WO2017049705A1 - 光配向装置及其空间分光棱镜片 - Google Patents

光配向装置及其空间分光棱镜片 Download PDF

Info

Publication number
WO2017049705A1
WO2017049705A1 PCT/CN2015/092847 CN2015092847W WO2017049705A1 WO 2017049705 A1 WO2017049705 A1 WO 2017049705A1 CN 2015092847 W CN2015092847 W CN 2015092847W WO 2017049705 A1 WO2017049705 A1 WO 2017049705A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
angled
substrate
beam splitting
Prior art date
Application number
PCT/CN2015/092847
Other languages
English (en)
French (fr)
Inventor
白柏
钟新辉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/894,572 priority Critical patent/US9897815B2/en
Publication of WO2017049705A1 publication Critical patent/WO2017049705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1073Beam splitting or combining systems characterized by manufacturing or alignment methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations

Definitions

  • the present invention relates to the field of display technology, and more particularly to a light alignment device and a spatial beam splitting prism sheet.
  • TFT-LCD Thin film transistor liquid crystal
  • the TFT-LCD can be seen as a layer of liquid crystal sandwiched between two glass substrates, the upper glass substrate is a color filter, and the lower glass substrate is provided with a thin film transistor.
  • a current passes through the thin film transistor, an electric field change occurs, and a change in the electric field causes the liquid crystal molecules to deflect, thereby changing the polarity of the light, thereby achieving the intended display purpose.
  • an alignment film is usually provided in the display panel, and the alignment film controls the alignment direction and angle of the liquid crystal molecules.
  • the optical alignment technology orientation has gradually replaced the traditional friction cloth orientation.
  • the role of the light alignment film is to replace the conventional bump or trench structure, avoiding light leakage caused by the conventional bump and trench structure, greatly improving the aperture ratio, and making the liquid crystal molecules in the sub-pixel region have an initial The pretilt angle speeds up the response.
  • the alignment film 300 is usually first coated on the glass substrate 200, and the alignment film 300 is irradiated with a polarized UV light source at a certain inclination angle (ie, exposure), and the alignment film is applied. 300 performs the alignment.
  • a polarized UV light source at a certain inclination angle (ie, exposure)
  • the alignment film is applied. 300 performs the alignment.
  • FIG. 2A through 2E illustrate the process of performing multi-zone alignment in current optical alignment techniques.
  • a planar reticle 100 having a plurality of opaque shielding strips 101 spaced apart from each other is used to cover the glass substrate 200 coated with the photo-alignment film, and the alignment film is irradiated with obliquely incident polarized UV light. , complete the first UV alignment.
  • the area 301 is the area after the completion of the first alignment, and the arrow A indicates the first alignment direction.
  • FIG. 2C after the first alignment is completed The glass substrate 200 is rotated 180 degrees.
  • FIG. 1 shows the first alignment in FIG.
  • the visor strip 101 of the planar reticle 100 is used to align and obscure the region 301 where the first UV alignment is completed to achieve alignment of the planar reticle 100. Then, irradiation with obliquely incident polarized UV light is again performed to complete the second UV alignment, the region 302 is the region after the completion of the second alignment, and the arrow B indicates the second alignment direction (as shown in FIG. 2E). Therefore, in the photo-alignment process as described above, if it is necessary to complete the alignment for different regions, it is necessary to repeatedly perform the exposure by rotating the glass substrate 200 a plurality of times, or it is necessary to constantly change the incident direction of the UV light to realize the multi-region alignment. the goal of.
  • the present invention provides a light alignment device that can achieve multi-area alignment by primary polarized UV illumination and achieve pre-tilt angles with different directions, saving production time. And reduce the difficulty of production.
  • a light alignment device comprises: a polarized UV light source; a spatial beam splitting prism sheet comprising a light transmissive substrate; at least one of the upper and lower surfaces of the light transmissive substrate has a prism structure, and the prism structure is arranged to have at least two refraction directions according to the region,
  • the light emitted by the polarized UV light source is perpendicular to the spatial beam splitting prism sheet, the light of the same area is refracted by the prism structure and deflected in the same oblique direction.
  • the light of the adjacent area is refracted by the prism structure and then deflected in different oblique directions.
  • the prism structure is composed of a right-angled triangular prism, one right-angled surface of the right-angled triangular prism is perpendicular to the surface of the light-transmitting substrate, and the other right-angled surface coincides with the surface of the light-transmitting substrate, and the inclined surface is opposite to the surface of the light-transmitting substrate 5 to 60 degrees angle.
  • the light-transmitting substrate is divided into a plurality of regions, each of which is elongated, the right-angled triangular prisms of the same region are periodically arranged to each other, and the right-angled triangular prisms of the adjacent regions have different oblique directions.
  • the spatial beam splitting prism sheet is made of a transparent material.
  • the prism structure is directly formed by the light transmissive substrate, or is integrated with the light transmissive substrate after being separately manufactured.
  • a spatial beam splitting prism sheet comprises a light transmissive substrate, and at least one of the upper and lower surfaces of the light transmissive substrate has a prism structure, the prism structure is arranged to have at least two kinds of refraction directions, and the light emitted by the external light source is perpendicular to the spatial spectroscopic prism sheet.
  • the light of the same area is refracted by the prism structure and deflected in the same oblique direction.
  • the light of the adjacent area is refracted by the prism structure and then deflected in different oblique directions.
  • the prism structure is composed of a right-angled triangular prism, one right-angled surface of the right-angled triangular prism is perpendicular to the surface of the light-transmitting substrate, and the other right-angled surface coincides with the surface of the light-transmitting substrate, and the inclined surface is opposite to the surface of the light-transmitting substrate 5 to 60 degrees angle.
  • the light-transmitting substrate is divided into a plurality of regions, each of which is elongated, the right-angled triangular prisms of the same region are periodically arranged to each other, and the right-angled triangular prisms of the adjacent regions have different oblique directions.
  • the spatial beam splitting prism sheet is made of a transparent material.
  • the prism structure is directly formed by the light transmissive substrate, or is integrated with the light transmissive substrate after being separately manufactured.
  • a light alignment device has a prism structure which is different in a direction in which light is deflected in different regions, and is polarized by a prism structure when polarized UV light is incident on the light alignment device in a vertical direction
  • the UV light is deflected in at least two different directions to achieve multi-region alignment by primary polarized UV light illumination.
  • the optical alignment device can realize multi-region alignment by one UV light irradiation, and therefore, it is possible to overcome the problem of poor precision of substrate rotation and alignment caused in the prior art.
  • Figure 1 shows the working principle of the optical alignment technique.
  • 2A through 2E illustrate a process of performing multi-zone alignment using prior art optical alignment techniques.
  • FIG. 3 is a schematic diagram of a spatial beam splitting prism sheet of an optical alignment device according to an exemplary embodiment of the present invention.
  • FIGS. 4A through 4C are schematic diagrams showing the operation of an optical alignment device according to an exemplary embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an effect of performing multi-zone alignment by performing one UV light irradiation using a light alignment device according to an exemplary embodiment of the present invention.
  • FIGS. 3 through 5 An optical alignment device according to an exemplary embodiment of the present invention will be described in detail below with reference to FIGS. 3 through 5.
  • 3 is a schematic diagram of a spatial beam splitting prism sheet 1 of an optical alignment device according to an exemplary embodiment of the present invention
  • FIGS. 4A to 4C are schematic diagrams showing the operation principle of the optical alignment device according to an exemplary embodiment of the present invention
  • FIG. A schematic diagram of an effect of performing multi-zone alignment by performing one UV light irradiation using the optical alignment device according to an exemplary embodiment of the present invention.
  • the spatial beam splitting prism sheet 1 of the photo-alignment device may include a prism structure of the substrate 13 and its surface.
  • the prism structure may be constituted by a plurality of columns of right angle triangular prisms (11 and 12).
  • one right-angled face of the right-angled prism is perpendicular to the surface of the substrate 13, and the other right-angled face coincides with the surface of the substrate 13.
  • the inclined faces of the right-angled right-angled prisms face the same direction, and the inclined faces of the right-angled triangular prisms of adjacent columns face each other in opposite directions.
  • the vertically incident polarized UV light is incident from the slope of the right angle prism and exits from the other right angle of the right angle prism.
  • the bevel is at an angle of from 5 to 60 degrees from the surface of the substrate 13 (ie, the included angle may range from 5 to 60 degrees).
  • the present invention is not limited thereto, and prisms of other shapes may be used instead of the right-angled prism.
  • a prism having a right-angled trapezoidal cross section may also be employed, in which case the sloped surface may be used as a light incident surface, and a right angle surface opposite to the inclined surface may be used as a smooth surface.
  • the substrate 13 is made of a transparent material that is resistant to UV light, such as quartz glass. Further, the prism structure may be formed by the substrate 13 directly by engraving or imprinting, or the substrate 13 and the prism structure may be separately formed.
  • the prism structure may be disposed on at least one of the upper and lower surfaces of the substrate 13.
  • the surface of the substrate 13 is divided into a plurality of elongated regions in which a plurality of right-angled triangular prisms 11 or 12 (i.e., the same column) disposed adjacent to each other are disposed in each region
  • the right angle prisms are next to each other).
  • the slopes of the plurality of right-angled prisms in the same area face in the same direction, and the directions of the slopes of the right-angled prisms of the adjacent areas face each other.
  • the plurality of elongated strip regions include first elongated strip regions and second elongated strip regions that are alternately arranged side by side with each other.
  • the first elongated strip region is provided with a plurality of first right angle triangular prisms 11 whose slope faces in the first direction
  • the second elongated strip region is provided with a plurality of second right angle prisms 12 whose slope faces the second direction
  • first The right angle triangular prism 11 and the second right angle triangular prism 12 respectively refract light in different directions, wherein the second direction is opposite to the first direction, in the exemplary embodiment, the first direction is a leftward direction, and the second direction For the right direction.
  • the present invention is not limited thereto, and the direction of the slope of the right-angled triangular prism may be set according to actual needs.
  • polarized UV light irradiated in the vertical direction is incident from the slope of the first right-angled triangular prism 11 and the second right-angled triangular prism 12 (as shown in FIG. 4A). And passing through the right-angled faces of the first right-angled triangular prism 11 and the second right-angled triangular prism 12 on the substrate 13 and the substrate 13 to be emitted, so that polarized UV light deflected in different directions respectively illuminate different regions of the alignment film. Specifically, as shown in FIG.
  • the first right angle triangular prism 11 refracts polarized UV light such that the polarized UV light is deflected in the first oblique direction.
  • the second right angle triangular prism 12 refracts the polarized UV light such that the polarized UV light is deflected in the second oblique direction. That is, the vertically incident polarized UV light is deflected in the first oblique direction and the second oblique direction, respectively, after passing through the first elongated region and the second elongated region of the optical alignment device 1.
  • the first alignment region 31 and the second alignment region are formed on the alignment film. 32 (as shown in Figure 5).
  • an arrow A1 indicates an alignment direction of the first alignment region 31
  • an arrow A2 indicates an alignment direction of the second alignment region 32. Therefore, with the optical alignment device 1 according to an exemplary embodiment of the present invention, multi-region alignment can be achieved by one UV light irradiation, and liquid crystal molecules can be provided with pretilt angles in different directions.
  • the widths of the first alignment region 31 and the second alignment region 32 are respectively equal to The width of the first elongated strip region and the second elongated strip region.
  • the first alignment region 31 and the second alignment region 32 correspond to pixels, and the width thereof is preferably an integer multiple of the size of the unit region in the sub-pixel.
  • the widths of the first elongated strip region and the second elongated strip region are also preferably integer multiples of the size of the unit region within the sub-pixel.
  • the optical alignment device has at least two columns of parallel right-angled prisms, the slopes of the right-angled prisms in the same column face in the same direction, and the direction in which the slopes of the right-angled prisms of adjacent columns face Opposite to each other, such that when polarized UV light is incident on the light alignment device in the vertical direction, the directions of light emitted from the right-angled triangular prisms of the adjacent columns are different from each other, thereby realizing one-time UV light irradiation to achieve multi-region alignment, and is liquid crystal Molecules provide different pretilt angles.
  • the photo-alignment device according to an exemplary embodiment of the present invention can realize multi-zone alignment by one-time UV light irradiation, and therefore, it is possible to overcome the problem of poor precision due to substrate rotation and alignment in the related art.
  • the direction of refraction of the elongated region on the substrate may have a third oblique direction and more directions in addition to the first oblique direction and the second oblique direction. That is, the prism structure can produce two, three or even more refractive directions.
  • the area divided on the substrate is not limited to the parallel strip-shaped area, and may be various regular or irregular areas such as a lattice-shaped area and a circled area.
  • the prism structure may be disposed on the upper surface of the substrate in a partial region, the prism structure may be disposed on the lower surface of the substrate in other regions, or the prism structure may be disposed on the upper and lower surfaces in a partial region.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光配向装置及其空间分光棱镜片(1)。光配向装置包括:偏振UV光源和空间分光棱镜片(1),空间分光棱镜片(1)包括透光基底(13),透光基底(13)的上下表面中的至少一个表面上具有棱镜结构(11,12),棱镜结构(11,12)按区域设置成具有至少两种折射方向,偏振UV光源发出的光垂直于空间分光棱镜片(1)入射时,同一区域的光线经过棱镜结构(11,12)折射后沿相同的倾斜方向偏折,相邻区域的光线经过棱镜结构(11,12)折射后沿彼此不同的倾斜方向偏折。因此,可以通过一次偏振UV光照射实现多区域(31,32)配向的目的,还可以节省生产时间并降低生产难度,从而提高生产效率。

Description

光配向装置及其空间分光棱镜片 技术领域
本发明涉及显示技术领域,更具体地说,涉及一种光配向装置及其空间分光棱镜片。
背景技术
薄膜晶体管液晶(TFT-LCD)显示器近年来得到了飞速的发展和广泛的应用。简单地说,TFT-LCD可视为两片玻璃基板中间夹着一层液晶,上层的玻璃基板是彩色滤光片、下层的玻璃基板上设置有薄膜晶体管。当电流通过薄膜晶体管时,产生电场变化,电场的变化引起液晶分子偏转,从而来改变光线的偏极性,从而实现预期的显示目的。在施加电压前,需要使液晶分子有一个初始取向方向,因此,在显示面板中通常设置有配向膜,配向膜控制液晶分子的排列方向与角度。
随着配向技术的进步,光配向技术取向方式逐渐取代了传统的摩擦布取向方式。光配向膜的作用就是替代了传统的凸起或沟槽结构,避免了由传统的凸起和沟槽结构造成的漏光,极大的提高了开口率,并且使子像素区域的液晶分子具有初始的预倾角,加快响应速度。
如图1中所示,在目前的光配向技术中,通常先在玻璃基板200上涂布配向膜300,采用偏振UV光源以一定的倾斜角度照射配向膜300(即,曝光),对配向膜300执行配向。通过这种处理,当将液晶分子500填充到玻璃基板之间时,液晶分子500具有一定方向的预倾角。
图2A至图2E示出了目前的光配向技术中执行多区域配向的过程。如图2A中所示,采用具有多个彼此间隔的不透光的遮挡条101的平面光罩100罩在涂布有光配向膜的玻璃基板200上,利用倾斜入射的偏振UV光照射配向膜,完成第一次UV配向。如图2B中所示,区域301为完成第一配向之后的区域,箭头A表示第一次配向方向。接下来,如图2C中所示,将完成第一配向之后 的玻璃基板200旋转180度。接着,如图2D中所示,利用平面光罩100的遮挡条101对准并遮住完成了第一次UV配向的区域301,以实现平面光罩100的对位。然后,再次利用倾斜入射的偏振UV光进行照射,完成第二次UV配向,区域302为完成第二次配向之后的区域,箭头B表示第二次配向方向(如图2E中所示)。因此,在如上所述的光配向过程中,如果需要针对不同的区域完成配向,必须经过多次旋转玻璃基板200来多次执行曝光,或者需要不断改变UV光的入射方向,才能实现多区域配向的目的。这样进行多次UV照射不但单件工时较久,而且在多次旋转玻璃基板进行多次UV照射的过程中,由于平面光罩的对位误差会导致精度降低,同时还存在较高的破片风险。
发明内容
为克服现有技术中存在的缺点,本发明提供一种光配向装置,所述光配向装置可以通过一次偏振UV光照射实现多区域配向的目的,并实现具有不同方向的预倾角,节省生产时间并降低生产难度。
根据本公开的一方面,提供一种光配向装置。所述光配向装置包括:偏振UV光源;空间分光棱镜片,包括透光基底,透光基底的上下表面中的至少一个表面上具有棱镜结构,棱镜结构按区域设置成具有至少两种折射方向,偏振UV光源发出的光垂直于空间分光棱镜片入射时,同一区域的光线经过棱镜结构折射后沿相同的倾斜方向偏折,相邻区域的光线经过棱镜结构折射后沿彼此不同的倾斜方向偏折。
根据本公开的示例性实施例,棱镜结构由直角三棱镜构成,直角三棱镜的一个直角面垂直于透光基底的表面,另一直角面与透光基底的表面重合,斜面与透光基底的表面呈5~60度夹角。
根据本公开的示例性实施例,透光基底被划分为多个区域,各区域呈长条状,同一区域的直角三棱镜彼此周期性排列,相邻区域的直角三棱镜具有不同的倾斜方向。
根据本公开的示例性实施例,空间分光棱镜片由透明材料制成。
根据本公开的示例性实施例,棱镜结构由透光基底直接加工形成,或者分体制造之后与透光基底结合为一体。
根据本公开的另一方面,提供一种空间分光棱镜片。所述空间分光棱镜片包括透光基底,透光基底上下表面中的至少一个表面上具有棱镜结构,棱镜结构按区域设置成具有至少两种折射方向,外部光源发出的光垂直于空间分光棱镜片入射时,同一区域的光线经过棱镜结构折射后沿相同的倾斜方向偏折,相邻区域的光线经过棱镜结构折射后沿彼此不同的倾斜方向偏折。
根据本公开的示例性实施例,棱镜结构由直角三棱镜构成,直角三棱镜的一个直角面垂直于透光基底的表面,另一直角面与透光基底的表面重合,斜面与透光基底的表面呈5~60度夹角。
根据本公开的示例性实施例,透光基底被划分为多个区域,各区域呈长条状,同一区域的直角三棱镜彼此周期性排列,相邻区域的直角三棱镜具有不同的倾斜方向。
根据本公开的示例性实施例,空间分光棱镜片由透明材料制成。
根据本公开的示例性实施例,棱镜结构由透光基底直接加工形成,或者分体制造之后与透光基底结合为一体。
根据本发明的实施例的光配向装置通过在不同区域设置对光线的偏折方向不同的棱镜结构,当偏振UV光沿竖直方向入射到所述光配向装置之后,被棱镜结构折射后的偏振UV光沿至少两个不同的方向偏折,从而通过一次偏振UV光照射实现多区域配向的目的。此外,根据本发明的示例性实施例的光配向装置可通过一次UV光照射实现多区域配向,因此,可以克服现有技术中基板旋转以及对位造成的精度较差的问题。
附图说明
图1示出了光配向技术的工作原理。
图2A至图2E示出了采用现有技术中的光配向技术执行多区域配向的过程。
图3是根据本发明的示例性实施例的光配向装置之空间分光棱镜片的示意图。
图4A至图4C是根据本发明的示例性实施例的光配向装置的工作原理示意图。
图5是利用根据本发明的示例性实施例的光配向装置进行一次UV光照射执行多区域配向的效果示意图。
具体实施方式
下面结合附图,对根据本发明的示例性实施例的光配向装置进行详细的描述。在此需要说明的是,提供附图仅为了帮助本领域技术人员充分地了解根据本发明的示例性实施例的光配向装置的结构与工作原理,并非意在限制本发明。
下面将结合图3至图5详细地描述根据本发明的示例性实施例的光配向装置。图3是根据本发明的示例性实施例的光配向装置之空间分光棱镜片1的示意图,图4A至图4C是根据本发明的示例性实施例的光配向装置的工作原理示意图,图5是利用根据本发明的示例性实施例的光配向装置进行一次UV光照射执行多区域配向的效果示意图。
如图3中所示,根据本发明的示例性实施例的光配向装置的空间分光棱镜片1可包括基底13及其表面的棱镜结构。优选地,可以由多列直角三棱镜(11和12)构成棱镜结构。而且,直角三棱镜的一个直角面垂直于基底13的表面,另一直角面与基底13的表面重合。同一列直角三棱镜的斜面面向同一方向,并且相邻列的直角三棱镜的斜面所面向的方向彼此相反。垂直入射的偏振UV光会从直角三棱镜的斜面入射,并从直角三棱镜的所述另一直角面出射。优选地,斜面与基底13的表面呈5~60度夹角(即,夹角的范围可在5度至60度之间)。然而,本发明不限于此,也可使用其他形状的棱镜来替换直角三棱镜。例如,根据本发明的其他实施例,也可采用其截面为直角梯形的棱镜,在这种情况下,其斜面可用作入光面,与斜面相对的直角面可用作出光面。
基底13由耐UV光的透明材料制成,如石英玻璃。此外,棱镜结构可以由基底13直接通过雕刻或压印等方式成型,或者基底13和棱镜结构也可以分别形成。
而且,虽然图3中示出了棱镜结构形成在基底13的上表面的情形,但是 不限于此,棱镜结构可设置在基底13的上、下表面中的至少一个表面上。
换言之,在根据本发明的示例性实施例中,基底13表面被划分成多个长条状区域,在各区域中设置有彼此相邻地设置的多个直角三棱镜11或12(即,同一列中的直角三棱镜彼此紧挨着)。同一区域中的多个直角三棱镜的斜面面向同一方向,并且相邻区域的直角三棱镜的斜面所面向的方向彼此相反。
根据本示例性实施例,所述多个长条状区域包括彼此交错地并排设置的第一长条状区域和第二长条状区域。其中,第一长条状区域中设置有斜面面向第一方向的多个第一直角三棱镜11,第二长条状区域中设置有斜面面向第二方向的多个第二直角三棱镜12,第一直角三棱镜11和第二直角三棱镜12分别沿不同的方向对光进行折射,其中,第二方向与第一方向相反,在本示例性实施例中,第一方向为向左的方向,第二方向为向右的方向。然而,本发明不限于此,可根据实际需要来设置直角三棱镜的斜面面向的方向。
下面结合图4A至图4C对根据本发明的示例性实施例的光配向装置的工作原理进行描述。
当光配向装置1罩在涂布有配向膜的玻璃基板2上方时,沿竖直方向照射的偏振UV光从第一直角三棱镜11和第二直角三棱镜12的斜面入射(如图4A中所示),并穿过第一直角三棱镜11和第二直角三棱镜12的位于基底13上的直角面以及基底13出射,从而沿不同方向偏折的偏振UV光分别对配向膜的不同区域进行照射。具体地,如图4B中所示,第一直角三棱镜11对偏振UV光进行折射,使得偏振UV光沿第一倾斜方向偏折。如图4C中所示,第二直角三棱镜12对偏振UV光进行折射,使得偏振UV光沿第二倾斜方向偏折。即,竖直入射的偏振UV光通过光配向装置1的第一长条状区域和第二长条状区域之后分别沿第一倾斜方向和第二倾斜方向偏折。
利用图3中所示的光配向装置1将偏折后的偏折UV光照射到涂布在玻璃基板2上的配向膜之后,在配向膜上形成了第一配向区域31和第二配向区域32(如图5中所示)。在图5中,箭头A1表示第一配向区域31的配向方向,箭头A2表示第二配向区域32的配向方向。因此,利用根据本发明的示例性实施例的光配向装置1可通过一次UV光照射实现多区域配向,并可为液晶分子提供不同方向的预倾角。第一配向区域31和第二配向区域32的宽度分别等于 第一长条状区域和第二长条状区域的宽度。第一配向区域31和第二配向区域32是与像素对应的,其宽度优选为亚像素内单位区域尺寸的整数倍。相应地,第一长条状区域和第二长条状区域的宽度也优选为亚像素内单位区域尺寸的整数倍。
综上所述,根据本发明的实施例的光配向装置通过设置至少两列平行的直角三棱镜,同一列中的直角三棱镜的斜面面向同一方向,并且相邻列的直角三棱镜的斜面所面向的方向彼此相反,使得当偏振UV光沿竖直方向入射到所述光配向装置之后,从相邻列的直角三棱镜出射的光的方向彼此不同,从而实现一次UV光照射实现多区域配向,并为液晶分子提供不同的预倾角的目的。此外,根据本发明的示例性实施例的光配向装置可通过一次UV光照射实现多区域配向,因此,可以克服现有技术中由于基板旋转以及对位所导致的精度较差的问题。
虽然已示出并描述了本发明的示例性实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本发明的原理和精神的情况下,可以对这些实施例进行修改。
例如,基底上的长条状区域的折射方向除了第一倾斜方向和第二倾斜方向之外,还可以有第三倾斜方向以及更多个方向。即,棱镜结构可以产生两种、三种甚至更多种折射方向。
而且,基底上所划分的区域不限于平行的长条状区域,也可以是格子状区域、圆圈区域等各种规则或不规则区域。
而且,可以在部分区域将棱镜结构设置在基底的上表面,而在其他区域将棱镜结构设置在基底的下表面,或者在部分区域在上下表面均设置棱镜结构。

Claims (10)

  1. 一种光配向装置,包括:
    偏振UV光源;
    空间分光棱镜片,包括透光基底,透光基底的上下表面中的至少一个表面上具有棱镜结构,棱镜结构按区域设置成具有至少两种折射方向,偏振UV光源发出的光垂直于空间分光棱镜片入射时,同一区域的光线经过棱镜结构折射后沿相同的倾斜方向偏折,相邻区域的光线经过棱镜结构折射后沿彼此不同的倾斜方向偏折。
  2. 根据权利要求1所述的光配向装置,其中,棱镜结构由直角三棱镜构成,直角三棱镜的一个直角面垂直于透光基底的表面,另一直角面与透光基底的表面重合,斜面与透光基底的表面呈5~60度夹角。
  3. 根据权利要求2所述的光配向装置,其中,透光基底被划分为多个区域,各区域呈长条状,同一区域的直角三棱镜彼此周期性排列,相邻区域的直角三棱镜具有不同的倾斜方向。
  4. 根据权利要求3所述的光配向装置,其中,空间分光棱镜片由透明材料制成。
  5. 根据权利要求1所述的光配向装置,其中,棱镜结构由透光基底直接加工形成,或者分体制造之后与透光基底结合为一体。
  6. 一种空间分光棱镜片,包括透光基底,透光基底上下表面中的至少一个表面上具有棱镜结构,棱镜结构按区域设置成具有至少两种折射方向,外部光源发出的光垂直于空间分光棱镜片入射时,同一区域的光线经过棱镜结构折射后沿相同的倾斜方向偏折,相邻区域的光线经过棱镜结构折射后沿彼此不同的倾斜方向偏折。
  7. 根据权利要求6所述的空间分光棱镜片,其中,棱镜结构由直角三棱镜构成,直角三棱镜的一个直角面垂直于透光基底的表面,另一直角面与透光 基底的表面重合,斜面与透光基底的表面呈5~60度夹角。
  8. 根据权利要求7所述的空间分光棱镜片,其中,透光基底被划分为多个区域,各区域呈长条状,同一区域的直角三棱镜彼此周期性排列,相邻区域的直角三棱镜具有不同的倾斜方向。
  9. 根据权利要求8所述的空间分光棱镜片,其中,空间分光棱镜片由透明材料制成。
  10. 根据权利要求6所述的空间分光棱镜片,其中,棱镜结构由透光基底直接加工形成,或者分体制造之后与透光基底结合为一体。
PCT/CN2015/092847 2015-09-23 2015-10-26 光配向装置及其空间分光棱镜片 WO2017049705A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/894,572 US9897815B2 (en) 2015-09-23 2015-10-26 Optical alignment device and spatial beam splitting prism thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510611803.5A CN105068329A (zh) 2015-09-23 2015-09-23 光配向装置及其空间分光棱镜片
CN201510611803.5 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017049705A1 true WO2017049705A1 (zh) 2017-03-30

Family

ID=54497729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092847 WO2017049705A1 (zh) 2015-09-23 2015-10-26 光配向装置及其空间分光棱镜片

Country Status (3)

Country Link
US (1) US9897815B2 (zh)
CN (1) CN105068329A (zh)
WO (1) WO2017049705A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892157A (zh) 2016-06-07 2016-08-24 深圳市华星光电技术有限公司 对液晶面板进行光配向的方法及光罩
CN108279536A (zh) * 2018-02-13 2018-07-13 京东方科技集团股份有限公司 一种光配向装置和光配向方法
CN108957607A (zh) * 2018-07-13 2018-12-07 合肥连森裕腾新材料科技开发有限公司 一种减少光漫射的棱镜膜组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242465A (ja) * 2000-03-01 2001-09-07 Nec Corp 液晶配向膜の製造方法、光照射装置及び液晶表示装置
JP2009042426A (ja) * 2007-08-08 2009-02-26 Seiko Epson Corp 液晶装置の製造装置、液晶装置の製造方法及び液晶装置
CN201853032U (zh) * 2010-10-12 2011-06-01 华映视讯(吴江)有限公司 曝光装置
CN103399431A (zh) * 2013-08-22 2013-11-20 南京中电熊猫液晶显示科技有限公司 一种液晶显示器光配向曝光装置
JP2015075626A (ja) * 2013-10-09 2015-04-20 セイコーエプソン株式会社 液晶装置、液晶装置の製造方法、及び電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278552B1 (en) * 1999-05-12 2001-08-21 Minolta Co., Ltd. Polarization separation device and projection-type display apparatus
JP2001174820A (ja) * 1999-12-20 2001-06-29 Seiko Epson Corp 液晶装置及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242465A (ja) * 2000-03-01 2001-09-07 Nec Corp 液晶配向膜の製造方法、光照射装置及び液晶表示装置
JP2009042426A (ja) * 2007-08-08 2009-02-26 Seiko Epson Corp 液晶装置の製造装置、液晶装置の製造方法及び液晶装置
CN201853032U (zh) * 2010-10-12 2011-06-01 华映视讯(吴江)有限公司 曝光装置
CN103399431A (zh) * 2013-08-22 2013-11-20 南京中电熊猫液晶显示科技有限公司 一种液晶显示器光配向曝光装置
JP2015075626A (ja) * 2013-10-09 2015-04-20 セイコーエプソン株式会社 液晶装置、液晶装置の製造方法、及び電子機器

Also Published As

Publication number Publication date
US9897815B2 (en) 2018-02-20
US20170115495A1 (en) 2017-04-27
CN105068329A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
US10678086B2 (en) Display panel, display device, and driving method
JP4757308B2 (ja) 液晶表示装置の製造方法及び配向処理用露光装置
US6323926B2 (en) Vertical alignment mode LCD having two different alignment regions
KR101782013B1 (ko) 노광 장치 및 액정 표시 장치의 제조 방법
US10241367B2 (en) Display panel
WO2017139999A1 (zh) 垂直光配向方法及液晶显示面板的制作方法
US20210063826A1 (en) Photoalignment Method and Photoalignment Device
KR20160106105A (ko) 액정 표시장치 및 그 제조방법
WO2017049705A1 (zh) 光配向装置及其空间分光棱镜片
WO2016176949A1 (zh) 薄膜晶体管及制备方法、阵列基板及制备方法、显示装置
JP2008083215A (ja) 配向膜製造用マスク及び液晶装置の製造方法
JP4216220B2 (ja) 液晶表示素子の製造方法
JP2008076825A (ja) 配向膜製造用マスク及び液晶装置の製造方法
KR102179033B1 (ko) 광 배향용 광마스크 및 광 배향 방법
WO2012105393A1 (ja) 露光装置、液晶表示装置及びその製造方法
CN109270743B (zh) 用于光配向的掩膜板及用于光配向的掩膜组
JP2009042426A (ja) 液晶装置の製造装置、液晶装置の製造方法及び液晶装置
TW201007351A (en) Photomask and photo alignment process using the same
WO2018133343A1 (zh) 显示基板及其制作方法、显示面板
JP2001117101A (ja) 液晶表示素子及びその製造方法
KR102133871B1 (ko) 액정 패널 및 액정 장치
US20210200010A1 (en) Liquid crystal panel and manufacture method thereof, liquid crystal display device
KR20080108831A (ko) 액정 표시 장치 및 그의 제조 방법
WO2021001983A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
KR20230138117A (ko) Uv 광배향 조사장비의 편광판 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14894572

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904580

Country of ref document: EP

Kind code of ref document: A1