WO2020098033A1 - 坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法 - Google Patents

坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法 Download PDF

Info

Publication number
WO2020098033A1
WO2020098033A1 PCT/CN2018/120557 CN2018120557W WO2020098033A1 WO 2020098033 A1 WO2020098033 A1 WO 2020098033A1 CN 2018120557 W CN2018120557 W CN 2018120557W WO 2020098033 A1 WO2020098033 A1 WO 2020098033A1
Authority
WO
WIPO (PCT)
Prior art keywords
pier
concrete
filling
support
steel tube
Prior art date
Application number
PCT/CN2018/120557
Other languages
English (en)
French (fr)
Inventor
黄万朋
邢文彬
郭晓胜
郭忠平
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020098033A1 publication Critical patent/WO2020098033A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/02Supporting means, e.g. shuttering, for filling-up materials
    • E21F15/04Stowing mats; Goaf wire netting; Partition walls
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/08Filling-up hydraulically or pneumatically

Definitions

  • the present invention belongs to the technical field of rock layer movement control in coal mining, and in particular relates to a partially filled supporting structure in a goaf under hard roof conditions and a construction method thereof.
  • the present invention proposes a partially filled supporting structure in a goaf under a hard roof condition and a construction method thereof.
  • This support structure can provide sufficient and long-term support resistance for the overburden roof, especially the hard roof rock layer in the mined-out area, ensuring the long-term existence of the central “elastic core area” of the structure.
  • a partially filled supporting structure in a mined-out area under a hard roof condition is constructed at intervals along the advancing direction of the working face, and each supporting structure includes a filling body located in the mined-out area and located in the Lateral supports and spacers on both sides of the filling body, the material used for the filling body is quick-setting gangue cement material;
  • the lateral support body includes a concrete-filled steel tube pier column, an anti-falling support leg, and a flexible pressure-relieving member.
  • the concrete-filled steel tube pier column is a main support structure, which is made by pouring concrete slurry into a seamless steel tube
  • a grouting port is provided for pouring concrete slurry into the steel tube.
  • the top and bottom of the concrete-filled steel tube pier column are welded.
  • the top of the concrete-filled steel tube pier column is provided with a vent hole, the vent hole is used to exhaust the air during grouting, the anti-falling support leg is provided at a middle position of the concrete-filled steel tube pier column, the The flexible pressure-reducing component is used to ensure the tight top connection, and at the same time to achieve moderate pressure-relief
  • the isolator includes a gangue bag wall built between adjacent concrete-filled steel tube pier columns, a flexible side protection steel plate erected against the pier column, and a waterproof plastic curtain hung on one side of the steel plate, wherein, the The gangue bag wall serves as the first layer of insulation, the flexible side shield steel plate serves as the second layer of insulation, and the waterproof plastic curtain serves as the third layer of insulation.
  • the overall support structure is composed of the support body on both sides and the separator sandwiching the internal filling body. Constructed at intervals along the advancing direction of the working face, where the overall width of the support structure is L 2 , adjacent supports Does not support the support area width L P coal seam height and the thickness of the same, as long as the length of the face between the structure bodies.
  • the above-mentioned support structure is mainly applicable to the roof support of the mined-out area under the condition of hard roof, and it is required to control the hard direct roof rock layer above the coal seam not to fracture and fall. Therefore, the width L of its unsupported area should be less than the limit breaking distance of the top rock layer directly above (ie the first collapse step) 1 ⁇ .
  • the overall width of the body 1 ⁇ 2 is determined according to the theoretical calculation value of the mine pressure, and its overall support resistance is required to be greater than the overall self-weight within the range of the rock layer (direct roof + basic roof) to be controlled above the coal seam. If the weight of the upper rock layer is large, the width of the supporting body should be increased; if the weight of the upper rock layer is small, the width of the supporting body can be reduced.
  • the supporting body structure on both sides is composed of three parts: a concrete-filled steel tube pier, an upper flexible yielding structure, and an anti-falling support leg.
  • the concrete-filled steel tube pier is the main strong support structure, which is made of seamless steel tube and internal core concrete.
  • the seamless steel pipe is made of high-quality carbon structural steel with Q255 (yield strength 255MPa) grade or higher.
  • the diameter, wall thickness, length and other parameters of the steel pipe are selected according to the designed load-bearing capacity of the concrete-filled steel tube pier;
  • the steel pipe is filled with concrete slurry and slurry It is made of Hesha + stone + ordinary cement + fast-hardening cement + additives + water, and its concrete strength is not lower than C40 (compressive strength 40MPa).
  • a grouting port is opened on the side of the concrete-filled steel tube pier column 300-500mm from the bottom to pour the concrete slurry into the steel tube.
  • the bottom-up lifting method is used to fill the slurry to ensure that the slurry is filled and full .
  • the top and bottom of the pier column are sealed and welded, and 2-3 vent holes are left on the top of the pier column to discharge air during grouting to ensure that the slurry is filled and full.
  • the anti-falling support leg structure is also a concrete-filled steel tube structure, the diameter of the steel pipe is smaller than the diameter of the steel pipe of the pier, generally not more than 50 mm, and is connected to the pier by welding.
  • the upper part is welded to the middle of the pier column, and it is inclined to one side with an inclination angle of about 20-30 °; the lower part has a drill-proof bottom base, which can be made of wood blocks, steel plates and other materials, mainly based on the lithology and soft rock Factors such as degree are considered and determined.
  • the anti-falling support legs give the pier column a lateral support force, which prevents the pier column from being tipped to both sides by the horizontal squeezing force, thereby giving the internal filling body Provide sufficient lateral confining pressure.
  • the isolator structure on both sides is composed of three parts, including a gangue bag wall built between adjacent steel tube concrete pier columns, a flexible side protection steel plate erected against the pier columns, and a waterproof plastic curtain hanging on one side of the steel plate.
  • the gangue wall is laid between two adjacent concrete-filled steel tubes to prevent lateral deformation of the pier columns, and at the same time plays the role of blocking the internal space of the support structure at the first layer, the wall thickness is adapted to the steel tube diameter.
  • the wall is composed of a single gangue bag.
  • the gangue bag is composed of an ordinary woven bag or a wire bag filled with broken gangue.
  • the height of the flexible side protection steel plate is the same as the height of the pier column, the thickness is about 3-5mm, and multiple steel plates are laid along the length direction of the working face, and each steel plate is about 2-3m in length.
  • the flexible side shield steel plate is the second layer of isolation structure and the most important layer of isolation structure.
  • the waterproof plastic curtain is a third-layer sealing and isolating structure, which can be made of a plastic cloth with a suitable thickness, other plastics and rubber products with water-proof capability.
  • the layer structure is also laid in blocks along the direction of the working face, each block is about 10-15m in length. Its main function is to make the internal filling body better formed at an early stage. On the other hand, in the long-term period, it isolates the contact between the humid environment of the goaf and the internal filling body to prevent the internal filling body from softening with water and reducing the support strength. .
  • the internal filling body is a quick-setting high-strength gangue cement material.
  • the material composition is crushed gangue + cement + additive + 7X, in which the main coarse aggregate in the material composition is crushed gangue, which serves the purpose of digesting the gangue in the mining area and realizes that the gangue does not go into the well;
  • As the internal filling body and the concrete-filled steel tube pier columns on both sides are required to support the overlying roof, it is required to have quick setting characteristics in the early stage and high compressive strength in the later stage.
  • the amount of the two types of cement determines the above characteristics, so it should be based on the theory And the experimental results to determine the exact ratio; additives mainly include water reducer, quick setting agent, etc.
  • the isolation measures on both sides may not ensure the complete sealing of the filling slurry, so the filling slurry is required to ensure the pump On the basis of sending, it has a certain viscosity, so as to form better.
  • the ratio of the above materials is determined based on theoretical and experimental results.
  • the initial setting time of the filling slurry must be relatively consistent with the advancing speed of the working face, and generally it should be basically solidified within 60 minutes in order to form better.
  • the limit compression of the filling slurry is in the range of 200-300mm.
  • the compressive strength of the filling slurry after solidification 3d and 28d should be no less than 5.5MPa and 10.5MPa respectively.
  • the anti-falling support leg is a concrete-filled steel tube structure
  • the steel pipe diameter of the anti-falling support leg is smaller than the steel pipe diameter of the concrete-filled steel tube pier
  • the anti-fall Inverted leg The upper part of the is inclined to one side, and is welded with the concrete-filled steel tube pier column, and the lower part of the anti-falling support leg is provided with a base.
  • the flexible pressure-relief component is a buffer pressure-relief body made of a wooden wedge and a cement backboard.
  • the quick-setting gangue cement material mainly comprises crushed gangue, cement, additives and water, and the crushed gangue is used as the main coarse aggregate.
  • the concrete slurry is made of river sand, stones, cement, additive water and agitation, and its concrete strength is not lower than C40 grade; the thickness of the wall of the gangue bag wall and the concrete filled steel tube The pipe diameter of the steel pipe of the pier is matched, and the gangue bag is a woven bag or iron wire bag filled with broken gangue.
  • the height of the flexible side shield steel plate is the same as the height of the concrete-filled steel tube pier column, the thickness of the flexible side shield steel plate is 3 ⁇ 5mm
  • a construction method for partially filling a supporting structure in a mined-out area under a hard roof condition includes the following steps in sequence:
  • Step 1 Determine the width of the support body and the width of the unsupported area
  • Step 2 Determine the parameters of each component of the support
  • Step 3 Install the first row of pier column supports
  • Step 4 Installation and erection of the spacer beside the pier
  • Step 5 Construction of internal filling body
  • the work surface advances in stages in order, each time the work surface advances by 1 ⁇ 2 knives by the distance (length 1), then the space is filled in the rear, the specific process includes:
  • a relatively closed space is formed between the single props and the pier column isolator, the width of the space is the shearer Cut the distance of 1 ⁇ 2 knives, at this time, the filling work of the space is carried out, and the filling slurry is transported to the space through the mixer, the filling pump and the filling pipeline, and the filling pipe enters into the groove on the working surface from the lower end Start filling in sequence.
  • the filling distance is about 5 ⁇ 6m each time.
  • the working surface continues to move forward, and as the bracket moves forward, the sequence of steps behind the bracket is the first row of single pillars
  • the demolition and the erection of the second row of dense single pillars are carried out.
  • the process sequence of demolition and then support is implemented.
  • the second filling space is formed, which is the same as the original process step. Perform the second filling body Construction work;
  • Step 6 Build the second row of pier columns and spacers
  • Step 7 Circulating process
  • the working face continues to advance, at this time the rear goaf is no longer Treat and maintain the cantilevered state; when the advancing length reaches the designed unsupported area width, start the construction of the second support structure, and the construction process is carried out in the order of steps 3 to 6 above.
  • step one is:
  • step two are:
  • the maximum support resistance decompose and calculate the maximum support force required by each part of the support body, so as to determine the composition parameters of each part of the main support structure, mainly including: ⁇ Wall thickness, material composition and ratio of internally poured concrete; Layout distance of concrete-filled steel tube pier in the direction of working face; Material composition and ratio of internal filling body;
  • step six include: after the construction of the filling body is completed, the second row of pier columns and spacers are installed immediately.
  • the installation of the second row of pier columns and spacers is the same as the steps 3 and 4 above.
  • the sequence is reversed.
  • the construction work of the gangue bag wall between the columns is carried out immediately.
  • the process steps are carried out in sections along the direction of the working face. After the construction of the second row of pier columns and the isolator is completed, a complete The goaf supporting structure is formed.
  • the structure can achieve high-strength support for the overburden roof in the goaf after pressure relief, control the hard roof from fracture and fall, and achieve the purpose of controlling surface subsidence.
  • Most of the traditional goaf strip fillers are filled with material as the main support structure, without lateral confining pressure support, and ordinary gangue cemented filling
  • the body's load-bearing capacity is limited, and it is easy to cause rapid plastic failure from both sides to the center and become unstable. It cannot effectively support the roof.
  • the new support structure proposed by the present invention on the basis of strengthening the internal filling body, adds concrete-filled steel tube piers and flexible pressure-reducing structures on both sides.
  • the compression structure and filling body above the pier column are allowed to compress, allowing the roof plate to sink in a small range, so that the basic roof and the overlying roof plate are separated, narrowing the scope of the roof plate to be controlled, and serving the purpose of pressure relief; later, the pier column is connected to the top Afterwards, the roof is strongly supported together with the internal filler.
  • the pier column provides a large lateral confining pressure to the internal filling body, which improves the compressive strength of the filling body, so that the entire filling body structure will not undergo plastic damage, and the role of "elastic core area" is retained across the entire width.
  • the bearing capacity of the pier column is very high, and the support resistance exceeds 4000kN. Together with the internal filling body, it can completely control the sinking movement of the roof.
  • the concrete-filled steel tube pier column has good structural stability and corrosion resistance.
  • the isolation structure between the pier column and the internal filling body can also effectively protect the contact between the filling body and the harsh environment of the goaf, so that The filling body always maintains a high bearing capacity. Therefore, this structure has a great advantage over the traditional goaf filling body in maintaining long-term stability.
  • the structure is more reasonable in the mechanism of roof support of the goaf, and the structure is more flexible.
  • the structure seals and seals the filling body early in the filling body, so that the internal filling body is better shaped; on the other hand, the concrete-filled steel tube pier
  • the contact with the internal filling body is changed from point contact to surface contact, which makes the lateral force transmission more uniform.
  • the flexible sideguard feature of the structure allows it to relieve pressure laterally during the early compression of the internal packing.
  • the internal filling body is gradually compressed, the internal cracks in the filling body are closed and gradually tightened, and the compressive strength gradually increases. If the internal filling body is compressed to the limit state before the roof sag has not contacted the concrete-filled steel tube pier column, then the flexible side protection steel plate begins to be squeezed and deformed laterally, squeezing the gangue bag wall between the pier columns Pressure, allowing the internal filling body to sink and deform further without causing excessive lateral compression on the pier column.
  • the support structure of the present invention enables the hard direct roof rock layer not to break or sink, to achieve control of mining subsidence Change the “three under” coal resources and digest the multiple effects of gangue.
  • the supporting structure has a simpler construction process, a faster construction speed, and a smaller impact on the mining efficiency of the coal mining face.
  • FIG. 1 is a plan view of the layout of the filling support structure in the goaf;
  • FIG. 2 is a sectional view taken along line A-A in FIG. 1;
  • FIG. 3 is a partial enlarged view of the lateral support and spacer in FIG. 1;
  • FIG. 4 is a construction process diagram of a concrete-filled steel tube pier and a spacer
  • FIG. 5 is a construction process diagram of an internal filling body
  • FIG. 6 is a construction process diagram of the second filling space.
  • the present invention proposes a partial filling support structure in goaf under hard roof conditions and its construction method.
  • the following describes the present invention in detail with reference to specific embodiments .
  • the present invention provides a partial filling support structure for a mined-out area under a hard roof condition, which includes three parts: two-side support, two-side spacers, and an internal filling body 4.
  • the supporting bodies on both sides are composed of a concrete-filled steel tube pier column 2, an anti-falling support leg 3, and a flexible pressure-relieving structure 8.
  • the concrete-filled steel tube pier 2 is the main strong support structure, which is made of seamless steel tubes and internal core concrete.
  • the seamless steel pipe is made of high-quality carbon structural steel with Q255 (yield strength 255MPa) grade or higher.
  • the diameter, wall thickness, length and other parameters of the steel pipe are selected according to the designed load-bearing capacity of the concrete-filled steel tube pier; the steel pipe is filled with concrete slurry and slurry From river sand + stone + ordinary cement + fast-hardening cement + additives + water Made by mixing, the concrete strength is not lower than C40 (compressive strength 40MPa).
  • a grouting port 10 is opened at the side of the concrete-filled steel tube pier column 300-500mm from the bottom to pour the concrete slurry into the steel tube, and the bottom-to-top jacking method is used to ensure the slurry injection Fully.
  • the top and bottom of the pier column are sealed and welded.
  • Two vent holes 9 are left at the top of the pier column to discharge air during grouting to ensure that the slurry is filled and full.
  • the anti-falling support leg 3 is also a concrete-filled steel tube structure, and the diameter of the steel tube is smaller than the steel tube diameter of the pier, not more than 50 mm, and is welded to the pier.
  • the upper part is welded to the middle position of the pier column, and it is inclined to one side, the inclination angle is about 20-30 °;
  • the lower part has the anti-drilling bottom base 11, which can be made of wood blocks, steel plates and other materials, mainly according to the lithology and softness of the bottom plate Factors such as rock degree are considered and determined.
  • the anti-falling support legs give the pier column a lateral support force, which prevents the pier column from being tipped to both sides under the horizontal squeezing force, thereby providing sufficient lateral confining pressure for the internal filling body.
  • the structure of the isolator on both sides is composed of three parts, including the gangue bag 7 between adjacent steel pipe concrete pier columns, the flexible side protection steel plate 6 erected against the pier column and the waterproof plastic hanging on one side of the steel plate Curtain 5.
  • the gangue wall 7 is laid between two adjacent concrete-filled steel tubes to prevent lateral deformation of the pier columns, and at the same time functions as the first layer to seal the internal space of the support structure.
  • the wall thickness is adapted to the steel tube diameter.
  • the wall is composed of a single gangue bag.
  • the gangue bag is composed of an ordinary woven bag or a wire bag filled with broken gangue.
  • the height of the flexible side protection steel plate 6 is the same as the height of the pier column, and the thickness is about 3-5 mm. Multiple steel plates are laid along the length of the working face, and each steel plate has a length of about 2-3 m.
  • the flexible side shield steel plate is the second layer of isolation structure and the most important layer of isolation structure.
  • the waterproof plastic curtain 5 is a third-layer blocking and isolating structure, which can be made of a plastic cloth of suitable thickness, other plastics and rubber products with water-blocking capability.
  • the layer structure is also laid in blocks along the direction of the working face, each block is about 10-15m in length. Its main function is to make the internal filling body better formed at an early stage. On the other hand, in the long-term period, it isolates the contact between the humid environment of the goaf and the internal filling body to prevent the internal filling body from softening with water and reducing the support strength. .
  • the internal filling body 4 is composed of a quick-setting high-strength gangue cement material.
  • the material composition is crushed gangue + cement + additive + water, where the material composition uses crushed gangue as the main coarse aggregate, which serves the purpose of digesting the gangue in the mining area and realizes that the gangue does not go into the well; cement should include ordinary cement and fast
  • cement should include ordinary cement and fast
  • hard cement because the internal filling body and the steel pipe concrete pier columns on both sides support the overlying roof plate, which requires early rapid setting characteristics and high compressive strength in the later period.
  • the amount of the two cements determines the above characteristics, so The exact proportion should be determined according to theoretical and experimental results; additives mainly include water reducer, quick setting agent, etc.
  • the isolation measures on both sides may not ensure the complete sealing of the filling slurry, so the filling slurry is required On the basis of ensuring pumping, it has a certain viscosity, so as to form better.
  • the ratio of the above materials is determined according to theoretical and experimental results.
  • the initial setting time of the filling slurry should be relatively consistent with the advancing speed of the working face, and generally it should be basically solidified within 60 minutes in order to form better.
  • the limit compression of the filling slurry is in the range of 200-300mm.
  • the compressive strength of the filling slurry after solidification 3d and 28d should be no less than 5.5MPa and 10.5MPa respectively.
  • Specific engineering geological conditions include: a fully mechanized coal mining face with a length of 150m, a coal seam mining height of 2m, a double-drum coal shearer cutting coal, and a cutting length of 1.0m for each cut of coal; the direct top rock layer is hard limestone, The thickness is 4.0m.
  • the basic top rock layer is medium-strength sandstone with a thickness of 5m.
  • a method for constructing a partially filled supporting structure in a goaf under a hard roof condition includes the following steps:
  • the roof rock layer structure above the coal seam is analyzed, and the ultimate breaking distance L f lOm of the direct roof rock layer and the width L of the unsupported area are smaller than those above based on the calculation formula of the mine pressure and rock layer control theory, laboratory mechanics experiments, etc.
  • the ultimate breaking distance of the direct roof rock layer (ie, the initial collapse step) is 1 ⁇ .
  • the concrete pouring work starts to be concentrated, and the empty steel pipe piers are poured in 36 times over the entire surface length.
  • the production of the pouring slurry is carried out in the upper flat roadway (transportation trough) in front of the working face, which is 20m ahead of the working face.
  • the materials are mixed by a mixer, and then connected to the grouting port of the empty steel pipe pier 13 through a delivery pump and a delivery pipe 12, and grouting into the steel pipe to form a complete concrete-filled steel pipe pier. This process is completed until the entire row of soil columns has been erected in the direction of the working face.
  • the flexible side shield steel plate and the waterproof plastic curtain are made in blocks, each length of the flexible side shield steel plate is 5m, and the length of each waterproof plastic curtain is about 10m, which is easy to cut and can be used at any time during the underground installation process Cut.
  • the side protection steel plate and waterproof plastic curtain are installed in time; during installation, first lay the side protection steel plate closely to the pier column and the gangue bag wall, and use solid condensation between the steel plate and the outside of the pier column Adhesive bonding method; After the steel plate is installed, the waterproof plastic curtain is laid on the outside of the plastic curtain.
  • the plastic curtain is firmly bonded to the top and bottom plates to ensure that it is connected to the top and bottom, and plays an effective waterproof role. It is the same as the side protection steel plate. Adhesive connection is used.
  • the specific processes of its construction include:
  • the filling of this space is completed.
  • the working face continues to move forward.
  • the process performed in sequence behind the support is the first row of single props Demolition (the water curtain is not removed) and the erection work of the second row of dense single pillars, the process sequence of first dismantling and then supporting is implemented.
  • the second filling space is formed, the same as the original process steps, and the construction work of the second filling body is carried out.
  • the second row of pier columns and spacers are installed immediately.
  • the installation of the second row of piers and spacers is roughly the same as the steps c and d above, but the order is reversed.
  • the above process steps are carried out sequentially in sections along the direction of the working face.

Abstract

一种坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法,属于煤矿开采中的岩层运动控制技术领域。支撑结构体包括位于采空区内的内部充填体(4)及位于充填体(4)两侧的侧向支撑体及隔离体;侧向支撑体包括钢管混凝土墩柱(2)、防倒支撑腿(3)以及柔性让压结构(8),钢管混凝土墩柱(2)为主要支撑结构,其是通过向无缝钢管内灌注混凝土浆液制作而成,防倒支撑腿(3)设置在钢管混凝土墩柱(2)的中间位置,隔离体包括相邻钢管混凝土墩柱(2)之间垒砌的矸石袋墙(7)、紧贴钢管混凝土墩柱(2)架设的柔性侧护钢板(6)以及柔性侧护钢板(6)一侧挂设的防水塑胶帘(5)。该局部充填支撑结构体及其构筑方法能够在采空区给覆岩顶板、尤其是坚硬的顶板岩层提供足够且长期的支撑阻力,保证结构的中央"弹性核区"长期存在。

Description

发明名称:坚硬顶板条件下釆空区局部充填支撑结构体及其构筑方 法
技术领域
[0001] 本发明属于煤矿开采中的岩层运动控制技术领域, 具体涉及一种坚硬顶板条件 下采空区局部充填支撑结构体及其构筑方法。
背景技术
[0002] 煤矿开采后, 由于上覆岩层的沉降运动, 往往引起地表的塌陷, 形成大范围的 煤矿塌陷区, 对矿区的地表及地下水资源、 地表的土地良田以及建构筑物等造 成严重破坏, 不利于矿区资源与环境的协调发展。 在煤矿开采过程中, 采用全 部垮落法处理采空区的开采工艺, 造成的地表下沉往往是不可避免的。 同时由 于煤矿开采沉陷的原因, 造成我国大部分矿区的“三下” (建筑物下、 水体下及铁 路下) 压煤资源量非常大, 很多矿区存在资源接续紧张的问题。
[0003] 鉴于上述问题, 国内外对采空区充填采矿法进行了大量的研究, 并取得了丰富 的研究成果。 诚然, 采空区充填采矿法对于解决地表沉陷、 置换“三下”呆滞煤量 具有良好的效果, 然而当前的充填开采工艺还相对比较复杂、 充填成本较高、 影响工作面开采效率, 尤其是大面积的采空区所需要的数量巨大的充填物难以 满足要求, 因此制约了充填开采的大范围推广应用。 基于此, 又有相关学者提 出了部分充填和条带充填的解决思路, 申请号 200810011741.4、 201210385316.8 、 201410698265.3、 201710041129.0等均提出了条带充填的采煤方法。 采空区部 分充填或条带充填技术虽然解决了全部充填存在的充填物需求量大的难题, 也 简化了施工工艺; 然而, 当前的条带充填体对于覆岩的支撑作用有限, 不能完 全限制覆岩顶板的下沉运动, 因此控制地表开采沉陷的效果不佳。 尤其是在坚 硬顶板条件下, 上覆岩层自重应力大, 条带充填体更不易控制顶板的断裂沉降 。 主要原因在于: 首先, 当前的充填物大部分还是以松散矸石或者胶结矸石材 料为主, 自身的可压缩性较大, 同时承压能力较弱; 其次, 采空区条带充填体 没有侧向围压支撑, 在上覆岩层较大的压力作用下, 充填体自边缘向内部逐渐 塑性破坏, “弹性核区”逐渐消失, 最终会整体失稳破坏, 此时上覆岩层甚至地表 还是会产生沉降变形。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 为了解决上述现有技术中存在的技术缺陷, 本发明提出了一种坚硬顶板条件下 采空区局部充填支撑结构体及其构筑方法。 该支撑结构能够在采空区给覆岩顶 板、 尤其是坚硬的顶板岩层提供足够且长期的支撑阻力, 保证结构的中央“弹性 核区”长期存在。
[0005] 其技术解决方案包括:
[0006] 一种坚硬顶板条件下采空区局部充填支撑结构体, 所述的支撑结构体沿工作面 推进方向间隔构建, 每个支撑结构体包括位于采空区内的充填体及位于所述充 填体两侧的侧向支撑体及隔离体, 所述的充填体选用的材料为速凝矸石胶结材 料;
[0007] 所述的侧向支撑体包括钢管混凝土墩柱、 防倒支撑腿以及柔性让压部件, 所述 的钢管混凝土墩柱为主要支撑结构, 其是通过向无缝钢管内灌注混凝土浆液制 作而成, 在所述钢管混凝土墩柱侧边离底部 300-500mm处开设有用以向钢管内部 灌注混凝土浆液的注浆口, 所述的钢管混凝土墩柱的顶部、 底部均采用焊接处 理, 在所述的钢管混凝土墩柱的顶部设置有排气孔, 所述的排气孔用于排出注 浆时的空气, 所述防倒支撑腿设置在所述钢管混凝土墩柱的中间位置, 所述的 柔性让压部件用以保证接顶密实, 同时实现适度让压;
[0008] 所述的隔离体包括相邻钢管混凝土墩柱之间垒砌的矸石袋墙、 紧贴墩柱架设的 柔性侧护钢板以及钢板一侧挂设的防水塑胶帘, 其中, 所述的矸石袋墙作为第 一层隔离体, 所述的柔性侧护钢板作为第二层隔离体, 所述的防水塑胶帘作为 第三层隔离体。
[0009] 上述技术方案中, 整体支撑结构体为两侧支撑体与隔离体共同夹持内部充填体 组成。 沿工作面推进方向间隔构建, 其中支撑结构体整体宽度为 L 2, 相邻支撑 结构体之间不支撑区域宽度为 L P 支撑体高度与煤层开采厚度相同, 长度与工 作面等长。
[0010] 上述支撑结构体, 主要适用在坚硬顶板条件下的采空区顶板支撑, 要求控制煤 层上方的坚硬直接顶岩层不发生断裂冒落。 因此, 其不支撑区域宽度 L ,要小于 上方直接顶岩层的极限破断距离 (即初次垮落步距) 1^, 为保证现场工程安全 , 设计采用 L 1= (0.5〜 0.6) L r 支撑结构体整体宽度 1^ 2根据矿压理论计算值确 定, 要求其整体支撑阻力要大于煤层上方需控岩层 (直接顶 +基本顶) 范围内的 整体自重。 上方岩层自重大, 则支撑体宽度要增加; 上方岩层自重小, 则支撑 体宽度可降低。
[0011] 两侧支撑体结构是由钢管混凝土墩柱、 上部的柔性让压结构以及防倒支撑腿三 部分构成。
[0012] 其中钢管混凝土墩柱为主要的强力支撑结构, 由无缝钢管和内部核心混凝土制 作而成。 无缝钢管采用 Q255 (屈服强度 255MPa) 等级以上的优质碳素结构钢, 钢管管径、 壁厚、 长度等参数根据设计的钢管混凝土墩柱的承载能力进行选型 ; 钢管内部灌注混凝土浆液, 浆液由河沙 +石子 +普通水泥 +快硬水泥 +添加剂 +水 搅拌制作, 其混凝土强度不低于 C40 (抗压强度 40MPa) 等级。
[0013] 在钢管混凝土墩柱侧边离底部越 300-500mm处开设有注浆口, 用以向钢管内部 灌注混凝土浆液, 灌注时采用由下至上的顶升灌注法, 可以保证浆液注满充实 。 墩柱顶、 底部均实行密封焊接处理, 在墩柱顶部留设有 2-3个排气孔, 用以在 注浆时排出空气, 保证浆液注满充实。
[0014] 柔性让压结构为缓冲让压层, 可用木楔、 水泥背板等材料加工制作, 保证接顶 密实, 其厚度不宜过大, 以不超过 200mm为宜, 根据顶板岩层的结构以及变形 特性进行计算分析确定。 让压层高度 +钢管混凝土墩柱高度 =煤层采高。
[0015] 防倒支撑腿结构同样为钢管混凝土结构, 其钢管管径小于墩柱的钢管管径, 一 般不超过 50mm, 与墩柱通过焊接连接。 其上部焊接于墩柱中间位置, 其向一侧 倾斜, 倾斜角度约为 20-30°左右; 下部有防钻底底座, 底座可用木块、 钢板等材 料制作, 主要根据底板岩性、 软岩程度等因素考虑确定。 防倒支撑腿给墩柱一 个侧向支撑力, 防止墩柱受水平挤压力作用下向两侧倾倒, 从而给内部充填体 提供足够的侧向围压。
[0016] 两侧隔离体结构由三部分组成, 包括相邻钢管混凝土墩柱之间垒砌的矸石袋墙 、 紧贴墩柱架设的柔性侧护钢板以及钢板一侧挂设的防水塑胶帘。
[0017] 矸石墙体铺设于相邻的两根钢管混凝土之间, 防止墩柱侧向变形, 同时起到第 一层封堵支撑结构内部空间的作用, 墙体厚度与钢管管径相适应。 墙体由单个 矸石袋垒砌组成, 矸石袋由普通编织袋或铁丝袋内部装满破碎矸石组成。
[0018] 柔性侧护钢板高度与墩柱高度相同, 厚度约为 3-5mm, 沿工作面长度方向铺设 多块钢板, 每块钢板长度约为 2-3m。 柔性侧护钢板为第二层封堵隔离结构, 也 是最主要的一层隔离结构体。
[0019] 防水塑胶帘为第三层封堵隔离结构, 可由厚度适宜的塑料布、 具有隔水能力的 其他塑料及橡胶制品制作。 该层结构同样沿工作面方向分块铺设, 每块长度约 为 10-15m左右。 其主要作用一是使内部充填体早期更好成型, 另一方面是在长 期阶段内, 隔离采空区潮湿环境与内部充填体的接触, 防止内部充填体遇水软 化而造成支撑强度降低的情况。
[0020] 内部充填体为速凝高强矸石胶结材料。 材料组成成分为破碎矸石 +水泥 +添加剂 +7X , 其中材料成分里面以破碎矸石为主要的粗骨料, 起到消化矿区矸石的目的 , 实现矸石不上井; 水泥要包括普通水泥和快硬水泥两种, 由于内部充填体要 与两侧钢管混凝土墩柱共同支撑上覆顶板, 要求其具有前期的速凝特性以及后 期较高的抗压强度, 两种水泥的用量决定上述特性, 因此要根据理论及实验结 果确定其精确的配比; 添加剂主要包括减水剂、 速凝剂等, 由于充填体为局部 充填, 两侧隔离措施不一定能保证充填浆液的完全密封, 因此要求充填浆液在 保证泵送的基础上具有一定的粘稠度, 以便更好成型。 上述材料配比根据理论 及实验结果确定。
[0021] 充填料浆的初凝时间要与工作面推进速度保持相对一致, 一般要在 60min内实 现基本凝固, 以便更好成型。 充填料浆的极限压缩量在 200-300mm范围内。 充填 料浆凝固 3d及 28d后所达到的抗压强度应分别不低于 5.5MPa和 10.5MPa。
[0022] 作为本发明的一个优选方案, 所述的防倒支撑腿为钢管混凝土结构, 所述防倒 支撑腿的钢管的管径小于所述钢管混凝土墩柱的钢管管径, 所述的防倒支撑腿 的上部向一侧倾斜, 并与所述的钢管混凝土墩柱焊接在一起, 所述的防倒支撑 腿的下部设置有底座。
[0023] 作为本发明的另一个优选方案, 所述的柔性让压部件是由木楔、 水泥背板制作 而成的缓冲让压体。
[0024] 进一步的, 所述的速凝矸石胶结材料其主要组成为破碎矸石、 水泥、 添加剂及 水, 所述的破碎矸石作为主要的粗骨料。
[0025] 进一步的, 所述的混凝土浆液由河沙、 石子、 水泥、 添加剂水及搅拌制作而成 , 其混凝土强度不低于 C40等级; 所述的矸石袋墙其墙体的厚度与钢管混凝土墩 柱的钢管的管径相匹配, 矸石袋为内部装满破碎矸石的编织袋或铁丝袋。
[0026] 进一步的, 所述的柔性侧护钢板的高度与钢管混凝土墩柱的高度相同, 所述柔 性侧护钢板的厚度为 3〜 5mm
[0027] 一种坚硬顶板条件下采空区局部充填支撑结构体的构筑方法, 依次包括以下步 骤:
[0028] 步骤一: 确定支撑体宽度与不支撑区域宽度;
[0029] 步骤二: 支撑体各组成部分参数确定,
[0030] 步骤三: 安装第一排墩柱支撑体,
[0031] 自开切眼开始, 当工作面推进到设计的不支撑区域宽度时, 架设第一排墩柱支 撑体, 空钢管墩柱由地面加工制作完成, 运送至井下后安装, 空钢管墩柱的架 设紧随工作面综采液压支架的向前推移而进行, 实行追架作业, 每推移 2-3个支 架后, 开始在后方架设空钢管墩柱, 架设工作在支架的尾梁保护下进行;
[0032] 当空钢管墩柱架设 5-6根后, 进行混凝土灌注工作, 每次集中灌注, 整个面长 上分阶段多次进行空钢管墩柱的灌注工作, 灌注浆液的制作在工作面前方的上 平巷内进行, 通过注浆口向钢管内注浆, 形成完整的钢管混凝土墩柱, 该项工 序直至沿工作面方向将整排墩柱架设完毕后结束;
[0033] 步骤四: 墩柱旁隔离体的安装架设,
[0034] 隔离体的安装紧随钢管混凝土墩柱的架设, 与墩柱的架设同样分阶段进行;
[0035] 首先, 当第一段集中墩柱灌注混凝土工序完成后, 即开始进行墩柱间矸石袋墙 的垒砌工作, 及时对墩柱进行侧向加固, 矸石袋墙保证密实接顶; [0036] 其次, 当墩柱架设达到侧护钢板及防水塑胶帘的单块长度时, 及时进行侧护钢 板和防水塑胶帘的安装; 安装时, 先紧贴墩柱和矸石袋墙铺设侧护钢板, 钢板 和墩柱外侧之间采用固态凝胶粘接的方式; 钢板安装完成后, 在其外侧进行防 水塑胶帘的铺设, 塑胶帘上下与顶底板粘接牢固, 其与侧护钢板采用粘接的连 接方式;
[0037] 该项工序直至沿工作面方向全部架设完毕后结束;
[0038] 步骤五: 内部充填体的构筑,
[0039] 施工时沿工作面推进方向分阶段依次进行, 工作面每向前推进 1〜 2刀煤的距离 (长度 1) , 随即在后方进行该空间的充填工作, 具体工序包括:
[0040] a、 墩柱和隔离体架设好后, 采煤机继续向前割煤, 支架追机向前移架, 随着 支架的前移, 在支架后方及时架设密集单体液压支柱, 相邻两棵单体支柱紧靠 , 支柱的架设与钢管混凝土墩柱的架设顺序相同, 实行追架作业, 即每向前移 动一个支架, 后方随即开始安装单体支柱, 同时在单体支柱内侧铺设挡水帘; [0041] b、 沿工作面方向的密集单体液压支柱安装完成后, 在单体支柱和墩柱隔离体 之间形成了一个相对较为封闭的空间, 该空间宽度为采煤机割 1〜 2刀煤的距离 , 此时进行该空间的充填工作, 充填料浆通过搅拌机、 充填泵及充填管路输送 至该空间, 充填管路由工作面上顺槽内进入, 从下部端头开始依次充填, 充填 时, 每次充填距离在 5〜 6m左右, 充满第一段后, 掐缩充填管路, 进行第二段的 充填, 相邻段之间不再增设其他隔挡措施, 直至该空间全部充填完毕后结束; [0042] c、 第一条充填体构筑完成后, 工作面继续向前推进, 随着支架的前移, 在支 架后方依次进行的工序为第一排单体支柱的拆除与第二排密集单体支柱的架设 工作, 实行先拆后支的工艺顺序, 待拆除与架设全部完成后, 第二条充填空间 形成, 与原工艺步骤相同, 进行第二条充填体的构筑工作;
[0043] d、 依次进行上述工艺步骤, 待充填体整体宽度达到设计宽度时, 充填工作停 止, 内部充填体构筑完成;
[0044] 步骤六: 构筑第二排墩柱与隔离体;
[0045] 步骤七: 循环工序,
[0046] 第一个采空区支撑结构体形成后, 工作面继续向前推进, 此时后方采空区不再 处理, 保持悬顶状态; 待推进长度达到设计的不支撑区域宽度时, 开始进行第 二个支撑结构体的构筑工作, 施工工艺依上述步骤三至步骤六顺序进行。
[0047] 进一步的, 步骤一的具体步骤为:
[0048] 首先, 分析煤层上方顶板岩层结构, 根据矿山压力与岩层控制理论计算公式、 实验室力学实验, 计算确定直接顶岩层的极限破断距离 1^, 不支撑区域宽度!^ 小于上方直接顶岩层的极限破断距离 1^, 采用 L 1= (0.5〜 0.6) L q;
[0049] 其次, 计算煤层上方直接顶和基本顶岩层的自重应力, 计算支撑体所需提供的 最大支撑阻力, 反演计算支撑体所需最小宽度 L 2
[0050] 进一步的, 步骤二的具体步骤为:
[0051] 首先, 根据所述的最大支撑阻力, 分解计算支撑体各部分所需提供的最大支撑 力, 从而确定主要支撑结构各部分的组成参数, 主要包括: 钢管混凝土墩柱中 的钢管管径、 壁厚、 内部灌注混凝土的材料组成及配比; 钢管混凝土墩柱在工 作面方向上的布置间距; 内部充填体的材料组成及配比;
[0052] 其次, 理论及数值模拟分析上覆直接顶及基本顶岩层的变形特征与极限下沉挠 度, 根据计算结果确定墩柱上方柔性让压层的厚度。
[0053] 进一步的, 步骤六具体步骤包括: 充填体构筑完成后, 随即安装第二排墩柱及 隔离体, 第二排墩柱及隔离体的安装与所述步骤三、 四的工序相同但顺序相反 , 随着工作面的向前推进, 在支架后方, 紧靠采空区内已经预先凝结的充填体 , 先铺设防水塑胶帘, 再铺设侧护钢板, 然后安装空钢管墩柱与注浆, 每次墩 柱注浆完成后, 随即进行柱间矸石袋墙的垒砌工作, 工序步骤均是沿工作面方 向分段依次进行, 待第二排墩柱与隔离体构筑结束后, 一个完整的采空区支撑 结构体形成。
发明的有益效果
有益效果
[0054] 本发明所带来的有益技术效果为:
[0055] ( 1) 该结构体能够在采空区内对覆岩顶板实现卸压后的高强支护, 控制坚硬 顶板不发生断裂冒落, 实现控制地表沉陷的目的。 传统的采空区条带充填体, 大多是以充填材料作为主体支撑结构, 无侧向围压支撑, 而普通矸石胶结充填 体承载能力有限, 很容易由两侧向中央快速发生塑性破坏而失稳, 不能对顶板 进行有效支撑。 本发明提出的新型支撑结构, 在对内部充填体进行强化的基础 上, 在两侧增加了钢管混凝土墩柱和柔性让压结构。 前期, 墩柱上方的让压结 构和充填体压缩, 允许顶板小范围下沉, 使基本顶与上覆顶板离层, 缩小需控 顶板范围, 起到卸压的目的; 后期, 墩柱接顶后, 与内部充填体共同对顶板进 行强力支撑。 一方面, 墩柱对内部充填体提供了一个较大的侧向围压, 提高了 充填体的抗压强度, 使整个充填体结构不会发生塑性破坏, 全宽度上保留“弹性 核区”作用; 另一方面, 墩柱承载力非常高, 支撑阻力超过 4000kN以上, 与内部 充填体共同作用, 能够完全控制顶板的下沉运动。
[0056] (2) 钢管混凝土墩柱具有良好的结构稳定性和抗腐蚀性, 同时墩柱与内部充 填体之间的隔离结构也能有效保护充填体与采空区恶劣坏境的接触, 使充填体 始终保持较高的承载力。 因此该结构体在保持长期稳定性上比传统的采空区充 填体具有较大优势。
[0057] (3) 该结构在采空区顶板支撑作用机制上更加合理, 结构更加灵活。 钢管混 凝土墩柱与内部充填体之间的柔性侧护钢板, 该结构一方面在充填体早期对其 进行封堵隔漏, 使内部充填体更好成型; 另一方面在后期使钢管混凝土墩柱与 内部充填体的接触由点接触转化为面接触, 使侧向力的传递更加均匀。 同时, 该结构的柔性侧护特征使其在内部充填体的早期压缩过程中能够对其进行侧向 卸压。 这是因为, 随着顶板的下沉, 内部充填体逐渐被压缩, 充填体内部裂隙 闭合而逐渐紧实, 抗压强度逐渐提高。 而若顶板下沉尚未接触到钢管混凝土墩 柱之前, 内部充填体即被压缩到极限状态的话, 此时柔性侧护钢板开始被挤压 侧向变形, 向墩柱之间的矸石袋墙体挤压, 允许内部充填体进一步下沉变形而 不至于对墩柱造成过大的侧向压挤。
[0058] (4) 消化矸石, 构筑速度快。 该结构体内部充填体以井下破碎矸石为主要粗 骨料, 能够大量消化井下矸石, 实现矸石不上井。 同时, 相比于传统的采空区 条带充填体, 该结构更加简洁, 构筑速度更快, 能够实现工作面高效开采基础 上的采空区顶板控制的目的。
[0059] 本发明支撑结构使坚硬的直接顶岩层不断裂、 不下沉, 达到控制开采沉陷、 置 换“三下”煤炭资源以及消化矿区矸石的多重效果。 同时该支撑结构相比于当前的 采空区全部充填及条带充填体来说, 施工工艺更为简化, 构筑速度更快, 对采 煤工作面开采效率的影响更小。
对附图的简要说明
附图说明
[0060] 下面结合附图对本发明做进一步说明:
[0061] 图 1为采空区充填支撑结构体布置平面图;
[0062] 图 2为图 1中的 A-A剖面截面图;
[0063] 图 3为图 1中侧向支撑体及隔离体的局部放大图;
[0064] 图 4为钢管混凝土墩柱及隔离体的构筑工艺图;
[0065] 图 5为内部充填体的构筑工艺图;
[0066] 图 6为第二条充填空间的构筑工艺图。
[0067] 图中: 1一工作面综采液压支架; 2—钢管混凝土墩柱; 3—防倒支撑腿; 4一内 部充填体; 5 -防水塑胶帘; 6 -柔性侧护钢板; 7 -矸石袋墙; 8 -柔性让压结 构; 9一排气孔; 10—注浆口; 11一底座; 12—输送管道; 13—空钢管墩柱; 14 _单体液压支柱。 发明实施例
本发明的实施方式
[0068] 本发明提出了一种坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法, 为了使本发明的优点、 技术方案更加清楚、 明确, 下面结合具体实施例对本发 明做详细说明。
[0069] 结合图 1至图 3所示, 本发明一种坚硬顶板条件下采空区局部充填支撑结构体, 包括三部分: 两侧支撑体、 两侧隔离体以及内部充填体 4。
[0070] 其中两侧支撑体由钢管混凝土墩柱 2、 防倒支撑腿 3以及柔性让压结构 8组成。
其中钢管混凝土墩柱 2为主要的强力支撑结构, 由无缝钢管和内部核心混凝土制 作而成。 无缝钢管采用 Q255 (屈服强度 255MPa) 等级以上的优质碳素结构钢, 钢管管径、 壁厚、 长度等参数根据设计的钢管混凝土墩柱的承载能力进行选型 ; 钢管内部灌注混凝土浆液, 浆液由河沙 +石子 +普通水泥 +快硬水泥 +添加剂 +水 搅拌制作, 其混凝土强度不低于 C40 (抗压强度 40MPa) 等级。
[0071] 其中在钢管混凝土墩柱侧边离底部越 300-500mm处开设有注浆口 10, 用以向钢 管内部灌注混凝土浆液, 灌注时采用由下至上的顶升灌注法, 可以保证浆液注 满充实。 墩柱顶、 底部均实行密封焊接处理, 在墩柱顶部留设有两个排气孔 9, 用以在注浆时排出空气, 保证浆液注满充实。
[0072] 其中防倒支撑腿 3同样为钢管混凝土结构, 其钢管管径小于墩柱的钢管管径, 不超过 50mm, 与墩柱焊接连接。 其上部焊接于墩柱中间位置, 其向一侧倾斜, 倾斜角度约为 20-30°左右; 下部有防钻底底座 11, 底座可用木块、 钢板等材料制 作, 主要根据底板岩性、 软岩程度等因素考虑确定。 防倒支撑腿给墩柱一个侧 向支撑力, 防止墩柱受水平挤压力作用下向两侧倾倒, 从而给内部充填体提供 足够的侧向围压。
[0073] 其中柔性让压结构 8为缓冲让压层, 可用木楔、 水泥背板等材料加工制作, 保 证接顶密实, 其厚度不宜过大, 以不超过 200mm为宜, 根据顶板岩层的结构以 及变形特性进行计算分析确定。 让压层高度 +钢管混凝土墩柱高度 =煤层采高。
[0074] 其中两侧隔离体结构由三部分组成, 包括相邻钢管混凝土墩柱之间垒砌的矸石 袋 7、 紧贴墩柱架设的柔性侧护钢板 6以及钢板一侧挂设的防水塑胶帘 5。 矸石墙 体 7铺设于相邻的两根钢管混凝土之间, 防止墩柱侧向变形, 同时起到第一层封 堵支撑结构内部空间的作用, 墙体厚度与钢管管径相适应。 墙体由单个矸石袋 垒砌组成, 矸石袋由普通编织袋或铁丝袋内部装满破碎矸石组成。
[0075] 柔性侧护钢板 6高度与墩柱高度相同, 厚度约为 3-5mm, 沿工作面长度方向铺 设多块钢板, 每块钢板长度约为 2-3m。 柔性侧护钢板为第二层封堵隔离结构, 也是最主要的一层隔离结构体。
[0076] 防水塑胶帘 5为第三层封堵隔离结构, 可由厚度适宜的塑料布、 具有隔水能力 的其他塑料及橡胶制品制作。 该层结构同样沿工作面方向分块铺设, 每块长度 约为 10-15m左右。 其主要作用一是使内部充填体早期更好成型, 另一方面是在 长期阶段内, 隔离采空区潮湿环境与内部充填体的接触, 防止内部充填体遇水 软化而造成支撑强度降低的情况。
[0077] 其中内部充填体 4由速凝高强矸石胶结材料组成。 [0078] 材料组成成分为破碎矸石 +水泥 +添加剂 +水, 其中材料成分里面以破碎矸石为 主要的粗骨料, 起到消化矿区矸石的目的, 实现矸石不上井; 水泥要包括普通 水泥和快硬水泥两种, 由于内部充填体要与两侧钢管混凝土墩柱共同支撑上覆 顶板, 要求其具有前期的速凝特性以及后期较高的抗压强度, 两种水泥的用量 决定上述特性, 因此要根据理论及实验结果确定其精确的配比; 添加剂主要包 括减水剂、 速凝剂等, 由于充填体为局部充填, 两侧隔离措施不一定能保证充 填浆液的完全密封, 因此要求充填浆液在保证泵送的基础上具有一定的粘稠度 , 以便更好成型。 上述材料配比根据理论及实验结果确定。
[0079] 充填料浆的初凝时间要与工作面推进速度保持相对一致, 一般要在 60min内实 现基本凝固, 以便更好成型。 充填料浆的极限压缩量在 200-300mm范围内。 充填 料浆凝固 3d及 28d后所达到的抗压强度应分别不低于 5.5MPa和 10.5MPa。
[0080] 实施例 1 :
[0081] 以某工作面作为具体工程案例, 对本发明提出的一种坚硬顶板条件下采空区局 部充填支撑结构体的构筑方法进行进一步解释说明。
[0082] 具体工程地质条件包括: 某综采工作面面长 150m, 煤层采高 2m, 双滚筒采煤 机割煤, 每割一刀煤的进尺为 1.0m; 直接顶岩层为坚硬的灰岩, 厚度 4.0m, 基 本顶岩层为中等强度的砂岩, 厚度 5m。
[0083] 结合图 4至图 6所示, 一种坚硬顶板条件下采空区局部充填支撑结构体的构筑方 法, 包括以下步骤:
[0084] a、 确定支撑体宽度与不支撑区域宽度,
[0085] 首先, 分析煤层上方顶板岩层结构, 根据矿山压力与岩层控制理论计算公式、 实验室力学实验等, 计算确定直接顶岩层的极限破断距离 L flOm, 不支撑区域 宽度 L ,要小于上方直接顶岩层的极限破断距离 (即初次垮落步距) 1^, 为保证 现场工程安全, 设计采用 L 1=0.5L Q=10m。
[0086] 其次, 通过计算煤层上方直接顶和基本顶岩层的自重应力, 设计计算支撑体所 需提供的最大支撑阻力, 反演计算得到支撑体 (主要是内部充填体) 所需最小 宽度 L 2=8m。
[0087] b、 支撑体各组成部分参数确定, [0088] 首先, 根据前述计算的整体支撑结构所需提供的最大支撑阻力, 分解计算支撑 体各部分所需提供的最大支撑力, 从而确定主要支撑结构各部分的组成参数。
[0089] 在本具体实施例中, 通过计算设计, 拟选取钢管混凝土墩柱中的钢管外径取 32 5mm、 壁厚 4mm; 钢管混凝土墩柱在工作面方向上的布置间距为 600mm, 整个 面长布置钢管混凝土墩柱约 160根; 内部灌注混凝土的材料组成及配比为: 水泥 : 沙: 碎石: 减水剂: 7X =1: 1.2:2.3:0.02: 0.42, 其中快硬硫 (铁) 铝酸盐水泥 占总水泥用量的 20%左右; 内部充填体的材料组成及配比为: 水泥:砂子:矸石骨 料:水 =3.7: 3.8:29.6:9.5, 其中快硬硫 (铁) 铝酸盐水泥占总水泥用量的 30%左右 , 添加的速凝剂用量为整体质量的 1.2%。
[0090] 其次, 理论及数值模拟分析上覆直接顶及基本顶岩层的变形特征与极限下沉挠 度, 根据计算结果确定墩柱上方柔性让压层的厚度约为 200mm, 整体钢管混凝 土墩柱高度约为 1800mm。
[0091] c、 第一排墩柱支撑体的安装,
[0092] 如图 4所示, 自开切眼开始, 当工作面推进到设计的不支撑区域宽度, 即 10m 时, 开始架设第一排墩柱支撑体。 空钢管墩柱 13由地面加工制作完成, 运送至 井下后直接安装。 空钢管墩柱的架设紧随工作面综采液压支架 1的向前推移而进 行, 实行追架作业。 一般每推移 2-3个支架后, 开始在后方架设空钢管墩柱, 架 设工作在支架的尾梁保护下进行。
[0093] 本实施例中, 当空钢管墩柱架设 5根后 (第一段) , 开始集中进行混凝土的灌 注工作, 整个面长上共分 36次进行空钢管墩柱的灌注工作。 灌注浆液的制作在 工作面前方的上平巷内 (运输顺槽) 进行, 超前工作面 20m的距离。 将材料通过 搅拌机混合, 再通过输送泵、 输送管道 12连接至空钢管墩柱 13的注浆口上, 向 钢管内注浆, 形成完整的钢管混凝土墩柱。 该项工序直至沿工作面方向将整排 壤柱架设完毕后结束。
[0094] d、 墩柱旁隔离体的安装架设。
[0095] 隔离体的安装架设工作紧随钢管混凝土墩柱的安装进行, 与墩柱的架设同样分 阶段进行。
[0096] 首先, 当第一段集中 5根墩柱灌注混凝土工序完成后, 即开始进行墩柱间矸石 袋墙的垒砌工作, 相邻墩柱间的矸石袋墙宽度为 600mm, 由下往上逐渐垒砌, 并保证密实接顶;
[0097] 其次, 柔性侧护钢板以及防水塑胶帘均是分块制作, 柔性侧护钢板每块长度为 5m, 防水塑胶帘每块长度约为 10m, 易于剪切, 可在井下安装过程中随时切割 。 当墩柱架设达到其单块长度时, 及时进行侧护钢板和防水塑胶帘的安装; 安 装时, 先紧贴墩柱和矸石袋墙铺设侧护钢板, 钢板和墩柱外侧之间采用固态凝 胶粘接的方式; 钢板安装完成后, 在其外侧进行防水塑胶帘的铺设, 塑胶帘上 下与顶底板粘接牢固, 保证接顶接底, 起到有效防水的作用, 其与侧护钢板同 样采用粘接的连接方式。
[0098] 该项工序直至沿工作面方向全部架设完毕后结束。
[0099] e、 内部充填体的构筑
[0100] 内部充填体的构筑是该支撑结构施工的主要工序。 施工时沿工作面推进方向分 阶段依次进行, 工作面每向前推进 1刀煤的距离, 随即在后方进行该 lm空间内的 充填工作。 本实施例中, 采煤机每割一刀煤进尺 1.0m, 设计充填体的宽度为 8m , 因此内部充填体要分 8个循环进行构筑, 每条充填体的宽度 l=lm。 其构筑的具 体工序包括:
[0101] i、 墩柱和隔离体架设好后, 采煤机继续向前割煤, 支架追机向前移架, 随着 支架的前移, 在支架后方及时架设密集单体液压支柱 14, 相邻两棵单体支柱紧 靠。 支柱的架设与钢管混凝土墩柱的架设顺序相同, 实行追架作业, 即每向前 移动一个支架, 后方随即开始安装单体支柱。 同时在单体支柱内侧铺设挡水帘
[0102] ii、 沿工作面方向的密集单体液压支柱安装完成后, 在单体支柱和墩柱隔离体 之间就形成了一个相对较为封闭的空间, 如图 5所示, 该空间宽度为采煤机割 1 刀煤的距离, 即 lm。 此时进行该空间的充填工作。 充填料浆通过搅拌机、 充填 泵及充填管路输送至该空间, 充填管路由工作面上顺槽内进入, 从下部端头开 始依次充填。 充填时, 每次充填距离设计为 5m, 充满第一段后, 掐缩充填管路 , 进行第二段的充填, 相邻段之间不再增设其他隔挡措施。 经过 30个分段的施 工, 该空间全部充填工作结束。 [0103] iii、 第一条充填体构筑完成后, 工作面继续向前推进, 随着支架的前移 (1刀 割煤距离) , 在支架后方依次进行的工序为第一排单体支柱的拆除 (挡水帘不 拆) 与第二排密集单体支柱的架设工作, 实行先拆后支的工艺顺序。 待拆除与 架设全部完成后, 第二条充填空间形成, 与原工艺步骤相同, 进行第二条充填 体的构筑工作。
[0104] iv、 依次进行上述工艺步骤, 待充填体整体宽度达到设计宽度 8m时, 充填工作 停止, 内部充填体构筑完成。
[0105] f、 第二排墩柱与隔离体的构筑
[0106] 充填体构筑完成后, 随即安装第二排墩柱及隔离体。 第二排墩柱及隔离体的安 装与上述步骤 c、 d的工序大体相同, 但顺序相反。 随着工作面的向前推进, 在支 架后方, 紧靠采空区内已经预先凝结的充填体, 先铺设防水塑胶帘, 再铺设侧 护钢板, 然后安装空钢管墩柱与注浆, 每次墩柱注浆完成后, 随即进行柱间矸 石袋墙的垒砌工作。 上述工序步骤均是沿工作面方向分段依次进行的。
[0107] 待第二排墩柱与隔离体构筑结束后, 一个完整的采空区支撑结构体形成。
[0108] g、 循环工序。
[0109] 当第一个采空区支撑结构体形成后, 工作面继续向前推进, 此时后方采空区不 再处理, 保持悬顶状态。 待推进长度达到设计的不支撑区域宽度 10m时, 开始进 行第二个支撑结构体的构筑工作。 施工工艺依上述步骤 c至步骤 f顺序进行。
[0110] 上述未述及的内容借鉴现有技术即可实现。
[0111] 需要进一步说明的是, 本文中所描述的具体实施例仅仅是对本发明所作的举例 说明。 本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样 的修改或补充或采用类似的方式替代, 但并不会超越权利要求书所定义的范围

Claims

权利要求书
[权利要求 1] 一种坚硬顶板条件下采空区局部充填支撑结构体, 所述的支撑结构体 沿工作面推进方向间隔构建, 其特征在于:
每个支撑结构体包括位于采空区内的充填体及位于所述充填体两侧的 侧向支撑体及隔离体, 所述的充填体选用的材料为速凝矸石胶结材料 所述的侧向支撑体包括钢管混凝土墩柱、 防倒支撑腿以及柔性让压部 件, 所述的钢管混凝土墩柱为主要支撑结构, 其是通过向无缝钢管内 灌注混凝土浆液制作而成, 在所述钢管混凝土墩柱侧边离底部 300-50 Omm处开设有用以向钢管内部灌注混凝土浆液的注浆口, 所述的钢管 混凝土墩柱的顶部、 底部均采用焊接处理, 在所述的钢管混凝土墩柱 的顶部设置有排气孔, 所述的排气孔用于排出注浆时的空气, 所述防 倒支撑腿设置在所述钢管混凝土墩柱的中间位置, 所述的柔性让压部 件用以保证接顶密实;
所述的隔离体包括相邻钢管混凝土墩柱之间垒砌的矸石袋墙、 紧贴墩 柱架设的柔性侧护钢板以及钢板一侧挂设的防水塑胶帘, 其中, 所述 的矸石袋墙作为第一层隔离体, 所述的柔性侧护钢板作为第二层隔离 体, 所述的防水塑胶帘作为第三层隔离体。
[权利要求 2] 根据权利要求 1所述的一种坚硬顶板条件下采空区局部充填支撑结构 体, 其特征在于: 所述的防倒支撑腿为钢管混凝土结构, 所述防倒支 撑腿的钢管的管径小于所述钢管混凝土墩柱的钢管管径, 所述的防倒 支撑腿的上部向一侧倾斜, 并与所述的钢管混凝土墩柱焊接在一起, 所述的防倒支撑腿的下部设置有底座。
[权利要求 3] 根据权利要求 1所述的一种坚硬顶板条件下采空区局部充填支撑结构 体, 其特征在于: 所述的柔性让压部件是由木楔、 水泥背板制作而成 的缓冲让压体。
[权利要求 4] 根据权利要求 1所述的一种坚硬顶板条件下采空区局部充填支撑结构 体, 其特征在于: 所述的速凝矸石胶结材料其主要组成为破碎矸石、 水泥、 添加剂及水, 所述的破碎矸石作为主要的粗骨料。
[权利要求 5] 根据权利要求 1所述的一种坚硬顶板条件下采空区局部充填支撑结构 体, 其特征在于:
所述的混凝土浆液由河沙、 石子、 水泥、 添加剂水及搅拌制作而成, 其混凝土强度不低于 C40等级; 所述的矸石袋墙其墙体的厚度与钢管 混凝土墩柱的钢管的管径相匹配, 矸石袋为内部装满破碎矸石的编织 袋或铁丝袋。
[权利要求 6] 根据权利要求 1所述的一种坚硬顶板条件下采空区局部充填支撑结构 体, 其特征在于: 所述的柔性侧护钢板的高度与钢管混凝土墩柱的高 度相同, 所述柔性侧护钢板的厚度为 3〜 5mm。
[权利要求 7] 一种坚硬顶板条件下采空区局部充填支撑结构体的构筑方法, 其特征 在于, 依次包括以下步骤:
步骤一: 确定支撑体宽度与不支撑区域宽度;
步骤二: 支撑体各组成部分参数确定,
步骤三: 安装第一排墩柱支撑体,
自开切眼开始, 当工作面推进到设计的不支撑区域宽度时, 架设第一 排墩柱支撑体, 空钢管墩柱由地面加工制作完成, 运送至井下后安装 , 空钢管墩柱的架设紧随工作面综采液压支架的向前推移而进行, 实 行追架作业, 每推移 2-3个支架后, 开始在后方架设空钢管墩柱, 架 设工作在支架的尾梁保护下进行;
当空钢管墩柱架设 5-6根后, 进行混凝土灌注工作, 每次集中灌注, 整个面长上分阶段多次进行空钢管墩柱的灌注工作, 灌注浆液的制作 在工作面前方的上平巷内进行, 通过注浆口向钢管内注浆, 形成完整 的钢管混凝土墩柱, 该项工序直至沿工作面方向将整排墩柱架设完毕 后结束;
步骤四: 墩柱旁隔离体的安装架设,
隔离体的安装紧随钢管混凝土墩柱的架设, 与墩柱的架设同样分阶段 进行; 首先, 当第一段集中墩柱灌注混凝土工序完成后, 即开始进行墩柱间 矸石袋墙的垒砌工作, 及时对墩柱进行侧向加固, 矸石袋墙保证密实 接顶;
其次, 当墩柱架设达到其单块长度时, 及时进行侧护钢板和防水塑胶 帘的安装; 安装时, 先紧贴墩柱和矸石袋墙铺设侧护钢板, 钢板和墩 柱外侧之间采用固态凝胶粘接的方式; 钢板安装完成后, 在其外侧进 行防水塑胶帘的铺设, 塑胶帘上下与顶底板粘接牢固, 其与侧护钢板 采用粘接的连接方式;
该项工序直至沿工作面方向全部架设完毕后结束;
步骤五: 内部充填体的构筑,
施工时沿工作面推进方向分阶段依次进行, 工作面每向前推进 1〜 2刀 煤的距离, 随即在后方进行该空间的充填工作, 具体工序包括: a、 墩柱和隔离体架设好后, 采煤机继续向前割煤, 支架追机向前移 架, 随着支架的前移, 在支架后方及时架设密集单体液压支柱, 相邻 两棵单体支柱紧靠, 支柱的架设与钢管混凝土墩柱的架设顺序相同, 实行追架作业, 即每向前移动一个支架, 后方随即开始安装单体支柱 , 同时在单体支柱内侧铺设挡水帘;
b、 沿工作面方向的密集单体液压支柱安装完成后, 在单体支柱和墩 柱隔离体之间形成了一个相对较为封闭的空间, 该空间宽度为采煤机 割 1〜 2刀煤的距离, 此时进行该空间的充填工作, 充填料浆通过搅拌 机、 充填泵及充填管路输送至该空间, 充填管路由工作面上顺槽内进 入, 从下部端头开始依次充填, 充填时, 每次充填距离在 5〜 6m左右
, 充满第一段后, 掐缩充填管路, 进行第二段的充填, 相邻段之间不 再增设其他隔挡措施, 直至该空间全部充填完毕后结束;
c、 第一条充填体构筑完成后, 工作面继续向前推进, 随着支架的前 移, 在支架后方依次进行的工序为第一排单体支柱的拆除与第二排密 集单体支柱的架设工作, 实行先拆后支的工艺顺序, 待拆除与架设全 部完成后, 第二条充填空间形成, 与原工艺步骤相同, 进行第二条充 填体的构筑工作;
d、 依次进行上述工艺步骤, 待充填体整体宽度达到设计宽度时, 充 填工作停止, 内部充填体构筑完成;
步骤六: 构筑第二排墩柱与隔离体;
步骤七: 循环工序,
第一个采空区支撑结构体形成后, 工作面继续向前推进, 此时后方采 空区不再处理, 保持悬顶状态; 待推进长度达到设计的不支撑区域宽 度时, 开始进行第二个支撑结构体的构筑工作, 施工工艺依上述步骤 三至步骤六顺序进行。
[权利要求 8] 根据权利要求 7所述的一种坚硬顶板条件下采空区局部充填支撑结构 体的构筑方法, 其特征在于, 步骤一的具体步骤为:
首先, 分析煤层上方顶板岩层结构, 根据矿山压力与岩层控制理论计 算公式、 实验室力学实验, 计算确定直接顶岩层的极限破断距离 , 不支撑区域宽度 L d、于上方直接顶岩层的极限破断距离 L h 采用 L i=0.5 L 0 0.6L 0;
其次, 计算煤层上方直接顶和基本顶岩层的自重应力, 计算支撑体所 需提供的最大支撑阻力, 反演计算支撑体所需最小宽度 L 2
[权利要求 9] 根据权利要求 7所述的一种坚硬顶板条件下采空区局部充填支撑结构 体的构筑方法, 其特征在于, 步骤二的具体步骤为:
首先, 根据所述的最大支撑阻力, 分解计算支撑体各部分所需提供的 最大支撑力, 从而确定主要支撑结构各部分的组成参数, 主要包括: 钢管混凝土墩柱中的钢管管径、 壁厚、 内部灌注混凝土的材料组成及 配比; 钢管混凝土墩柱在工作面方向上的布置间距; 内部充填体的材 料组成及配比;
其次, 理论及数值模拟分析上覆直接顶及基本顶岩层的变形特征与极 限下沉挠度, 根据计算结果确定墩柱上方柔性让压层的厚度。
[权利要求 10] 根据权利要求 7所述的一种坚硬顶板条件下采空区局部充填支撑结构 体的构筑方法, 其特征在于, 步骤六具体步骤包括: 充填体构筑完成 后, 随即安装第二排墩柱及隔离体, 第二排墩柱及隔离体的安装与所 述步骤三、 四的工序相同但顺序相反, 随着工作面的向前推进, 在支 架后方, 紧靠采空区内已经预先凝结的充填体, 先铺设防水塑胶帘, 再铺设侧护钢板, 然后安装空钢管墩柱与注浆, 每次墩柱注浆完成后 , 随即进行柱间矸石袋墙的垒砌工作, 工序步骤均是沿工作面方向分 段依次进行, 待第二排墩柱与隔离体构筑结束后, 一个完整的采空区 支撑结构体形成。
PCT/CN2018/120557 2018-11-16 2018-12-12 坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法 WO2020098033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811363995.2A CN109595029B (zh) 2018-11-16 2018-11-16 坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法
CN201811363995.2 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020098033A1 true WO2020098033A1 (zh) 2020-05-22

Family

ID=65958434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120557 WO2020098033A1 (zh) 2018-11-16 2018-12-12 坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法

Country Status (2)

Country Link
CN (1) CN109595029B (zh)
WO (1) WO2020098033A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695739A (zh) * 2020-12-18 2021-04-23 中国矿业大学(北京) 采动影响区建构筑物群下厚流砂层注浆加固方法
CN114477947A (zh) * 2021-12-28 2022-05-13 山东省邱集煤矿有限公司 一种用于矿井灰岩含水层改造的黄河沙注浆材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111364994B (zh) * 2020-03-24 2021-04-02 中国矿业大学 一种综采转充填连续推进协同开采方法
CN111550283A (zh) * 2020-07-06 2020-08-18 西安科技大学 一种间隔式布设矸石充填与囊袋注浆联合支撑减损方法
CN113779789B (zh) * 2021-09-06 2022-06-21 重庆大学 基于支架动态压力差指标的智能工作面覆岩应力感知方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103620A1 (en) * 2010-02-26 2011-09-01 Subsidence Control International Pty Ltd A method of reducing subsidence or windblast impacts from longwall mining
CN103742146A (zh) * 2014-01-17 2014-04-23 淄博王煤矿业有限公司 墩柱式充填法采煤工艺
CN203730069U (zh) * 2014-01-09 2014-07-23 中国矿业大学 一种圆形钢管混凝土柱沿空留巷充填墙体结构
CN103967519A (zh) * 2014-05-15 2014-08-06 山东科技大学 复合顶板倾斜煤层采空区冒落矸石加固沿空留巷方法
CN104564137A (zh) * 2015-01-19 2015-04-29 中国矿业大学 双介质垛式支撑坚硬顶板的煤矿采空区处理方法及装置
CN106677804A (zh) * 2017-02-23 2017-05-17 山东建筑大学 一种沿空留巷巷旁支护系统及其构筑方法
CN107060876A (zh) * 2017-05-26 2017-08-18 新疆大学 钢管混凝土墩柱沿空留巷主动支护结构及其施工方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101864987B (zh) * 2010-06-13 2011-11-02 中国矿业大学 一种大倾角煤层沿空留巷充填墙体的构筑方法
CN105569726A (zh) * 2015-12-31 2016-05-11 山东深博巷道支护技术有限公司 Gfrp管混凝土墩柱及矸石混凝土墙沿空留巷的方法
CN107916933A (zh) * 2017-11-20 2018-04-17 河南理工大学 一种坚硬顶板煤层采空区空间留设方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011103620A1 (en) * 2010-02-26 2011-09-01 Subsidence Control International Pty Ltd A method of reducing subsidence or windblast impacts from longwall mining
CN203730069U (zh) * 2014-01-09 2014-07-23 中国矿业大学 一种圆形钢管混凝土柱沿空留巷充填墙体结构
CN103742146A (zh) * 2014-01-17 2014-04-23 淄博王煤矿业有限公司 墩柱式充填法采煤工艺
CN103967519A (zh) * 2014-05-15 2014-08-06 山东科技大学 复合顶板倾斜煤层采空区冒落矸石加固沿空留巷方法
CN104564137A (zh) * 2015-01-19 2015-04-29 中国矿业大学 双介质垛式支撑坚硬顶板的煤矿采空区处理方法及装置
CN106677804A (zh) * 2017-02-23 2017-05-17 山东建筑大学 一种沿空留巷巷旁支护系统及其构筑方法
CN107060876A (zh) * 2017-05-26 2017-08-18 新疆大学 钢管混凝土墩柱沿空留巷主动支护结构及其施工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695739A (zh) * 2020-12-18 2021-04-23 中国矿业大学(北京) 采动影响区建构筑物群下厚流砂层注浆加固方法
CN114477947A (zh) * 2021-12-28 2022-05-13 山东省邱集煤矿有限公司 一种用于矿井灰岩含水层改造的黄河沙注浆材料
CN114477947B (zh) * 2021-12-28 2023-03-14 山东省邱集煤矿有限公司 一种用于矿井灰岩含水层改造的黄河沙注浆材料

Also Published As

Publication number Publication date
CN109595029A (zh) 2019-04-09
CN109595029B (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020098033A1 (zh) 坚硬顶板条件下采空区局部充填支撑结构体及其构筑方法
CN100577986C (zh) 三软地质条件下采空区留巷围岩支护方法
CN103161480B (zh) 主动支撑巷旁充填沿空留巷的方法
WO2021223573A1 (zh) 新增暗挖通道与既有站厅层连通接驳施工结构
CN108677924B (zh) 双排微型钢管桩注浆成墙隔断结构及方法
CN104481560A (zh) 巷道顶板含水层治理方法
CN109026020B (zh) 一种富水隧道溶洞处理与开挖方法
CN108316941B (zh) 一种破碎围岩及软岩巷道u型钢套棚支护方法
CN110130927A (zh) 一种炭质板岩隧道大变形控制施工方法
CN113107489A (zh) 一种高地压三软煤层沿空顺槽超前注浆加固方法
CN102121388B (zh) 一种快速构筑水闸墙的方法
CN106014443A (zh) 一种预防沿空留巷的巷道底鼓及墙体滑移的方法
CN104295315A (zh) 一种薄煤层沿空留巷方法
CN112538870B (zh) 一种富水砂层盾构隧道下穿高架桥用隔离加固结构及方法
CN102174818A (zh) 第四系强透水性地层的可控防渗堵漏挤入灌浆止水工艺
CN113027483A (zh) 一种盾构隧道破碎带地层注浆加固设备及其注浆加固方法
CN102493819B (zh) 一种控制煤层巷道围岩稳定性的方法
WO2021237912A1 (zh) 一种岩矸配合成形的伪采空层支护限沉回采方法
CN110863856A (zh) 一种进路式胶结充填封堵墙及其构筑方法
CN203925530U (zh) 一种先主动后让压支护的可调节沿空留巷墙体
CN103883336B (zh) 一种先主动后让压支护的可调节沿空留巷墙体及其施工方法
CN213775385U (zh) 一种富水砂层盾构隧道下穿高架桥用隔离加固结构
CN113914874A (zh) 一种大型地质异常断裂带巷道围岩超长距离预加固方法
CN105909290B (zh) 一种柱式部分充填开采中控制顶板下沉的装置与方法
CN112174616B (zh) 一种小窑破坏区松散煤岩体井下固结材料及固结方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940218

Country of ref document: EP

Kind code of ref document: A1