly and effectively close the micro-hole cracks.
- An isolation layer is formed on the surface of the roadway to block the water molecules in the roadway, and the air molecules enter the channel of the surrounding rock of the roadway, which significantly hinders the microscopic effects such as adsorption, dissolution and weathering, and prevents further long-term hydration and weathering of the muddy soft rock roadway;
- the nano-sized silica sol layer combined with the deep-soled hole injected silica sol to block the water molecules, air molecules, fissure water, etc. from the surrounding rock of the roadway into the cement slurry consolidation body.
- the channel; the cement slurry injected at the same time reinforces the surrounding rock in the shallow fracture zone.
- This three-dimensional reinforcement method weakens the influence of flooding on the muddy soft rock roadway and increases the resistance to deformation and durability of the muddy soft rock roadway. It solves the problems of nonlinear large deformation, significant rheology and disturbance caused by the prominent performance of muddy soft rock roadway after water contact;
- the cement slurry is added to the complete seepage zone and the directional seepage zone along the radial direction of the muddy soft rock roadway, and the seepage in the seepage shielding zone and the original rock Injecting silica sol into the area, on the one hand, can effectively fill the shallow crack system, strengthen the surrounding rock of the shallow broken area, and on the other hand can seal the microporous cracks in the deep matrix system of the argillaceous soft rock roadway, alleviating the possibility of microporous cracks.
- the problem of flooding effectively controlling the muddy process during the deformation process of surrounding rock, and solving the large deformation support problem of softening rheology of mud soft rock roadway.
- the steps are simple, the implementation cost is low, and the support effect is good.
- FIG. 1 is a cross-sectional view showing the arrangement of grouting holes in a multi-granular grouting reinforcement method for a virgin soft rock roadway partition of the present invention.
- FIG. 2 is a side view of the grouting hole of the gang in the multi-granular grouting reinforcement method of the argillaceous soft rock roadway partition of the present invention.
- FIG 3 is a top plan view of a grouting hole of a bottom plate in a multi-granular grouting reinforcement method for a virgin soft rock roadway partition according to the present invention.
- the multi-granular grouting reinforcement method for the argillaceous soft rock roadway of the present invention evaluates the corresponding geological state according to the geological information of the specific roadway, and designs in the roadway according to the evaluated geological state.
- the shallow grouting hole 1 is constructed on the gang of the roadway and the top floor and sealed and grouted.
- the deep grouting hole 3 is constructed in the pre-designed deep grouting hole drilling point and sealed and grouted, thereby effectively sealing and strengthening to the deep original Within the rock area.
- the drilling points of the shallow grouting hole 1 and the deep grouting hole 3 are designed on the side wall and the bottom plate of the roadway;
- the thickness of the concrete stop layer formed by the jet surface spray around the roadway is 80mm ⁇ 120mm; the thickness of the silica sol layer sprayed on the concrete stop layer is 2mm ⁇ 5mm.
- the shallow grouting hole 1 is constructed in the shallow grouting hole of the pre-designed shallow grouting hole on the gang and the top floor of the roadway, and the shallow grouting hole is passed through the grouting pipe 2 by grouting equipment.
- 1Injecting cement slurry and sealing the hole the shallow grouting hole constructed on the gang and the top floor of the roadway has a hole depth of 2.0m-2.5m, passes through the complete seepage zone of the rock formation until the directional seepage zone, and the grouting process
- the grouting is stopped for 15 ⁇ 20min, then the grouting is stopped and the hole is sealed. Under the driving pressure of the grout, the grout is diffused into the shallow crack of the mudstone through the shallow grouting hole to close the reinforcement. Shallow fractured area surrounding rock;
- the deep grouting hole 3 is constructed in the pre-designed deep grouting hole drilling point on the gang and the top floor of the roadway, and the grouting device is used to pass the grouting pipe 2 to the deep injection.
- the slurry hole 3 is injected into the silica sol and sealed, and the deep grouting hole 3 constructed on the gang and the top floor of the roadway has a depth of 4 m to 6 m, and the deep grouting hole 3 passes through the complete seepage area and directional seepage of the rock layer. Zone, seepage shielding area until the original rock seepage zone, the grouting process increases the grouting pressure of the silica injection sol to 0.2-0.8MPa, and then stabilizes grouting and sealing after 60 ⁇ 180min. Under the driving of capillary force, the silica sol passes. The deep injection grouting slowly fills the microporous fissures in the deep matrix system of the soft rock roadway, so that it is closed and strengthened to the deep original rock area.
- the penetration distance between the two deep grouting holes or between the two shallow grouting holes should be intersected.
- the crossover coefficient is selected to be 0.65-0.8, and according to the site lithology, the holes.
- the development of the fracture, as well as the actual observation of the penetration distance, the parameters of the inter-displacement, the depth of the shallow grouting hole and the deep grouting hole are determined according to the range of the crushing zone peeping from the borehole peep.
- the installation angles of the shallow grouting holes arranged at the top and bottom of the gang and the deep grouting holes of the bottom are 15° with the horizontal direction, and the deep grouting holes and shallow grouting holes arranged at the two corners of the top plate are installed at an angle and a vertical
- the angle of the straight direction is 15°, and the other grouting holes are vertically punched.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- grouting is carried out by cement slurry and silica sol partition grouting reinforcement method.
- the shallow grouting hole 1 is constructed in the gang and the bottom plate.
- the hole depth is 2.2m
- the spacing between the holes is 1.5m ⁇ 1.5m
- the shallow grouting hole 1 at the top of the top of the gang has an angle of 15° with the horizontal direction.
- the shallow grouting holes 1 at both corners are at an angle of 15° to the vertical direction, and the other shallow grouting holes 1 are vertically perforated. See Figure 1 for details; install grouting pipe 2 and seal the hole, inject cement slurry, grout
- the water ash mass ratio is 1:1; the grouting pressure is 1.5 MPa, and the grouting is stopped after 15 minutes of voltage regulation.
- Pre-grouting inspection The shotcrete and silica sol reinforcement of the unsprayed concrete or silica sol section of the roadway are closed.
- the deep injection grouting hole 3 of the gang is arranged according to the shallow grouting hole 1 from the top to the next row, and the row of deep grouting holes 3 is arranged in the middle of the shallow grouting hole 1, and the deep grouting hole 3 of the bottom plate is in accordance with the left to the right.
- a row of shallow grouting holes 1, a row of deep grouting holes 3, intervening arrangement is arranged in the middle of shallow grouting holes 1, the deep grouting holes at the bottom of the sill are at an angle of 15° with the horizontal direction, and the left and right sides of the bottom plate are deep grouted
- the hole 3 has an angle of 15° with the vertical direction, and the other deep injection holes 3 are vertically punched. See Figure 1 for details.
- the grouting pressure is 0.5 MPa. After the pressure is 120 min, the grouting is stopped, and the capillary force is driven. The silica sol slowly diffuses into the micro-cracks of the rock mass, forming a high-density solid, and completing the reinforcement of the surrounding rock.
- the site shows that the multi-granular grouting reinforcement method of the argillaceous soft rock roadway can control the softening rheology of the muddy soft rock roadway.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Architecture (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Civil Engineering (AREA)
- Soil Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
公开了一种泥质软岩巷道分区多粒度的注浆加固方法。根据具体巷道的地质信息资料评估出相应的地质状态,根据评估出的地质状态在巷道中设计浅注浆孔(1)和深注浆孔(3)的钻孔点,随着巷道掘进,对巷道四周进行锚固并设置混凝土和硅溶胶喷层(4);在巷道的帮部和顶底板上施工浅注浆孔(1)并封孔注浆,在预先设计的深注浆孔(3)钻孔点施工深注浆孔(3)并封孔注浆,从而有效封闭加固至深部原岩区以内。该方法不仅加固了浅部破碎区围岩,而且封堵了水分子、空气分子、裂隙水进入固结体的通道,从而增加了其抗变形能力和耐久性能,解决了泥质软岩巷道遇水后突出表现的非线性大变形、显著的流变和受扰动影响等的问题。
Description
本发明涉及一种注浆加固方法,适用于一种煤矿地下对巷道支护使用的泥质软岩巷道分区多粒度的注浆加固方法。
泥质软岩巷道是具有高应力、节理化、遇水膨胀软化等物理特征的复合型围岩巷道,特别是遇水膨胀的物理特征,被称为地下工程的“癌症”之一,会导致巷道围岩大变形破坏,甚至引发灾难性工程事故。泥质软岩巷道受力状态的复杂性与遇水条件的多变性决定了其复杂的变形机制,在控制手段上表现为单一支护方式难以有效治理的实践特征。
沿巷道径向根据围岩不同的渗流特性可分成:完全渗流区、定向渗流区、渗流屏蔽区、原岩渗流区。目前处理软岩巷道的支护难题多采用注水泥浆封闭加固,注水泥浆最有效区域是完全渗流区,该区位于巷道表层破碎区,一般厚度为0.4~2.0m,围岩裂隙充分发育,巷道轴向与环向的渗透性能相近,处于一个数量级,基本上做到各向渗流同性,可全方位渗流。浆液经过浅层完全扩散后,进入深部后的渗流通道是以原生裂隙面与结构面为主,由于层状岩体原生结构面的定向性使得该区间的渗流特性表现为很强的定向性,称为定向渗流区,该区域浆液渗流主要以大裂隙渗流为主,呈脉状扩散。随着与巷道表面的距离继续增加,受应力集中和高围压约束的影响,裂隙开度受压缩后减小,阻断了浆液渗流通道,虽然微观、细观裂隙发育,但考虑到水泥浆液的最小可注宽度0.1mm和启动压力梯度因素,该区域对于水泥浆其屏蔽作用是显著的,水泥浆很难穿过该区域向深部围岩渗流,所以在该区域形成了水泥浆的注浆渗流屏蔽区。并且,水泥浆注浆加固后随时间推移,固结体本身微孔隙也发育,孔隙表面水化、风化作用越来越强,使水泥浆加固的岩体逐步软化崩解,整体发生蠕变,因此水泥浆解决不了泥质软岩巷道软化流变大变形的难题。
近年来,针对泥质软岩巷道的支护难题,一种泥质软岩的硅溶胶慢渗加固方法被提出(中国发明专利公布号:CN105201528A),该方法对泥质软岩进行高密实注浆,在泥化前注入纳米级浆材硅溶胶(粒度分析结果为8-20nm),前期利用注浆压力在泥岩宏观裂隙系统快速填充,后期利用毛细力在泥岩中长时间缓慢渗透扩散,极大封闭了泥质软岩基质中水分子、空气分子微通道,显著阻碍了吸附、溶解、风化等微观作用,可有效地缓解微裂隙、微孔隙引起的安全隐患,解决软化流变的大变形支护难题。但是硅溶胶仅仅具备有限的粘结力,加固效果不理想。
综上,水泥浆加固方法能有效封闭裂缝系统,加固浅部破碎区围岩,但是水泥浆对巷道围岩深部渗流屏蔽区发育的微孔隙和细观裂隙几乎没有作用。硅溶胶慢渗加固方法可以极大封闭深部软岩基质微孔裂隙,封闭作用较好,但是硅溶胶粘结力不足,加固的效果不理想。因此,现有的这些方法都有一定的缺点和不足。
发明内容
技术问题:本发明的目的是克服已有技术的不足,提供一种步骤简单,实施成本低,支护效果好的泥质软岩巷道分区多粒度的注浆加固方法。
技术方案:为实现上述技术目的,本发明的泥质软岩巷道分区多粒度的注浆加固方法,根据具体巷道的地质信息资料评估出相应的地质状态,根据评估出的地质状态在巷道中设计浅注浆孔和深注浆孔的钻孔点,随着巷道掘进,对巷道四周进行锚固并设置混凝土和硅溶胶喷层;在巷道的帮部和顶底板上施工浅注浆孔并封孔注浆,在预先设计的深注浆孔钻孔点施工深注浆孔并封孔注浆,从而有效封闭加固至深部原岩区以内。
具体步骤如下:
a、对被测的巷道进行地质测试,并获取相应的地质信息资料,根据地质测试和地质信息资料评估得到巷道围岩岩性、孔裂隙发育以及水文地质情况;
b、根据评估出的巷道围岩岩性、孔裂隙的发育情况以及水文地质情况在巷道侧壁和底板上设计浅注浆孔和深注浆孔的钻孔点;
c、随着巷道掘进,评估巷道径向围岩孔裂隙发育区划特征,及时锚固后对巷道四周的岩面喷射混凝土,封闭岩面大裂隙,为后续注浆构筑止浆层,等待混凝土凝固之后形成混凝土止浆层,在混凝土止浆层上复喷硅溶胶构成硅溶胶层,及时封闭混凝土止浆层微孔裂隙,从而形成混凝土和硅溶胶喷层,防止围岩被侵蚀,长期后水化、风化;
d、巷道开挖10~20天后,在巷道的帮部和顶底板上预先设计的浅注浆孔钻孔点施工浅注浆孔,利用注浆设备通过注浆管对浅注浆孔注入水泥浆并封孔,在水泥浆的注浆压力的驱动下,水泥浆通过浅注浆孔扩散填充泥岩浅部裂缝从而封闭加固浅部破碎区围岩;
e、浅孔注浆结束25~35天后,在巷道的帮部和顶底板上预先设计的深注浆孔钻孔点施工深注浆孔,利用注浆设备通过注浆管对深注浆孔注入硅溶胶并封孔,在毛细力的驱动下,硅溶胶通过深注浆孔慢渗填充软岩巷道深部基质系统微孔裂隙,从而封闭加固至深部原岩区以内。
所述对巷道四周的岩面喷射混凝土层的厚度为80mm~120mm;在混凝土止浆层上复喷的硅溶胶层厚度为2mm~5mm。
所述在巷道的帮部和顶底板上施工的浅注浆孔孔深为2.0m~2.5m,穿过岩层的完全渗流区直到定向渗流区,注浆过程中提高注浆压力达到1~2MPa后稳压15~20min后停止注浆并封孔。
所述在巷道的帮部和顶底板上施工的深注浆孔孔深为4m~6m,深注浆孔穿过岩层的完全渗流区、定向渗流区、渗流屏蔽区直到原岩渗流区,注浆过程提高注硅溶胶注浆压力达到0.2~0.8MPa后稳压60~180min后停止注浆并封孔。
所述两深注浆孔间或两浅注浆孔间的渗透距离要存在交叉,设计深注浆孔或浅注浆孔间排距时交叉系数选为0.65-0.8,并根据现场岩性,孔裂隙发育,以及实际观测渗透距离,调整间排距的参数,浅注浆孔和深注浆孔的深度根据钻孔窥视仪现场窥视的破碎区范围确定。
所述布置在帮顶部、底部的浅注浆孔和帮底部的深注浆孔安装角度与水平方向夹角15°,布置在顶板两角的深注浆孔和浅注浆孔安装角度与竖直方向夹角15°,其余注浆孔均垂直打孔。
1)本申请通过在对巷道四周的岩面喷射混凝土构成混凝土止浆层,有效封闭岩面大裂隙,并在混凝土止浆层上复喷纳米级硅溶胶层,快速有效封闭微孔裂隙,从而在巷道表面形成隔离层,封堵巷道内水分子,空气分子进入巷道围岩的通道,显著阻碍了吸附、溶解、风化等微观作用,防止了泥质软岩巷道的进一步长期水化、风化;
2)通过浅注浆孔注入的水泥浆液扩散充填和固结被破坏形成的或原有的裂隙面,加固浅部破碎区围岩,提高岩体强度,为巷道进一步稳定提供更好的围岩条件,参与巷道围岩应力平衡过程,以充分发挥岩体的承载能力;
3)向深孔注入硅溶胶,利用毛细力提供硅溶胶渗透扩散动力,通过长时间缓慢渗透扩散,从而有效封闭泥质软岩巷道深部纳米级基质系统微孔裂隙,使泥岩微观结构更密实、更整体,封堵裂隙水通道,降低渗透性,防止已用水泥浆加固后的岩体遇水之后又逐步软化崩解、强度弱化、膨胀变形破坏;
4)利用巷道四周的岩面喷射混凝土层、纳米级硅溶胶层结合深注浆孔注入的硅溶胶分别从巷道围岩内外封堵水分子、空气分子、裂隙水等进入水泥浆固结体的通道;同时注入的水泥浆加固了浅部破碎区围岩,这种立体形式的加固方法,削弱了水患对泥质软岩巷道的影响,增加了泥质软岩巷道抗变形能力和耐久性能,解决了遇水后泥质软岩巷道突出表现的非线性大变形、显著的流变和受扰动影响等的问题;
通过在巷道表面构成的混凝土层和纳米级硅溶胶层,结合对沿泥质软岩巷道径向的完全渗流区、定向渗流区范围内分别加注水泥浆,以及在渗流屏蔽区、原岩渗流区注入硅溶胶,一方面能有效填充浅部裂缝系统,加固浅部破碎区围岩,另一方面能封闭泥质软岩巷道深部基质系统微孔裂隙,缓解由于微孔裂隙的存在可能引起的水患问题,有效控制围岩变形过程中的泥化进程,解决泥质软岩巷道软化流变的大变形支护难题。步骤简单,实施成本低,支护效果好。
图1是本发明的泥质软岩巷道分区多粒度的注浆加固方法中布置注浆孔的剖视图。
图2是本发明的泥质软岩巷道分区多粒度的注浆加固方法中帮部注浆孔侧视图。
图3是本发明的泥质软岩巷道分区多粒度的注浆加固方法中底板注浆孔俯视图。
图中:1-浅注浆孔;2-注浆管;3-深注浆孔;4-混凝土和硅溶胶喷层。
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1~图3所示,本发明的泥质软岩巷道分区多粒度的注浆加固方法,根据具体巷道的地质信息资料评估出相应的地质状态,根据评估出的地质状态在巷道中设计浅注浆孔1和深注浆孔3的钻孔点,随着巷道掘进,对巷道四周进行锚固并设置混凝土和硅溶胶喷层4;在
巷道的帮部和顶底板上施工浅注浆孔1并封孔注浆,在预先设计的深注浆孔钻孔点施工深注浆孔3并封孔注浆,从而有效封闭加固至深部原岩区以内。
具体步骤如下:
a、对被测的巷道进行地质测试,并获取相应的地质信息资料,根据地质测试和地质信息资料评估得到巷道围岩岩性、孔裂隙发育以及水文地质情况;
b、根据评估出的巷道围岩岩性、孔裂隙的发育情况以及水文地质情况在巷道侧壁和底板上设计浅注浆孔1和深注浆孔3的钻孔点;
c、随着巷道掘进,评估巷道径向围岩孔裂隙发育区划特征,及时锚固后对巷道四周的岩面喷射混凝土,封闭岩面大裂隙,为后续注浆构筑止浆层,等待混凝土凝固之后形成混凝土止浆层,在混凝土止浆层上复喷硅溶胶构成硅溶胶层,及时封闭混凝土止浆层微孔裂隙,从而形成混凝土和硅溶胶喷层4,防止围岩被侵蚀,长期后水化、风化;述对巷道四周的岩面喷射形成的混凝土止浆层厚度为80mm~120mm;在混凝土止浆层上复喷的硅溶胶层厚度为2mm~5mm。
d、巷道开挖10~20天后,在巷道的帮部和顶底板上预先设计的浅注浆孔钻孔点施工浅注浆孔1,利用注浆设备通过注浆管2对浅注浆孔1注入水泥浆并封孔,所述在巷道的帮部和顶底板上施工的浅注浆孔1孔深为2.0m~2.5m,穿过岩层的完全渗流区直到定向渗流区,注浆过程中提高注浆压力达到1~2MPa后稳压15~20min后停止注浆并封孔,在水泥浆的注浆压力的驱动下,水泥浆通过浅注浆孔扩散填充泥岩浅部裂缝从而封闭加固浅部破碎区围岩;
e、浅孔注浆结束25~35天后,在巷道的帮部和顶底板上预先设计的深注浆孔钻孔点施工深注浆孔3,利用注浆设备通过注浆管2对深注浆孔3注入硅溶胶并封孔,所述在巷道的帮部和顶底板上施工的深注浆孔3孔深为4m~6m,深注浆孔3穿过岩层的完全渗流区、定向渗流区、渗流屏蔽区直到原岩渗流区,注浆过程提高注硅溶胶注浆压力达到0.2~0.8MPa后稳压60~180min后停止注浆并封孔,在毛细力的驱动下,硅溶胶通过深注浆孔慢渗填充软岩巷道深部基质系统微孔裂隙,从而封闭加固至深部原岩区以内。
所述两深注浆孔间或两浅注浆孔间的渗透距离要存在交叉,设计深注浆孔或浅注浆孔间排距时交叉系数选为0.65-0.8,并根据现场岩性,孔裂隙发育,以及实际观测渗透距离,调整间排距的参数,浅注浆孔和深注浆孔的深度根据钻孔窥视仪现场窥视的破碎区范围确定。所述布置在帮顶部、底部的浅注浆孔和帮底部的深注浆孔安装角度与水平方向夹角15°,布置在顶板两角的深注浆孔和浅注浆孔安装角度与竖直方向夹角15°,其余注浆孔均垂直打孔。
实施例一:
某煤矿矩形断面巷道,宽×高=5.0×3.6m,顶板为粉砂岩,富含裂隙水;帮部和底板均为微孔裂隙发育的泥岩,遇水泥化。为控制巷道流变大变形,采用水泥浆和硅溶胶分区注浆加固方法注浆。
巷道掘进后及时锚固,喷射混凝土和硅溶胶,混凝土的喷射厚度为100mm,复喷硅溶胶,硅溶胶为现有材料,由A,B料组成,A料为二氧化硅胶体,B料为催化剂氯化钠溶液,所用其参数为A料:B料=4:1,厚度为2mm。
巷道掘进15天后,在帮部和底板施工浅注浆孔1,孔深2.2m,间排距1.5m×1.5m,帮部顶底部浅注浆孔1与水平方向夹角15°,底板左右两角浅注浆孔1与竖直方向夹角15°,其余浅注浆孔1均垂直打孔,详见附图1;安设注浆管2并封孔,注入水泥浆,水泥浆的水灰质量比=1:1;注浆压力为1.5MPa,稳压15min后停止注浆。注浆前检查对巷道未喷射混凝土或硅溶胶段进行喷射混凝土和硅溶胶加固封闭。
浅孔注浆30天后,进行深部注硅溶胶,硅溶胶A料:B料=9:1,在帮部和底板施工深注浆孔3,孔深5m,间排距1.5m×1.5m,帮部深注浆孔3按照从上往下一排浅注浆孔1,一排深注浆孔3间插布置在浅注浆孔1中间布置,底板深注浆孔3按照从左往右一排浅注浆孔1,一排深注浆孔3,间插布置在浅注浆孔1中间布置,帮部底部深注浆孔与水平方向夹角15°,底板左右两角深注浆孔3与竖直方向夹角15°,其余深注浆孔3均垂直打孔,详见附图1,注浆压力为0.5MPa,稳压120min后停止注浆,期间在毛细力的驱动下,硅溶胶缓慢扩散进入岩体微裂隙,形成高密实加固体,完成加固围岩。
现场表明,泥质软岩巷道分区多粒度的注浆加固方法能够很好地控制泥质软岩巷道的软化流变。
Claims (7)
- 一种泥质软岩巷道分区多粒度的注浆加固方法,其特征在于:根据具体巷道的地质信息资料评估出相应的地质状态,根据评估出的地质状态在巷道中设计浅注浆孔和深注浆孔的钻孔点,随着巷道掘进,对巷道四周进行锚固并设置混凝土和硅溶胶喷层;在巷道的帮部和顶底板上施工浅注浆孔并封孔注浆,在预先设计的深注浆孔钻孔点施工深注浆孔并封孔注浆,从而有效封闭加固至深部原岩区以内。
- 根据权利要求1所述的泥质软岩巷道分区多粒度的注浆加固方法,其特征在于,具体步骤如下:a、对被测的巷道进行地质测试,并获取相应的地质信息资料,根据地质测试和地质信息资料评估得到巷道围岩岩性、孔裂隙发育以及水文地质情况;b、根据评估出的巷道围岩岩性、孔裂隙的发育情况以及水文地质情况在巷道侧壁和顶底板上设计浅注浆孔和深注浆孔的钻孔点;c、随着巷道掘进,评估巷道径向围岩孔裂隙发育区划特征,及时锚固后对巷道四周的岩面喷射混凝土,封闭岩面大裂隙,为后续注浆构筑止浆层,等待混凝土凝固之后形成混凝土止浆层,在混凝土止浆层上复喷硅溶胶构成硅溶胶层,及时封闭混凝土止浆层微孔裂隙,从而形成混凝土和硅溶胶喷层,防止围岩被侵蚀,长期后水化、风化;d、巷道开挖10~20天后,在巷道的帮部和顶底板上预先设计的浅注浆孔钻孔点施工浅注浆孔,利用注浆设备通过注浆管对浅注浆孔注入水泥浆并封孔,在水泥浆的注浆压力的驱动下,水泥浆通过浅注浆孔扩散填充泥岩浅部裂缝从而封闭加固浅部破碎区围岩;e、浅孔注浆结束25~35天后,在巷道的帮部和顶底板上预先设计的深注浆孔钻孔点施工深注浆孔,利用注浆设备通过注浆管对深注浆孔注入硅溶胶并封孔,在毛细力的驱动下,硅溶胶通过深注浆孔慢渗填充软岩巷道深部基质系统微孔裂隙,从而封闭加固至深部原岩区以内。
- 根据权利要求1所述的泥质软岩巷道分区多粒度的注浆加固方法,其特征在于:所述对巷道四周的岩面喷射混凝土层的厚度为80mm~120mm;在混凝土止浆层上复喷的硅溶胶层厚度为2mm~5mm。
- 根据权利要求1所述的泥质软岩巷道分区多粒度的注浆加固方法,其特征在于:所述在巷道的帮部和顶底板上施工的浅注浆孔孔深为2.0m~2.5m,穿过岩层的完全渗流区直到定向渗流区,注浆过程中提高注浆压力达到1~2MPa后稳压15~20min后停止注浆并封孔。
- 根据权利要求1所述的泥质软岩巷道分区多粒度的注浆加固方法,其特征在于:所述在巷道的帮部和顶底板上施工的深注浆孔孔深为4m~6m,深注浆孔穿过岩层的完全渗流区、定向渗流区、渗流屏蔽区直到原岩渗流区,注浆过程提高注硅溶胶注浆压力达到0.2~0.8MPa后稳压60~180min后停止注浆并封孔。
- 根据权利要求4或5所述的泥质软岩巷道分区多粒度的注浆加固方法,其特征在于:所述两深注浆孔间或两浅注浆孔间的渗透距离要存在交叉,设计深注浆孔或浅注浆孔间排距时交叉系数选为0.65-0.8,并根据现场岩性,孔裂隙发育,以及实际观测渗透距离,调整间排距的参数,浅注浆孔和深注浆孔的深度根据钻孔窥视仪现场窥视的破碎区范围确定。
- 根据权利要求6所述的泥质软岩巷道分区多粒度的注浆加固方法,其特征在于:所述布置在帮顶部、底部的浅注浆孔和帮底部的深注浆孔安装角度与水平方向夹角15°,布置在顶板两角的深注浆孔和浅注浆孔安装角度与竖直方向夹角15°,其余注浆孔均垂直打孔。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710484682.1 | 2017-06-23 | ||
CN201710484682.1A CN107083977B (zh) | 2017-06-23 | 2017-06-23 | 一种泥质软岩巷道分区多粒度的注浆加固方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018233149A1 true WO2018233149A1 (zh) | 2018-12-27 |
Family
ID=59607154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/105793 WO2018233149A1 (zh) | 2017-06-23 | 2017-10-12 | 一种泥质软岩巷道分区多粒度的注浆加固方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107083977B (zh) |
WO (1) | WO2018233149A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111006952A (zh) * | 2019-11-26 | 2020-04-14 | 河海大学 | 高压渗透注浆加固裂隙岩石试样的实验测试装置及注浆方法 |
CN111365039A (zh) * | 2020-03-25 | 2020-07-03 | 上海同岩土木工程科技股份有限公司 | 一种隧道渗漏水处治方法 |
CN111764933A (zh) * | 2020-07-06 | 2020-10-13 | 高军 | 一种富水隧道快速防渗固结灌浆封堵施工方法 |
CN112012770A (zh) * | 2020-07-26 | 2020-12-01 | 中铁二院工程集团有限责任公司 | 铁路隧道超深竖井地下水超前处理构造及施工方法 |
CN113550754A (zh) * | 2021-09-16 | 2021-10-26 | 中国矿业大学(北京) | 基于底抽巷穿层钻孔进行煤层巷道超前钻探的方法和系统 |
CN113605913A (zh) * | 2021-09-01 | 2021-11-05 | 东莞理工学院 | 一种岩石地下通道施工方法 |
CN113958324A (zh) * | 2021-10-19 | 2022-01-21 | 金川集团股份有限公司 | 一种注浆加固巷道底板打深部钻孔的方法 |
CN114017069A (zh) * | 2021-12-08 | 2022-02-08 | 河北工程大学 | 一种用于模拟分析裂隙岩体注浆颗粒堆积效果的实验方法 |
CN117662192A (zh) * | 2023-11-28 | 2024-03-08 | 华北科技学院(中国煤矿安全技术培训中心) | 一种深锚浅抗巷道底鼓和煤柱稳定性优化控制方法 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107083977B (zh) * | 2017-06-23 | 2019-05-14 | 中国矿业大学 | 一种泥质软岩巷道分区多粒度的注浆加固方法 |
CN107355226B (zh) * | 2017-08-23 | 2023-08-22 | 中国电建集团成都勘测设计研究院有限公司 | Tbm施工隧洞断层破碎带洞段处理结构 |
CN107313789A (zh) * | 2017-08-31 | 2017-11-03 | 中国电建集团成都勘测设计研究院有限公司 | 高地应力条件下大型地下洞室围岩支护结构 |
CN108035738A (zh) * | 2017-12-08 | 2018-05-15 | 中国矿业大学 | 多锚杆同时定量注浆的锚固方法 |
CN108104845B (zh) * | 2017-12-14 | 2019-10-01 | 中国水利水电第六工程局有限公司 | 一种隧洞防渗流装置及渗流处理方法 |
CN109139053A (zh) * | 2018-09-30 | 2019-01-04 | 淮矿西部煤矿投资管理有限公司 | 一种导水断层综合治理平行施工系统及施工方法 |
CN109538244A (zh) * | 2018-11-15 | 2019-03-29 | 合肥工业大学 | 隧道开挖洞内支护方法 |
CN110159305B (zh) * | 2019-04-12 | 2020-10-20 | 平顶山天安煤业股份有限公司 | 一种大采深大采高复合顶工作面煤壁注浆参数优化方法 |
CN110130316A (zh) * | 2019-05-13 | 2019-08-16 | 南京林业大学 | 联络通道底部预注浆系统及控制冻结施工后融沉的方法 |
CN111018434B (zh) * | 2019-11-20 | 2021-11-09 | 辽宁工程技术大学 | 一种泥岩疏水改性的注浆材料及其制备方法 |
CN111335900B (zh) * | 2020-03-25 | 2021-04-27 | 王�琦 | 高强锚注自成巷方法与系统 |
CN112253186A (zh) * | 2020-07-26 | 2021-01-22 | 中铁二院工程集团有限责任公司 | 铁路隧道竖井不同层深工作面堵漏方法 |
CN112127909B (zh) * | 2020-09-08 | 2021-12-07 | 河海大学 | 一种隧道破碎围岩精确注浆修复加固方法 |
CN112539073A (zh) * | 2020-12-28 | 2021-03-23 | 内蒙古上海庙矿业有限责任公司 | 一种软岩巷道注浆加固方法 |
CN113803087B (zh) * | 2021-09-07 | 2023-11-10 | 山西晋煤集团技术研究院有限责任公司 | 一种小煤柱沿空掘巷破碎围岩注浆加固方法 |
CN113803086A (zh) * | 2021-09-07 | 2021-12-17 | 山西晋煤集团技术研究院有限责任公司 | 一种松软煤层复用巷道分段分层循环注浆施工方法 |
CN114000896B (zh) * | 2021-10-12 | 2024-05-07 | 中煤科工开采研究院有限公司 | 深部分区破裂围岩复合注浆加固方法 |
CN114165268B (zh) * | 2021-12-03 | 2023-12-08 | 兖矿能源集团股份有限公司 | 煤巷掘进破碎围岩分级协调强化方法 |
CN114875854A (zh) * | 2022-04-28 | 2022-08-09 | 河南安钢集团舞阳矿业有限责任公司 | 一种尾矿库溢流涵洞防渗漏方法 |
CN118188029B (zh) * | 2024-04-01 | 2024-10-11 | 山东科技大学 | 一种废弃巷道压气储能库围岩注浆加固防渗方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09303077A (ja) * | 1996-05-14 | 1997-11-25 | Tokai Rubber Ind Ltd | 切羽の安定補強工法 |
KR20030065036A (ko) * | 2002-01-29 | 2003-08-06 | 김진춘 | 강관 보강 마이크로 실리카 그라우팅 공법 |
CN101864967A (zh) * | 2010-06-13 | 2010-10-20 | 中国矿业大学 | 高地压软岩巷道分层次注浆强化加固方法 |
CN104594919A (zh) * | 2015-01-22 | 2015-05-06 | 山东科技大学 | 软岩巷道可缓冲渐变式双强壳体支护体系及其施工方法 |
CN105201528A (zh) * | 2015-09-21 | 2015-12-30 | 中国矿业大学 | 一种泥质软岩的硅溶胶慢渗加固方法 |
CN107083977A (zh) * | 2017-06-23 | 2017-08-22 | 中国矿业大学 | 一种泥质软岩巷道分区多粒度的注浆加固方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102838323B (zh) * | 2012-09-20 | 2013-12-11 | 中铁西南科学研究院有限公司 | 一种隧道用高性能混凝土胶凝材料及其应用 |
JP2014092020A (ja) * | 2012-11-07 | 2014-05-19 | Shimizu Corp | グラウト注入方法 |
CN104594914A (zh) * | 2014-08-18 | 2015-05-06 | 河南理工大学 | 一种煤矿巷道破碎围岩层次注浆工艺和方法 |
CN105178981B (zh) * | 2015-09-30 | 2017-07-14 | 中国矿业大学 | 破碎软岩巷道全断面封闭式深浅耦合让压锚注支护方法 |
-
2017
- 2017-06-23 CN CN201710484682.1A patent/CN107083977B/zh active Active
- 2017-10-12 WO PCT/CN2017/105793 patent/WO2018233149A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09303077A (ja) * | 1996-05-14 | 1997-11-25 | Tokai Rubber Ind Ltd | 切羽の安定補強工法 |
KR20030065036A (ko) * | 2002-01-29 | 2003-08-06 | 김진춘 | 강관 보강 마이크로 실리카 그라우팅 공법 |
CN101864967A (zh) * | 2010-06-13 | 2010-10-20 | 中国矿业大学 | 高地压软岩巷道分层次注浆强化加固方法 |
CN104594919A (zh) * | 2015-01-22 | 2015-05-06 | 山东科技大学 | 软岩巷道可缓冲渐变式双强壳体支护体系及其施工方法 |
CN105201528A (zh) * | 2015-09-21 | 2015-12-30 | 中国矿业大学 | 一种泥质软岩的硅溶胶慢渗加固方法 |
CN107083977A (zh) * | 2017-06-23 | 2017-08-22 | 中国矿业大学 | 一种泥质软岩巷道分区多粒度的注浆加固方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111006952A (zh) * | 2019-11-26 | 2020-04-14 | 河海大学 | 高压渗透注浆加固裂隙岩石试样的实验测试装置及注浆方法 |
CN111365039A (zh) * | 2020-03-25 | 2020-07-03 | 上海同岩土木工程科技股份有限公司 | 一种隧道渗漏水处治方法 |
CN111764933A (zh) * | 2020-07-06 | 2020-10-13 | 高军 | 一种富水隧道快速防渗固结灌浆封堵施工方法 |
CN111764933B (zh) * | 2020-07-06 | 2021-10-15 | 高军 | 一种富水隧道快速防渗固结灌浆封堵施工方法 |
CN112012770A (zh) * | 2020-07-26 | 2020-12-01 | 中铁二院工程集团有限责任公司 | 铁路隧道超深竖井地下水超前处理构造及施工方法 |
CN113605913A (zh) * | 2021-09-01 | 2021-11-05 | 东莞理工学院 | 一种岩石地下通道施工方法 |
CN113605913B (zh) * | 2021-09-01 | 2024-05-07 | 东莞理工学院 | 一种岩石地下通道施工方法 |
CN113550754A (zh) * | 2021-09-16 | 2021-10-26 | 中国矿业大学(北京) | 基于底抽巷穿层钻孔进行煤层巷道超前钻探的方法和系统 |
CN113958324A (zh) * | 2021-10-19 | 2022-01-21 | 金川集团股份有限公司 | 一种注浆加固巷道底板打深部钻孔的方法 |
CN113958324B (zh) * | 2021-10-19 | 2024-05-07 | 金川集团股份有限公司 | 一种注浆加固巷道底板打深部钻孔的方法 |
CN114017069A (zh) * | 2021-12-08 | 2022-02-08 | 河北工程大学 | 一种用于模拟分析裂隙岩体注浆颗粒堆积效果的实验方法 |
CN117662192A (zh) * | 2023-11-28 | 2024-03-08 | 华北科技学院(中国煤矿安全技术培训中心) | 一种深锚浅抗巷道底鼓和煤柱稳定性优化控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107083977A (zh) | 2017-08-22 |
CN107083977B (zh) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018233149A1 (zh) | 一种泥质软岩巷道分区多粒度的注浆加固方法 | |
WO2021223573A1 (zh) | 新增暗挖通道与既有站厅层连通接驳施工结构 | |
CN107237651A (zh) | 一种煤矿地下水库及水库坝体的多层次注浆防渗加固方法 | |
Kang et al. | Improved compound support system for coal mine tunnels in densely faulted zones: a case study of China's Huainan coal field | |
CN102705005B (zh) | 定向导流注浆封堵矿井突水技术 | |
WO2017049783A1 (zh) | 一种泥质软岩的硅溶胶慢渗加固方法 | |
CN206667278U (zh) | 溶岩裂隙涌水处理施工结构 | |
CN101638987A (zh) | 用帷幕注浆加止浆墙穿越高压富水断裂带的隧道施工方法 | |
CN102287198A (zh) | 一种过江盾构隧道破碎地层联络通道的施工方法 | |
WO2020098033A1 (zh) | 坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法 | |
CN202945622U (zh) | 一种地下室钢筋混凝土底板裂缝的复合修补结构 | |
CN112267884B (zh) | 一种基于复合纳米注浆封闭的留小煤柱沿空掘巷施工方法 | |
CN110206339A (zh) | 一种顶管穿越地下连续墙施工方法 | |
CN104819010A (zh) | 一种煤矿工作面过导水断层时预防顶板和底板突水的施工方法 | |
Kang et al. | Grouting theories and technologies for the reinforcement of fractured rocks surrounding deep roadways | |
Bodi et al. | Polyurethane grouting technologies | |
CN115419384A (zh) | 一种采动覆岩完全破断型的含水层动态注浆截流堵水方法 | |
Tian et al. | Study on the deformation failure mechanism and coupling support technology of soft rock roadways in strong wind oxidation zones | |
CN210598996U (zh) | 一种隧道交叉式注浆堵水钻孔结构 | |
CN110284924B (zh) | 综放工作面沿空留巷多层位充填体承载结构及支护方法 | |
CN206736650U (zh) | 一种深埋型岩溶地区止水加固的路基结构 | |
CN105041318A (zh) | 一种封闭式空场采矿嗣后充填方法 | |
CN106917331A (zh) | 一种深埋型岩溶地区止水加固的路基结构及其施工方法 | |
CN209293045U (zh) | 适用于岩质边坡随机锚杆加固的外锚头结构 | |
CN108952758B (zh) | 一种基于钻孔坍塌和诱导劈裂的砂层注浆地表抬升控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17915153 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17915153 Country of ref document: EP Kind code of ref document: A1 |